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Spectral Cross Correlation as a Supervised Approach for the Analysis of Complex Raman 

Datasets: The Case of Nanoparticles in Biological Cells 

Mark E. Keating*, Franck Bonnier, Hugh J. Byrne, 

Focas Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland, 

 

Abstract 

Spectral Cross-correlation is introduced as a methodology to identify the presence and 

subcellular distribution of nanoparticles in cells. Raman microscopy is employed to 

spectroscopically image biological cells previously exposed to polystyrene nanoparticles, as a 

model for the study of nano-bio interactions. The limitations of previously deployed strategies of 

K-means clustering analysis and principal component analysis are discussed and a novel 

methodology of Spectral Cross Correlation Analysis is introduced and compared with the 

performance of Classical Least Squares Analysis, in both unsupervised and supervised modes. 

The previous study demonstrated the feasibility of using Raman spectroscopy to map cells and 

identify polystyrene nanoparticles in a lipid rich environment, which is suggestive of the 

membrane rich endoplasmic reticulum. However, short comings in identification of all 

nanoparticle signatures in the cell using K-means clustering are apparent, as highlighted by 

principal component analysis of the identified clusters which demonstrates that K-means 

clustering does not identify all regions where spectral signatures of the nanoparticles are evident. 

Thus, two more sophisticated analytical approaches to the extraction of the nanoparticle 

signatures from the Raman spectral data sets, namely classical least squares analysis and cross 

correlation analysis, were employed and are demonstrated to improve the identification of 

spectroscopic signatures characteristic of polystyrene nanoparticles in a cellular environment. 

Additionally, to investigate the local biochemical environment in which the nanoparticles are 



trafficked, a pure spectrum of 3-sn-phosphatidyl ethanolamine was cross correlated against the 

Raman data set, further suggesting the particles are indeed localized in a lipid rich environment. 

Furthermore, to demonstrate the robustness and versatility of the analysis method, a  spectrum of 

pure RNA was used to demonstrate that a differentiation could be made between DNA of the 

nucleus and RNA of the nucleolus using the supervised spectral cross-correlation technique.     

   

Keywords: Raman Spectroscopy, NanoParticles, Intracellular localisation, Multivariate analysis, 

Classical Least Squares Analysis, Spectral Cross Correlation Analysis 
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Introduction  

Nanotechnology is set to become the first trillion dollar industry in history, with predicted 

benefits which span a wide range of fields, including applications in site specific delivery of 

drugs in humans, to antimicrobial paint coatings and textile finishing, to advances in the 

electronics industry 1–6. However, there are caveats associated with deploying these 

nanotechnologies which must be addressed before true realistic applications can be widely 

accepted and adopted as the norm.  

 It is widely known that nanomaterials, more specifically nanoparticles, possess a range of 

unique characteristics which in some ways dictate their usefulness and applicability in fields 

such as medical science. Properties such as increased surface to mass ratio result in an increased 

reactivity and associated novel optical properties result in new possibilities in diagnostic and 

theranostic imaging and delivery7,8, while novel semi-conductor properties are applicable to the 

electronics industry9. However, these properties also potentially have negative implications, most 

importantly in terms of the potential impact of nanoparticle exposure on human health and the 

environment. Nanoparticles have been demonstrated to be taken up by cells in vitro and to elicit 

a toxic response while many reports exist of adverse toxic effects in vivo
10–15. 

One of the challenges facing the nanotoxicology community is the detection and 

monitoring of the interaction mechanisms of nanoparticles in cells16,17. Currently, fluorescent 

microscopy is the most widely used and accessible method to study nanoparticle uptake and 

trafficking18–23. Necessarily, however, it relies on the use of inherently fluorescent or labelled 

compounds for visualization and monitoring of nanoparticles inside cells. Most nanoparticles are 

not intrinsically fluorescent, however, and it has been recently demonstrated that fluorescent 



labels can be labile, and that the observation and distribution of intracellular fluorescence 

following nanoparticle exposure is not necessarily representative of the presence or distribution 

of nanoparticles in the cell24. While it is also possible to study the dynamics of nanoparticle 

trafficking using label free optical microscopic techniques such as dark field and differential 

interference contrast (DIC) microscopy, the techniques are mainly applicable to metal particles 

such as gold and silver.25 Transmission electron microscopy (TEM) provides an additional 

method by which nanoparticles can be visualised in a cellular environment26–28. The high lateral 

resolution obtainable with TEM renders it an ideal method for visualising sub cellular organelles 

and uptake and interaction of nanoparticles. However, significant sample processing (fixing and 

ultramicrotoming) is required and only particles with sufficient electronic contrast to the cellular 

environment can be visualised28,29
  

Thus, a label-free technique is required which can ideally unambiguously identify the 

presence of the nanoparticles in the cells, their sub-cellular location, and their overall effect on 

the cellular metabolism. Raman spectroscopy is one such method which may provide an alternate 

to traditional approaches for studying the nanoparticle-biological interface. The technique 

provides not only a label free method to visualize how the nanoparticle behaves in a biological 

environment, but offers the potential to identify the local environment and simultaneously 

analyse the associated metabolic changes. To do this, one must combine Raman spectroscopy 

with analytical data mining approaches to extract the signatures associated with the nanoparticles 

but also to probe the environment the particles are localized in, and to correlate the exposure and 

subcellular interaction mechanisms with the metabolic changes.   

 Previous studies have indicated the potential of Raman as a label free method for 

studying biological processes. Examples include novel approaches for cervical cancer 



diagnostics30, to investigating the effects following exposure to human papilloma virus (HPV) 

infection31, the effects of chemotherapeutic anticancer agents in cells32,33, live cell 

analysis34,35and the toxic responses to single walled carbon nano-tubes (SWCNT), to name but a 

few36.     

Surface enhanced Raman scattering (SERS) is also a potential method to study the 

intracellular dynamics of nanoparticle trafficking and compartmentalisation37,38. However, only 

certain types of nanoparticle, such as gold and silver particles and nanoaggregates have the 

potential to generate SERS spectra, thus limiting the technique to the study of only a certain type 

of nanoparticles. Additionally the surface enhancement process and molecular specificity of the 

technique are not fully understood, which may lead to ambiguity in the understanding of cellular 

trafficking.  

A more recent study indicated the ability of Raman spectroscopy to detect the presence of 

intracellular polystyrene nanoparticles39. Polystyrene was chosen as a model nanoparticle for the 

study as it is commercially available and regularly employed as a standard in nanotoxicology 

(particularly as a positive control in its aminated form). Furthermore, the conjugated styrene ring 

makes it a relatively strong Raman scatterer. However, while the identification is somewhat 

straight forward, the presence of overlapping peaks in both the polystyrene and cellular spectra 

(e.g. both cellular and polystyrene spectra exhibit a strong symmetric ring breathing peak at 

~1004cm-1) presents a challenging system with which to validate the effectivity of the 

experimental and data analysis techniques. K-means clustering analysis (KMCA) analysis was 

used to differentiate regions of the cell as well as to identify and localise the nanoparticles. 

Analysis of the local cellular environment of the detected nanoparticles was performed via a 

comparison between loadings obtained from principal component analysis (PCA) and pure 



spectra of lipids and polystyrene nanoparticles. However, when the data was analyzed using 

PCA, it was noted that the clusters detected using KMCA failed to identify all regions which 

contained the spectral fingerprint corresponding to polystyrene in a biological environment. 

Furthermore, the average spectra of the cluster identified by KMCA, while containing features 

clearly characteristic of polystyrene, also contained spectral features of the neighbouring cellular 

environment. Analysis of the loading of the principal components provided a clearer 

differentiation of the nanoparticle contributions from the local cellular environment, but neither 

unsupervised technique provided an unambiguous localisation of the target species 39. 

Other multivariate analytical approaches have also been applied in the field of Raman 

microspectroscopy of cells. In addition to KMCA, other clustering methods such as Fuzzy C 

means clustering (FCM) and hierarchal cluster analysis (HCA) have been used to separate the 

cellular Raman data into clusters and subsequently reshape the data into images40,41. However, as 

highlighted by Headegaad et al., these approaches have their own limitations. In particular 

boundaries between sub-cellular features can often result in the addition of extra clusters with 

mixed spectral signatures. This addition can be overcome by increasing the number of clusters; 

however, this in turn can result in added complexity to interpretation and inaccuracies in regional 

seperation. Additionally, the reproducibility of these methods can also be questioned as the 

starting point for the centroid based KMCA and FCM is subjective40.     

PCA and vertex component analysis (VCA) have also been used to separate out distinct 

regions of the cell. With regards to PCA, separation is based on the variances between the 

spectra in the data set, the majority of the variance being described by the first three principal 

components40. Thus, the score values can be used to construct a composite image of the cell in 

which the biochemical contributions of each component are described by the corresponding 



loadings plot. Unlike KMCA and FCM, PCA identifies quite accurately the boundaries between 

each feature. However, the images generated suffer from inferior contrast and in some instances 

interpretation may be difficult as biochemical features may be spread across different loadings.   

VCA is another method which has been used for similar analytical purposes. In brief, 

VCA computes a linear combination of supposed pure component spectra which are termed 

endmember spectra. As described in Miljkovic et al., the endmember spectra are acquired under 

the assumption that the most extreme data points in the dataset are representative of pure 

component spectra41. However, it has been pointed out that the endmembers generated are not 

truly representative of the pure component they describe in the data set and can often contain a 

mixture of biochemical constituents i.e. DNA and proteins42. While this is representative of the 

true nature of nucleic acids in-situ, it could lead to inaccuracies in interpretation.  

The work presented here demonstrates the potential of a Spectral Cross Correlation 

Analysis (SCCA) for the analysis of Raman spectral datasets. The method is applied to the 

dataset of Dorney et al. 39, of polystyrene nanoparticles in A549 lung adenocarcinoma cells, and 

is thus compared with previous analyses by KMCA and PCA. The performance of SCCA is also 

compared to that of classical least squares analysis (CLSA), performed both in a supervised and 

unsupervised manner, which allows for a direct comparison between both approaches. SCCA 

utilises the spectrum of the target chemical component and cross correlates the spectrum with 

that of the complete Raman spectral dataset. The quantitative performance is demonstrated using 

simulated datasets and the potential is demonstrated by mapping the spatial profile of the 

polystyrene nanoparticles in the cells as well as other biochemical components of the cell, (RNA 

and lipids).  



Experimental 

  

Sample Preparation for Raman Imaging 

 

A549 Cells were seeded at a density of 4 x 104 cells onto calcium fluoride (CaF2) windows 

(Crystran Ltd., UK) for confocal Raman imaging. The cells were incubated for 24 hrs in 

Dulbecco’s Modified Eagle’s Medium (DMEM F12), supplemented with 10% foetal calf serum 

(FCS) and 1% L-Glutamine at 37°C, 5% CO2.  Following cell adherence, 2 mLs of medium 

containing 1x 1012 nanoparticles per mL were added to the cells. The cells and nanoparticles 

were incubated for 24hrs at 37°C and 5% CO2.  Following nanoparticle exposure, the cells were 

washed in warm PBS three times and fixed for 10mins in 10% buffered formalin. After fixation, 

the cells were washed to remove any trace of fixative and kept in NaCl solution prior to imaging. 

Component spectra used in SCCA were generated as described in Bonnier and Byrne 201243. For 

polystyrene nanoparticle spectra, nanoparticle suspension was added drop-wise to a CaF2 

window and allowed to air dry prior to Raman acquisition. RNA from baker’s yeast 

(saccharomyces cerevisiae) was added to water and subsequently deposited on a CaF2 window 

and allowed to air dry. 3-sn-phosphatidyl ethanolamine was dispersed in chloroform and 

deposited on CaF2 windows.  

 

Confocal Raman Spectroscopic Imaging 

Confocal Raman Spectroscopic Imaging was performed using a Horiba Yobin-Yvon LabRAM 

HR800 spectrometer with a 785nm, 300mmW diode laser as source and a Peltier cooled 16-bit 



CCD. A 100X, N.A. 1.2, (LUMplanF1, Olympus) water immersion objective was used for all 

cellular measurements. The confocal pin hole of the system was set to 100µm, the recommended 

setting for confocal operation, to allow optical sectioning of the sample. A 300 lines per mm 

spectroscopic grating, providing a dispersion of ~1.5cm-1 per pixel, was used and the system was 

pre-calibrated to the spectral line at 520.7cm-1 of silicon. Using an automated programmable 

stage, Raman spectra of the cell were acquired with a 0.75µm step size over a 29*39 pixel area 

which encompassed the nuclear, perinuclear and cytoplasmic regions of the cell. 

Data Pre-Processing and Preparation  

In order to prepare the data for analysis, a number of steps were taken to ensure the spectra in the 

map were of a high enough quality to give accurate results. For CLSA, all data pre-processing 

was carried out using Labspec 5 software which comes as standard on the Raman instrument. 

Firstly, a background spectrum which constituted the contribution of the CaF2 substrate and 

water in the imaging medium was subtracted from each spectrum in the mapped data set. 

Following subtraction of the background spectrum, a Savitsky-Golay smoothing filter (5th order, 

7 points), available on the software, was used to lightly smooth the data. The data was then 

baseline corrected using a nodal point baseline correction using the minimum amount of points 

possible to ensure minimal alteration of the acquired data. Normalization was carried out 

automatically by the software during CLSA. 

 Data was prepared in a similar fashion for SCCA. However, the pre-processing was 

carried out in Matlab (Mathworks,USA) using previously published protocols for data 

processing39. As outlined above, a background spectrum was subtracted from the Raman data set 

to remove the substrate and immersion medium contributions. A Savitsky-Golay smoothing filter 



(5th order, 7 points) was applied to the data and a nodal point baseline correction was used to 

baseline the data using a minimum amount of reference points to do so. Preparation of 

component spectra for SCCA was done in the same manner for polystyrene, RNA and lipids.    

 

Classical Least Squares Analysis 

CLSA was carried out using Labspec 5 software which comes as standard on the Raman 

spectrometer software. The analysis method is based on a fit of a linear combination of reference 

component spectra to the spectra contained in the raw spectral map. This is described by 

Equation 1, for the case where three reference component spectra are used. S is the sum of the 

linear contribution of the reference components (A, B, C), and x, y, z are the respective 

weightings or scores necessary for the weighted sum of the reference component spectra to 

match the raw data.  

S = [x*A] +[y*B] + [z*C]  Equation 1 

Using the software, there are two different ways to obtain the reference component spectra. The 

first way is to obtain a pure spectral reference from a compound or compounds which can then 

be fitted according to Equation 1. The second method uses a factor analysis algorithm to generate 

the component spectra, the weighted sum of which is compared to the Raman spectral data set. 

Using the latter of the two methods, Zavaleta et al demonstrated the power of the technique to 

quantify quantum dot accumulation in an in-vivo mouse model and to separate out the different 

spectral contributions from complex SERS signals in the same data set44. In a similar and 

different way, both approaches to CLSA are explored to extract spectra which contain 

polystyrene nanoparticles and define other biochemical regions such as the RNA and lipid rich 



environments. The relative contributions of the different components are defined by the 

weighting factors (x, y, z….).  

 

Spectral Cross Correlation Analysis 

For SCCA, reference spectra from polystyrene, phosphatidyl-ethanolamine and RNA (Figure 

1A) were used to screen the Raman spectral data set. All SCCA was carried out using Matlab 

(Mathworks, USA) using the “crosscorr” function available in the signal processing toolbox. 

Equation 2 describes the cross correlation between two data series, where C(x) is the correlation 

function, S(τ) is the Raman spectrum in the data set to be tested and A(x+τ) is the reference 

spectrum i.e. polystyrene, lipid or RNA. The function integrates the product of the two data 

series (spectra) at each point as they are shifted relative to each other along the x axis (wave 

number). The magnitude of the correlation quantifies the relative contribution of the component 

spectrum at that point in the cell, and an exact correlation occurs when the spectra are exactly 

matched (auto-correlation). In this way, it is possible to screen the map or spectra in the map and, 

based on the cross correlation function, cluster different biochemical regions of the cell based on 

the relative contributions of the reference spectrum used.     
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Simulated Data  

Simulated data sets were used to test the robustness and sensitivity of both CLSA and SCCA in 

their ability to detect spectral contributions due to polystyrene, RNA and lipid in a biological 



environment. To generate the simulated data sets, a cellular spectrum was used as a template to 

which varied amounts of component spectrum were added. Keeping the cellular spectrum 

constant, a series of 38 simulated spectra of ratios 1:1 to 1:10-4, cellular: component Raman 

spectra for polystyrene, RNA and lipid were generated (Figure 1A). An example of the simulated 

data set for polystyrene is shown in Figure 1B, which shows the addition of the first 8 spectral 

dilutions to the constant cellular spectrum. Using these simulated datasets, it was possible to 

explore how each data mining approach performs when testing experimental data and thus 

facilitate accurate interpretation of the data sets.   

 



 



Figure 1. (A) Component spectra of nano-polystyrene (dotted line), 3-sn-phosphatidyl 

ethanolamine (dashed line) and isolated RNA (solid line), offset for clarity. (B) Shows an 

example of the first eight simulated spectra for polystyrene in cells, offset for clarity. Each 

spectrum consists of a constant cellular spectrum with a varied concentration of polystyrene 

added to it, with decreasing polystyrene concentration from top to bottom. Simulated data sets 

generated in this way were then analysed by CLSA and SCCA. 

   

Results  

 

Simulated Data – Unsupervised CLSA 

 

CLSA can be carried out in two different ways, either by generating spectral models using a 

factor analysis algorithm (unsupervised), or by manually inputting the component spectra 

(supervised). The data in Figure 2 shows the results using the factor analysis generated models 

for simulated data sets generated based on cellular/polystyrene, RNA and lipid spectra (Figure 1 

B). In each instance, the score recorded form CLSA for each spectrum is plotted against the 

component concentration added to the data set. In all cases, the extracted CLSA scores 

accurately represent the true component ratios over the concentration range, represented by the 

solid line. The results depart from nonlinearity a cellular:component ratio of ~1:0.1, after which 

the CLSA weightings no longer accurately reflect the correct component weighting, although the 

presence of the component can still be identified in ratios as low as 1:0.03.  



Figure 2. CLSA of simulated spectral data sets of nano

graph, the score from the CLSA

added to a constant cellular spectrum (points on each graph). The solid black line represents the 

ideal response which gives an indi
 

 

 

Single Cell Data – Unsupervised

 

In order to further test the ability of CLS

located inside a single cell Raman map, an initial factor analysis algorithm was applied to the 

data set to generate 7 model spectra to be used in the CLSA

to compute the scores from the Raman data set (Fig

of simulated spectral data sets of nano-polystyrene, RNA and lipid. In each 

A is plotted against the concentration of component spectrum 

added to a constant cellular spectrum (points on each graph). The solid black line represents the 

indication of the quantitative nature of the technique.  

Unsupervised CLSA  

the ability of CLSA to identify intracellular polystyrene

located inside a single cell Raman map, an initial factor analysis algorithm was applied to the 

ectra to be used in the CLSA. These model spectra 

to compute the scores from the Raman data set (Figure 3A). It is then possible

 

polystyrene, RNA and lipid. In each 

is plotted against the concentration of component spectrum 

added to a constant cellular spectrum (points on each graph). The solid black line represents the 

tion of the quantitative nature of the technique.   

intracellular polystyrene nanoparticles 

located inside a single cell Raman map, an initial factor analysis algorithm was applied to the 

These model spectra were then used 

then possible to segment the 



cell into different distributions based on specific spectral differences as shown in Figure 3B. The 

spectral profile of each model contribution can be visualized individually showing the percentage 

contribution at each pixel (Figure 3C-F). A more detailed look at the model spectra generated 

and corresponding cellular distribution can be seen in Figure 4A-G.  

 The CLSA map shows a different spatial distribution of each model in the Raman 

spectral data set. Although in all cases, the model spectra show strong contributions of the 

cellular environment, they are differentiated by contributions from distinct components. Model 1 

(Figure 4A) shows characteristic peaks corresponding to those seen in pure polystyrene spectra 

(see Figure 1A). Therefore, the pixel distribution of model 1 is deemed to show the localisation 

of the polystyrene nanoparticles, indicating a perinuclear distribution in the cell, consistent with 

the K-means cluster analysis of Dorney et al39. Other models show a different distribution in the 

cell. Model 6 shows a distribution which visually corresponds to the nucleolus of the cell (Figure 

4B), whereas model 3 surrounds the nucleoli and is identified as the nucleus of the cell (Figure 

4E). This shows the ability of CLSA to differentiate the biochemical regions of the cell 

containing RNA and DNA. Other models such as model 4 (Figure 4C) and model7 (Figure 4F) 

show a distinct distribution surrounding the nucleus, which may correspond to perinuclear 

organelles such as the endoplasmic reticulum or the Golgi apparatus which are lipid rich regions 

of the cell.  



Figure 3: Clustering of spectra identified by unsupervised CLS

from the analysis protocol and used to generate the clustered map shown 

(C-I) shows the distribution of each model created in the map. Of particular note

model 6(D) and model 7(H) have strong contributions of

lipid respectively. The spectra in (A) are col

the exception of Model 6 which corresponds to the white image in (D).

       

identified by unsupervised CLSA. (A) Spectral models generated 

from the analysis protocol and used to generate the clustered map shown in (B). The right panel 

I) shows the distribution of each model created in the map. Of particular note

have strong contributions of the spectra of polystyrene, RNA and 

lipid respectively. The spectra in (A) are colour coded and correspond to images (B 

the exception of Model 6 which corresponds to the white image in (D). 

 

. (A) Spectral models generated 

in (B). The right panel 

I) shows the distribution of each model created in the map. Of particular note, model 1(C), 

of polystyrene, RNA and 

our coded and correspond to images (B – F), with 



Figure 4: A closer look at the generated model spectra created 

between pixels corresponds to a percentage contribution from each particular model. In some 

instances a pixel may contain 50% of one model and

somewhat by the intensity of the pixel, 
 

 

Simulated Data - Supervised CLS

Unsupervised CLSA is clearly a powerful technique to analyse the subcellular

identify the presence and distribution of nanoparticles. However, it should be noted that the 

technique does not yield pure spectra of the components (compare for example Figure 4A with 

closer look at the generated model spectra created by CLSA (A-

between pixels corresponds to a percentage contribution from each particular model. In some 

instances a pixel may contain 50% of one model and 50% of another, which is highlighted 

somewhat by the intensity of the pixel, although this is visually subjective.     

CLSA  

Unsupervised CLSA is clearly a powerful technique to analyse the subcellular

identify the presence and distribution of nanoparticles. However, it should be noted that the 

technique does not yield pure spectra of the components (compare for example Figure 4A with 

 

-G). The overlap 

between pixels corresponds to a percentage contribution from each particular model. In some 

50% of another, which is highlighted 

Unsupervised CLSA is clearly a powerful technique to analyse the subcellular structure and to 

identify the presence and distribution of nanoparticles. However, it should be noted that the 

technique does not yield pure spectra of the components (compare for example Figure 4A with 



the pure spectrum of polystyrene in Figure 1A), and the respective models are mixtures of 

spectral signatures of the components and the background cellular spectrum. A secondary 

approach to CLSA which provides a more supervised approach was therefore also tested. In a 

similar way, the simulated datasets were used to assess the technique prior to testing the real 

Raman cellular map.  

The simulated data sets generated to test the unsupervised factor analysis algorithm model 

generation approach to CLSA were used again to test the supervised approach which uses 

component spectra of polystyrene, RNA and lipid as the model spectra to generate scores for 

each spectrum in the data set.  In the simulated data shown in Figure 5, it is observed that it is 

possible to identify a trend similar to that seen in Figure 2 for the unsupervised CLSA. For RNA 

and lipid, the trend matches well the predicted response for concentrations as low as 1:0.1, 

whereupon it deviates from linearity, falling to zero at a ratio of~1:0.03. However, for 

polystyrene, although the trends are similar, the results are deviate from the predicted response 

much earlier than the unsupervised CLSA. This indicates that the identification of the 

components using a supervised CLSA approach may not be as accurate as the model generation 

approach shown in Figure 3.  Thus, to test this prediction and for comparison, supervised CLSA 

was carried out on the same cellular data set using polystyrene, RNA and lipid spectra as the 

cellular components used to generate the scores for CLSA.     

 



Figure 5.  Supervised CLSA of simulated spectral data sets of nano

In each graph, either the pure spectrum of polystyrene, RNA or lipid was used to calculate the 

CLSA score. This score was then plotted against the concentra

spectrum: cellular spectrum used to generate the simulated data set
 

 

 

Single Cell Data - Supervised CLS

In order to compare the different CLS

using three pure component spectra

to use these spectra to generate the CLS

of simulated spectral data sets of nano-polystyrene, RNA and lipid. 

either the pure spectrum of polystyrene, RNA or lipid was used to calculate the 

score. This score was then plotted against the concentration ratio of pure component 

spectrum: cellular spectrum used to generate the simulated data set.  

Supervised CLSA  

In order to compare the different CLSA approaches, the cellular Raman data set was screened 

using three pure component spectra individually, nano-polystyrene, RNA and lipid. The aim was 

to use these spectra to generate the CLSA scores and thus identify regions of the cell which 

 

polystyrene, RNA and lipid. 

either the pure spectrum of polystyrene, RNA or lipid was used to calculate the 

tion ratio of pure component 

the cellular Raman data set was screened 

polystyrene, RNA and lipid. The aim was 

s identify regions of the cell which 



correspond to each spectrum, identifying different regions of the cell based on their biochemical 

composition and also where the nanoparticles were situated.  

 The spectra and corresponding score maps are shown in Figure 6 A – C.  Figure 6A 

shows a spectrum of polystyrene which was used to screen the map and corresponding visual 

image of the distribution of nano-polystyrene in the cell. In the image, it is observed that the 

polystyrene is present in every spectrum in the cell, albeit in differing amounts based on the pixel 

intensity at each point. This is not consistent with the model generated CLSA above or with 

previously published data which show the polystyrene to be localised in clusters surrounding the 

nucleus39. However, the regions of high intensity most likely correspond to the areas which 

contain the nanoparticles.  

 Similarly this method for assessing the distribution of RNA and lipids in the cell does not 

quite reproduce the results observed above for CLSA using the unsupervised factor analysis 

algorithm. Again, it is observed that the distribution of lipid and RNA is throughout the Raman 

map of the cell, which, while more plausible for lipids, does not make biological sense for the 

RNA. Therefore, again it must be concluded that the supervised CLSA approach is prone to 

error, although it is still possible to compare regions of high intensity to the output of the 

unsupervised CLSA images above. An arbitrary threshold can be applied to the dataset, as is 

shown for the three component spectra in the right hand panels of Figure 6A-C. Using this 

method, the spatial distributions of the components matches well that of the unsupervised CLSA. 

However this threshold is ambiguous and it is not possible to say from the simulated data at what 

value an accurate representation of the biochemical distribution in the cell is achieved.     

 



 

Figure 6: Supervised CLSA using component spectra of polystyrene (A)

phosphatidyl ethanolamine. The spectrum of each pure 

graph, with the corresponding to non

thresholded data shown on the right.  

 

 

 

using component spectra of polystyrene (A), RNA (B) and (C) 3

l ethanolamine. The spectrum of each pure component is shown on the left of the 

, with the corresponding to non-thresholded data shown in the middle and arbitrarily 

thresholded data shown on the right.   

 

, RNA (B) and (C) 3-sn-

component is shown on the left of the 

thresholded data shown in the middle and arbitrarily 



 

Simulated data –Spectral Cross Correlation Analysis 

The observations in Figure 6 that supervised CLSA contained a high level of error in the Raman 

images prompted a search for an alternate supervised approach to screening Raman data sets 

which could be used to unambiguously identify regions of the cell which correspond to the pure 

component spectrum of interest chosen, be that polystyrene, RNA, lipid or any other spectral 

signature which may be of interest. A novel technique was thus investigated for the analysis of 

Raman maps, which uses cross correlation as a method to investigate the presence or absence of 

a component in a complex Raman data set in a supervised manner. Thus, SCCA was used to 

screen the same simulated and real data sets for the presence of polystyrene, RNA and lipid for 

comparison which both methods of CLSA.       

Spectral cross correlation analysis (SCCA) was initially investigated using the same simulated 

data sets that were used to investigate both CLSA approaches. Similar to the supervised CLSA 

approach, pure component spectra were used to screen each data set for the presence of each in 

their respective simulated data set. Figure 7 compares the results of the simulated SCCA for each 

of the different components polystyrene, lipid and RNA. In all cases, a correlation of the SCCA 

co-efficient and the true concentration ratios is observed, but to varying degrees of accuracy. 

For polystyrene, a minimum correlation coefficient value of ~ 0.3 is reached at a 

concentration ratio of cellular: polystyrene spectrum of ~ 1:0.1. This indicates that at this 

concentration ratio, the presence of the polystyrene spectral fingerprint cannot be distinguished 

from the cellular spectrum. Thus, for the practical implications of screening a cell for polystyrene 

nanoparticles, correlation coefficient values at or below 0.3 represent the cellular peaks which 



overlap with characteristic polystyrene peaks and thus values below this are deemed not to be 

nanoparticles. This hypothesis was tested using a blank Raman map which contained no 

polystyrene data in (data not shown) and a value of correlation of 0.3125 was determined, which 

is close to the predicted value in the simulated data sets. This indicates the need to threshold 

cellular data in order to identify polystyrene nanoparticles in the cell. 

 A similar performance was observed for both RNA and lipid simulated data sets, where 

an initial decrease in the correlation coefficient was observed in relation to concentration ratio of 

pure component: cell spectrum. Again a minimum baseline correlation coefficient was observed 

for both RNA and lipid simulated SCCA data. Notably, however, this value was different, in 

both cases higher, than that observed for polystyrene, possibly due to an increased overlap of 

Raman bands present in the lipid and RNA spectra with cellular Raman bands in comparison to 

the polystyrene spectrum. In the case of the lipid contribution, the correlation with the predicted 

response is quantitatively poor even at ratios above 1:0.1. However, this can possibly be 

explained by lipid contributions already present in the cellular spectrum and/or the relatively 

broad lipid bands present in the lipid spectrum used. 

 The next step was to investigate the performance of SCCA in a real Raman data set of the 

cell. Thus the previous map was screened in a supervised manner to investigate if nano-

polystyrene could be identified in the Raman map.  Additionally, the lipid spectrum was used to 

see if the local cell environment could be investigated. Also, as used in the above supervised 

CLSA, RNA was used to see if a differentiation could be made between the nucleus and 

nucleolus.   



Figure 7. SCCA carried out on simulated data sets containing added polystyrene, RN

component spectra. In each instance

was cross correlated against each data set to investigate the 

solid line shows the idealised response

Single Cell Data –SCCA 

SCCA was used to screen the Raman data set for the presence of polystyrene, RNA and lipid 

distributions. The spectra and correlation maps are shown in Figure 8. In figure 8A

of polystyrene is shown in red and the corresponding correlation map is shown adjacent

thresholded (right) and non-thresholded 

polystyrene nanoparticles in the Raman map. Importantly

from the simulated data, or more simply from a cross

with the raw average cellular spectrum,

carried out on simulated data sets containing added polystyrene, RN

stance, a pure component spectrum of polystyrene, RNA and lip

was cross correlated against each data set to investigate the performance of the technique. The 

solid line shows the idealised response.  

Raman data set for the presence of polystyrene, RNA and lipid 

distributions. The spectra and correlation maps are shown in Figure 8. In figure 8A

of polystyrene is shown in red and the corresponding correlation map is shown adjacent

thresholded (left) datasets. This map shows the distribution of 

polystyrene nanoparticles in the Raman map. Importantly, the threshold which was predicted 

, or more simply from a cross-correlation of the component spectrum 

with the raw average cellular spectrum, was applied to the data set and returned a map which 

 

carried out on simulated data sets containing added polystyrene, RNA and lipid 

a pure component spectrum of polystyrene, RNA and lipid 

of the technique. The 

Raman data set for the presence of polystyrene, RNA and lipid 

distributions. The spectra and correlation maps are shown in Figure 8. In figure 8A, the spectrum 

of polystyrene is shown in red and the corresponding correlation map is shown adjacent for both 

This map shows the distribution of 

the threshold which was predicted 

component spectrum 

was applied to the data set and returned a map which 



corresponded to the previously observed Raman image from the unsupervised CLSA (Fig 4A). 

Notably, however, the spectrum is the pure spectrum of polystyrene, rather than a 

cellular/polystyrene mixture. This result shows the capability for a supervised approach for the 

unambiguous identification of polystyrene nanoparticles in complex Raman spectroscopic data 

sets. 

 Furthermore, to investigate how SCCA can be used to probe the local cellular 

environment, the lipid spectrum was used to screen the data set (Fig 8B). Again applying a 

threshold to the data set it is possible to identify regions of the cell which contain a high density 

of lipids using a supervised approach to Raman analysis. Thus it is possible to investigate the 

local cell environment to which the nanoparticles are trafficked after 24hrs. This is consistent 

with the previous K-means cluster analysis 39 which suggests that indeed the nanoparticles are 

located in a highly lipid rich environment.  

 As an additional demonstration of the potential of SCCA, a pure RNA spectrum was 

cross correlated against the data set to see if it was possible to differentiate spectra which 

corresponded to the nucleolus of the cell and thus differentiate between DNA and RNA rich 

regions of the cell. Figure 8C shows that it is possible to identify the nucleolus of the cell using 

cross correlation analysis. It was also observed that a high correlation coefficient was present in 

regions outside the nucleus. This could possibly correspond to cytoplasmic ribosomal RNA 

(rRNA) or cytoplasmic messenger RNA (mRNA). Thus a novel approach for extracting complex 

spectral information from Raman data sets is demonstrated in SCCA.    

 



Figure 8: SCCA analysis using component spectra of polystyrene (A)

ethanolamine (B) and RNA (C). The spectrum of each pure component is shown on the left of 

the figure and the correlation map

the right.   

 

Discussion  

Raman spectroscopy is a powerful tool for the investigation of biological samples. Previous 

studies have shown the capability of the technique to investigate sub cellular structures and 

processes which provide Raman images comparable to images observed usi
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Raman spectroscopy is a powerful tool for the investigation of biological samples. Previous 

studies have shown the capability of the technique to investigate sub cellular structures and 

ng wide-field and 



confocal fluorescent microscopy45,46,35,39,47. Notably, however, Raman spectroscopy is a label 

free method which provides a visualization of the biochemical make up of a cell without costly 

and time consuming processing with reagents, and when combined with appropriate analysis 

methods can provide a wealth of information pertaining to biological processes in the cell. The 

aim of this paper was thus to investigate two analytical approaches both in an unsupervised and 

supervised approach and assess their ability to identify polystyrene nanoparticles and 

biochemical distributions in a single cell Raman map.  

Unsupervised CLS analysis is demonstrated to be capable of identifying the presence of 

nanoparticles in regions of the cell. However, while this method is valuable for identifying 

distributions in the cell, the model spectra generated in this manner must be further analysed to 

extract any real biochemical information. Therefore, while the analysis of the simulated dataset 

in figure 2 indicates that the unsupervised model has a higher accuracy, the model spectra 

yielded by the unsupervised CLS analysis do not directly compare to the pure component spectra 

shown in Figure 1 and therefore cannot be used to unambiguously identify the contributing 

components.  

 In contrast, employing supervised approaches to the analysis of Raman data sets allows 

for the spectral array to be screened directly with the nanoparticle or pure biochemical 

component spectrum of interest. Analysis in this way enables a direct screening of the cellular 

distribution of a particular component while simultaneously probing the chemical or biochemical 

environment of the particular location in the cell. CLSA and SCCA are both used in a supervised 

approach for analysing Raman cellular data sets (Figure 6 and Figure 8). However, 

unthresholded, both show a degree of error for all three components tested (nano-polystyrene, 

RNA and Lipids).  To correct for this, a threshold can be applied to both CLSA and SCCA. 



Importantly, this threshold should not be applied in an arbitrary manner, as this facilitates a loss 

of information from the dataset. While thresholding for supervised CLSA is arbitrary and 

subjective, the simulated datasets generated for SCCA provided a good estimation of where this 

thresholding should take place and in combination with cellular data containing no nanoparticles 

it was possible to accurately reveal where the nanoparticles were located in the cell. It should be 

noted that the thresholding level appears to be dependent on the spectral profile of the individual 

component, as it is dependent on the degree of similarity of the spectrum of the target component 

with that of the environment. Incorrect correction of spectral background may also add to the 

threshold. On the other hand the simulated data for supervised CLSA did not provide a threshold 

value to apply to the dataset and thus was arbitrarily thresholded, which is far from ideal to gain 

any reliable information about the dataset. Therefore, SCCA provides a more reliable supervised 

approach for identification of nanoparticles and other biological components when used in 

combination with a threshold generated by simulated datasets.  In addition, quantitative 

information can be extracted from the simulated data sets, with each of the three approaches 

showing some level of quantification based on how well the matched the predicted response, 

with SCCA showing the highest level of sensitivity of the three techniques. SCCA is specifically 

a supervised approach, as it is necessary to provide the pure component spectrum. However, it is 

conceivable the technique could be extended to a library of reference spectra which could in turn 

be screened against the data set in an unsupervised manner. 

 

Conclusions 

CLSA and SCCA are shown to be two methods capable of identifying intracellular polystyrene 

nanoparticles and also to probe the local biochemical environment the nanoparticles are 



trafficked to within the cell. CLSA is a relatively straight forward method for analysing 

spectroscopy data sets. However, SCCA is demonstrated in the simulated data sets to be a more 

sensitive approach for nanoparticle identification. It is envisaged that both these and other 

supervised methods will provide analytical approaches which can be used not only as 

identification methods for other nanoparticles inside cells and detection of resultant biochemical 

changes, but also to provide alternate analytical approaches to the study of other processes such 

as chemotherapeutic response of cells to drugs. Additionally the full quantitative nature of these 

analytical approaches will need to be explored if Raman spectroscopy is to become a routine 

application in the study of nano-bio interactions and beyond.   
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