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Wideband Printed Monopole Design
Using a Genetic Algorithm

M. John and M. J. Ammann

Abstract—A method for the design and optimization of wide-
band printed planar monopoles using a genetic algorithm (GA) is
presented. This novel technique employs overlapping subpatches
which ensures electrical contact in such constellations where two
subpatches are touching only at the corner, hence, reducing losses.
The method was used to design a wideband monopole antenna with
application in higher cellular, WLAN, and UWB. Furthermore, the
technique is modified for multigoal optimization to achieve mul-
tiple bands and reduce the lower edge frequency. The best solutions
were prototyped and a full experimental evaluation was made.

Index Terms—genetic algorithm (GA), printed monopole, wide-
band antenna.

I. INTRODUCTION

PRINTED planar monopoles are promising wideband
antennas and can be easily integrated in communication

systems by fabrication onto printed circuit boards. These
elements have recently become popular for wireless communi-
cations due to their broad bandwidth and appropriate radiation
pattern [1]–[4]. Optimization with genetic algorithms (GAs)
yield great potential in finding no-conventional solutions to
electromagnetic problems. They have been successfully ap-
plied to patch antennas [5], [6] and printed monopoles [7]. The
antenna presented here is proposed for multimode use in the
higher cellular, WLAN, and UWB systems.

II. INTRODUCTION TO THE GENETIC ALGORITHM (GA)

The GA operates on a 16 by 8 binary array which is encoded
into a 128 bit (16 8) binary string. This string represents the
chromosome. Therefore, the size of the search space is .
This 16 8 array is the trial solution. It is mirrored along the y
axis to create a symmetrical 16 16 element. This principle is
illustrated in Fig. 1 where the original 16 8 array is shown on
the left.

The GA starts with a population of randomly generated solu-
tions and then evolves it through selection, crossover, and mu-
tation. The probability for selection is computed according to
the performance of the antennas generated with these trial so-
lutions. The GA is implemented in MatLab. The trial solutions
are passed to CST Microwave Studio (MWS) where the antenna
geometry is generated. For every bit which is set in the 16 16
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Fig. 1. A 16� 8 array mirrored along the y axis to create symmetrical 16� 16
array.

array, a 2 2-mm square subpatch is placed on the substrate.
The groundplane, feedline, waveguide port and boundary con-
ditions remain the same for all trial solutions. After the geometry
is generated, the performance is evaluated by the FITD solver.
Furthermore, MWS computes the fitness function from the re-
turn loss of the simulated antenna.

For the optimization a multigoal fitness function was used.
The fitness function for the antenna presented consists of two
parts. The first is defined as the sum of all values that
exceed 10 dB, to achieve the maximum bandwidth between
0–10 GHz. The second part is the lower edge frequency .
The two parts are weighted at 70% and 30%, respectively. The
fitness function is

fitness

where is number of frequency points, .
The population size was set to 50 and evolved over 30 gener-

ations. A single run of CST MWS on one trial solution antenna
takes approximately 20 min on an Intel P4 1.8-GHz PC. For the
given population size and generations, 1500 such runs are nec-
essary. This adds up to 21 days runtime on a single machine.

III. ANTENNA GEOMETRY

The microstrip-fed GA plate monopole is printed on one
side of FR4 substrate of 1.52 mm thickness and metalization

1536-1225/$25.00 © 2007 IEEE
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Fig. 2. Antenna geometry and principle of overlapping subpatches.

of 35 . The groundplane is located on the rear side. The
dimensions of the substrate are and .
The groundplane size, which is already optimized for max-
imum bandwidth [3] is 45 . The microstrip feedline

is excited by an SMA end-launch connector.
The overall dimension of the radiating 16 16 element array
of subpatches is and . Each metallic
element of the radiating patch can be switched “on” or “off”
by the genetic algorithm. Fig. 2 shows all elements switched
“on.” The size of each of these subpatches is by

. They are overlapping by to ensure
electrical contact in such constellations where two subpatches
are touching only at the corner. This is used to reduce losses
in the fabricated antenna [8]. The principle of the overlapping
element design is shown in the inset diagram in Fig. 2.

IV. RESULTS

The first set of results presented were optimized with the goal
designed to achieve the widest possible bandwidth within the 0
to 10 GHz range while maintaining a low lower edge frequency.
The return loss was measured using a Rohde & Schwarz vector
network analyzer ZVA24 and it was found to be greater than
10 dB from 1.9 up to 10 GHz. The geometry of the antenna and
both the simulated and measured return loss are shown in Fig. 3.
Good agreement was achieved. The parasitic elements optimize
the effective feedgap between the radiator on one side and the
groundplane on the other side. This reduces the monopole height
by the otherwise necessary feedgap, which is typically 2 mm for
the rectangular or circular geometry. The measured radiation
patterns are shown in Fig. 4. It can be seen that the pattern om-
nidirectionality is reasonably stable with change of frequency
for the cellular, WLAN and first generation UWB bands. The
maximum gain was found to be 2.6 dBi at 1.6 GHz, 4.1 dBi at
2.4 GHz, 4.0 dBi at 4.6 GHz, and 5.5 dBi at 7.6 GHz.

V. OPTIMIZATION FOR PHASE LINEARITY

The optimization goal was now modified to achieve a linear
phase response. A linear phase response is required for distor-

Fig. 3. Antenna geometry optimized for wide bandwidth with simulated and
measured return loss.

tionless pulse communication [9]. Therefore, part of the goal
was computed by numerically deriving the phase of the return
loss at each frequency point. If a change in the sign of the deriva-
tion is found, the phase is nonlinear at this point and the fitness
of this trial solution is set to zero

fitness

This fitness functions gives solutions with smooth phase
changes and no sign change in the derivation a better fitness
value.

The measured phase response of the best solution with this
goal is shown in Fig. 5. This figure also shows the phase of the
wide-band optimized design for comparison. It can be seen that
the phase of the optimized design changes rather smoothly while
the slope of the plot for the other patch changes sign multiple
times.

VI. CONCLUSION

A GA-based optimization technique employing an array of
overlapping subpatches is shown to provide promising new ge-
ometries for wideband applications. The results using a mir-
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Fig. 4. Measured radiation patterns for the (xz), (yz), and (xy) planes.

rored symmetrical array illustrate a reasonable omnidirection-
ality over the full impedance bandwidth. The requirement for

Fig. 5. Antenna geometry optimized for linear phase response with measured
phase of the return loss.

the feedgap has been eliminated by this technique, enabling a
somewhat smaller antenna.
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