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Abstract 
In WLANs, the capacity of a node is not fixed and can vary dramatically due to the 

shared nature of the medium under the IEEE 802.11 MAC mechanism. There are two 

main methods of capacity estimation in WLANs: Active methods based upon probing 

packets that consume the bandwidth of the channel and do not scale well. Passive 

methods based upon analyzing the transmitted packets that avoid the overhead of 

transmitting probe packets and perform with greater accuracy. Furthermore, passive 

methods can be implemented locally or remotely. Local passive methods require an 

additional dissemination mechanism in order to communicate the capacity information to 

other network nodes which adds complexity and can be unreliable under adverse network 

conditions. On the other hand, remote passive methods do not require a dissemination 

mechanism and so can be simpler to implement and also do not suffer from 

communication reliability issues. Many applications (e.g. ANDSF etc) can benefit from 

utilizing this capacity information. Therefore, in this thesis we propose a new remote 

passive Capacity Utilization estimator performed by neighbour nodes. However, there 

will be an error associated with the measurements owing to the differences in the wireless 

medium as observed by the different nodes’ location. The main undertaking of this thesis 

is to address this issue. An error model is developed to analyse the main sources of error 

and to determine their impact on the accuracy of the estimator. Arising from this model, a 

number of modifications are implemented to improve the accuracy of the estimator. The 

network simulator ns2 is used to investigate the performance of the estimator and the 

results from a range of different test scenarios indicate its feasibility and accuracy as a 

passive remote method. Finally, the estimator is deployed in a node saturation detection 

scheme where it is shown to outperform two other similar schemes based upon queue 

observation and probing with ping packets. 
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Chapter 1 Introduction 
The wireless local area network (WLAN) based on the IEEE 802.11 standard is a popular 

data transmission system that provides wireless communications for users operating in the 

2.4 GHz or 5 GHz ISM (Industrial, Scientific, and Medical) bands [1]. The accurate 

measurement of throughput-related concepts [2] such as capacity, available bandwidth 

and other metrics can be used to more effectively achieve the optimization of wireless 

network services for many applications. In wired networks, the definition of capacity that 

is widely accepted is the maximum possible transmission rate can be achieved on a link 

[2]. However, this definition and many of the proposed estimation techniques cannot be 

applied directly to WLANs due to the shared nature of the medium under the IEEE 

802.11 MAC mechanism, fading and interference, and varying link quality. Consequently, 

the capacity of a WLANs node will not be fixed and depends on what the node and other 

nodes that it shares the medium with are doing. 

1.1 Motivation 

Currently, the various schemes proposed for capacity estimation in WLANs can be 

divided into two categories. One category is active approaches based upon the 

transmission of probe packets. This active probing method uses a series of probe packets 

transmitted at a number of different traffic rates [3, 4] to estimate the capacity of the 

channel. However, this approach consumes the bandwidth of the channel which can have 

a negative impact on the performance of a network due to the increased contention on the 

medium. Moreover, it does not scale well due to the extra network traffic generated which 

can affect the accuracy of the estimation. The other category includes passive techniques 

based upon analyzing the transmitted packets on the medium to determine the available 

capacity. Passive approaches perform with a higher accuracy than active approaches [5-7] 
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and have no overhead. However, many factors that influence the accuracy of the 

estimation in this approach need to be taken into account such as contention, collision 

probability, retransmission, and hidden nodes etc. 

There are two main measurement methods adopted in the passive approaches: local 

measurement and remote observation. In local measurement, a node monitors the channel 

and estimates the available capacity and then broadcasts this information to its neighbour 

nodes to support various wireless applications (e.g. Quality of Service (QoS) aware 

routing [8] and admission control [9]). This mechanism increases the overhead of 

networks and makes the applications more complex. In remote observation, a node 

captures and analyses the transmitted packets within its reception range to estimate its 

neighbours’ available capacity directly. Moreover, remote observation does not require an 

additional dissemination method and is more reliable compared to local measurement 

approaches. 

In this thesis, we combine the advantages of the passive technique and remote 

measurement in order to propose a Capacity Utilization estimator based upon remote 

observations performed by neighbour nodes. The Capacity Utilization is defined as the 

ratio of a node’s traffic load and its node capacity. This Capacity Utilization metric 

reflects the usage of the node capacity during a specified measurement interval. 

Once the Capacity Utilization of a WLAN node can be estimated, many wireless 

applications can benefit from utilizing this information. An important application is to 

support the access point (AP) selection mechanism in an access network discovery and 

selection function (ANDSF) [10], e.g. where a mobile user enters a Wi-Fi hotspot zone 

where there are multiple APs present. The traditional metric for the user is to select an AP 

based upon the received signal strength indication (RSSI) which is dependent only on the 

relative locations of the user and the APs and does not provide any AP performance 
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information. However, this may lead to a substantial load imbalance [11] which results in 

high contention in the medium, an overload of the AP with a possible resulting AP 

saturation or congestion; and hence a deterioration in network performance. Our Capacity 

Utilization estimator is a more useful metric on which to base the ANDSF rather than 

RSSI. It provides more relevant AP information such as the number of clients associated 

with the AP, the traffic load of the AP and its neighbour nodes, the contention 

experienced by the AP and the Capacity Utilization of the AP.  

In order to ensure fair load balancing, improve the user’s throughput, and enhance the 

utilization of network resources, the IEEE 802.11k standard [12] employs the local 

measurement of channel information (e.g. utilization) and reports the AP’s information in 

a special management frame after receiving the user’s request. An intelligent AP selection 

mechanism for handoff incorporating our remote Capacity Utilization estimator does not 

require any message exchange mechanism and considers hidden nodes. Moreover, it can 

estimate the Capacity Utilization of all APs within its reception range directly and 

promptly before the association phase takes place. Furthermore, our estimator can provide 

better available AP selection and handoff decisions owing to its awareness of contention, 

traffic loads of the network nodes, the available capacity and Capacity Utilization of the 

AP. 

In addition, the measurements provided by the Capacity Utilization estimator could be 

employed as a route metric to support routing decisions (i.e. to realise resource aware 

routing) thereby allowing the network nodes to select their next hop directly by using the 

neighbours’ Capacity Utilization measurement to guarantee the QoS performance and 

avoid saturation or congestion. The network nodes also can monitor their neighbour’s 

Capacity Utilization to autonomously select the appropriate operating channel when the 

neighbour node is operating under heavy load conditions in multi-radio or multi-channel 
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networks. Moreover, estimating each neighbour node’s Capacity Utilization within an 

admission control scheme can ensure that sufficient bandwidth can be allocated to each 

node to satisfy its QoS requirements. 

Compared with active probing and local measurement methods, our remote Capacity 

Utilization estimator is more reliable and can support multiple wireless applications. 

However, there will be an error associated with this estimation owing to the differences in 

the wireless medium as observed by the different nodes. As the observer node and the 

observed node do not experience the same medium, the estimation of the Capacity 

Utilization value performed by the observer node will differ from that experienced by the 

observed node itself. The errors associated with our Capacity Utilization estimator are 

unavoidable but they can be minimized after the modifications based on a number of 

reasonable assumptions. 

1.2 Framework of the Thesis 

This thesis is concerned with developing a remote estimator for Capacity Utilization 

based upon remote observations performed by neighbour nodes in WLANs. This scheme 

is based upon a temporal analysis framework that models the way in which the IEEE 

802.11 MAC mechanism wins transmission opportunities, passively analyses the 

transmitted packets and extends the existing MAC bandwidth components model [13, 14] 

to determine the neighbours’ Capacity Utilization. 

This thesis is essentially a study of the performance of the estimator, i.e. how accurately 

the estimator can measure the actual Capacity Utilization experienced by a node. An error 

model is proposed to analyse the error associated with the Capacity Utilization estimation 

and the impact of this error on the accuracy of the estimator. Therefore, this analysis will 

necessarily involve a statistical characterisation of the error associated with the estimate 
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of Capacity Utilization produced by the remote estimator. The main sources of error in 

the estimation of Capacity Utilization are the error in the calculation of the neighbour 

load and the error in the calculation of the contention experienced by the observed 

neighbour nodes. The main factors that affect the accuracy of estimations are the number 

of unobservable neighbours of the observed node and the traffic load of the unobservable 

neighbour nodes. 

In order to minimize the error associated with the Capacity Utilization estimation, three 

simple and reasonable assumptions related to the aspects of the traffic load of the 

unobserved nodes, the underestimation of contention and failed transmissions are 

introduced to modify the estimator and improve its accuracy. 

Detecting node saturation is an application used to illustrate the usage and accuracy of the 

Capacity Utilization estimator. This thesis compares its performance with two other 

detection algorithms: a queue observation method and a regularly pinging method. 

1.3 Contributions 

The main contributions of this thesis are the development of WLAN Capacity Utilization 

estimator based upon remote observations performed by neighbour nodes. The specific 

contributions are listed as follows: 

• Introduces the concepts of node capacity and Capacity Utilization, the challenges, 

benefits, and potential applications of developing a node Capacity Utilization 

estimator based upon remote observations by neighbour nodes. Presents the 

specific methodology of the Capacity Utilization estimator based upon remote 

observations by neighbour nodes involving passively monitoring and analyzing 

the transmitted frames. 

• Proposes a model of the error associated with the Capacity Utilization estimation, 
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analyses the sources of errors, investigates and identifies the factors that influence 

the accuracy of the Capacity Utilization estimator such as the number of 

neighbours, the number of observable neighbours, network traffic load and traffic 

type. 

• Modifies the Capacity Utilization estimator to improve the performance and 

validate the feasibility and accuracy of the modifications under different 

simulation scenarios. 

1.4 Thesis Outline 

The remainder of this thesis is organized as follows:  

Chapter 2 provides the background knowledge to the work such as the basic concepts of 

WLANs, the IEEE 802.11 MAC mechanism, the concepts of node capacity and Capacity 

Utilization, the challenges in estimating the node Capacity Utilization, the benefits and 

possible applications arising from being able to estimate node Capacity Utilization. It also 

describes the ns2 simulator used in this thesis. 

Chapter 3 discusses the related research in the areas of the measurement of node capacity 

and other throughput-related metrics, other proposed algorithms, performance evaluation 

of these estimation techniques, and some methods proposed for utilizing capacity 

information in different wireless applications. 

Chapter 4 presents a detailed description and explanation of the remote node Capacity 

Utilization estimator. The analysis of the error associated with the Capacity Utilization 

estimator and the modifications to the estimator to minimize the error is also presented in 

this chapter. Moreover, the algorithm for node saturation that combines a Bayesian 

decision process is also described here. 

Chapter 5 investigates the performance evaluation of our Capacity Utilization estimator 
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and identifies the factors that determine the accuracy of the estimator and implements 

modifications to improve the accuracy. A comparison of the simulation results is 

presented to evaluate the performance of the remote Capacity Utilization estimator 

compared to other two algorithms (i.e. queue observation method and regularly pinging 

method) in detecting node saturation. 

Chapter 6 summarizes the conclusions of this thesis and outlines possible future research 

work in the area of capacity estimation in IEEE 802.11 WLANs. 
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Chapter 2 Technical Background 
This chapter introduces the relevant technical background material for this thesis. This 

work is concerned with developing an estimator for the node Capacity Utilization using 

remote observations performed by neighbour nodes in WLANs. This estimator has been 

designed to operate with the IEEE 802.11 DCF method and is intended for network nodes 

with multiple-neighbours, i.e. infrastructure networks, wireless mesh networks or wireless 

ad-hoc networks operating under the IEEE 802.11b/a/g/n standards. This Capacity 

Utilization estimator can be employed in many applications such as AP selection, routing, 

node saturation detection, channel selection, admission control, and QoS provision. This 

thesis uses the detection of node saturation as one of its potential applications in order to 

investigate the performance of the estimator. The neighbour nodes performing the remote 

estimation can broadcast the saturation information to other network nodes in beacon 

frames so that they may take preventative actions to avoid further deterioration in the 

node’s saturation condition. 

2.1 Wireless Local Area Networks  

With the rapid development of information technology, especially with the widespread 

use of portable computers, smartphones, tablets and other wireless products, the 

traditional fixed Ethernet cannot satisfy the users who need more and more 

communication services anytime and anywhere. 

A WLAN is a convenient data transmission system which provides connectivity and 

communications to wireless devices through employing radio frequency (RF) techniques 

rather than traditional wired networks based upon cables. It has been globally adopted due 

to its mobility, flexibility, low cost, ease of deployment [15]. The IEEE 802.11 WLAN 

standard is a member of the IEEE 802 family which is a series of specifications for local 
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area network (LAN) and metropolitan area network (MAN) technologies. The IEEE 802 

standards define a MAC and a PHY component. The MAC represents a set of rules to 

determine how to send data and access the medium, and the PHY is responsible for 

transmission and reception of the digital signals. The IEEE 802.3 defines the Carrier 

Sense Multiple Access/Collision Detection (CSMA/CD) protocol [16] and is related to 

Ethernet networks, IEEE 802.5 is the specification of Token Ring access method [17] and 

IEEE 802.2 defines Logical Link Control (LLC) protocol [18]. The IEEE 802.11 group of 

standards developed by the IEEE LAN/MAN Standards Committee (IEEE 802.11) 

specifies the technologies for wireless LANs and the original version of the IEEE 802.11 

standard was published in 1997 [1] and has had numerous amendments since. The base 

IEEE 802.11 standard comprises the IEEE 802.11 MAC and two physical layers 

operating in the 2.4 GHz ISM band: a frequency-hopping spread-spectrum (FHSS) 

physical layer and a direct-sequence spread-spectrum (DSSS) link layer. 

2.1.1 The IEEE 802.11 Family 

The IEEE 802.11 working group has many family members some of which are listed 

below: 
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Table 2.1 Some Family Members of the IEEE 802.11 Standard 

IEEE standard Notes 

802.11a (1999) 
Operates in the 5 GHz ISM band with a maximum PHY rate 54 

Mbps 

802.11b (1999) 
Operates in the 2.4 GHz ISM band with a maximum PHY rate 11 

Mbps 

802.11ac (Still under 

development) 
High-throughput WLAN operated in the 5 GHz ISM band 

802.11ad (Published in 

2010) 

Supports a maximum date rate of 7 Gbps and operates in 60 GHz 

ISM band 

802.11d (2001) Additional regulatory domains 

802.11e (2005) Quality of service (QoS) enhancements for the MAC 

802.11f (withdrawn 2006) Inter-access point protocol  

802.11g (2003) 
Operates in the 2.4 GHz ISM band with a maximum PHY rate of 

54Mbps  

802.11h (2004) 
Standard to make IEEE 802.11a compatible with European 

regulations in the 5 GHz ISM band 

802.11i (2004) Improvements to security  

802.11k (2008) Radio resource measurement enhancements  

802.11n (2009) 
Higher throughput improvement using MIMO and packet 

aggregation  

802.11p (2010) Adopting IEEE 802.11 for use in vehicular environment  

802.11s (2011) Enhancing IEEE 802.11 for use in mesh networks  

802.11v (2011) Standard to support wireless network management  

802.11w (2009) Protecting management frames  
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IEEE 802.11b: IEEE 802.11b was ratified in 1999. It amends the original IEEE 802.11 

wireless network specification and extends the maximum physical layer bit rate (PHY 

rate) to 11 Mbps. It expands the application areas of wireless LAN and allows for 

wireless network functions comparable to Ethernet in the 2.4 GHz ISM band [19]. It can 

also drop its PHY rate to 5.5 Mbps, then to 2 Mbps, then to 1 Mbps under poor RF 

conditions. The IEEE 802.11b specifies a high-rate direct sequence spread-spectrum 

(HR/DSSS) physical layer and uses complementary code keying (CCK) modulation 

scheme. The CSMA/CA mechanism was introduced in the original IEEE 802.11 (1997) 

standard. 

IEEE 802.11a: IEEE 802.11a is an amendment to the IEEE 802.11 standard ratified in 

1999 [20] and operates in the 5 GHz unlicensed national information infrastructure (UNII) 

band. It specifies a physical layer based on orthogonal frequency division multiplexing 

(OFDM) with 52 subcarriers as the modulation scheme which can be BPSK, QPSK, 16-

QAM or 64-QAM scheme. The maximum PHY rate is 54 Mbps and can be reduced to 48, 

36, 24, 18, 12, 9 and 6 Mbps. It cannot interoperate with IEEE 802.11b due to separate 

frequency bands unless the device has a dual band capacity. 

IEEE 802.11g: As WLAN devices became more widely used and users demanded higher 

data transmission rate and appropriate modulation techniques to avoid multi-path effect, 

fading. IEEE 802.11g was introduced as a further higher PHY rate extension to the 

original IEEE 802.11 specification in June 2003 [21]. It operates in the same 2.4 GHz 

ISM band to maintain backward compatibility with IEEE 802.11b standard with a PHY 

transmission rate of up to 54 Mbps. IEEE 802.11g uses an OFDM modulation scheme to 

support transmission rates of 6, 9, 12, 18, 24, 36, 48 and 54 Mbps, a CCK modulation 

scheme for 5.5 and 11 Mbps, a DQPSK/DSSS modulation scheme for 2 Mbps and a 

DBPSK/DSSS modulation scheme for 1 Mbps. 
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IEEE 802.11n: The MIMO-OFDM technique is widely used in various kinds of wireless 

products. The multiple-input multiple-output (MIMO) technique employs multiple 

antennas to transmit synchronously at the sender, and the receiver also provides multiple 

antennas to address the problem of multi-path fading. IEEE 802.11n was officially 

ratified in 2009. It is an amendment to IEEE 802.11 which adds the MIMO technique, 40 

MHz channels to transmit data in PHY layer and block acknowledgement, packet 

aggregation to enhance the efficiency in MAC layer. It also increases the maximum PHY 

rate from 54 Mbps in IEEE 802.11a to 600 Mbps and supports the use of smart antennas 

technology [22]. 

IEEE 802.11e: IEEE 802.11e is a wireless standard that defines a set of Quality of 

service supports [23]. IEEE 802.11e specifies QoS components and multimedia support 

that are backward compatible with IEEE 802.11b and IEEE 802.11a standards. IEEE 

802.11e also supports two new channel access mechanisms: enhanced distributed channel 

access (EDCA) which extends DCF and HCF (hybrid coordination function) controlled 

channel access (HCCA) which extends Point coordination function (PCF). EDCA defines 

different parameters: the arbitration interframe spacing number (AIFSN[AC]), ECWmin 

(exponent form of CWmin) and ECWmax (exponent form of CWmax) [24] in order to 

improve the access to the medium and reduce the delay of high priority communications. 

There are four access categories (ACs) defined that correspond to four different traffic 

classes (based upon different priorities). The priority level of ACs from low to high is: 

background traffic (AC_BK), best-effort traffic (AC_BE), video traffic (AC_VI) and 

voice traffic (AC_VO). 

In this thesis, the estimator of node Capacity Utilization can be used in networks 

operating under the IEEE 802.11 b/a/g/n standards using the standard DCF mechanism. 

Our estimator will be extended for IEEE 802.11e operation in the future work. 
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2.1.2 WLAN Components 

An IEEE 802.11 network consists of several principal components [15] as follows: 

Access Points (APs): Access points are essentially the base stations of WLANs and 

perform the wireless-to-wired bridging function. They provide wireless connections by 

using a radio frequency link for wireless enabled devices to communicate with and 

convert the IEEE 802.11 frame to another type for delivery to other networks. 

Clients: Clients are computing devices which contain a wireless adapter card to provide 

the wireless connectivity, such as a laptop, tablet computer, smartphone and other 

wireless products. In certain circumstance (i.e. in order to avoid pulling new cable lines), 

desktops or other fixed devices can be equipped with a wireless interface to connect to a 

WLAN. 

Essentially, all APs and Clients devices are referred to as network nodes in this thesis. 

Wireless Medium: The standard uses a wireless medium to transmit frames from node to 

node and defines different physical layers that include two RF physical layers and one 

infrared physical layer. 

Distributed System: The distributed system which consists of a distributed system 

medium and a bridging engine is the logical component of IEEE 802.11 networks. It is 

also called a backbone network (also uses Ethernet) used to forward frames to their 

destination or between access points. 

Basic Service Set (BSS): BSS is the basic building block in an IEEE 802.11 wireless 

network which consists of a set of nodes that can communicate with each other in its 

coverage area, called a Basic Set Area (BSA) and is limited by the propagation 

characteristics of the wireless medium. Each BSS has its own unique 48-bit binary 
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identifier called the Basic Service Set Identification (BSSID) to identify different BSSs. 

IEEE 802.11 defines two operating modes: Infrastructure mode and ad hoc mode. 

In the ad hoc mode, also called the peer to peer mode as shown in Figure 2.1, clients can 

communicate with each other directly without the need of an AP. At least two wireless 

clients need to be configured to use ad hoc mode in order to form an Independent BSS 

(IBSS), one of them can play a master role and take over some of the responsibility of an 

AP. The infrastructure mode is distinguished from the ad hoc mode by using an AP as a 

central controller which is in charge of all communications and includes the functions of 

relaying and connecting to a wired Ethernet within its BSS. A client can be associated 

with only one AP at any given time. 

 

Figure 2.1: An Example of an Ad Hoc Network 

Extended Service Networks (ESS): IEEE 802.11 allows a set of two or more BSSs to be 

interconnected to form an extended service networks (ESS) by a backbone network in 

order to extend the coverage of a wireless network. All the APs use the same service set 

identifier (SSID) in an ESS. The nodes in different BSSs but within the same ESS can 

communicate with each other and even move between different BSSs. 
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2.1.3 Wireless Mesh Networks 

IEEE 802.11 WLANs still rely on wired networks to provide the backhaul connection to 

the network. Unfortunately this dependency is costly and inflexible. A centralized 

structure and fixed topologies also limit the performance of some network applications 

[25] which need the peer-to-peer connectivity or require choosing a better path for 

communication. A Wireless Mesh Network (WMN) is an alternative network topology 

with multiple-neighbours which resolves this problem and provides broadband wireless 

Internet services to a large community of users, i.e., community networks, campus 

networks, high speed metropolitan area networks, and enterprise networks. It resolves the 

limitations and significantly improves the performance of ad hoc WLAN networks. These 

features brings many advantages for the client, such as robustness, low cost, easy to 

deploy, flexible wireless service and higher bandwidth [26] to mobile users. 

 

Figure 2.2: Architecture of a Wireless Mesh Network 
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A typical WMN consists of mesh gateways, mesh routers (mesh nodes) and mesh clients 

as shown in Figure 2.2. Mesh gateways are special wireless routers with a high-

bandwidth wired connection to the Internet. The fixed mesh routers are equipped with 

power lines, multiple wireless interfaces, high processing and memory capability [27] to 

form the wireless backbone. Mesh clients access the network through mesh routers as 

well as directly communicating with each other. Mesh clients can be mobile nodes. In this 

thesis, the estimator of the node Capacity Utilization is suitable for networks which have 

multiple neighbours, i.e. infrastructure networks, ad hoc networks, and wireless mesh 

networks. 

2.2 Fundamentals of the IEEE 802.11 MAC Mechanism 

The WLAN data link layer is divided into two parts: A Logical Link Control (LLC) sub-

layer and a Medium Access Control (MAC) sub-layer. The LLC defined by the IEEE 

802.2 is the upper layer of the data link layer and acts as the unified interface to the 

network layer, and the MAC is the lower layer of data link layer and acts as the interface 

to the physical layer. The MAC is the key mechanism of the IEEE 802.11 specification 

that controls the transmission of user data and the core framing operations. This section 

introduces the IEEE 802.11 MAC Mechanism. Coordination functions control the node 

access to the wireless medium to avoid collisions. The Distributed Coordination Function 

(DCF) is the basis of the CSMA/CA mechanism which checks that the wireless link is 

clear before transmitting the frame, similar to Ethernet. The network nodes use a random 

backoff mechanism to avoid a collision. The Capacity Utilization estimator is based upon 

the DCF access mode where it captures and processes the frames transmitted by all nodes 

within its reception range.  
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2.2.1 Hidden Nodes Problem 

IEEE 802.11 provides the addressing and the channel access mechanism to allow 

different nodes communicate with each other and to avoid collisions by using the 

CSMA/CA mechanism. The CSMA/CA mechanism is similar to the CSMA/CD protocol 

in Ethernet defined by the IEEE 802.3 standard. Both mechanisms support multiple users 

in sharing the medium. CSMA/CD uses a carrier sense scheme where the node waits until 

the medium becomes idle. If a collision occurs while transmitting the frame, the node 

uses a collision detection (CD) procedure to stop transmitting and send a jam signal in 

order to let all the nodes on the shared medium be aware of the occurrence of a collision. 

It then waits for a random time interval to re-transmit the frame. However, collision 

detection cannot be realised in WLANs because the radios operate in half-duplex mode. 

 

Figure 2.3: Node A and Node C are “Hidden” from each other 

The hidden nodes problem is a big problem that affects the performance of WLANs. If 

two or more nodes are within the communication range of an AP but they cannot sense 

and communicate with each other due to different transmit powers, distance or locations, 

this gives rise to the “hidden node” problem. In Figure 2.3, node B can communicate with 



Chapter 2 Technical Background 

18 

 

node A and node C, but node A and node C cannot communicate with each other directly. 

For node A, node C is a “hidden node”. If node A and node C simultaneously transmit a 

frame then a collision will occur at receiver node B. It is difficult to detect the collisions 

resulting from hidden nodes in WLANs because wireless transceivers usually operate in 

half-duplex mode and so cannot receive and transmit at the same time. 

In order to avoid the collisions that can arise from hidden nodes, the CSMA/CA 

mechanism supports the use of Request to Send (RTS) and Clear to Send (CTS) frames to 

clear out the transmission medium before transmitting a frame. However, this mechanism 

has been proposed under the assumption that the hidden nodes are within the reception 

range of the receivers [28] (i.e. node B) and causes extra overhead to the network. 

Therefore, the RTS/CTS mechanism is not enabled unless the frame size exceeds a 

predefined threshold. 

2.2.2 Interframe Spacing 

The interframe spacing plays a significant role in the coordination function in order to 

generate different priority levels for different types of traffic. The relationship between 

the different interframe spaces and medium access method is shown in Figure 2.4. 

Frame TransmissionMedium busy

Time

SIFS

PIFS

DIFS

 …...

Backoff slots

Contention 
Window

 

Figure 2.4: Basic Interframe Spaces and Medium Access Method 

Short Interframe Space (SIFS): SIFS is the shortest interframe spacing and provides the 

highest-priority transmission for some control frames such as ACK frame, CTS response 
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frame, fragmentation frames and their acknowledgements to ensure that the node can 

occupy the channel during the fragmentation burst. 

PCF Interframe Space (PIFS): PIFS is used to support contention-free services and has 

a higher priority than other contention-based traffic. Nodes can transmit data after the 

PIFS has elapsed once the medium is detected as idle.   

𝑃𝐷𝐴𝑆 = 𝑆𝐷𝐴𝑆 + 𝑆𝑉𝑐𝐸𝑇𝐸𝐸𝐸                                                          (2.1)                   

DCF Interframe Space (DIFS): DIFS is used to support contention-based services. If 

the medium is continuously idle for a period of DIFs or longer, the node can access the 

medium immediately. DIFS is calculated from the following formula:                   

𝐷𝐷𝐴𝑆 = 𝑆𝐷𝐴𝑆 + 2 × 𝑆𝑉𝑐𝐸𝑇𝐸𝐸𝐸                                                   (2.2)                    

Extended Interframe Space (EIFS): EIFS is not a fixed time interval and is only used 

following a corrupted frame transmission. 

All the interframe spaces except for EIFS are constant values and have different values 

for the different standards shown in Table 2.2. It is to be noted here that IEEE 802.11g 

uses a SlotTime of 20 µs for backward compatibility with IEEE 802.11b [29] and uses a 

SlotTime of 9 µs in an IEEE 802.11a or pure IEEE 802.11g mode only. 

Table 2.2 Interframe Spaces in the Different IEEE 802.11 Standards 

Standard SlotTime(µs) SIFS(µs) PIFS(µs) DIFS(µs) 

802.11b 20 10 30 50 

802.11a 9 16 25 34 

802.11g 9 or 20 10 19 or 30 28 or 50 
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Arbitration Interframe Space (AIFS): In order to support QoS, IEEE 802.11e 

introduces new interframe space AIFS to differentiate the traffic priority as shown in 

Figure 2.5 where ACi, ACj and ACk represent the different access categories. The value of 

AIFS is given by equation (2.3) where AIFSN is the arbitration interframe space number. 

𝐴𝐷𝐴𝑆 = 𝑆𝐷𝐴𝑆 + 𝐴𝐷𝐴𝑆𝑁 × 𝑆𝑉𝑐𝐸𝑇𝐸𝐸𝐸                                          (2.3) 
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Figure 2.5: Arbitration Interframe Spaces under the IEEE 802.11e Standard 

2.2.3 Contention-Based Access Using the Distributed Coordination Function  

Most transmitting operations employ the DCF and provide contention-based access to the 

medium for contending nodes without the need for a central controller. It can be used in 

both IBSS and infrastructure networks. When a node attempts to transmit its data, it must 

first check whether the wireless medium is idle or not. If the medium is busy, the node 

must defer (i.e. wait) and use a binary exponential backoff algorithm to win a 

transmission opportunity. At this point, the node generates a random backoff interval 

before transmitting in order to minimize the probability of a collision [30] with frames 

being transmitting by other nodes. 

This backoff interval is known as the contention window (CW) and is divided into fixed 

time slots whose value depends on the physical layer used. 

𝐵𝐸𝐴𝑘𝑐𝑓𝑓 𝐷𝑐𝐸𝐸𝐸𝑅𝐸𝑉 = 𝑅𝐸𝑐𝑆𝑐𝐸() × 𝑆𝑉𝑐𝐸𝑇𝐸𝐸𝐸                                 (2.4)            
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Where Random() is a random integer selected from [0, CW] and acts as a backoff interval 

counter and CW is the size of the contention window. When several nodes wish to 

transmit frames, if the medium is idle, all the nodes begin to decrement their backoff 

interval, the node whose backoff interval reaches zero first (i.e. has the smallest backoff 

interval) wins the opportunity to transmit. When the other nodes sense the medium 

becoming busy, they must stop decrementing their backoff interval and wait until the 

medium becomes idle again. 
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Figure 2.6: Contention-based Access Operations 

Figure 2.6 shows three nodes A, B and C competing for access to the medium. When the 

channel becomes idle, nodes A, B and C must wait for an interval of DIFS and then 

generate a random backoff interval. Node C picks the smallest backoff interval to transmit 

its frame. When node C begins transmitting, the nodes A and B stop decrementing at 

values 8 and 4 respectively. After this frame transmission, node C resets a new backoff 

interval after a DIFS for the next transmission. Node A and B must wait for an idle 

interval of DIFS to elapse before resuming the decrementing of their backoff counters. 

After the transmission of a frame, the receiver will return an ACK frame if it successfully 

receives this frame. If the frame is not received or received with an error, there is no ACK 

frame transmitted. If the sender does not receive an ACK, it will continue to retransmit 
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the frame until it is successful or else it will drop the frame if it exceeds the maximum 

number of retransmission permitted. 

At the first transmission attempt, CW is set to the minimum contention window size 

(CWmin), after each unsuccessful retransmission CW size is doubled up to its maximum 

value (CWmax) as the number of unsuccessful retransmissions increases. If the frame is 

retransmitted successfully, the CW is reset to CWmin. If the retransmission counter reaches 

its permitted maximum value, the frame is dropped. Different physical layer protocols 

employ different CWmin and CWmax values. Figure 2.7 shows how the contention window 

increases under the DCF mechanism where CWmin is 31, and CWmax is 1023. 

31 63
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6th retransmission
5th retransmission

4th retransmission
3rd retransmission

2nd retransmission
1st retransmission

Initial attempt
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Figure 2.7: Contention Window Size under Multiple Retransmission Attempts 

To expedite the transmission of higher-priority data in the IEEE 802.11 QoS 

enhancement scheme ECWmin and ECWmax can be set according to the traffic expected in 

each access category [23]. The contention window can be expressed as 2𝐸𝐶𝐶 − 1, where 

ECW is equal to ECWmin at the initial transmission. IEEE 802.11e employs four queues 

with different parameters (which can be found in Table 2.3) for the different access 
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categories. The network nodes must wait for an interval of AIFS before decrementing 

their backoff counter when the medium is busy, the AC whose backoff counter first 

reaches zero wins the transmission opportunity. Different ACs within the same AP will 

contend for access to the medium and well as competing with ACs in other APs. Currently, 

our Capacity Utilization estimator only considers the contention among nodes based upon 

the original DCF mechanism where AIFSN = 2, ECWmin = 5, ECWmax = 10. In the future 

work, the consideration of medium access among different ACs will be investigated and 

the estimator will be modified for the IEEE 802.11e protocol.  

Table 2.3 The Default EDCA Parameters for Different ACs 

Access Categories CWmin  CWmax  AIFSN 

AC_BK 𝐶𝐶𝑚𝑚𝑚 𝐶𝐶𝑚𝑚𝑚 7 

AC_BE 𝐶𝐶𝑚𝑚𝑚 𝐶𝐶𝑚𝑚𝑚 3 

AC_VI 𝐶𝐶𝑚𝑚𝑚 + 1
2

− 1 𝐶𝐶𝑚𝑚𝑚 2 

AC_VO 𝐶𝐶𝑚𝑚𝑚 + 1
4

− 1 
𝐶𝐶𝑚𝑚𝑚 + 1

2
− 1 

2 

 

2.2.4 IEEE MAC frame 

The IEEE 802.11 standard defines various frame types for communications, managing 

and controlling the wireless link. All frames have a frame control field to describe the 

IEEE 802.11 protocol version, frame type and other indicators; and contain MAC 

addresses for the source address (except for some control frames) and destination address, 

frame sequence number, frame body and frame check sequence for error detection. There 

are three main types of frame specified [15]: Data frames which are used for data delivery, 

control frames which provide the necessary services such as area clearing, channel 



Chapter 2 Technical Background 

24 

 

acquisition, carrier-sensing maintenance and positive acknowledgement of received data 

to enhance the reliability in data transmission, and finally Management frames which 

enable nodes to establish and maintain communications such as authentication frames, 

association frames and re-association frames and so on. In this thesis, the neighbour 

nodes only capture the frames which contend for access to the medium which includes all 

data frames, all management frames, RTS frames, PS-POLL frames and CTS-to-self 

frames [29] (developed in IEEE 802.11g). The generic IEEE 802.11 MAC frame format 

and the frame control field components are shown in Figure 2.8. Moreover, the 

retransmission flag (i.e. the Retry Field in Figure 2.8) is important to calculate the load of 

failed transmitted frames due to a collision or transmission error. The retransmitted 

frames set this field to 1. This will be described further in Chapter 4. 
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Figure 2.8: IEEE 802.11 MAC Frame Format and Frame Control Field 

Beacon frames are transmitted at regular intervals by an AP in an infrastructure BSS to 

announce the presence of a network. In ad hoc networks, nodes also transmit beacon 

frames. Information elements which have their own element ID, length and variable-

length component are variable-length components of management frames (Figure 2.9). 

An element ID (0-10, 16, 32-42, 48, 50, 221) is used for different information elements, 

other ID values are reserved and some can be extended for vendor specific applications. 

In this thesis, the Capacity Utilization information can be included as a metric in the 
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extended management information element in a beacon frame to support further network 

management actions. 
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Figure 2.9: Structure of an IEEE 802.11 Beacon Frame 

2.3 The Concept of Node Capacity and Capacity Utilization in WLANs 

In digital and analogue communications, the bandwidth measured in hertz (Hz) refers to 

the range of frequencies used for transmitting a signal. In data networks, bandwidth is a 

fundamental resource and is quantified as the amount of data transferred per unit of time 

(usually one second). It is typically measured in bits per seconds (bps). The bandwidth 

available to the application directly impacts on the application performance. For example, 

multimedia streaming is often more sensitive to latency than throughput [2] and produces 

a better performance from the lower delay associated with a high-link bandwidth. The 

accurate estimation of the node capacity and available bandwidth can be used to more 

effectively achieve the optimization of wireless network services for many applications. 

The term bandwidth can be applied to a variety of throughput-related concepts such as 

capacity, available bandwidth, and achievable bandwidth. It should be mentioned here 
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that there is no universally accepted definitions for the concepts of capacity and available 

bandwidth, as different researchers tend to adopt different definitions for the analysis of 

their estimation methods (this will be discussed further in Chapter 3). 

2.3.1 Capacity in Wired Networks 

The most widely accepted definition of the capacity Ci of a wired link i between two 

nodes is the maximum possible transmission rate can be achieved on that link. The 

capacity of an end-to-end path C [2] is defined as the maximum transfer rate that a path 

can transfer data from a source to a sink. It can be defined according to (2.5), where H is 

the number of hops in the path. The capacity Ci of a wired link depends on the underlying 

transmission technology. 

𝐶 = 𝐸𝐸𝑐𝑚=1,…,𝑇 𝐶𝑚                                                                (2.5)                        

Another metric is the available bandwidth Ai of a link that relates to the unused or spare 

capacity of the link during a specified time. This metric is a time-varying metric which 

depends on both the capacity Ci and traffic load of the link. The basic available 

bandwidth estimation formula can be written as [2]: 

𝐴𝑚 = (1 − 𝑉𝑚) × 𝐶𝑚, where 𝑉�𝑚 =  1
𝜏 ∫ 𝑉𝑚(𝑥)𝑆𝑥𝑆

𝑆−𝜏                              (2.6)             

Where 𝑉𝑚(𝑥)  is the instantaneous utilization of the network link at time x, 𝑉�𝑚  is the 

average utilization for a time period (t- τ, t) and value τ is the measurement interval of 

interest for the available bandwidth. Once the available bandwidth can be estimated, 

many applications can benefit from this information, i.e. the sender node can adjust its 

outgoing traffic rate to avoid congestion, the network can configure its routing table for 

path selection to obtain an optimal routing or the traffic flow can re-route to satisfy its 

requirements, and the network can also control the admission of new traffic flows. 
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2.3.2 Capacity in Wireless Networks 

Unlike a wired network where the link capacity is a constant value and can be referred to 

as the node capacity, the term “link” is ambiguous and is difficult to define in WLANs 

due to the shared nature of medium. Wired nodes use cables to connect to each other and 

the capacity can be assumed to be the maximum throughput that the link can deliver. In 

contrast, the WLANs nodes share the medium and use a collision avoidance method (i.e. 

the DCF scheme) which leads to a variability in the capacity of a WLAN node. 

 

  Figure 2.10: The Maximum Throughput for a Single Node WLAN  

For example, consider Figure 2.10 where there is a network node sending traffic to a 

destination node in a WLAN. As the offered load increases, the throughput increases up 

to a maximum value which can be referred to as the “Saturation Throughput”. The result 

from this simple IEEE 802.11b simulation (the network environment parameters are 

detailed in Appendix A) indicates that the saturation throughput for a single node is 

related only to the frame size. The single network node sends UDP traffic with a frame 

size of 512 bytes using an 11 Mbps PHY rate and results in a saturation throughput of 

approximately 4 Mbps. Winning a transmission opportunity consumes bandwidth – in the 
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sense that the medium is required to be idle while the backoff counter decrements to zero. 

In transmitting a frame, a node has to first win a transmission opportunity (which 

consumes bandwidth) and then transmit the frame (which also consumes bandwidth). 

With the growth in the traffic frame size, the saturation throughput is increased. Once the 

frame size exceeds the predefined maximum payload, fragmentation occurs and splits the 

frame into smaller frames which decreases the maximum throughput. The simulation 

result shows that the maximum bandwidth depends on the frame size when there is only 

one node operating on the medium. 

 

Figure 2.11: The Maximum Throughput for a Two Node WLAN  

Figure 2.11 shows the maximum throughput for a WLAN node when there is another 

node also contending for the medium with different packet sizes and packet rates. The 

solid line represents the maximum throughput for node A which transmits saturated traffic 

with a fixed packet size of 512 bytes on the medium. The dashed line represents the 

throughput for the other contending node B which sends a traffic load with a gradually 

increasing rate and a different packet size. It can be seen that the maximum throughput 

for node A decreases with an increase in the packet rate and packet size of the competing 



Chapter 2 Technical Background 

29 

 

traffic load from node B, i.e. the maximum throughput of node A is 3.9 Mbps when the 

competing traffic load of node B is 100 pps with a 128 bytes packet size, and is only 1.8 

Mbps when the competing traffic load of node B is 1000 pps with a 1500 bytes packet 

size. 

In a wired network, if the transmission rate is 10 Mbps, we can say that the node capacity 

is approximately 10 Mbps. However, this definition cannot be employed directly in 

wireless networks. The two simulation results above shows the node capacity, i.e. the 

maximum achievable bandwidth for a node not only depends on its own sending traffic 

load but also depends on the traffic transmitted by its neighbour nodes which also contend 

for the medium. In this thesis, a WLAN node capacity is defined as: 

The bandwidth available under the current load conditions and represents the 

maximum load that can be achieved by the node provided that the other network nodes 

maintain their current load. 

In WLANs, the nodes share the medium and contend for transmission opportunities and 

consequently the node capacity varies dramatically and is difficult to measure due to 

contention, changing channel conditions and network traffic loads, interference, 

retransmissions and other reasons (as will be discussed further in section 2.4.1). It should 

be noted here rate adaption is not considered in this definition. 

2.3.3 Node Capacity Utilization in Wireless Networks 

The node Capacity Utilization is defined as the ratio of the bandwidth utilized by a node 

in transmitting its load and the node capacity. This term reflects the usage of the node 

capacity in a given time interval.  

In Figure 2.12, it can be seen that the Capacity Utilization is essentially a measure of how 

close to saturation that a node is operating. If the Capacity Utilization is equal to 100%, it 
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means that the current load is consuming all of the available capacity and cannot win any 

more transmission opportunities, i.e. the node is said to be saturated. If the Capacity 

Utilization is smaller, it means that the node can transmit more traffic. Moreover, the 

development of an estimator for Capacity Utilization represents a more generic solution 

for numerous applications as discussed in section 2.4. The specific measurement method 

will be described in Chapter 4. 

Bandwidth

Node Traffic 
Load

Time

Node Capacity

In this point, Node Capacity Utilization  = 100%  

Figure 2.12: The Node Capacity and Node Traffic Load 

2.4 Developing a Node Capacity Utilization Estimator  

This section introduces the challenges, benefits, and applications of developing a node 

Capacity Utilization estimator based upon remote observations by neighbour nodes. 

2.4.1 The Challenges in Developing a Node Capacity Utilization Estimator 

Shared Medium and Contention: Most current research regarding bandwidth estimation 

has been developed for wired networks with the assumption of a First-In First-Out (FIFO) 

queue [31], constant link capacity, and individual links for data transmission. However, 

under the IEEE 802.11 DCF MAC mechanism, nodes share the medium and compete for 

access to the channel with a binary backoff method to avoid collisions (i.e. the CSMA/CA 
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mechanism). Thus, the node capacity and Capacity Utilization depends on the traffic 

behaviour of the node itself and the other nodes also contending for access to the medium. 

Rate Adaption: In the IEEE 802.11 standard every node operates at a PHY rate selected 

from the list of PHY rates defined for the specific PHY mechanism used. The PHY rate 

selection is based upon the channel quality and is usual related to the number of 

successful and unsuccessful frames transmitted. As the data transmission time depends on 

the modulation scheme, PHY rate and packet size, a varying PHY rate may lead to a 

dramatically varying node capacity. 

Fading and Interference: Unavoidable and unpredictable fading and interference can 

cause high levels of transmission errors. The transmission rate is determined by the rate 

adaptation mechanism in the PHY layer based upon the RF conditions. The loss ratio, 

signal-to-noise ratio, and signal strength can be used as indicators [32] in the rate 

adaption mechanism to make decisions regarding the appropriate transmission rate to use. 

Retransmissions: High frame loss on a wireless link due to collisions, fading and 

interference gives rise to retransmissions. The IEEE 802.11 defines a retransmission 

scheme to ensure the reliability of frame delivery. The exponential binary backoff 

mechanism contention window impacts the time for a packet to win a transmission 

opportunity can in turn affect the capacity estimation performed under passive techniques. 

Moreover, corrupted transmitted frames cannot be analysed by the monitoring node 

which leads to an underestimation in estimating the network traffic load.   

Physical Layer Thresholds: Two thresholds are specified at the PHY layer in IEEE 

802.11. The transmission threshold is the minimum received power required to receive a 

frame successfully. The carrier sense threshold indicates the receiver power that is 

required to determine whether the medium is busy or not. Essentially, nodes located out 
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of the transmission range but within the carrier sense range cannot communicate with 

each other directly, but may still contend for the medium [33]. For example, nodes m and 

n in Figure 2.13 are outside of the transmission range but within the carrier sense range of 

node i. In this thesis, the terms carrier sense range and interference range are used 

interchangeably. 

 

Figure 2.13: Transmission Range and Carrier Sense Range 

Hidden Nodes: Due to the physical limitation of wireless hardware (i.e. reception range), 

the hidden node problem is unavoidable. The hidden nodes have an impact on the 

estimation of the node capacity using remote observation methods. The remote neighbour 

nodes cannot capture all the relevant information to analyse the observed node’s behavior 

which results in an underestimation of node capacity.  

Overhead: A number of methods use active probe packets to estimate the capacity and 

available bandwidth. However, these periodic probe packets in wireless networks 
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consume the bandwidth and increase the contention between network nodes and can have 

a detrimental impact on network performance.  

2.4.2 The Challenges of Remote Measurement 

The estimation of Capacity Utilization can be divided in two approaches: local 

measurement and remote measurement. The node needs to broadcast its locally measured 

Capacity Utilization information to its neighbours to support wireless applications. This 

additional dissemination mechanism increases the overhead of channel and makes the 

application more complex. Moreover, the communication of this measurement 

information to its neighbour nodes may be unreliable owing to the packet losses or delays 

due to collisions, transmission errors caused by fading or interference arising from hidden 

nodes. 

The remote measurement of a neighbour’s Capacity Utilization value does not rely upon 

any inter-node communication or information broadcasting mechanism. Moreover, many 

wireless applications can benefit from utilizing this information directly through remote 

measurement (this will be discussed in next sub-section). However, there will be an error 

associated with this measurement owing to the differences in the wireless medium as 

observed by the different nodes. For example, errors can arise due to the neighbour node 

having neighbours that cannot be observed by the node performing the measurement. As 

the observer node and the observed node do not experience the same medium, the 

estimation of Capacity Utilization value performed by a remote node will differ from that 

experienced by the observed node itself. In this thesis, we have developed a Capacity 

Utilization estimator based upon remote neighbour observation by (1) passively 

monitoring the network, (2) collecting the observed node’s traffic and its neighbours’ 

traffic, (3) measuring the observed node’s contention, (4) using three reasonable and 

simple assumptions (to address the hidden node problem) to minimize the error associated 
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with this estimation. 

2.4.3 The Applications of Remote Capacity Utilization Estimator 

Once the node Capacity Utilization can be estimated, many network management 

applications can benefit from utilizing this information. However, the node needs to 

broadcast its Capacity Utilization measurements to its neighbour nodes. The neighbour 

node can make decisions promptly to obtain a better performance for the wireless service 

as follows:  

 

Figure 2.14: An Application of Node Capacity Utilization (%CU) in AP Selection  

AP Selection: An important use of Capacity Utilization information is to support AP 

selection mechanism in an access network discovery and selection function (ANDSF) 

[10]. Once a client attempts to associate with an AP in order to access the network, the 

client can scan the APs within its reception range and use the Capacity Utilization 

estimator to select an appropriate AP which can provide a better service. By comparing 

each AP’s Capacity Utilization, the client can select the AP with the lower Capacity 

Utilization value as illustrated in Figure 2.14. 



Chapter 2 Technical Background 

35 

 

Currently, the client select the AP based upon RSSI, a widely used metric that only 

provides an indication of how close the client is to an AP. However, it does not provide 

any information regarding the usage of the AP or the availability of bandwidth at the AP. 

 

Figure 2.15: An AP Selection Scenario based upon the Use of RSSI  

Figure 2.15 illustrates an example where the mobile users enter a Wi-Fi hotspot zone 

containing multiple APs and associates with the AP based upon the strongest signal. This 

may lead to a load imbalance [11], an overload of the AP resulting in possible AP 

saturation or congestion, while other neighbour APs still remain under used. This 

behaviour may have a detrimental impact on the service for wireless users such as 

unacceptable packet delay and losses and network performance degradation [11, 34]. 

Therefore, an alternative metric for AP selection is required to analyse the channel 
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condition, maintain load balancing, improve the user’s throughput, and enhance the 

utilization of network resources in WLANs. 

 

Figure 2.16: An AP Selection Scenario based upon the Use of Capacity Utilization 

Our Capacity Utilization estimator can establish the number of clients associating with 

the AP, the traffic load of the AP and its neighbour nodes, the contention experienced by 

the AP, the capacity and Capacity Utilization of the AP, and determine whether the AP is 

saturated or not. Our remote estimator also considers hidden nodes and does not rely upon 

message exchange between nodes. The remote Capacity Utilization metric can also be 

used to make better handoff decisions as shown in Figure 2.16. Once a mobile user finds 

that the associated AP cannot satisfy its traffic load demand, it can (1) scan the APs 

within its reception range, (2) re-calculate the Capacity Utilization of all the APs after the 
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connection in order to avoid saturation in another AP, and (3) make a decision for 

selecting a new AP as shown in Figure 2.16. 

IEEE 802.11k [12] uses a special management frame to exchange information between an 

AP and a client in order to maintain a load balance and increase the network throughput. 

However, the AP needs to be equipped with another adapter card or switch to monitor 

mode for monitoring the networks. Moreover, the message sent from APs may increase 

the channel overhead and make the application more complex. The dissemination of this 

information may not be reliable due to packet loss and delay. In particular, packet loss 

and delays are more likely to occur under heavy or saturated operating conditions. On the 

other hand, our Capacity Utilization estimator has none of the shortcomings mentioned 

above. It can passively monitor the network, analyse the Capacity Utilization of all APs 

under current network condition and is feasible for applications involving AP selection 

and handoff. 

Most recently, ANDSF developed by the 3rd Generation Partnership Project (3GPP) is 

used to discover target access points in order to maintain load balancing [35] across a 

network. It supports the user equipment (UE) in discovering the non-3GPP data access 

networks (e.g. IEEE 802.11 (Wi-Fi) networks and IEEE 802.16 (WIMAX) networks) in 

Release 8 [10] in 2008. The ANDSF contains data management and control functionality 

[36] and consists of three components: inter-system mobility policy (ISMP), inter-system 

route policy (ISRP), and access network discovery information. Firstly, ISMP decides 

whether the inter-system mobility is allowed or restricted. ISMP also selects the most 

preferable access network type and identifier for UE, e.g. whether a WLAN is preferable 

to WIMAX, or WLAN-SSID1 is preferable to WLAN-SSID2. Secondly, ISRP can 

support the routing of IP traffic simultaneously over multiple access networks. Finally, 

Access network discovery information provides a list of available access networks 
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(including type, identifier and other relevant information) in the vicinity of the UE. Our 

estimator can also be employed in ANDSF to discover the preferred access network. 

Apart from AP selection, our Capacity Utilization estimator can be utilized in other 

application area such as: 

Routing Decisions: Currently, two main routing protocols have been proposed in 

WLANs: proactive protocols (e.g. DSDV [37], OLSR [38]) that use routing tables and 

probing technique to maintain routes for all nodes. However, the overhead associated 

with updating the routing table is high. When a route is broken, the reaction may be slow. 

Reactive protocols (e.g. AODV [39], DSR [40]) broadcast Route Request packets to select 

a route on demand. However, high overhead, latency and low throughput [41] associated 

with a discovered route may influence the network performance. Moreover, once the 

nodes can become aware of the capacity of network nodes, they can select a route with a 

high throughput to improve the performance of applications.  

 

Figure 2.17: An Application of Node Capacity Utilization (%CU) in Route Selection 
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Capacity estimation can be used to support routing decisions (e.g. QoS routing [42], QoS 

aware routing [8] and resource aware routing [43] etc) where the node Capacity 

Utilization can be used as a route metric to find a path from the source node to the 

destination node to satisfy the application’s requirements. For instance, in Figure 2.17, 

once the node A becomes aware that node B’s Capacity Utilization is 100%, it can limit 

its traffic rate. It also can re-route and select the node B (Capacity Utilization of 40%) to 

re-direct its traffic. 

Channel Assignment and Selection: Channel allocation in multi-radio or multi-channel 

networks is used to allocate wireless bandwidth and assign the communication channels 

to the interfaces of each network node in order to improve the throughput of networks or 

reduce the interference, i.e. interference mitigation. The traditional channel selection and 

assignment methods are divided into fixed channel assignment [44], dynamic channel 

assignment [45] and hybrid channel assignment [46]. However, none of them takes the 

Capacity Utilization of the channels into account. The node can monitor its own Capacity 

Utilization or its neighbours’ to select the appropriate operating channel when the node is 

operating under heavy load conditions in order to alleviate avoid the saturation or 

congestion. 

Admission Control: The node Capacity Utilization can be used to assess the availability 

of the network capacity and to support an admission control function [47] to either admit 

or reject the incoming requests to join a network. For example, once an AP’s Capacity 

Utilization is 100%, it indicates that this AP cannot win any more transmission 

opportunities and should reject any new incoming traffic. Similarly, the neighbour nodes 

can use the estimator to measure the AP’s Capacity Utilization and then stop transmitting 

new traffic to the node if they find it to be saturated.  
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Radio Resource Management: In [14], radio resource management is used for 

bandwidth provision that can prevent a node’s bandwidth from being seized by other 

nodes in VoIP and video streaming services. Estimating the neighbour nodes’ Capacity 

Utilization within an admission control scheme can ensure that sufficient bandwidth can 

be allocated to each node to satisfy its QoS requirements or to provide different priorities 

for different applications or users. 

Node Saturation Detection: In Bianchi’s model [30], node saturation is defined as where 

there is one packet always waiting for transmission or the transmission queue is 

nonempty. In this thesis, we define node saturation as a situation that can arise where the 

node cannot win a sufficient number of transmission opportunities to satisfy its traffic 

load. It is the most serious problem in managing WLANs as it can give rise to node 

congestion which in turn can give rise to unacceptable packet delay and losses on a 

network resulting in a poor performance for most applications. Once the onset of node 

saturation is detected by neighbour nodes, the neighbour nodes can take timely action in 

order to prevent the node from becoming congested, thereby minimizing packet delay and 

losses. It can also be used to determine the reason for the increased packet delay and 

losses. The potential benefit of the Capacity Utilization estimator will be illustrated later 

in section 5.4 by deploying it in an application for detecting node saturation in order to 

evaluate the performance of our estimator. 

2.5 Network Simulation 

In order to simulate a real network environment, network simulator version 2 (ns2) was 

developed by UC Berkeley in 1997 and is now available as an open source and free 

software simulation platform [48]. The ns2 simulator is one of most popular source open 

source network simulators with variety of modules that runs on Unix-based systems. It is 

a discrete event simulator (where timing of events is determined by a scheduler) targeted 
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at networking research. The architecture of ns2 follows closely that of the Open Systems 

Interconnection (OSI) network model. The ns2 also provides substantial support for the 

simulation of TCP/UDP/RTP/SRM, routing, queuing, and multicast protocols over wired 

and wireless (local and satellite) networks. Compared to ns1 (no longer developed or 

maintained) and ns3 (is being actively developed), ns2 is more mature and fully 

developed, thus we choose ns2 as the simulation tool in this thesis. Apart from these 

simulators, other simulators such as OPNET, OMNET++, and GloMoSim have been 

developed for academic research. Moreover, a real-system/testbed can be costly, complex, 

and difficult to deploy. The simulators can quickly configure different parameter settings, 

is easy to extend and can quickly produce results. 

2.5.1 The Structure of ns2 
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Figure 2.18: Basic Architecture and Components of ns2 Simulator 
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The basic structure and main components of ns2 are shown in Figure 2.18. It shows that 

the ns2 simulator is based on two key languages [49]: an object oriented simulator, 

written in C++ which defines the internal mechanism of simulation objects, and an OTcl 

(an object oriented extension of Tcl (Tool Command Language)) which sets up 

simulation, configures the relative parameters and executes a user’s command scripts. 

The C++ and OTcl classes are referred to as a Complied hierarchy and an Interpreted 

hierarchy. The linkage between the C++ and OTcl is TclCL (Tcl with classes). Mapped to 

a C++ object, variables in the OTcl domains are sometimes referred to as handles. For 

example, a handle is just a string in the OTcl domain and the functionality of this handle 

is defined in the mapped C++ object. 

2.5.2 The Advantages and Benefits of ns2  

Rich libraries and modules: ns2 also has a rich library of network and protocol objects. 

Different modules and classes are set up in different levels of dictionaries. The modules 

in the Complied hierarchy are classified at level 3, i.e., directory Common contains basic 

modules such as Node class, Packet class, Session class and Encapsulator class etc. The 

directory Tools contains various helper classes including a random variable generator 

Random class and traffic generator such as CBR_traffic class, EXPOO_traffic class 

(exponential traffic) and PARETO_traffic class. The directory mac module defines the 

MAC classes, mac_802_3 classes, mac_802_11 classes, mac-csma classes and other 

classes concerned with the MAC layer. 

Easy to use: In ns2, C++ is used to implement the detailed protocol as it provides 

sufficient execution speed. New agents, packet types, protocols can be introduced by 

modifying or adding to the libraries and modules. OTcl is used to assemble different 

components and configure network parameters in order to control the simulation scenario 
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and schedule the events. The combination of OTcl and C++ provides users with both 

convenience and usability. 

Evaluation of ns2: In the simulation studies of [50], ns2 is the most popular simulation 

tool used in network research. Research using ns2 includes the numerous WLANs 

applications and protocols in different layer such as resource allocation, real-time 

communication, energy issues, transport protocols and control strategies [51]. Comparing 

with other simulators such as OMNeT++ and QualNet, the author [52] tests different 

network models and concludes that the results from ns2 come closest to reality. Some 

research presents a validation of ns2 wireless model and concludes with some 

recommendations. In [53, 54], the authors suggest a series of recommendations for 

researchers when using ns2 simulator such as to list the assumptions about environment 

clearly, to explore a range of model parameters, and to develop a range of propagation 

models that suit different environments. The results in [51] show that the packet delivery 

ratios, the connectivity graphs, and the packet latencies comparing the characteristics of a 

real network and the corresponding model present an average error of 0.3%, 10%, and 57% 

respectively. 

2.6 Chapter Summary 

This chapter introduces the relevant basic concepts of WLANs, the IEEE 802.11 MAC 

mechanism, the concepts of node capacity and Capacity Utilization, the benefits and 

possible applications of being able to estimate node Capacity Utilization, the challenges 

in estimating the node Capacity Utilization and the ns2 simulator. This basic knowledge 

is required for an understanding of the characteristics, challenges, benefits, applications in 

designing an estimator for Capacity Utilization based upon passive observations by 

remote neighbour nodes.  
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In order to provide for the better performance of WLANs, we developed an estimator for 

the Capacity Utilization based upon the IEEE 802.11 DCF mechanism which can be 

deployed on IEEE 802.11 b/a/g/n networks. The estimator can be employed in multi-

neighbour network topologies such as mesh and ad hoc networks. However, the hidden 

node problem is a major challenge for this type of network. Our estimator handles the 

hidden node problem by passively monitoring the transmitted frames and processing them 

under a number of assumptions. Once it becomes possible to measure node Capacity 

Utilization, it can be employed in many applications to enhance the network performance. 

We implemented our Capacity Utilization estimator in a passive node saturation detection 

method and compare it to two other methods: queue observation method based upon 

Bianchi’s [28] definition and regularly pinging method. We use the ns2 simulator to 

validate our error model and identify the factors influencing the accuracy of the estimator. 

The details and descriptions of our Capacity Utilization estimator will be presented in 

Chapter 4. 
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Chapter 3 Literature Review 
In wired networks, two nodes use a cable to connect to each other and the capacity is 

widely defined as the maximum transmission rate that can be achieved between the two 

nodes. Most estimation schemes assumed that the capacity on wired networks is a 

constant value. However, owing to the shared nature of medium and the IEEE 802.11 

MAC mechanism, the term “link” is ambiguous and difficult to define in WLANs. The 

WLAN nodes contend for the medium and interact with their neighbour nodes by 

employing the CSMA/CA mechanism. Consequently, the capacity of a WLAN node is 

not fixed and can vary dramatically due to the characteristics of WLANs operating 

environment.  

Different researchers have tended to define their own capacity definition and other 

throughput-related metrics (e.g. node capacity and available bandwidth) and consequently 

there is no universally accepted definition of capacity. Therefore, in this thesis we will 

use the two terms node capacity and bandwidth availability interchangeably. 

The ability to measure these metrics can be used in many wireless applications to support 

improved services such as AP selection [34], QoS provisioning [55], resource aware 

routing protocols [8, 43], channel selection [56], admission control [57], radio resource 

management [13], and node saturation detection. Therefore, the analysis and discussion of 

the literature in this chapter describes the different concepts, definitions, methodologies 

and application areas of capacity estimation techniques in WLANs. 

Currently, there are three main methods to estimate the capacity: active probing methods, 

analytical and mathematical methods, and passive analysis methods as shown in Figure 

3.1. However, these methods exhibit a number of disadvantages with regard to accuracy, 

reliability and overhead in the estimation of capacity. A number of active probing 
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techniques for capacity estimation are addressed here that show low accuracy and high 

overhead for the network. Analytical and mathematical methods are based upon certain 

assumptions that are not suitable for the wireless applications in real networks. Local 

passive measurements based upon analyzing the transmitted packets performed at a node 

tend to produce more accurate results [5-7]. The proposed algorithms, measurement 

metrics, and performance evaluation of these estimation techniques are investigated and 

discussed in section 3.1, 3.2, 3.3 and 3.4 respectively. 
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Figure 3.1: The Main Techniques Used for Capacity Estimation 

Finally, in order to demonstrate the benefits and potential applications of using capacity 

estimation techniques, section 3.5 introduces and evaluates some of the methods proposed 

for utilizing capacity information in different wireless application areas. 

3.1 Active Probing Approaches in Capacity Estimation  

In a wired network, the fundamental definition [2] of capacity 𝐶𝑚 is the maximum possible 

throughput that a wired link or a network path can deliver. Most researches also 

differentiate between capacity and another important metric called available bandwidth 𝐴𝑚 

defined as the maximum unused or spare throughput that a wired link or a network hop 
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can deliver as introduced in section 2.3.1. For a wired end-to-end path, the available 

bandwidth A is the minimum available bandwidth of all H hops [2] and is defined as: 

𝐴 = min
𝑚=1,⋯⋯,𝑇

𝐴𝑚                                                              (3.1) 

A number of estimation tools have been proposed that transmit a sequence of packets 

called probe packets with pre-defined inter-packet time intervals to estimate the capacity 

or available bandwidth in wired networks. These estimation tools can be divided into 

three categories: variable packet size (VPS) methods, packet gap methods (PGM), and 

packet rate methods (PRM) which are described in the following sections.   

3.1.1 Active Probing Approaches in Wired Networks 
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Figure 3.2: (a) A VPS Network Model (b) An Example of the Relationship between RTT 

and Packet Size 

The VPS employs a set of probe packets with a variable packet size [58, 59] which 

measures the round-trip delay time (RTT) of a single hop or an end-to-end path as shown 

in Figure 3.2(a). The sending node i-1 forces the probe packets to expire by setting the 

Time-To-Live (TTL) field. When node i receives the probe packets, it drops the packets 

and returns an ICMP error message (i.e. a “time exceeded” response). The RTT on hop i 
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is considered to contain four types of delay for a given packet size L and capacity C 

between two nodes as follows: 

𝑅𝑇𝑇𝑚 =
𝐿
𝐶

+ 𝑆𝑝𝑓𝑙𝑝 + 𝑆𝑝𝑓𝑙𝑎 + 𝑞1 + 𝑞2 +
𝐿
𝐶

′

+ 𝑆𝑝𝑓𝑙𝑝′ + 𝑆𝑝𝑓𝑙𝑎′ +𝑞1′ + 𝑞2′  

= 𝛼𝑚 + 𝐿
𝐶

                                                                                                                (3.2)                     

In the equation (3.2), 𝑆𝑝𝑓𝑙𝑝 represents the propagation delay that is independent of the 

packet size (assumed to be a constant value), 𝑆𝑝𝑓𝑙𝑎 is the delay of processing the packet 

on the router, 𝑞1 and 𝑞2 is the queuing delay, 𝐿
𝐶
 is the delay in transmitting a probe packet, 

and 𝐿
𝐶

′
,  𝑆𝑝𝑓𝑙𝑝′ ,𝑆𝑝𝑓𝑙𝑎′ , 𝑞1′  and 𝑞2′  are the corresponding delay parameters of the return path. 

The source node selects the minimum RTT (under the assumption that the queue delay 

and process delay is zero) of the sending packets, then computes a linear regression 

among the minimum RTTs for each packet length to measure the delay 𝛼𝑚 and capacity C 

as shown in Figure 3.2(b). Such a method can cause a high overhead. Therefore, much 

work has been carried out to improve this method by implementing several techniques 

such as using two pairs of probe packets [60] and a multi-probe packets model that does 

not send back ICMP error messages [61]. 

Another capacity estimation method is the packet gap method (PGM) that uses the time 

gap or difference between the arrival time of two successive probe packets [62, 63] (Δin, 

Δout) to measure the capacity in a time interval (t, t+ Δin) as shown in Figure 3.3.  

C

Δin Δout

Incoming Probing Packets Outgoing Probing Packets

Network Node 

 

Figure 3.3: Active Packet Gap Model 
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As a result of using the same packet sizes L, the pair of probe packets experiences a 

similar transmission delay, propagation delay, and process delay etc. If the separation 

between the pair of incoming probe packets Δin is smaller than the transmission delay of 

the first packet, the separation of two outgoing probe packets Δout will be increased. 

Otherwise, the Δout remains unchanged. Thus the relationship of the separation of two 

probe packets and capacity is:  

∆𝑐𝑉𝐸 = max �∆𝐸𝑐,
𝐿
𝐶
�                                                         (3.3) 

Pathrate [64] studies the separation of long probing trains that contains N probe packets of 

the same packet size L, then sums the time gap of all probe packets ∆(𝑁) in the train. The 

capacity C of the path without any traffic is given by: 

𝐶 =
(𝑁 − 1) × 𝐿

∆(𝑁)                                                            (3.4) 

During the time interval Δin between the two probe packets, there are a total of (Δout- 

Δin)×C traffic bits that have passed along the hop. Therefore the available bandwidth 

defined as the unused throughput that a link can achieve under the presence of network 

traffic can be derived as: 

𝐴𝑅𝐸𝐸𝑉𝐸𝐴𝑉𝐸 𝐵𝐸𝑐𝑆𝑊𝐸𝐸ℎ(𝐸, 𝐸 + 𝛥𝐸𝑐) = �1 −
∆𝑐𝑉𝐸 − ∆𝐸𝑐

∆𝐸𝑐
� × 𝐶                     (3.5) 

Moreover, other methodologies use the PGM approach in available bandwidth estimation 

such as Spruce [65] employing equation (3.5) directly by using a Poisson process of 

probing pairs, IGI [66] using probing trains with increasing gaps and Delphi [67] 

employing an exponentially spaced probe packet train. 

The packet rate method (PRM) is an iterative method that induces congestion at some 

bottleneck link of a path with different probe packet rates and makes a comparison 

between the input probing and output probing packet rates. With an increase in the input 

probing packet rate, the output probing packet rate also increases. However, once the 
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input rate of probe packets exceeds the available capacity, the output probing packet rate 

will not increase. The receiver seeks the turning point in the rate response curve and 

determines the available capacity. Generally, there are two types of probe packets rate 

used: a periodic packet stream at a certain rate (i.e. self-loading periodic streams (SLoPS) 

[68]) and a number of packets with a gradually increasing rate from sender to receiver (i.e. 

trains of packet pairs (TOPP) [69]). Other estimation techniques include Pathload [70], 

PathChirp [71], PathMon [72], BART [73], MR-BART [74] that employ various probing 

schemes and extend the above approaches to estimate capacity or available bandwidth in 

wired networks. 

3.1.2 Active Probing Approaches in WLANs 

Previous definitions and capacity estimation methods and tools have been primarily 

directed at the investigation of wired networks. However, the majority of these definitions 

and schemes cannot be directly applied to wireless networks. The capacity of a WLAN 

node depends largely on the characteristics of the wireless shared medium and 

coordination functions which may result in a variability of available medium resources 

[5]. This makes accurate measurement-based estimation of capacity more complex in 

wireless networks. Moreover, the accurate capacity estimation is a major challenge as the 

channel experiences various unpredictable factors such as interference, fading, path loss 

[75] which affects the performance of estimation. For example, in IEEE 802.11b WLANs, 

the physical rate may change dramatically and rapidly from 11 Mbps down to 1 Mbps due 

to the rate adaptation mechanism used. Thus the concept of capacity in wired networks is 

not suitable for wireless networks. Thirdly, collisions arising from hidden nodes in 

WLANs are hard to predict and this leads to an inaccuracy in the capacity estimation. 

Currently researchers improving these active probing models in WLAN networks will be 

discussed in the following.  
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Variable Packet Size 

WBD [76] also uses a series of probe packets with different packet sizes to estimate the 

link bandwidth C defined as the maximum transmission PHY rate by calculating the 

minimum or mean RTT for different probe packet sizes L. The RTT is derived as:  

𝑅𝑇𝑇 = 𝐸𝑤𝑚𝑚𝑆 +
𝐿
𝐶

+ 𝐸𝑖                                                        (3.6) 

Where twait represents the time interval associated with backoff and deferral before a 

packet transmission which can be regarded as a random value, and td is a constant value 

including SIFS, DIFS, the time duration for transmitting RTS/CTS and ACK, and the 

propagation delay. In [77], the author defines the end-to-end bandwidth as the maximum 

transmission rate that a source node can achieve without competing traffic from 

neighbour nodes. The author also assumes that the time required to seize and release the 

channel in a one hop transmission is a random variable (whose mean is a function of the 

packet length).  

However in the above method, the source node needs to send a large number of probe 

packets and compares all the RTTs of the sending packets in order to obtain the minimum 

RTT to measure the maximum transmission rate. It has a high overhead and requires a 

long time to produce an accurate result. Moreover, the VPS focuses on the estimation of 

maximum transmission rate (referred to as link capacity in wired networks). It does not 

take into consideration the achievable bandwidth for a WLAN node under the existence 

of competing traffic from neighbour nodes. Finally, it is different from the definition of a 

WLAN node capacity in this thesis. 

ProbeGap [31] tool sends a series of Poisson-spaced probe packets and collects the one-

way delays (OWD) of these probe packets. It picks the maximum OWD of the probe 

packets, estimates the fraction of time that the channel is idle by probing for “gaps” in the 

busy periods, and then multiplies this by the channel rate to obtain an estimate of the 
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available bandwidth. However, the result produces an overestimation of the available 

bandwidth when the network traffic rate is high. 

Packet Gap Model  

An Adhoc Probe [78], also employs a pair of packets with fixed packet sizes based on the 

CapProbe [79] technique which measures the capacity defined as the maximum 

achievable rate over the wireless path in the absence of any competing traffic, i.e. it is 

simply the packet size divided by the separation. The authors in [80, 81] proposed an 

alternative and more accurate approach by extending the Adhoc Probe for throughput 

estimation of a WMN network. The results show that the capacity measurement is 

dependent on the probe packet length. However, it does not consider the estimation under 

the conditions that the neighbour nodes contend for the medium.  

In a packet gap method based tool WBest [82], the author defines the available bandwidth 

as the maximum amount of capacity that a newly arriving traffic flow can acquire at the 

bottleneck router under the existence of competing traffic. Firstly, using a probing pair 

separation method the effective capacity Ce can be written as equation (3.7), which 

represents the maximum capability of the wireless network to deliver network layer 

traffic. 

𝐶𝑎 =
∫ 𝐿

𝑇(𝐸)
𝑆1
𝑆0 𝑆𝐸

𝐸1 − 𝐸0
                                                                (3.7) 

Where L is the packet size and T(t) is the packet separation at time t in a observation 

interval (t0, t1). Secondly, it employs a probe packet train technique at a rate 𝐶𝑎  and 

measures the average separation rate R at the receiver to estimate the available bandwidth 

using: 

 𝐴 = 𝐶𝑎 × �2 −
𝐶𝑎
𝑅
�                                                          (3.8) 
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However, this method needs an initial estimate to measure the 𝐶𝑎  value by sending a 

number of probe packet pairs. Then it is required to send another probe packet train to 

estimate the available bandwidth which increases the network overhead. The results show 

that this method has a higher accuracy, but the author only compared this WBest tool with 

other wired networks capacity estimation tools.  

An empirical approach [4] employs a stream of probe packets in an uniformly distributed 

time interval to estimate the channel utilization and residual bandwidth in IEEE 802.11 ad 

hoc networks. The author defines the residual bandwidth as the ’spare’ portion of the total 

bandwidth that is not used by neighbour traffic. The sender node estimates the residual 

bandwidth before initiating any data traffic. It measures the time period during which the 

channel is occupied by a neighbour’s traffic packet through observing a train of probe 

packets and measuring the delays of probe packets. The residual bandwidth is denoted 

as 𝜂𝑓𝑎𝑎 = (1 − 𝑉�𝑎) × 𝜂𝑚𝑚𝑚, where 𝑉�𝑎 is the measured channel utilization and 𝜂𝑚𝑚𝑚 is the 

maximum throughput when the channel is saturated. Simulation results show that the 

measurements are considerably more accurate when the sum of neighbour traffic and 

probe traffic is not close to congestion. However under a congestion condition, this 

method provides an overestimation of the channel utilization. Moreover, the accuracy of 

estimation is dependent on the number of probe packets K sent and neighbour traffic load 

(i.e. the estimation performs with high accuracy when using a smaller K under lower 

network traffic or using a larger K under heavier network traffic respectively). The author 

suggested an adaptive probing rate, however the traffic load from the hidden nodes are 

impossible to accurately predict in a WLAN. 

Packet Rate Method 

In [83], the author compared both SLoPS and TOPP algorithms based upon PRM through 

mathematical analysis and simulation. The SLoPS technique performs with a faster 
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estimation time and a poorer accuracy than that of TOPP technique. In order to increase 

the accuracy and minimize the measurement time, the author also proposed the SLOT 

algorithm to estimate available bandwidth in IEEE 802.11 networks. SLOT uses the 

SLoPS strategy by sending a stream of probe packets pairs at a constant rate as a first step 

to seek the measurable range of available bandwidth. In the second stage, it employs a 

TOPP strategy through sending trains of probe packets rate with an increasing rate to 

obtain the accurate available bandwidth from the measurable range acquired in first step. 
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Figure 3.4: Basic Model of DietTOPP [3] 

Based on the trains of probe packet pairs method, DietTOPP [3] defines a wireless link as 

a traffic flow path from source node to destinations. It has been developed to measure the 

available bandwidth of an end-to-end link in a wireless environment. DietTOPP is a 

packet rate based method that injects probe packets trains with identical sizes and with an 

increasing rate along the path towards the receiver. The relationship between available 

bandwidth and probe packets rate is shown in Figure 3.4 where the offered rate 𝑐𝑚 of the 

probe packets gradually increases until congestion occurs. At the point at which the 

measured probe packets rate 𝐸𝑚 becomes constant, this can be used to provide a measure 

of the available bandwidth. A BART tool [84] also used by the PRM and employs a 

Kalman filter to estimate how much bandwidth an application or a WLAN node can 

expect to use when sending or receiving network traffic. 
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In contrast to the wired networks, the result indicates that the accuracy of available 

bandwidth estimation based probe packet techniques in wireless networks is not only 

dependent on the probe packet size but also on the neighbour traffic intensity due to the 

contention between the network nodes in accessing the medium. 

3.1.3 Discussion 

The concept of capacity estimation was first proposed in wired networks to provide a 

better service for applications such as routing, flow control, congestion detection etc. A 

number of estimation tools based upon active probe packets have been studied to provide 

accurate capacity estimation in wired networks. Most estimation schemes assume the 

capacity of the wired link is constant while the link is assumed to be point-to-point [31] 

and connected by a cable. However, these assumptions and definitions are not applicable 

to wireless networks due to the characteristics described in section 2.4.1. The results from 

the experiments [5-7] which compare the performance of some of the existing tools for 

available bandwidth estimation suggest that probe-based tools are not the best choice for 

wireless networks. The authors conclude that those probe-based tools that perform well in 

wired networks cannot provide accurate and consistent results in wireless networks. The 

active measurement has an effect on the observed channel of introducing latency and 

jitter [85]. The passive scheme is more accurate and less costly. Moreover, the basic 

model employs the common assumption of First-Come First Served (FCFS) in capacity 

estimation which may not be suitable for WLANs with contending traffic due to the IEEE 

802.11 DCF mechanism which seeks to achieve a fair access allocation [5, 31]. When 

employing this approach, some important considerations need to be borne in mind. The 

trade-off between overhead and accuracy cannot be ignored because probe packets 

consume the shared medium and channel bandwidth. This approach impacts negatively 

on the network performance under node congestion conditions. Moreover, the results 
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from more recent researchers show that the accuracy of the estimation also depends on 

the network traffic intensity and probe packet size. Thirdly, active probing methods rely 

on the successful transmission of probe packets, the accuracy will be reduced when a 

number of significant probe packets are lost due to collisions or transmission errors. 

Currently, most researchers focus on passive methods to obtain the node capacity. 

3.2 Analytical and Mathematical Approaches 

Some of the capacity estimation methods use a purely analytical approach to model and 

evaluate the performance of a wireless network. Bianchi [30] presents an analytical model 

to compute the saturation throughput (defined as the maximum load that a single cell can 

deliver) performance of the IEEE 802.11 DCF with a bi-dimensional Markov Chain 

model to model the backoff counter and the number of collisions of each node under 

saturation conditions. The saturated throughput 𝑇𝑃𝑎𝑚𝑆 in a randomly chosen slot time T 

(i.e. time interval between the beginnings of two successive decrementing slot times) is: 

𝑇𝑃𝑎𝑚𝑆 =
𝐴[𝑆𝑉𝐴𝐴𝐸𝐸𝐸𝑓𝑉𝑉 𝐸𝐸𝐸𝑐𝐸𝐸𝐸𝐸𝐸𝐸𝑆 𝑝𝐸𝑦𝑉𝑐𝐸𝑆 𝐴𝐸𝐸𝐸 𝐸𝑐 𝑇]

𝐴[𝑇]
                   (3.9) 

Bianchi’s model produces accurate measurements under the assumptions of:  

• Finite number of terminals and every node is saturated 

• Ideal channel conditions (i.e. no hidden nodes) 

• Constant and independent collision probability of a transmitted by each node 

However, this saturation assumption is a rare situation in real IEEE 802.11 networks, i.e. 

nodes are far from being all saturated at the same time period. Duffy [86] developed an 

extension of Bianchi’s model to consider a non-saturated environment. However the 

extended model still assumes an ideal channel without transmission errors and performs 

with high accuracy under the assumptions of constant packet arrival probability and small 

buffers. Garetto [87] proposed an analytical model to predict each flow’s throughput and 
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extended Bianchi’s model in CSMA/CA multi-hop wireless networks. Kwak [88] 

analyses the performance of DCF binary exponential backoff with a maximum retry limit 

to obtain the saturation throughput and the medium access delay with N network nodes 

under the similar assumptions of Bianchi’s model. In [89], the author defined the end-to-

end throughput capacity as the maximum achievable end-to-end throughput of a new flow 

in the presence of the existing traffic flows. The author also proposed an analytical 

methodology in multi-hop wireless networks and assumed a fixed packet size for the 

UDP traffic streams, fixed signal to interference ratio (SIR) value, and non-empty queue. 

Gupta and Kumar [90] considered two possible models for the successful reception of a 

frame transmission over one hop. The protocol model prevents a neighbouring node from 

transmitting on the same sub-channel at the same time and in a physical model a 

successful transmission depends on a minimum SIR. The capacity of wireless networks 

with n identical random located nodes which are capable of transmitting at W bits per 

second with fixed range is 𝜃( 𝐶
�nlog𝑚

) bits per second under a protocol model. The model 

was then extended to compute an approximation of the maximum throughput for arbitrary 

wireless networks under several interference models [91]. However, the fundamental 

limitation of this model is that it requires an ideal scheduling algorithm which knows all 

the nodes’ locations and all their traffic demands. Other approaches [92] [93] also 

proposed an analytic method to model the wireless characteristics for capacity estimation. 

In [92], the author assumes every node has the same arrival rate in order to compute the 

average delay and normalized throughput for the standard packet size. 

The analytical models contribute significantly to modeling the network behaviour and 

analyzing the theoretical saturated throughput, capacity or achievable capacity boundary 

in WLANs. However all the analytical models discussed above have their limitations and 

have been operated under some specified assumptions. Some assumptions are not suitable 
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for real IEEE 802.11 networks, i.e. where every node is saturated and an ideal channel 

with no transmission errors [30, 87], constant packet arrival probability, small buffer [86], 

fixed packet size of traffic load, or under a given interference model [90] [91] [94]. Thus 

these results are suitable for theoretical analysis, not for the performance analysis of 

wireless applications in a real environment. 

3.3 Passive Approaches for Capacity Estimation 

Passive approaches are techniques that only analyse the transmitted frames and use local 

information to estimate the capacity of a single node or a pair of nodes (denoted as a 

wireless link by some researchers and introduced in section 3.3.4) in WLANs. Most 

researches use the term “available bandwidth” to denote node capacity in order to 

describe the bandwidth available for a WLAN node under the current channel conditions. 

Different researchers have adopted their own definitions and throughput-related 

measurement metrics to optimize the service performance of wireless applications that 

will be discussed in the following. The WLAN node passively monitors the channel usage 

and estimates the throughput-related metric (i.e. available bandwidth) and then broadcasts 

the information to its neighbour nodes for the wireless applications such as routing 

selection or admission control. 

3.3.1 Factors Influencing the Accuracy of Estimation 

In the passive approaches for available bandwidth estimation, a node i locally monitors 

the channel utilization ratio 𝐶�𝑎ℎ𝑚𝑚 by sensing the channel status then multiplying it by the 

maximum transmission rate Ci to obtain the available bandwidth AB(i) in a given 

measurement interval of interest. The basic formula [55] [2] is: 

𝐴𝐵(𝐸) = (1 − 𝐶�𝑎ℎ𝑚𝑚) × 𝐶𝑚                                                  (3.10) 

However, once the network nodes attempt to transmit packets, they need to wait for an 

interval of DIFS before decrementing their backoff counter. In another words, this time 
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period required to actually win a transmission opportunity on the medium does not belong 

to “available” time period which can be utilized for packet transmission. In [95], the 

author considered all the factors affecting the available bandwidth (AB) estimation and 

takes into account the formula (3.11) where Tidle represents the channel idle time and T 

represents a given measurement interval of interest in sensing the channel.  

𝐴𝐵 ≤
𝑇𝑚𝑖𝑖𝑎
𝑇

× 𝐶𝑚                                                             (3.11) 

As the simulation results in section 2.3.2 have shown, an 11 Mbps implementation of 

IEEE 802.11b cannot deliver throughputs higher than 7 Mbps under UDP traffic. Thus 

simply sensing whether the channel is idle or busy may not accurately estimate the 

available bandwidth. For a node, the available bandwidth estimation obtained by 

measuring channel utilization should be considered by using a factor “Access Time 

Interval” (referred to as Taccess) in a total time period as shown in Figure 3.5. 

Framei(1)

ACK

Framei+1(1) Framei+1(1)

ACK

Failed Transmission Re-transmissionSuccessful Transmission

DIFS DIFS DIFSBackoff Backoff Backoff

Medium BusyTaccess Medium Busy Medium BusyTaccess Taccess  

Figure 3.5: The Factor “Access Time Interval” 

The term Taccess represents the proportion of extra time introduced by DIFS and the 

backoff counter. Suppose there is only one packet being transmitted on the medium, this 

access time for one packet should be DIFS plus a random backoff counter. For two nodes 

competing for the medium, this access time is shared by the nodes and is more 
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complicated. However, it is a challenge to measure Taccess, as it is related to the contention 

and cannot be calculated directly due to the random backoff counter. It is also affected by 

the number of neighbours competing for the medium, collision probabilities, and the 

network traffic rate. Moreover, Figure 3.5 shows that the failed packet transmission also 

occupies the channel. However, it is difficult to capture the failed packets through a 

passive monitoring approach. This section introduces a number of studies that use passive 

approaches to develop the available bandwidth in WLANs. Different methods have been 

proposed that use different definitions, methods and consider different factors influencing 

the accuracy of estimation. In order to better organize the proposed references, the 

estimation methods are divided into two categories: Local estimation with non-interfering 

nodes and interfering nodes respectively. 

3.3.2 Local Estimation with Non-Interfering Nodes 

The author in [96] defines the maximum achievable bandwidth as the maximum 

throughput that can be achieved by locally observing the ratio of successfully transmitted 

payload and the channel occupancy time at the sender nodes. An estimator called EVA 

[97] estimates the available bandwidth (defined as maximum achievable bandwidth) as 

the number of successfully transmitted frames multiplied by the payload size, divided by 

the expected frame transmission time. However, the above two methods do not consider 

the available bandwidth in the presence of neighbour traffic.  

In [55], each wireless node continually monitors the channel status (idle or busy states) 

and estimates its available bandwidth for each measurement interval T by computing the 

channel utilization ratio 𝐶𝑎ℎ𝑚𝑚 as equation (3.12) and using a exponentially weighted 

moving average filter to measure the current channel utilization ratio 𝐶𝑎ℎ𝑚𝑚(𝐸) at time t. 

𝐶𝑎ℎ𝑚𝑚 =
𝑇𝑎ℎ𝑚𝑚𝑚𝑎𝑖_𝑏𝑏𝑎𝑏

𝑇
                                                        (3.12) 
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The available bandwidth at time t of a node is 𝐴𝐵(𝐸) = (1 − 𝐶𝑎ℎ𝑚𝑚(𝐸)) × 𝐶(𝐸) where 

𝐶(𝐸)  is the line rate. In [98], the author also estimates the available bandwidth by 

computing the channel utilization ratio at each node by a continual monitoring of the 

channel status (idle or busy) and its queue delay. However, the above methods and other 

techniques [99, 100] simply estimate the available bandwidth by using equation (3.10) 

which results in an unavoidable overestimation of the available bandwidth. Speedo [101] 

estimates the available bandwidth at the IP layer by measuring channel utilization 𝐶𝑎ℎ𝑚𝑚 

and the maximum bandwidth at the IP layer BIP that a node can obtain. The IP level 

available bandwidth ABIP is defined as (1 − 𝐶𝑎ℎ𝑚𝑚) × 𝐵𝐼𝑃. The author considers the time 

interval required to win a transmission opportunity on the medium in estimating BIP, but 

the author simply uses the average contention window size (𝐶𝐶𝑓𝑖𝑈
2

) to estimate the 

interval of backoff counter. This may lead to an underestimation of Taccess when the 

collision probability is higher. Similarly in other reports [102, 103], the authors use 

similar passive monitoring methods and definitions. In [104], a node gathers the 

information by monitoring its environment and employing a neural network technique. 

However, most of the above algorithms in section 3.3.2 simply estimate the available 

bandwidth by using equation (3.10) and a few of them take into account the interference 

of hidden nodes. This results in an unavoidable overestimation of the available bandwidth. 

3.3.3 Local Estimation in the Presence of Interfering Nodes 

In order to improve the accuracy of available bandwidth estimation, various research 

efforts have attempted to improve the estimate of available bandwidth by employing 

different methods as follows. 
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Modifying the Reception Range/Interference Range 

The reception range and interference range (also denoted as carrier sense range in some 

works) are another challenge for estimating bandwidth. It is difficult to measure the 

channel utilization by monitoring neighbours within the reception range. Moreover, the 

bandwidth consumption of a traffic flow and available bandwidth estimation of a node is 

not only related to a local node but also to the neighbour nodes traffic within its 

interference range.  

BRulT [9] provides information on their neighbours to the nodes. Each node periodically 

broadcasts a message (i.e. a hello packet) propagated within two hops to every other node 

that can hear it in its communication range in order to obtain a balance between overhead 

and accuracy. The hello packet contains the address of the transmitter and the total 

bandwidth that it will require for QoS provision. 

CACP [33] estimates the available bandwidth of itself and its neighbour nodes by 

proposing three approaches to propagate node information to the nodes within its 

interference range:  

1. Using two-hop neighbourhood broadcasting via hello packets 

2. Using a larger transmit power for queries packets 

3. Introducing a larger threshold called the neighbour-interference threshold which can 

cover all of the interfering node’s interference ranges 

The local available bandwidth 𝐵𝑖𝑙𝑎𝑚𝑖  and neighbour available bandwidth 𝐵𝑚𝑏𝑙𝑓  are 

written as: 

𝐵𝑖𝑙𝑎𝑚𝑖 = 𝛼 × (1 − 𝐵𝑖𝑙𝑎𝑚𝑖) + (1 − 𝛼) ×
𝑇𝑚𝑖𝑖𝑎
𝑇

× 𝐵𝑎ℎ𝑚𝑚                          (3.13) 

and 

𝐵𝑚𝑏𝑙𝑓 = 𝛼 × (1 − 𝐵𝑚𝑏𝑙𝑓) + (1 − 𝛼) ×
𝑇𝑚𝑖𝑖𝑎𝑚𝑏𝑙𝑓

𝑇
× 𝐵𝑎ℎ𝑚𝑚                                   (3.14) 
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Where 𝑇𝑚𝑖𝑖𝑎 and 𝑇𝑚𝑖𝑖𝑎𝑚𝑏𝑙𝑓 are the amount of idle channel time and the amount of time that 

the channel is idle for all neighbours respectively during every period of time T, α is a 

smoothing factor and 𝐵𝑎ℎ𝑚𝑚 is the channel capacity defined as the maximum transmission 

rate. In order to eliminate the interference in the interference range, a perceptive 

admission control (PAC) [105] defines the receiver interference distance (RID) which 

increases the interference range between two senders to ensure uncorrupted packet 

reception at a receiver by avoiding interference. The formula is:  

𝐷𝑐𝐸𝐸𝐸𝑓𝐸𝐸𝐸𝑐𝐴𝐸 𝑅𝐸𝑐𝑆𝐸 =  2 × 𝑅𝐸𝐴𝐸𝑝𝐸𝐸𝑐𝑐 𝑅𝐸𝑐𝑆𝐸 +  𝑅𝐷𝐷                   (3.15)  

AAC [106] defines the serviceable bandwidth as the smallest available bandwidth within 

the interference range 𝐷𝑅𝑚 of node i by using hello packets for exchanging the information 

𝐵(𝑗) to its neighbours: 

𝐵𝑎𝑎𝑓𝑎(𝐸) = 𝐸𝐸𝑐
∀𝑗∈𝐼𝑅𝑖

𝐵(𝑗)                                                    (3.16) 

Where B(j) is the available bandwidth of the node located within the interference range 

𝐷𝑅𝑚 by simply summing the size of sent and sensed packets over a fixed period of time.  

In conclusion, using additional hops to exchange information is relatively easy to 

implement however it increases the overhead. Moreover, the two-hop propagation range 

may not be enough to cover all the nodes within the interference range in some high node 

density networks. It may lead to a poor estimation. Increasing the transmission power or 

the interference range enhances the accuracy but it consumes more of the node energy. 

Some of the above schemes consider that the interval time of deferral and backoff is 

negligible. The available bandwidth is still estimated by using equation (3.10) which 

leads to an overestimation of the actual available bandwidth. However these approaches 

suggest some methods to solve the problem of interference from hidden nodes within the 

interference range. 
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Monitoring Based upon NAV with CTS/RTS mechanism 

DCF defines a virtual interference mechanism provided by the Network Allocation 

Vector (NAV). In this way all the nodes hearing a RTS or CTS frame learn of the 

medium reservation by setting their NAV to the value obtained from the duration field 

[107] shown in Figure 3.6. The NAV prevents other nodes from accessing the medium 

until the transmission is completed.  

RTS

CTS

SIFSDIFSBackoff
DATA

ACK

NAVRTS = 3×TSIFS + TCTS + TDATA + TACK

NAVCTS = 2×TSIFS + TDATA + TACK

Packet In

Channel Occupied Time

SIFS SIFS

 

Figure 3.6: The IEEE 802.11 NAV with CTS/RTS Mechanism 

The references [108-110] monitor the channel based upon the use of the NAV scheme to 

measure the channel occupancy and estimate the available bandwidth from the 

perspective of the network node.  

The channel busy time for a node that can receive RTS frames is 𝑇𝑏𝑏𝑎𝑏, where 

𝑇𝑏𝑏𝑎𝑏 = 𝑁𝐴𝑉𝑅𝑇𝑆 + 𝑇𝐷𝐼𝐹𝑆 + 𝑇𝑅𝑇𝑆 + 𝑇𝑏𝑚𝑎𝑘𝑙𝑓𝑓                                (3.17) 

The channel busy time for a node that can receive CTS frames is 𝑇𝑏𝑏𝑎𝑏, where 

𝑇𝑏𝑏𝑎𝑏 = 𝑁𝐴𝑉𝐶𝑇𝑆 + 𝑇𝐷𝐼𝐹𝑆 + 𝑇𝑅𝑇𝑆 + 𝑇𝐶𝑇𝑆 + 𝑇𝑆𝐼𝐹𝑆 + 𝑇𝑏𝑚𝑎𝑘𝑙𝑓𝑓                   (3.18) 

Where 𝑁𝐴𝑉𝑅𝑇𝑆  and 𝑁𝐴𝑉𝐶𝑇𝑆  are the NAV timer of the RTS frame and CTS frame 

respectively as shown in Figure 3.6. 𝑇𝐷𝐼𝐹𝑆 and 𝑇𝑆𝐼𝐹𝑆 represent the distributed inter-frame 

interval and short inter-frame interval. 𝑇𝑅𝑇𝑆, 𝑇𝐶𝑇𝑆, 𝑇𝐷𝐴𝑇𝐴  and 𝑇𝐴𝐶𝐾  denotes the 
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transmission time of a RTS frame, CTS frame, data frame, acknowledgement frame 

respectively, 𝑇𝑏𝑚𝑎𝑘𝑙𝑓𝑓 is the duration of the backoff timer. 

A passive available bandwidth estimation strategy [109] was proposed to predict the 

probability of a collision during a frame transmission by measuring the average 

contention window at each node. It also collects the hello packets periodically sent by 

their neighbour nodes to obtain their NAV (i.e. 𝑁𝐴𝑉𝑗) to estimate the available bandwidth 

estimation of node i with N number of neighbour nodes in a time interval T and the 

formula used is given by: 

𝐴𝐵(𝐸) =
𝑇 − ∑ (𝑁𝐴𝑉𝑗 + 𝑇𝐷𝐼𝐹𝑆)𝑗=𝑁 − 𝑇𝑏𝑚𝑎𝑘𝑙𝑓𝑓(𝐸)

𝑇
× 𝐶𝑚                       (3.19) 

Based upon the NAV mechanism, the channel status can be measured accurately. 

However when a route breaks or a collision occurs, the reserved resources corresponding 

to the control frame cannot be released immediately [8, 111] which affects the accuracy 

of the estimation. Moreover, this kind of mechanism cannot be implemented in a network 

supporting multiple priorities. Finally, the periodic hello packet used for requesting NAV 

consumes bandwidth. 

3.3.4 Available Bandwidth on a Pair of Nodes 

Some authors define the available bandwidth between a pair of nodes as the maximum 

throughput that can be transmitted between these two nodes in the presence of network 

traffic in the network in order to provide an accurate estimation to WLAN applications 

such as QoS aware routing or admission control.  

ABE [112] argues that the AAC [106] scheme does not consider synchronization between 

the sender s and the receiver r which overestimates the real available bandwidth on a pair 

of nodes. The author estimates the available bandwidth 𝐴𝐵(𝑎,𝑓) between the two peers (s,r) 

as: 
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𝐴𝐵(𝑎,𝑓) ≤ 𝐸𝐸𝑐(𝐴𝐵𝑎,𝐴𝐵𝑓)                                                  (3.20)                         

Where 𝐴𝐵𝑎 and 𝐴𝐵𝑓 are the available bandwidth of node s and r respectively. Considering 

a random uniform distribution of the medium busy time over the observation period, the 

expected estimated available bandwidth 𝐴(𝐸𝐴(𝑎,𝑓)) can be evaluated at a time unit i as the 

equation (3.21) without RTS/CTS where 𝑐𝑇 is the number of time units in a period or 

measurement, 𝑐𝑎 and 𝑐𝑓 is the number of time units during which the medium is available 

for node s and r respectively. 

𝐴(𝐸𝐴(𝑎,𝑓)) =  � 𝐸.𝑃(𝐸𝐴(𝑎,𝑓) = 𝐸)
𝑚𝑚𝑚 (𝑚𝑈,𝑚𝑓)

𝑚=0

= 𝑐𝑎 × 𝑐𝑓                          (3.21) 

where 

 𝑃�𝐴(𝑎,𝑓) = 𝐸� =  
�𝑐𝑎𝐸 � �

𝑐𝑚 − 𝑐𝑎
𝑐𝑓 − 𝐸 �

�
𝑐𝑚
𝑐𝑓 �

 

In order to enhance the accuracy of this estimation of available bandwidth, the author not 

only estimates the locally used bandwidth by monitoring the channel utilization, but also 

combines a probabilistic evaluation of the overlap of the silence periods (referred to as 

access time) of the two end-points of a link and an estimation of the collision probability 

via hello messages to exchange the information [113, 114]. After this improvement, the 

final available bandwidth AB is: 

𝐴𝐵 = �1 −  
𝑇𝐷𝐼𝐹𝑆 + 𝑇𝑏𝑚𝑎𝑘𝑙𝑓𝑓�����������

∆𝑇
�× (1 − 𝑃ℎ𝑎𝑖𝑖𝑙) × 𝐴(𝐸𝐴(𝑎,𝑓))                   (3.22) 

Where ∆𝑇 is the inter-frame time between two consecutive frames, 𝑃ℎ𝑎𝑖𝑖𝑙 is the collision 

probability of hello messages, 𝑇𝐷𝐼𝐹𝑆  and 𝑇𝑏𝑚𝑎𝑘𝑙𝑓𝑓����������� are the time interval of deferral and 

backoff. ABE_MM [115] proposed as an extension of the ABE scheme to manage 

mobility specifically in bandwidth measurement on dynamic topologies. 
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In order to further improve the accuracy of the estimation of the available bandwidth 

𝐴𝐵(𝑎,𝑓), IAB [116, 117] considers the synchronization between the sender and receiver, 

and differentiates the nodes’ BUSY (in the state of transmitting or receiving) and SENSE 

BUSY states (in the state of sensing). 

A cognitive passive estimation of the available bandwidth (cPEAB) [118] measures the 

proportion of waiting and backoff delay, packet collision probability, acknowledgement 

delay, and channel idle time. The author analyses the error of available bandwidth 

estimation and the impact of hidden or exposed nodes. An monitor tool [119] and 

network management which employs traffic flow collection and exchange technique 

among neighbour nodes are proposed to improve the cPEAB algorithm. APBE [120] 

considers the RTS/CTS overhead in order to improve the previous work. 

An novel passive estimation of available bandwidth for multi-hop wireless networks 

called RABE [121] includes the average number of retransmission attempts in the 

available bandwidth estimation. It also estimates the collision probability, the average 

number of retransmission attempts, the extra backoff times due to retransmissions and the 

packet loss ratio for available bandwidth per link. 

In PABE [122], the effective channel capacity is estimated by considering the backoff and 

retransmission of frames. In order to estimate the available channel idle time ratio, a new 

interference threshold NCSR-threshold is adopted. A CARC [123] scheme defines the 

channel busyness ratio, channel idleness ratio, and channel utilization to support QoS 

provision. 

The author [124] estimated the available bandwidth for a pair of nodes and investigated 

the relationship between the estimation scheme’s accuracy and the SNR ratio. The result 

shows that a low SNR ratio leads to inaccurate estimation. 
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Finally, Shen et al [57] estimated the available bandwidth according to the information 

collected by a node itself during the MAC operation without any overhead and considers 

the impact of the existence of hidden nodes on the available bandwidth estimation. The 

author calculated the probabilities of idle, packets successful transmitted and collision 

with the number of nodes in the interference range of the observed node n and the number 

of hidden nodes nh for the normalized bandwidth estimation based upon the assumption 

that every node has a similar average transmission probability. 

3.3.5 Discussion 

This section has described and discussed the passive methods that do not rely on in the 

transmission of probe packets for capacity estimation in WLANs. Due to the open nature 

and hardware limitations (i.e. reception range and lack of centralized management) of the 

wireless medium in WLANs, the errors of capacity estimation cannot be completely 

eliminated but can be minimized in order to obtain a higher accuracy. The node locally 

monitors the channel, measures the channel utilization and estimates the node capacity or 

available bandwidth and then broadcasts this to neighbour nodes to enhance the 

performance of IEEE 802.11 WLANs. However, this approach is required to take into 

account many factors as follows:  

• Collision Probabilities: Frame collision essentially has a random behavior. It is 

related to the varying contention and is hard to observe. For example, if there are two 

nodes that send their packets simultaneously, collisions occur at the receiver node and 

the packets cannot be decoded correctly, but nevertheless they have occupied the 

channel for an interval of time. Thus the transmission time of the colliding packets 

needs to be considered. The proposed method like BRuIT, CACP, and AAC fail to 

take collisions into account which leads to an overestimation of the available 

bandwidth. Some method use analytical models or send hello packets regularly to 
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measure the collision probabilities.  

• Deferral and Backoff Time: How to accurately measure the time interval required to 

win a transmission opportunity on the medium before transmitting a packet is another 

challenge. The duration of this time interval in a given time period is related to the 

contention and the packet size. When transmitting small frames under high contention, 

ignoring the influence of the deferral and backoff time increases the error into the 

estimated available bandwidth. 

• Retransmissions: Firstly, a failed packet transmission still occupies the channel. It 

cannot be captured by passive monitoring and has an impact on the channel utilization 

measurement. Secondly, once the node has failed to successfully transmit a packet, 

the size of contention window is doubled which affects the backoff time measurement.  

• Interference Range: The node interference within both the reception range and 

interference range impacts on the accuracy of estimation. Changing the transmission 

power or interference range or employing hello packets or NAV method to obtain the 

information can solve this problem. However, these methods still have their 

disadvantages such as an increase in the overhead of sending extra packets and 

increased node energy consumption. Therefore, we set the interference range equal to 

the reception range in this thesis in order to eliminate the node interference within the 

interference range. 

• The Existence of Hidden Nodes: This leads to collisions and also impacts on the 

accuracy of algorithm when using a neighbour observation approach.  

• Poor communication reliability: From the aspect of WLAN applications, most 

schemes in capacity estimation are designed to improve the performance of 

applications, e.g. QoS aware routing. For example, a number of estimation tools 

require estimating the capacity of the local neighbour and its neighbours to obtain an 
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appropriate path from source to destination. Therefore, an additional dissemination 

mechanism is employed for exchanging the message. However, this communication 

may not be reliable due to packet losses and delay.  

The literature review in [6] compares four active probing tools Pathload, Spruce, 

PathChirp, PTR, and a passive method based upon equation (3.12). The result shows that 

passive methods are more accurate than active methods. However, ensuring reliable 

communication is another problem for passive methods. In order to overcome this 

problem, we have designed an estimator of node Capacity Utilization based upon 

neighbour node observations that does not rely on reliable communication between nodes 

and has no overhead. We also consider the collision, retransmission, hidden nodes and 

estimate the contention by estimating average backoff and deferral time to enhance the 

accuracy of estimation. 

3.4 Capacity Estimation: Measurement Metrics and Evaluation Criteria 

This section summarizes the classifications of the different measurement metrics and the 

methodologies used by the different capacity estimation tools. It also summarizes the 

existing research results for wireless estimation algorithms, introduces the evaluation 

criteria and then investigates their advantages and drawbacks. 

3.4.1 Performance Evaluation of Capacity Estimation 

A performance evaluation is important to investigate the accuracy of the proposed scheme 

and its corresponding overhead in capacity estimation. Caution is required in the 

comparison of the different schemes because they use different measurement metrics and 

assumptions. Some important evaluation criteria and questions are introduced as follows: 

What is the overhead of the estimation tools? 
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There are two types of overhead, the network overhead and the processing cost of the 

algorithm. All of the methods that involve the nodes sending wireless packets consume 

the bandwidth and increase the contention in WLANs. These approaches require sending 

extra packets for information exchange that may reduce the network performance under 

heavy traffic conditions, i.e. probe packets in active approaches or hello packets in 

passive approaches. 

The other overhead component consists of the processing and measurement time, 

occupied memory and energy consumption. For example, the estimation tool using RTT 

measurement in Packet Delay Methods needs to pick the minimum RTT from all the 

sending probe packets [76, 77]. It requires a longer processing time than the passive 

monitor approaches.  

Moreover, in sensor and ad hoc networks, a node would normally use its energy for 

transmission and reception. Once a node uses more complicated methods, the power 

consumption will increase. Thus power consumption should be selected as a performance 

metric for evaluating how efficiently the proposed algorithm can reduce the power 

consumed in a battery powered node [125]. 

How accurate are the capacity estimation tools?  

The most important criteria for capacity estimation is the accuracy of the estimation. A 

high accuracy can prevent unnecessary actions that may have an adverse impact on the 

network performance. The accuracy can be represented by the error, absolute error, 

relative error and absolute relative error that are shown in Table 3.1. 

Absolute error describes the specific value of difference between estimation and actual 

value. It is more suitable for an estimation system which requires a given specific error 

limitation. Relative error is a ratio that indicates how accurate a measurement is relative 

to its actual value. In WLAN networks, the node capacity is time-varying and the error 
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associated with the estimations depends on the many factors. Thus the relative error can 

better show the accuracy of the capacity estimation techniques. 

Table 3.1 The Types of Estimation Error 

Error Calculator Formula 

Error Error = Estimate Value – Actual Value 

Absolute Error (AE) 𝐴𝐴 =  |𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑉𝐸𝑉𝑉𝐸 −  𝐴𝐴𝐸𝑉𝐸𝑉 𝑉𝐸𝑉𝑉𝐸| 

Relative Error(RE) 𝑅𝐴 =
 𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑉𝐸𝑉𝑉𝐸 −  𝐴𝐴𝐸𝑉𝐸𝑉  𝑉𝐸𝑉𝑉𝐸

𝐴𝐴𝐸𝑉𝐸𝑉 𝑉𝐸𝑉𝑉𝐸
 

Absolute Relative Error(ARE) 𝐴𝑅𝐴 = �
 𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑉𝐸𝑉𝑉𝐸 −  𝐴𝐴𝐸𝑉𝐸𝑉  𝑉𝐸𝑉𝑉𝐸

𝐴𝐴𝐸𝑉𝐸𝑉 𝑉𝐸𝑉𝑉𝐸 � 

 

How to reliably communicate the information to other users? 

Reliability relates to how this capacity estimation information is guaranteed to be 

delivered to the recipients in order that they may take further actions. Once the algorithm 

can successfully estimate the capacity of a WLAN node, the estimated node should have 

the ability to broadcast this information to its neighbour nodes. Most proposed algorithms 

use an additional dissemination mechanism for taking further actions by applications. 

However, the communication of this information may be not reliable due to packet losses 

and delay. Under certain network conditions (i.e. once a node is saturated or congested), 

the local estimated node may fail to broadcast its capacity information to its neighbours. 

Most proposed methods employ continuous broadcasting of bandwidth estimate 

information to ensure reliability. However, this method further increases the network 

overhead.  
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3.4.2 Comparison and Classification of Proposed Literatures 

This section selects some typical algorithms from the above discussed literature involving 

different approaches and target measurement metrics in order to highlight their 

contributions and drawbacks. 

Table 3.2 Comparison of Different Methods of Capacity Estimation 

References Metrics and Methodologies Contributions and Drawbacks 

Active Probing Approaches in Wired Networks 

[58, 59, 64-

66, 68, 69, 

71]  

Capacity and available 

bandwidth of a wired link or 

an end-to-end network path 

• Sophisticated estimation technique with high 

accuracy 

• Neither the definition nor methodology can be 

applied to wireless networks directly 

Active Probing Approaches in Wireless Networks  

[76, 77] 

• Maximum transmission 

rate 

• Packet Delay Model 

• RTT delay 

• Does not estimate the available bandwidth for 

the node 

• Requires a long time to produce an accurate 

result 

• High overhead 

OWD[31] 

• Available bandwidth 

• Packet Delay Model 

• One-way-delay 

• Overestimation when network traffic rate is 

high 

• High overhead 

Adhoc 

probe[78] 

• Maximum achievable rate 

• Packet Gap Model 

• The result depends on the packet size 

• Does not estimate the available bandwidth  

• High overhead 
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WBest[82] 
• Available bandwidth 

• Packet Gap Model 

• A trade-off between accuracy, number of probe 

packets and processing time 

• Two stages in estimation that leads to high 

overhead  

Empirical[4] 
• Residual bandwidth 

• Packet Gap Model 

• An adaptive probing rate to reduce the overhead 

• High accuracy under non-congested channel but 

poor accuracy under high network traffic 

• Use of probing packets has an impact on the 

existing traffic 

DietTOPP[3] 

BART[84] 

• Available bandwidth of an 

end-to-end path 

• Packet Rate Method 

• The accuracy of estimation depends on probe 

packet size and network traffic intensity 

• High overhead 

• Use of probing packets has an impact on the 

existing traffic 

Analytical and Mathematical Models 

[30, 87]  

[90, 94] 

• Network capacity 

• Analytic model 

• Accurate under the specified assumptions (i.e. 

under idle channel conditions) 

• No overhead 

• They are not suitable for wireless applications  

Passive Approaches in Wireless Networks 

[55, 96, 98] 

• Node available bandwidth 

• Monitor the channel 

utilization 

 Lower complexity and no overhead 

 Not reliable 

 Does not consider the deferral and backoff 

times 

 Does not consider the interference of hidden 

nodes 

BrulT[9]  Node available bandwidth  High accuracy due to collecting of all the 
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CAAP[33]  Changing Tx_Power or CS 

range 

 Broadcast hello packets 

information 

 High overhead (using hello packets) 

 High energy consumption 

 Not reliable 

[108-110] 
 Node available bandwidth  

 Using NAV scheme 

 High accuracy due to collecting of all the 

neighbour nodes’ NAV information 

 High overhead 

 Not reliable 

 Inaccuracy when a route breaks 

AAC[106], 

ABE[112], 

IAB[117], 

cPEAB [118] 

 Available bandwidth of a 

pair nodes 

 Model DCF mechanism 

and retransmission 

mechanism 

 Considers synchronization 

of idle periods 

 Considers the possible operating states of 

WLANs 

 Considers the interference from network nodes 

 High accuracy 

 Under the specified assumption (i.e. random 

uniform distribution of the medium busy time) 

 Need to broadcast information for taking further 

actions 

 

3.5 Capacity Estimation: Potential Wireless Applications Area 

The previous sections discussed the definition, methodology, performance, comparison of 

the proposed capacity estimation algorithms. Accurate, fast, and low overhead capacity 

estimation can be used to more effectively achieve the optimization of wireless network 

services for many applications. This section analyses the main application areas such as 

AP selection, ANDSF, resource aware routing and admission control that can benefit by 

employing capacity estimation techniques. The basic approaches, benefits and drawbacks 

will be described in the following sub-sections. In this thesis, we will implement a node 
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saturation detection scheme to illustrate the potential application of our Capacity 

Utilization estimator. Therefore, some proposed saturation or congestion detection 

methods will also be introduced in this section.  

3.5.1 AP selection and ANDSF 

In IEEE 802.11 networks, a client simply associates with an AP based upon RSSI which 

in reality is only a measure of the distance between the AP and the client. However, using 

RSSI as the association metric may lead to an overload of AP, load imbalance, a saturated 

or congested AP, the underutilized capacity of other APs and a degradation of the whole 

network performance [11]. Therefore, how to select the “best” AP for a client in the 

presence of multiple APs has become a popular topic in WLANs. The main proposed AP 

selection schemes can be divided into three categories: (1) passively listening to the 

beacon frames which are periodically transmitted by the AP, (2) Using an active probe 

request/response method to measure some parameters (e.g. available bandwidth and 

probing delay) for making association decisions, and (3) select the AP from the list of 

specific information provided by candidate APs.  

EVA [97] calculated the maximum achievable bandwidth on all operating channels 

through estimating the contention time interval, the time interval of successful and failed 

transmissions. However, this time interval is measured through the successful 

transmission probability of a packet. It is difficult to calculate and the author obtained this 

value from the predefined frame error rate (estimated from BER and SNR). APM [126] 

modeled the IEEE 802.11 MAC mechanism through passively monitoring the channels, 

capturing all the transmitted frames and estimating the available bandwidth of the APs. 

Then the clients select the AP which has the highest available bandwidth. However, this 

approach does not consider the hidden nodes problem. 



Chapter 3 Literature Review 

77 

 

In [34], the authors defined the potential bandwidth BP as the maximum bandwidth that a 

client can obtain after associating with the AP. The potential bandwidth is measured by 

passively monitoring the beacon delay of AP. BP is equal to the ratio of the beacon packet 

size and the beacon delay included the time interval of deferral, transmission delay and 

ACK delay. An improved work [127] combined RSSI and Bp as an indicator for making a 

decision. However, these approaches have been tested only under contention free 

networks. 

The authors [11] considered the effective throughput that the client can attain by 

associating with the AP and its impact on the other clients associated with the AP. 

However, this approach needs channel utilization information provided by the AP through 

modifying the beacon frame or sending special probe request frame.  

The IEEE 802.11k standard [12] focused on two key WLAN components: clients and 

APs. It allows the client to connect to the APs with lower utilizations to improve network 

performance. Although these APs may have poor signal strength, they can provide higher 

throughput. IEEE 802.11k specified the extension of management frames which provides 

the information about AP channel report, antenna information, the number of associated 

APs, average access delay and channel utilization. Once a client attempts to connect to an 

AP, the client can request a list of available candidate APs with a channel report. Then the 

client can select the “best” AP for association and access to the network.   

Today, the access network discovery and selection function (ANDSF) [10] from the 3GPP 

is used to discover the target access point is attracting significant attention. ANDSF 

assists in selecting the “best” (e.g. lowest expense, best QoS, or best experience [128]) 

access network and provides a list of available access network and selection rules. Some 

proposed works focus on the extension of the ANDSF, e.g. congestion aware function 

[128], energy efficiency improvement [129] or QoS control mechanism [130]. Our 
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Capacity Utilization estimator can extend the ANDSF so that a client can be aware of the 

Capacity Utilization of every AP within its reception range of the client. 

3.5.2 Resource Aware Routing 

The current popular routing protocols such as DSDV [37], AODV [39] etc are mainly 

concerned with finding a feasible path from a source to a destination. However, these 

routing protocols are not suitable for real-time multimedia traffic [131] as they cannot 

satisfy the users’ QoS demand. In [132] the author summarized the proposed QoS aware 

routing by employing metrics such as bandwidth (resource), delay, energy and hybrid 

metrics. The last three metrics are out of the scope of this thesis. Resource aware routing 

can be divided into three steps: bandwidth estimation, routing discovery and routing 

maintenance. RARE [43] measured the available bandwidth though passively monitoring 

the packet transmission on the medium and the signal strength as the cost function of a 

link to find a good path between nodes. In [133], the author estimated the residual 

bandwidth locally based upon the bandwidth dissemination from neighbour nodes within 

two hops. The source node sends a RREQ packet based upon AODV protocol with a 

requirement for a minimum bandwidth and then the intermediate node compares the 

required bandwidth of source node and its residual bandwidth after receiving the RREQ 

packet. If the intermediate node can satisfy the requirement of bandwidth, it forwards the 

RREQ packet until it discovers an end-to-end path. Conversely, it discards the RREQ 

packet. However, this local measurement mechanism relies upon the information 

dissemination to neighbour nodes. Our Capacity Utilization allows a node to become 

aware of its neighbours’ Capacity Utilization directly and promptly as it does not incur 

any further delays such as those associated with employing an additional dissemination 

mechanism. Other bandwidth techniques [42, 134] use different throughput metrics and 

methodologies but similar routing discovery methods to support resource aware routing. 
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3.5.3 Admission Control 

In [57] the author estimated the normalized maximum bandwidth, the used bandwidth, 

and the available bandwidth and established an admission control algorithm (ACA) on 

each network node. The node only accepts and forwards traffic if its available bandwidth 

can accommodate the new flow. So in order to predict the available bandwidth and 

bandwidth consumption of a new flow, CACP [33] proposed an admission control 

scheme which considers neighbour nodes within the interference range but out of the 

reception range (called c-neighbour). The bandwidth consumption 𝐵𝑎𝑎𝑝(𝐸) of a new flow i 

is: 

𝐵𝑎𝑎𝑝(𝐸) = 𝑁𝑝𝑘𝑆 × 𝑇𝑖𝑚𝑆𝑚 × 𝐵𝑎ℎ𝑚𝑚 × 𝑁𝑎𝑎                                      (3.23) 

Where 𝑁𝑝𝑘𝑆 is the number of packets of the new flow, 𝑇𝑖𝑚𝑆𝑚 is the transmission time of a 

packet which includes the time interval of deferral, interframe space and the transmission 

time of RTS/CTS, data packet, and ACK frame, 𝐵𝑎ℎ𝑚𝑚 is the channel capacity (maximum 

transmission rate), and 𝑁𝑎𝑎 is the contention count which represents the number of nodes 

on a traffic flow that may contend for the medium within the interference range of the 

local estimate node. Unlike ACA, the local node needs to compare its available 

bandwidth, c-neighbour available bandwidth (calculated from equations (3.13) and (3.14)) 

and the bandwidth consumption of a new flow to make a decision for accepting or 

rejecting the flow. Other algorithms [105, 135] employ a similar admission control 

scheme with different available bandwidth estimation methods. Once our Capacity 

Utilization estimator determines that an AP’s Capacity Utilization is 100%, it indicates 

that this AP cannot accommodate the new flow and should reject any new incoming 

traffic. 



Chapter 3 Literature Review 

80 

 

3.5.4 Node Saturation Detection 

Node saturation is a condition that can arise where a node cannot win a sufficient number 

of transmission opportunities to satisfy its traffic load. It can give rise to node congestion 

which in turn can give rise to packet delay and losses on a network resulting in a poor 

performance for most applications. Generally, there are 3 basic ways to detect the 

presence of saturated nodes on a network.  

Once a WLAN node is saturated, there will be frames waiting for transmission in the 

transmission buffer. The node can detect whether it is has become saturated or not by 

checking the occupancy of its transmission buffer periodically to determine if it is full or 

overflowing. Although the measurement of saturation is accurate, the communication of 

this measurement to neighbour nodes is unreliable as the saturated node may not be able 

to announce its saturated condition to its neighbours. 

The second approach is to regularly ping all the network nodes with probe packets to 

determine if they are operating normally. Measuring the end-to-end loss or delay by 

sending probe packets is widely used in detecting a congested or saturated node [136]. 

For example, DiffProbe [137] employed a pair of low priority and high priority packets to 

measure one way delay. Apart from the method based upon measuring packet delay, the 

authors [138] use this packet-pair probe to measure the available bandwidth and estimate 

the accurate target rate to avoid congestion [139]. Recursive Packet Trains [140] applied a 

probe packet train passing through the routers along a network path, then calculates the 

changes in packet train length due to the change in available bandwidth on each hop to 

find the congestion or saturation position. However, this approach also suffers from the 

lack of reliable communication with saturated nodes and moreover it does not scale well. 

It also consumes the bandwidth of the channel which can have a negative impact on the 

performance of a network due to increased node contention on the medium.    
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In order to overcome the unreliable communication of saturated or congested node, using 

the nodes to passively monitor the performance of their neighbours in order to detect if 

saturation is occurring is proposed. In [141], intrusion detection system (IDS) nodes are 

selected among neighbour nodes that do not suffer from congestion or saturation by using 

an optimized method in order to passively monitor the neighbourhood. A distributed 

cluster-based mechanism for supporting multiple classes of traffic is proposed in [142]. 

The network nodes are divided into different clusters. Each cluster is managed by a pre-

selected sentinel node. Each network node within the cluster estimates the traffic load and 

sends the estimates to the sentinel node which takes charge of processing and 

determination with congestion level. The above methods need to select a sentinel node 

from the neighbourhood nodes under non-congested and non-saturated status. How to 

select this node and guarantee its reliability for communication is still a major challenge 

because the network behaviour is difficult to predict. Thus in this thesis, we choose a 

neighbour-based observation method. As neighbour nodes do not experience the same 

channel or medium conditions as the node being observed, there will be an error 

associated with this observation. However, it has no overhead as it is completely passive 

and does not rely upon the need for reliable communication with the saturated node. 

3.6 Summary  

This chapter presents the current research into the measurement of node capacity and the 

relevant throughput-related metrics used to evaluate the performance of the methods. The 

concepts of node capacity estimation are first discussed for wired networks.  

Active probe packets techniques employ a series of probe packets sent from a source to a 

destination at a specific rate to determine the capacity of a node or an end-to-end path. 

However, this active approach is not appropriate for wireless networks due to the 

variability of the wireless medium, shared medium, contention, hidden nodes, and 
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retransmission schemes. Although some researchers have attempted to improve this 

approach, the overhead of probe packets has an impact of network performance and can 

even exacerbate the congestion under heavy traffic conditions. Moreover, the accuracy of 

active probing method is also a problem because it does not scale well under heavy traffic.  

Other methods based upon the analytical and mathematical models have been proposed to 

estimate the node capacity. However, in general the analytic models are proposed under 

specific assumptions and are not suitable for real networks.  

Passive approaches analyse the network traffic on the wireless medium and record the 

idle interval to estimate the available resource for the node. However, the reliability and 

accuracy is a big challenge when using this method. Many factors such as collision 

probabilities, deferral and backoff times, retransmissions, interference range and hidden 

nodes still affect the accuracy of estimation. Moreover, the reliability of the broadcasting 

of this information due to packet losses and delay is another problem. Most approaches 

use a periodical broadcasting scheme that gives a rise to a consumption of channel 

bandwidth. Thus choosing the appropriate estimate approaches should depend on the 

particular requirements of the wireless application. 

This thesis is concerned with developing an estimator for capacity utilization through 

remote observation by neighbour nodes in WLANs with a high reliability and no 

overhead. Although there is an error associated with estimation, our remote Capacity 

Utilization estimator has no overhead. Our estimator also considers the main factors that 

affect the accuracy of estimation and then uses three assumptions to improve the accuracy. 

This estimator can be developed for many wireless applications such as AP selection, 

routing aware protocol, admission control, radio resource management, channel selection 

and node saturation detection. This thesis uses saturation detection as a potential WLAN 

application to evaluate the performance of the estimator. 



Chapter 4 The Capacity Utilization Estimator 

83 

 

Chapter 4 The Capacity Utilization 
Estimator 
This chapter describes the remote Capacity Utilization estimator based upon neighbour 

node observations. This scheme is based upon a temporal analysis framework that models 

the way in which the IEEE 802.11 MAC mechanism wins transmission opportunities. The 

Capacity Utilization estimator has been developed for the DCF mechanism only. 

However, there will be an error associated with this measurement owing to the 

differences in the wireless medium resulting from the different locations of the nodes. 

This chapter analyses the error associated with the Capacity Utilization estimator and 

employs three simple and reasonable assumptions to minimize this error. Finally, a node 

saturation detection mechanism as a potential application of our estimator will be 

described in order to show the feasibility and accuracy of the Capacity Utilization 

estimator. 

4.1 The Node Capacity Utilization Estimation 

The concept of MAC bandwidth components to characterize and quantify the usage of 

and availability of the radio resource for IEEE 802.11 WLANs was proposed in 2004 [13, 

14]. These MAC bandwidth components are related to the IEEE 802.11 MAC access 

mechanism and a number of different time intervals. 

4.1.1 MAC Bandwidth Components 

Figure 4.1 shows that the wireless medium can be defined in terms of a number of 

different time intervals under the CSMA/CA MAC mechanism. The busy time interval 

𝑇𝑏𝑏𝑎𝑏 represents the time on the medium consumed with the transmission of frames. The 

complementary idle time interval 𝑇𝑚𝑖𝑖𝑎  represents the medium idle time which can be 

used by a node to win transmission opportunities. From the perspective of a contending 
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node 𝑇𝑚𝑖𝑖𝑎 consists of two parts: the time interval 𝑇𝑚𝑎𝑎𝑎𝑎𝑎 spent by a node in contending 

for access to the medium and the time interval 𝑇𝑓𝑓𝑎𝑎 which corresponds to the unused idle 

time on the medium. 
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Figure 4.1: Illustration of the Various Time Intervals involved in Accessing the Medium 

under the IEEE 802.11 MAC Mechanism 

The busy and idle time intervals are summed in a measurement interval of interest as 

follows: 

𝑇𝑚𝑖𝑖𝑎 = � 𝑇𝑚𝑖𝑖𝑎
(𝑚)

#𝑖𝑑𝑙𝑒

𝑚=1

                                                               (4.1) 

And 

𝑇𝑏𝑏𝑎𝑏 = � 𝑇𝑏𝑏𝑎𝑏
(𝑚)

#𝑈𝑢𝑈𝑦

𝑚=1

                                                              (4.2) 

Where 𝑇𝑏𝑏𝑎𝑏
(𝑚)  and 𝑇𝑚𝑖𝑖𝑎

(𝑚)  are the durations of the ith busy and idle intervals respectively 
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within the measurement interval of interest, #𝑚𝑖𝑖𝑎  and #𝑏𝑏𝑎𝑏  is the number of idle and 

busy time intervals within the measurement interval respectively. We normalize them by 

converting them to a fraction of the medium bandwidth as follows: 

𝐵𝐶𝑏𝑏𝑎𝑏 =  
𝑇𝑏𝑏𝑎𝑏

𝑇𝑏𝑏𝑎𝑏 + 𝑇𝑚𝑖𝑖𝑎
                                                       (4.3) 

And 

𝐵𝐶𝑚𝑖𝑖𝑎 =  
𝑇𝑚𝑖𝑖𝑎

𝑇𝑏𝑏𝑎𝑏 + 𝑇𝑚𝑖𝑖𝑎
                                                        (4.4) 

The relationship between  𝐵𝐶𝑏𝑏𝑎𝑏 and 𝐵𝐶𝑚𝑖𝑖𝑎 can be written as: 

𝐵𝐶𝑚𝑖𝑖𝑎 = 1 −  𝐵𝐶𝑏𝑏𝑎𝑏                                                          (4.5) 

Here 𝐵𝐶𝑏𝑏𝑎𝑏 represents the portion of the medium bandwidth used in the transport of the 

total traffic load. Similarly, 𝐵𝐶𝑚𝑖𝑖𝑎 represents the portion of the medium bandwidth that 

is idle and may be used by any node to win access opportunities for its load. 

Three bandwidth components are identified [13] that describe the MAC mechanism 

operations in the utilization of the wireless medium. Specifically, the definitions of the 

MAC bandwidth components are: 

• 𝑩𝑩𝒍𝒍𝒍𝒍 is the load bandwidth that represents the portion of the medium bandwidth 

utilized by a WLAN node in transmitting its load. 

• 𝑩𝑩𝒍𝒂𝒂𝒂𝒂𝒂  is the access bandwidth that represents the portion of the medium 

bandwidth required by a WLAN node to win transmission opportunities for its load. 

• 𝑩𝑩𝒇𝒇𝒂𝒂 is the free bandwidth that represents the portion of the medium bandwidth 

unused by a WLAN node and serves to define the capacity of the node. 

By examining the address fields of the IEEE 802.11 MAC frame header, it is possible to 
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determine the sender address of a frame and monitor all the frame transmissions from a 

particular node k. The load bandwidth is directly related to the throughput of the node k. 

The busy time used by node k on the medium to transmit its load is: 

𝑇𝑖𝑙𝑚𝑖(𝑘) = � 𝑇𝑖𝑙𝑚𝑖
(𝑚) (𝑘)

#𝑓𝑓𝑓

𝑚=1

                                                        (4.6) 

Where 𝑇𝑖𝑙𝑚𝑖
(𝑚) (𝑘) is the duration of the ith load interval and #𝑓𝑓𝑚 is the numbers of frames 

transmitted by node k within the measurement interval and the following formula can be 

used to convert it to a normalized bandwidth: 

𝐵𝐶𝑖𝑙𝑚𝑖(𝑘) =  
𝑇𝑖𝑙𝑚𝑖(𝑘)

𝑇𝑏𝑏𝑎𝑏 + 𝑇𝑚𝑖𝑖𝑎
                                                     (4.7) 

When there is only one node transmitting frames on the medium, its 𝐵𝐶𝑖𝑙𝑚𝑖 will be equal 

to 𝐵𝐶𝑏𝑏𝑎𝑏 . However, 𝐵𝐶𝑖𝑙𝑚𝑖  represents the successfully transmitted frames, while 

𝐵𝐶𝑎𝑙𝑖𝑖𝑚𝑎𝑚𝑙𝑚 represents the unsuccessfully transmitted frames. In the case where two or 

more nodes are contending for access, some bandwidth will inevitably be lost because of 

collisions between the nodes attempting to access the medium at the same time. All 

frames, irrespective of whether they were successful or not, contribute to 𝐵𝐶𝑏𝑏𝑎𝑏 . 

Suppose there is N number of nodes competing with node k for accessing the medium, 

thus 𝐵𝐶𝑏𝑏𝑎𝑏 is expressed as: 

𝐵𝐶𝑏𝑏𝑎𝑏 = �𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)
𝑁+1

𝑘=1

+ 𝐵𝐶𝑎𝑙𝑖𝑖𝑚𝑎𝑚𝑙𝑚                                          (4.8) 

According to the basic MAC access mechanism, the nodes share the idle intervals and use 

them to decrement their backoff counters to win their transmission opportunities if they 

have frames to transmit. Therefore, the access bandwidth 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎 is used to contend for 
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the medium and the unused idle bandwidth 𝐵𝐶𝑓𝑓𝑎𝑎 for any node k can be stated as the 

following: 

𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘) + 𝐵𝐶𝑓𝑓𝑎𝑎(𝑘) =  𝐵𝐶𝑚𝑖𝑖𝑎 = 1 −  𝐵𝐶𝑏𝑏𝑎𝑏                              (4.9) 

The access time has two components [13]: the time spent deferring (e.g. waiting for an 

interval of DIFS to elapse) and the time spent backing off (e.g. decrementing the backoff 

counter to zero). A node may experience several intervals of deferral (i.e. waiting for 

DIFS or EIFS to elapse) which is dependent on a number of factors, i.e. the number of 

nodes contending for access to the medium, its own initial backoff counter value, and the 

transmissions from other nodes. These two components of the access time are considered 

to be random, so it makes sense to consider them in terms of their average values. 

Assuming that the traffic packets sent from every node are independent, we also assume 

that the idle inter-packet time intervals are independent. Furthermore, we assume that the 

random idle inter-packet time intervals constitute a stationary process. Finally, assuming 

that this process is ergodic, we can use the time average instead of the ensemble average 

to estimate the mean of this process. In this case we use the sample mean (or arithmetic 

mean) of the process. The average time spent deferring is 𝑇�𝑖𝑎𝑓𝑎𝑓 and the average time 

interval for the backoff counter to reach zero is 𝑇�𝑏𝑚𝑎𝑘𝑙𝑓𝑓 . Hence, the average access time 

𝑇�𝑚𝑎𝑎𝑎𝑎𝑎 required to win a transmission opportunity is: 

𝑇�𝑚𝑎𝑎𝑎𝑎𝑎 = 𝑇�𝑖𝑎𝑓𝑎𝑓 + 𝑇�𝑏𝑚𝑎𝑘𝑙𝑓𝑓                                                   (4.10) 

where 

𝑇�𝑖𝑎𝑓𝑎𝑓 = #�𝑖𝑎𝑓𝑎𝑓 × 𝑇�𝐼𝐹𝑆                                                       (4.11) 

and 

𝑇�𝑏𝑚𝑎𝑘𝑙𝑓𝑓 = 𝐵𝐶 ����� × 𝑆𝑉𝑐𝐸 𝑇𝐸𝐸𝐸                                                  (4.12) 

In the above equations, #�𝑖𝑎𝑓𝑎𝑓 is the average number of times that a node needs to defer 
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to a busy medium condition. In other words, if there is only one active node on the 

medium #�𝑖𝑎𝑓𝑎𝑓 is equal to 1. The parameter 𝑇�𝐼𝐹𝑆 represents the average duration of the 

interframe idle time and 𝐵𝐶 ����� is the average initial BC value. The average access time 

𝑇�𝑚𝑎𝑎𝑎𝑎𝑎 multiplied by the total numbers of frames transmitted in the measurement interval 

of interest (#𝑓𝑓𝑚) is the access time interval Taccess which can be written as follows: 

𝑇𝑚𝑎𝑎𝑎𝑎𝑎 =  𝑇�𝑚𝑎𝑎𝑎𝑎𝑎 × #𝑓𝑓𝑚                                                   (4.13) 

Normalizing and converting the access time Taccess to a fraction of the medium bandwidth 

as follows: 

𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘) =  
𝑇𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)
𝑇𝑏𝑏𝑎𝑏 + 𝑇𝑚𝑖𝑖𝑎

                                                (4.14) 

It is difficult to measure the parameters #�𝑖𝑎𝑓𝑎𝑓, 𝑇�𝐼𝐹𝑆 and 𝐵𝐶 ����� directly from the medium 

due to the random nature of the backoff counter initial value and the deferral time. 

However, it is possible to obtain an estimate for these parameters from another parameter 

called the average contention which represents the average number of nodes contending 

for access to the medium in a measurement interval of interest. The detailed measurement 

method is described in section 4.2.3.4.2. 

4.1.2 Access Efficiency Factor and Node Capacity 

Based upon how the IEEE 802.11 MAC mechanism wins transmission opportunities 

under the MAC components framework, the Access Efficiency Factor (AEF) represents 

how efficiently a node k contends for access to the wireless medium and can be found in 

[13]: 

𝐴𝐴𝐴(𝑘) =
𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)

𝐵𝐶𝑖𝑙𝑚𝑖(𝑘) + 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)
                                         (4.15) 

The wireless node capacity is defined as the bandwidth available under the current load 
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conditions and represents the maximum load that can be achieved by a node provided that 

the other nodes maintain their present load. It is assumed that 𝐵𝐶𝑎𝑙𝑖𝑖𝑚𝑎𝑚𝑙𝑚 is negligible 

because only successful transmitted frames are considered in this analysis. The capacity 

of node k can be derived as follows: 

𝐶𝑚𝑎𝑚𝑚𝑖(𝑘) = 𝐵𝐶𝑖𝑙𝑚𝑖
𝑆𝑚𝑆 (𝑘) = 𝐵𝐶𝑖𝑙𝑚𝑖(𝑘) + ∆𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)                           (4.16) 

Where 

∆𝐵𝐶𝑖𝑙𝑚𝑖(𝑘) = 𝐴𝐴𝐴(𝑘) × 𝐵𝐶𝑓𝑓𝑎𝑎(𝑘) = 𝐴𝐴𝐴(𝑘) × �𝐵𝐶𝑚𝑖𝑖𝑎 − 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)�     (4.17) 

It can be rewritten as: 

∆𝐵𝐶𝑖𝑙𝑚𝑖(𝑘) = 𝐴𝐴𝐴(𝑘) × �1 −�𝐵𝐶𝑖𝑙𝑚𝑖

𝑁

𝑗=1

(𝑗) − 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)�                  (4.18) 

Substituting equations (4.17) and (4.18) into (4.15) gives: 

𝐶𝑚𝑎𝑚𝑚𝑖(𝑘) =  𝐵𝐶𝑖𝑙𝑚𝑖(𝑘) + 𝐴𝐴𝐴(𝑘) × �1 −�𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)
𝑁

𝑗=1

− 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)�        (4.19) 

It can be shown that: 

𝐶𝑚𝑎𝑚𝑚𝑖(𝑘) =  𝐴𝐴𝐴(𝑘) 

× �1 −�𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)
𝑁

𝑗=1

− 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘) +
𝐵𝐶𝑖𝑙𝑚𝑖(𝑘) + 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)

𝐵𝐶𝑖𝑙𝑚𝑖(𝑘) × 𝐵𝐶𝑖𝑙𝑚𝑖(𝑘) �  

(4.20) 

This can be re-written as: 

𝐶𝑚𝑎𝑚𝑚𝑖(𝑘) =  𝐴𝐴𝐴(𝑘) 
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× �1 −�𝐵𝐶𝑖𝑙𝑚𝑖

𝑁

𝑗=1

(𝑗)− 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘) + 𝐵𝐶𝑖𝑙𝑚𝑖(𝑘) + 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)�             (4.21) 

Then: 

𝐶𝑚𝑎𝑚𝑚𝑖(𝑘) = 𝐴𝐴𝐴(𝑘) × �1 −�𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)
𝑁

𝑗≠𝑘

�                                   (4.22) 

4.1.3 Node Capacity Utilization 

In this thesis, a new metric Capacity Utilization based upon Access Efficiency Factor and 

node capacity is proposed. The critical performance metric produced by the model is the 

Capacity Utilization (%CU) which is defined as the ratio of the bandwidth utilized by a 

node in transmitting its load and the node capacity. For a node k, its Capacity Utilization 

is expressed as: 

%𝐶𝐶(𝑘) =
𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)
𝐶𝑚𝑎𝑚𝑚𝑖(𝑘) × 100%                                              (4.23) 

This metric reflects the usage of the node capacity in a measurement interval of interest 

described in section 2.3.3. When this metric is equal to 100%, it means the node k is 

saturated. 

4.2 A Capacity Utilization Estimator 

Section 4.1 introduced the theory behind the Capacity Utilization estimation method. In 

this section, we describe how this Capacity Utilization estimator is implemented in 

practice. 

4.2.1 Impact of Network Topology 

This method is intended to employ passive remote observations by neighbour nodes to 

estimate the Capacity Utilization of the observed node as shown in Figure 4.2.  
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The node k is an observed node and within its reception range are five neighbour nodes 

labeled 1, 2, 3, 4, and 5 who transmit their traffic loads to node k. Node k forwards the 

traffic to the gateway node. Within its reception range, node k competes with other five 

neighbour nodes to win access opportunities on the medium. If node 1 wishes to estimate 

the Capacity Utilization of node k, it can only monitor three of the neighbour nodes of k, 

i.e. node 2, node 3 and itself as they are within its reception range. This partial 

observation of the neighbours of k means that node 1 lacks sufficient information to make 

an accurate estimate of node k’s Capacity Utilization. Essentially, as far as node 1 is 

concerned, nodes 4 and 5 are “hidden” nodes. 

 

Figure 4.2: A Network Topology for Remote Observations by Neighbour Nodes 

4.2.2 Terms and Definitions 

In order to better understand the terms used in the thesis, some important terms and their 

definitions are presented in Table 4.1. 
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Table 4.1 Some Relevant Terms and Definitions 

Term Name Definitions 

Range 
The range is defined as the reception range and the interference range 

where all these ranges are assumed to have the same value. 

Reception Range 
A node can receive and decode a frame successfully within this 

range. 

Interference Range 
The frames sent from another node cause the medium to be sensed as 

busy within this range. 

Neighbour 
A neighbour node is defined as a network node located within the 

reception range of the observed node. 

Node k The observed node 

Node j 
The neighbour node monitoring and wishing to generate an estimate 

of the %CU value of the observed node k. 

N 
The Number of neighbour nodes of the observed node, e.g. N=5 in 

Figure 4.2. 

M 
The number of neighbour nodes of the observed node k that can be 

Monitored by observer node j, e.g. M=3 in Figure 4-2. 

𝑩𝑩𝒍𝒍𝒍𝒍 (k) The load bandwidth of node k 

𝑩𝑩𝒍𝒍𝒍𝒍 (j) The load bandwidth of neighbour node j 

�𝑩𝑩𝒍𝒍𝒍𝒍(𝒋)
𝑵

𝒋≠𝒌

 
The total neighbour load bandwidth of neighbour nodes observed at 

node k. 

𝒂𝒍𝒄𝒄(𝒌) 
The average contention (which represents the average number 

of nodes contending for access to the medium in a 
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measurement interval of interest) experienced by node k during 

a measurement interval, see section 4.2.3.4.2. 

𝑩𝑩𝒍𝒂𝒂𝒂𝒂𝒂(k) The access bandwidth of node k 

 

4.2.3 Calculation and Measurement of the Capacity Utilization Estimator 

Pre-calculated Data

1. Initialisation and Configuration Phase

2. Observation Phase

3. Parsing and Processing Phase
 

Figure 4.3: Four Phases Involved in the Operation of the Capacity Utilization Estimator 

The algorithm of the Capacity Utilization estimator is divided into several steps as shown 

in Figure 4.3 and these are described in the following sections: 

4.2.3.1 Pre-calculated Data 

Once the average contention experienced by a node is measured, the average number of 

deferrals and the average initial backoff counter value can be determined to estimate the 

access time 𝑇𝑚𝑎𝑎𝑎𝑎𝑎. A C++ program was developed to simulate the contention for access 

under saturation conditions instead of ns2 simulator because this program was 

specifically developed to focus on the deferral times and initial backoff counter values. 

Moreover, the process of each packet transmission in the medium (including the 

modulation scheme used and packet size) is not relevant to the calculation. Thirdly, this 

program involves calculating a large number of test simulations and was designed to run 
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much faster than the ns2 simulator. 

Firstly, we assume a fixed number of WLANs nodes (referred to as #DEV) where each 

node always has a frame awaiting transmission, i.e. it is assumed that every node is 

saturated [30]. We use a C++ program to simulate and model the DCF mechanism, 

deferral and backoff procedure, re-transmission scheme, and the binary exponential back-

off contention window. A pseudo random number generator provided by the Mersenne 

Twister [143] algorithm is employed to generate the initial backoff counter value. Then 

we iterate this process one million times to calculate the average backoff counter value 

BC, the average number of times that a node needs to defer #�𝑖𝑎𝑓𝑎𝑓  and the average 

number of collisions #�𝑎𝑙𝑖𝑖𝑚𝑎𝑚𝑙𝑚.  

Table 4.2 Computer Simulation Results 

#DEV 𝑩𝑩���� #�𝒍𝒂𝒇𝒂𝒇 #�𝒂𝒍𝒍𝒍𝒄𝒂𝒄𝒍𝒄 #DEV 𝑩𝑩���� #�𝒍𝒂𝒇𝒂𝒇 #�𝒂𝒍𝒍𝒍𝒄𝒂𝒄𝒍𝒄 

1 15.50004 1 0 11 26.90998 9.252916 169007 

2 16.52372 1.941183 30300 12 28.05749 10.00291 177450 

3 17.61385 2.838401 55799 13 29.16558 10.74528 185325 

4 18.74555 3.702782 77382 14 30.2661 11.48171 192454 

5 19.91028 4.541039 95944 15 31.37181 12.20946 199492 

6 21.08136 5.359451 112041 16 32.45013 12.93329 205672 

7 22.25546 6.161746 126072 17 33.50976 13.65177 211870 

8 23.44629 6.945296 138617 18 34.57446 14.36579 217493 

9 24.61254 7.727979 149676 19 35.60316 15.0705 222937 

10 25.79027 8.494361 159852 20 36.61676 15.77516 228240 
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The results are presented in Table 4.2. For example, if there is only one node present on 

the channel, the average initial backoff counter value is 15.5 and average deferral number 

is 1. If there are two nodes always competing for the medium, the average initial backoff 

counter value is approximately 16.5 and average deferral number is approximately 1.94. 

As the number of network nodes grows, the average initial backoff counter value and the 

average number of deferrals also increases due to: 

• The occurrence of collisions which doubles the size of the contention window. 

• When a node cannot win the transmission opportunity, it needs to defer for a time of 

DIFS and keeps decrementing its backoff counter until either the frame is successfully 

transmitted or the frame is dropped by having exceeded its maximum number of 

retries. 

• A large number of network nodes competing for access the medium which leads to a 

high probability of collision. 

 

Figure 4.4: The Curves Fitted to the Average Initial BC and Deferral Number Results 

The results from this computer simulation are plotted in Figure 4.4. We fitted quadratic 

curves to the data which are described by the following functions: 

𝐵𝐶���� = 14.105671 + 1.1986482𝑥 − 0.0034232245𝑥2                          (4.24) 
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And 

#�𝑖𝑎𝑓𝑎𝑓 = 0.2197168 + 0.88068625𝑥 − 0.0052725504𝑥2                     (4.25) 

Where the variable x represents the average contention, i.e. the 𝐴𝑐𝑐𝐸(𝑘) value estimated 

in a given measurement interval for node k. 

4.2.3.2 Phase 1: Initialisation and Configuration Phase 

Start

Obtain neighbours’ IDs 
and their N & M value

Construct a neighbours 
information table

When the network 
topology is changed

Observation Phase
 

Figure 4.5: Flow Chart of the Initialisation and Configuration Phase 

The values of N and M are determined before an observation phase as shown in Figure 

4.5. Every node constructs a neighbour table containing the node identities (ID) with their 

corresponding N and M values. This table is updated whenever the network topology 

changes. Figure 4.6 is an example of the neighbour table corresponding to the network 

topology in Figure 4.2. Once a new node joins or a node leaves the network, the 

Neighbour Information Tables of the nodes affected by the change on the medium is 

updated. 
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Node 3

N of Node k 
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M of Node k 

3

List of M 

Node ID

Node 1

...

BWload(k) BWaccess(k) 
≠
∑
M

load
j k

BW j( ) %CU(k)

Node 1

ID of M BWload

N of Node 2 

3

M of Node 2 

2

List of M 

...

Node 2

Node 3

Node k Node 2

 

Figure 4.6: Neighbour Information Table at the Remote Observer Node 

4.2.3.3 Phase 2: Observation Phase  

Save them into a Frame List

Is the System Time – Time Recoder ≥ Tinterval? 

Set Time Recorder = System Time

Collect the transmitted frame

After Initialisation Phase

Parsing & Processing Phase

Does this frame contend for access to the medium? 

YES

No

YES

No

 

Figure 4.7: Flow Chart of the Observation Phase 

The observer node captures frame transmissions from all the neighbour nodes within its 

reception range. It only captures the frames that contend for access to the medium (i.e. 

data frames and management frames) and then processes the frames transmissions within 



Chapter 4 The Capacity Utilization Estimator 

98 

 

a specified measurement time interval (𝑇𝑚𝑚𝑆𝑎𝑓𝑎𝑚𝑖). In our algorithm as shown in Figure 4.7, 

the variable Time Recorder is used to record the local system time and to calculate the 

observation interval. The observer node collects the transmitted frames within its own 

reception range on the medium and saves them sequentially in a buffer called the Frames 

List. 

Choosing a longer 𝑇𝑚𝑚𝑆𝑎𝑓𝑎𝑚𝑖  to observe the neighbours’ transmissions leads to higher 

accuracy in the estimation but also leads to an increased estimation delay which may be 

unacceptable. For example, taking a long time to detect saturation may lead to a higher 

probability of buffer overflow. Using a shorter 𝑇𝑚𝑚𝑆𝑎𝑓𝑎𝑚𝑖  for observing neighbours’ 

transmissions has a poorer accuracy, but produces a faster saturation detection result. 

Thus an appropriate time to minimize the cost while forming an accurate estimate is 

required [144]. In this thesis, for convenience, the value of 𝑇𝑚𝑚𝑆𝑎𝑓𝑎𝑚𝑖 is set to 1 second. 

4.2.3.4 Phase 3: Parsing and Processing Phase 

After the observation phase, the node estimates the Capacity Utilization value of its 

neighbour nodes by using a series of operations that includes calculating the neighbour 

nodes traffic load, measuring their contention and calculating their MAC bandwidth 

components. 

The flow chart in Figure 4.8 shows the different steps in estimating the Capacity 

Utilization in the parsing and processing phase. This phase consists of two parts: 𝐵𝐶𝑖𝑙𝑚𝑖 

estimation and 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎 estimation. The former can be divided into the observed node k’s 

load bandwidth 𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)  estimation and its neighbours’ load bandwidth 

∑ 𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)𝑀
𝑗≠𝑘  estimation. The 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)  estimation will be described in section 

4.2.3.4.2.  
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Figure 4.8: Flow Chart of the Parsing and Processing Phase 

4.2.3.4.1 Load Bandwidth Measurement 

The load time of the ith frame 𝑇𝑖𝑙𝑚𝑖
(𝑚) (𝑘) transmitted by node k is calculated using (4.26), 

where FrameSize (also denoted as PLCP Service Data Unit (PSDU)) consists of a MAC 

header, frame body and FCS (frame check sequence) as shown in Figure 4.9. 
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Preamble PLCP header MAC 
header

MAC 
Payload FCS

ACK

PSDU
PLCP framing

SIFS  

Figure 4.9: The DSSS PLCP Framing Format in a Successful Transmission 

𝑇𝑃𝑓𝑎𝑚𝑚𝑏𝑖𝑎 and 𝑇𝑆𝐼𝐹𝑆 represent the Physical Layer Convergence Protocol (PLCP) preamble 

and header transmission time, and the short inter-frame interval (SIFS) respectively, 𝑇𝐴𝐶𝐾 

is the acknowledgement frame transmission time (𝑇𝐴𝐶𝐾 = 𝐹𝑓𝑚𝑚𝑎𝑆𝑚𝑧𝑎∗8
𝐵𝑚𝑎𝑚𝑎_𝑅𝑚𝑆𝑎

). Line_Rate is the 

PHY transmission rate and Basic_Rate depends on the physical layer used. 

𝑇𝑖𝑙𝑚𝑖
(𝑚) (𝑘) =

𝐴𝐸𝐸𝐸𝐸𝑆𝐸𝑧𝐸 ∗ 8
𝐿𝐸𝑐𝐸_𝑅𝐸𝐸𝐸

+ 𝑇𝑃𝑓𝑎𝑚𝑚𝑏𝑖𝑎 + 𝑇𝑆𝐼𝐹𝑆 + 𝑇𝐴𝐶𝐾                         (4.26) 

Then we substitute this equation into equation (4.7) to obtain the load bandwidth of the 

observed node and its neighbour nodes. It should be noted that this expression only holds 

for the DSSS modulation scheme used in the IEEE 802.11b standard. Different standards 

(e.g. OFDM and MIMO) define different frame durations which are well defined in their 

respective standards. 

4.2.3.4.2 Access Bandwidth Measurement 

Under the IEEE 802.11 DCF mechanism, the initial backoff counter value and the number 

of deferral times are random and cannot be predicted but their average values can be 

estimated.  Only the frames that wait for at least DIFS and contend for the medium are 

included in the contention measurement. The flow chart of the access bandwidth 

measurement process is shown in Figure 4.10. It consists of five steps: (1) select a sliding 

window size, (2) inter-frame interval calculation, (3) contention measurement for a single 

frame, (4) average contention for a node, and (5) BWaccess measurement for a node. 
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Figure 4.10: Flow Chart of the Contention Measurement 

1. A Sliding Window Scheme 

It is difficult to measure how many nodes are contending for the medium at any given 

time, but we can estimate how many frames are contending with the current transmitted 

frame to estimate the average contention of a node. We use a sliding window scheme to 

measure the inter-frame idle time intervals between the two successive frames 
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transmissions and estimate the contention of the transmitted frames. Once a frame sent 

from other neighbour nodes are within the scope of the sliding window of the frame sent 

from the observed node, we can assume that this frame contends with the frame 

transmitted by the observer node. The size of the sliding window is given by the average 

backoff counter value plus a DIFS. Therefore, the size of the sliding window is 

determined using: 

𝑆𝑉𝐸𝑆𝐸𝑐𝑆 𝐶𝐸𝑐𝑆𝑐𝑊 =
𝐶𝐶

2
× 𝑆𝑉𝑐𝐸𝑇𝐸𝐸𝐸 + 𝐷𝐷𝐴𝑆                                  (4.27) 

In this thesis, 𝐶𝐶
2

 represents the average backoff counter value where CW is the contention 

window size which can be set as 31, 63 or 127 etc depending on whether frame 

retransmissions are being attempted. Selecting different CW values may cause a different 

impact on the accuracy of the average contention estimation. For example, using 31 as 

the CW value may lead to an underestimation of the average contention estimation when 

the retransmission probability is higher. Based upon the test scenarios investigated in this 

thesis and owing to high collision probabilities and resultant retransmissions in our 

scheme (due to “hidden nodes”) that results in a doubling of the contention window size, 

we have selected CW as 63. Thus we set the width of sliding window as 680 μs. The 

average contention estimation will be overestimated when the retransmission probability 

is lower. Therefore, the window width should be adaptively adjusted, but this is beyond 

the scope of this thesis and can be investigated in future work. 

2. Inter-frame Interval Calculation 

The inter-frame interval for the ith frame experienced by a node is 𝛥𝑇(𝑚)(𝐸𝑆)  and is 

calculated as: 

𝛥𝑇(𝑚)(𝐸𝑆) = 𝑇𝑎
(𝑚)(𝐸𝑆) − 𝑇𝑎

(𝑚−1)                                                  (4.28) 
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Where id is the source address of the frame and i is the capture sequence number, 

𝑇𝑎
(𝑚)(𝐸𝑆) represents the start time of ith frame sent in the medium and 𝑇𝑎

(𝑚−1) is the end 

time of the (i-1)th frame transmitted on the medium (including the ACK time) as shown in 

Figure 4.11. 

Frame(i-3)(l) Frame(i-2)(k) Frame(i-1)(j) Frame(i)(k) Frame(i+1)(j) Frame(i+2)(k) Frame(i+3)(j)

Frames List
ΔT(i+3)(j)ΔT(i+2)(k)ΔT(i+1)(j)ΔT(i)(k)ΔT(i-1)(j)ΔT(i-2)(k)

 

Figure 4.11: The Inter-Frame Intervals for the Transmitted Frames on the Medium 

3. Contention Experienced by a Frame 
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Figure 4.12: Contention Measurement for a Frame 

The computational scheme for measuring the contention of a frame is described as 

follows: 

1) Calculate the inter-frame interval for all frames in a Frame List. 

2) For the frame in “red” as shown in Figure 4.12 (a) and (b), initialize its contention 

value (also referred to as cont) to 1 which represents the case where there is one node 

contending for the medium. 

3) Calculate the number of contending frames within the width of the sliding window. 

There are 3 “yellow” frames within the width of sliding window in Figure 4.12 (a) 

which contend with the “red” frame, thus cont(k) = 4. 
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4) If the previous or the subsequent frames in the Frame List have the same id as the 

“red” frame(k) within the width of the sliding window as shown in Figure 4.12 (b), 

these frames will not be included. All the previous or the subsequent frames in blue 

are also excluded as they have contended with the previous or subsequent frame sent 

from node k, thus cont(k) = 3. 

4. Average Contention Measurement 

The average contention can be measured from the sum of the cont(k) values experienced 

by every frame in the measurement interval. For example, the node k transmits a total 

number of frames #𝑓𝑓𝑚  over a measurement interval. The ith frame measures its 

contention 𝐴𝑐𝑐𝐸(𝑚)(𝑘) with other frames. The average contention over a measurement 

interval can be written as: 

𝐴𝑐𝑐𝐸������(𝑘) =
∑ 𝐴𝑐𝑐𝐸(𝑚)(𝑘)𝑚

#𝑓𝑓𝑚
                                                     (4.29) 

Where 𝐴𝑐𝑐𝐸(𝑚)(𝑘)  is measured using the sliding window based contention process as 

described in the previous section. 

5. BWaccess(k) Measurement 

In a measurement interval of interest, all the contention of the frames from the same 

source address are summed as in equation (4.29) and then substituted into equations (4.24) 

and (4.25) to produce the  𝐵𝐶����𝑚𝑎𝑎𝑓 and #�𝑖𝑎𝑓𝑎𝑓
𝑚𝑎𝑎𝑓 value of the observed node k measured 

by the neighbour node. Then substituting these two parameters into equations (4.13) and 

(4.14) respectively, the access bandwidth 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)𝑚𝑎𝑎𝑓 of node k observed and 

measured by the neighbour node is given by: 

𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)𝑚𝑎𝑎𝑓 = �𝐵𝐶����𝑚𝑎𝑎𝑓  × 𝑆𝑉𝑐𝐸𝑇𝐸𝐸𝐸 + #�𝑖𝑎𝑓𝑎𝑓
𝑚𝑎𝑎𝑓 × 𝐷𝐷𝐴𝑆� × #𝑓𝑓𝑚       (4.30) 
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4.3 Model and Error Analysis 

This section presents an analysis of our Capacity Utilization estimation model. In making 

a remote measurement of a neighbour’s Capacity Utilization value, there will be an error 

associated with this measurement owing to the differences in the wireless medium as 

observed at the different locations of the nodes. For example, errors can arise due to the 

neighbour node having neighbours that cannot be observed by the node performing the 

measurement. As the observer node and the observed node do not experience the same 

medium, the estimation of Capacity Utilization value performed by the observer node 

will differ from that experienced by the observed node itself. 

+

Actual at node i

Measured at node j

+ -
+

-
+ -

+ +

+ -

+

-+

-+

Contention∆ NL∑∆

+

+

+

+ - -

Input Factors ImprovementsInternal Factors Results

ΔBWcollision

+

-

-

+

+
NeighbourLoad

(#N, Rate, PktSize)

Measured NeighbourLoad
(#N, Rate, PktSize)

Contention(i)Collision

BWcollsion BWbusy BWfree(i)

Cavail(i)

AEF(i)BWaccess(i)

AEFmesr(i) 

Cavail
mesr(i)

BWaccess
mesr(i)Contentionmesr(i)

%CU(i)

%CUmesr

Contention 
Estimation Neighbour Load 

Improvement

BWcollsion 
Estimation

P(sat)

Error =
%CU(i) -%CUmesrBWload(i)

P(sat)

 

Figure 4.13: The Interaction Model of the Factors Affecting the Error associated with the 

Remote Capacity Utilization Estimator 

Figure 4.13 shows the sources of error associated with our Capacity Utilization estimator 

where the symbols “+” and “-” represent the in-phase and anti-phase dependencies 
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between parameters respectively. From the perspective of the observed node, the process 

above the red dashed line in Figure 4.13 shows the interactions among the different 

parameters such as network traffic and topology, MAC components, node capacity and 

Capacity Utilization measured locally at the observed node (referred to as the actual 

value). A higher neighbour load (that may arise from a large number of neighbours, a high 

packet rate and a large packet size of traffic load) leads to an reduction in the node k’s 

capacity 𝐶𝑚𝑎𝑚𝑚𝑖(𝑘). More neighbours contending for the medium or sending a traffic load 

with higher packet rate increases the contention. If the contention of a node increases, 

then 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘) will increase, which means that the Access Efficiency Factor (AEF) 

will decrease. This will also reduce the 𝐶𝑚𝑎𝑚𝑚𝑖(𝑘) value. The reduction of 𝐶𝑚𝑎𝑚𝑚𝑖(𝑘) in 

turn produces an increase in %CU(k) that leads to high Capacity Utilization for node k. 

Moreover, a high contention causes high collision probabilities which gives rise to an 

increase in failed transmitted frames, 𝐵𝐶𝑎𝑙𝑖𝑖𝑚𝑎𝑚𝑙𝑚  and 𝐵𝐶𝑏𝑏𝑎𝑏 . This will lead to a 

reduction in 𝐵𝐶𝑓𝑓𝑎𝑎(𝑘) which decreases 𝐶𝑚𝑎𝑚𝑚𝑖(𝑘) based upon equation (4.16) that result 

in a high Capacity Utilization value. The higher the Capacity Utilization experienced by 

the observed node, the larger the error associated with the remote measurement through 

neighbour observations. 

From the perspective of a neighbour node that measures the Capacity Utilization of the 

observed node remotely as shown in the chart below the red dashed line in Figure 4.13 

(referred to as the measured value), the “missing” information regarding the neighbour 

load causes an underestimation of the contention of node k and of the load bandwidth of 

the neighbours. The lack of information regarding failed transmitted frames leads to an 

overestimation of 𝐵𝐶𝑓𝑓𝑎𝑎(𝑘) . All of these underestimations will produce an 

overestimated 𝐶𝑚𝑎𝑚𝑚𝑖(𝑘)𝑚𝑎𝑎𝑓 value and an underestimated load bandwidth 𝐵𝐶𝑖𝑙𝑚𝑖(𝑘) for 

the observed the node k which in turn reduces the measured Capacity Utilization 



Chapter 4 The Capacity Utilization Estimator 

107 

 

value %CU(k)mesr. This leads to an underestimation of the actual Capacity Utilization 

value. The greater the difference in the state of the medium, the larger the error involved 

in the estimation of the Capacity Utilization value. For example, the larger the number of 

unobservable neighbour nodes of the observed node or the higher the traffic load 

(consisting of a high packet rate and large packet size), the greater the error associated 

with our estimator. However, the “missing” information cannot be obtained directly but 

estimated through measurements on a set of observable variables [145, 146] such as the 

number of known neighbours, the number of unobservable neighbours of the observed 

node, and the captured transmitted frames on the medium, thus the error associated with 

the remote Capacity Utilization estimation can be minimized. 

Based upon the error model analysis in Figure 4.13, some predictions regarding the 

performance of the estimator are listed below: 

• The partially observable traffic load due to the number of unobservable neighbours 

causes an underestimation of the neighbour load and contention where the greater the 

number of unobservable neighbours, the larger the error associated with the Capacity 

Utilization estimation. 

• With an increase in the traffic load sent from neighbour nodes, the error associated 

with the Capacity Utilization estimation will be increased due to an increase in the 

unobserved neighbour traffic load. A large packet size, a high packet rate for the 

neighbour load and a large number of neighbour nodes will lead to high traffic load in 

the network. 

• High collision probability due to a large number of neighbours, a high packet rate 

associated with the traffic load or a smaller interference range without the CTS/RTS 

mechanism may cause a high failed transmission ratio which leads to an 
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underestimation of the neighbour load and Capacity Utilization. 

• Both a large number of neighbour nodes and a high packet rate causes high contention 

for access to the network. From the perspective of measured nodes, this will lead to an 

overestimation of the access efficiency factor (AEF) and an underestimation of the 

Capacity Utilization. 

• The traffic load of the observed node can be monitored by its neighbours, thus it does 

not affect the accuracy of the estimator. 

In the chapter 5, the simulation results will be analyzed to validate these predictions. 

Generally, the main sources of error in the estimation of %CU are the error in the 

calculation of the neighbour load bandwidth and the error in the measurement of the 

contention experienced by the observed neighbour nodes as shown by a comparison of 

equation (4.31) and equation (4.32), where 𝐶𝑚𝑎𝑚𝑚𝑖(𝑘)𝑚𝑎𝑆𝑏𝑚𝑖 is the actual capacity of node k 

and 𝐶𝑚𝑎𝑚𝑚𝑖(𝑘)𝑚𝑎𝑎𝑓  is the remote measured capacity of node k by the neighbour node. 

𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)𝑈𝑚𝑙𝑏𝑎𝑓  and 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)𝑂𝑏𝑎𝑓  are the unobserved and observed access 

bandwidth of the observed node measured by its neighbour nodes respectively. 

𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)𝑈𝑚𝑙𝑏𝑎𝑓 and 𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)𝑂𝑏𝑎𝑓 are the unobserved and observed load bandwidth 

of any node k measured by its neighbour node respectively. 

The actual 𝐶𝑚𝑎𝑚𝑚𝑖(𝑘)𝑚𝑎𝑆𝑏𝑚𝑖 measured at the observed node is:  

𝐶𝑚𝑎𝑚𝑚𝑖(𝑘)𝑚𝑎𝑆𝑏𝑚𝑖 =
𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)

𝐵𝐶𝑖𝑙𝑚𝑖(𝑘) + (𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)𝑂𝑏𝑎𝑓 + 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)𝑈𝑚𝑙𝑏𝑎𝑓) 

× �1 − (� 𝐵𝐶𝑖𝑙𝑚𝑖(𝑗) + � 𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)
𝑈𝑚𝑙𝑏𝑎𝑓

𝑗≠𝑘

𝑂𝑏𝑎𝑓

𝑗≠𝑘

) − 𝐵𝐶𝑎𝑙𝑖𝑖𝑚𝑎𝑚𝑙𝑚�                     (4.31) 

Where  

𝐵𝐶𝑖𝑙𝑚𝑖(𝑘) =  𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)𝑂𝑏𝑎𝑓 + 𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)𝑈𝑚𝑙𝑏𝑎𝑓 
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The 𝐶𝑚𝑎𝑚𝑚𝑖(𝑘)𝑚𝑎𝑎𝑓 measured at the remote node is: 

𝐶𝑚𝑎𝑚𝑚𝑖(𝑘)𝑚𝑎𝑎𝑓  =
𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)𝑂𝑏𝑎𝑓

𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)𝑂𝑏𝑎𝑓 + 𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)𝑂𝑏𝑎𝑓 × �1 − � 𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)
𝑂𝑏𝑎𝑓

𝑗≠𝑘

�   (4.32) 

Based on a comparison between the actual and measured Capacity Utilization value, it is 

easy to identify the key parameters that determine the magnitude of the error. Once the 

values of  𝐵𝐶𝑚𝑎𝑎𝑎𝑎𝑎(𝑘)𝑈𝑚𝑙𝑏𝑎𝑓 , ∑ 𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)𝑈𝑚𝑙𝑏𝑎𝑓
𝑗≠𝑘  and 𝐵𝐶𝑎𝑙𝑖𝑖𝑚𝑎𝑚𝑙𝑚  can be estimated, the 

error associated with Capacity Utilization estimations can be minimized. 

4.4 Improving the Accuracy of the Remote Capacity Utilization 

Estimator  

As a consequence of using a passive remote observation technique to detect node 

saturation in neighbour nodes, the errors associated with the Capacity Utilization value 

estimation are unavoidable but they can be minimized. 

4.4.1 Assumptions 

Three simple and reasonable assumptions are now introduced to minimize the error 

associated with this estimation. 

Assumption 1: The mean load of the unobservable neighbour nodes is equal to the mean 

load of the observable nodes. This assumption has been shown to reduce the error 

associated with the estimation of Capacity Utilization for the majority of the test cases 

considered. This will be discussed later in section 5.1.2. 

Assumption 2: One can correct the contention calculation of the observed neighbour node 

measured by the monitor node by assuming that all the frames from the unobservable 

neighbours of the observed node are transmitted with a uniform time interval within the 

measurement interval of interest. This assumption is related to the first assumption as the 
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observed node and its neighbour nodes share the same medium. 

Assumption 3: In order to avoid a double counting of the failed bandwidth, halving the 

load bandwidth of failed transmissions under the assumption that most collisions involve 

just two nodes. 

4.4.2 An Improved Remote Node Capacity Utilization Estimator 

This section describes how to improve the estimate of the neighbours’ Capacity 

Utilization by employing the three assumptions. The flow chart of the model 

modifications is shown in Figure 4.14. The “Yellow” box employs Assumption 1 to 

improve the calculation of the neighbour load bandwidth. The “Blue” box represents the 

correction of the contention by using Assumption 2 in order to enhance the accuracy of 

average contention and BWaccess estimation, and the “Red” box shows the consideration of 

failed transmissions on the medium. This modified algorithm will be described in the 

following subsections. 
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Figure 4.14: Flow Chart Showing the Modifications to the Capacity Utilization 

Estimation 

4.4.2.1 Neighbour Load Improvement 

Suppose that the observed node k has N neighbours and the observer node can monitor M 

neighbours of node k. From the perspective of the observer node, the total neighbour 

traffic load of node k that can be observed is∑ 𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)𝑂𝑏𝑎𝑓
𝑗≠𝑘 . Then using Assumption 1 

to estimate the neighbour load  ∑ 𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)𝐸𝑎𝑆
𝑗≠𝑘  which is given by: 
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�𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)
𝐸𝑎𝑆

𝑗≠𝑘

= � 𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)
𝑂𝑏𝑎𝑓

𝑗≠𝑘

+ � 𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)
𝑂𝑏𝑎𝑓

𝑗≠𝑘

×
𝑁 −𝑀
𝑀

                    (4.33) 

4.4.2.2 Contention Correction  

Suppose the total number of frames observed by neighbour node in the reception range of 

node k that contends for access to the medium is #𝑓𝑓𝑚𝑂𝑏𝑎𝑓, and the average frame size is 

AvgFS. According to Assumption 1 and Assumption 2, the steps for correcting the 

contention measurement are as follows: 

1) Estimate the number of unobserved frames #𝑓𝑓𝑚𝑈𝑚𝑙𝑏𝑎𝑓sent from the neighbour nodes 

of the observed node by using the number of frames than can be monitored #𝑓𝑓𝑚𝑂𝑏𝑎𝑓. 

The estimate is provided by the following expression: 

#𝑓𝑓𝑚𝑈𝑚𝑙𝑏𝑎𝑓 = #𝑓𝑓𝑚𝑂𝑏𝑎𝑓 ×
𝑁 −𝑀
𝑀

                                             (4.34) 

2) In the measurement interval of interest, the normalized uniform time interval of the 

unobserved frames is assumed to be  1
#𝑓𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑓. 

3) “Inserting” the #𝑓𝑓𝑚𝑈𝑚𝑙𝑏𝑎𝑓  number of estimated unobserved frames uniformly into 

the measurement interval. 

4) Then the average contention of observed node is measured as described in section 

4.2.3.4.2. 
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Figure 4.15: Flow Chart of the Contention Correction Calculation 

The flow chart shown in Figure 4.15 describes an example of the contention correction 

scheme. 

4.4.2.3 Halving the Failed Retransmission Bandwidth 

In order to improve the accuracy of our Capacity Utilization estimator, the failed 

transmitted frames due to collisions or transmission errors need to be considered. Similar 

to successfully transmitted frames, the failed frames also consume the channel bandwidth 

and contribute to BWbusy. The load time of the 𝐸𝑆ℎ frame 𝑇𝑖𝑙𝑚𝑖
(𝑚) (𝑘) sent from node k can be 
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divided into two categories: a successful transmission 𝑇𝑖𝑙𝑚𝑖
(𝑚) (𝑘)𝑎𝑏𝑎𝑎calculated using (4.26) 

or a failed transmission 𝑇𝑖𝑙𝑚𝑖
(𝑚) (𝑘)𝑓𝑚𝑚𝑖. Once a collision occurs at the receiver node, the 

node cannot observe this failed transmitted frame. However, the node can detect the 

failed transmission through the next successfully transmitted frame where the re-

transmission flag has been set to 1 as illustrated in Figure 4.16. 

Re-Frame(i+1)(k)MAC
header

MAC
header Frame(i+1)(k)MAC

header Frame(i)(k)

Node k

Succesful Transmission Failed Transmission Successful Transmission

ACK
Retransmission 

Flag: 0
Retransmission 

Flag: 0
Retransmission 

Flag: 1

(i) succ
loadT (k) (i+1) fail

loadT (k) (i+1) succ
loadT (k)

ACK

 

Figure 4.16: Tload Measurement of Node k for its Successful and Failed Transmissions 

If the sender node k does not receive an ACK, 𝑇𝑖𝑙𝑚𝑖
(𝑚) (𝑘)𝑓𝑚𝑚𝑖 is measured as: 

𝑇𝑖𝑙𝑚𝑖
(𝑚) (𝑘)𝑓𝑚𝑚𝑖 =

𝐴𝐸𝐸𝐸𝐸𝑆𝐸𝑧𝐸 ∗ 8
𝐿𝐸𝑐𝐸_𝑅𝐸𝐸𝐸

+ 𝑇𝑃𝑓𝑎𝑚𝑚𝑏𝑖𝑎                                    (4.35) 

Then converting this to a fraction of the medium bandwidth as follows: 

𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)𝑎𝑏𝑎𝑎 =
∑ 𝑇𝑖𝑙𝑚𝑖

(𝑚) (𝑘)𝑎𝑏𝑎𝑎𝑚

𝑇𝑏𝑏𝑎𝑏 + 𝑇𝑚𝑖𝑖𝑎
                                             (4.36) 

and 

𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)𝑓𝑚𝑚𝑖 =
∑ 𝑇𝑖𝑙𝑚𝑖

(𝑚) (𝑘)𝑓𝑚𝑚𝑖𝑚

𝑇𝑏𝑏𝑎𝑏 + 𝑇𝑚𝑖𝑖𝑎
                                             (4.37) 

Based upon the IEEE 802.11 MAC frame format, it is difficult to estimate how many 

failed transmissions have occurred before a successful re-transmission. Generally, the 

probability of second retransmission (i.e. with probability p2) will be far lower than the 

probability of the first retransmission p. Thus we assume that all re-transmitted frames 
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arise from a single failed transmission in this thesis. However, it can be shown that the 

probability of a second retransmission can be higher than the probability of the first 

retransmission under certain conditions [147]. This assumption may not be appropriate 

under heavy load conditions where the probability of a second or more retransmission 

attempt may not be negligible. This is a challenge for the Capacity Utilization estimation 

performed by remote observation and the improvement of accuracy will be investigated in 

the future works. 

Then substituting equations (4.36) and (4.37) into (4.38) gives: 

𝐵𝐶𝑖𝑙𝑚𝑖(𝑘) = 𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)𝑎𝑏𝑎𝑎 + 𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)𝑓𝑚𝑚𝑖                                 (4.38) 

The frames transmitted by node k and its neighbour node j at the same time cause a 

collision to occur at the received node. The received node cannot collect the information 

from the two frames involved in the collision. However, the collision frames occupy the 

same channel period and the occupied time interval depends on the frame with the larger 

transmitted time as shown in Figure 4.17. 

Frame(i)(k)
ACK

Frame(i)(j)

Node k

Node j

Tbusy

Tidle

Collision

ACK

Frame(i+1)(k)

Frame(i+1)(j) Frame(i+1)(j)
ACK

 

Figure 4.17: The “Double Counting” Problem arising from Collisions 

As is shown in Figure 4.17, by simply summing all the failed bandwidth of neighbour 

nodes of observed node, the bandwidth 𝐵𝐶𝑎𝑙𝑖𝑖𝑚𝑎𝑚𝑙𝑚  will be double counted or even 

counted multiple times. This will lead to an overestimation of the Capacity Utilization for 
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the observed node. Thus under Assumption 3, simply halving the failed bandwidth can 

increase the accuracy of the remote estimator as: 

�𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)𝑚𝑎𝑎𝑓
𝐸𝑎𝑆

𝑗≠𝑘

= �𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)𝑎𝑏𝑎𝑎 +
1
2
�𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)𝑓𝑚𝑚𝑖
𝐸𝑎𝑆

𝑗≠𝑘

𝐸𝑎𝑆

𝑗≠𝑘

                  (4.39) 

4.4.2.4 Capacity Utilization Improvement 

Finally, substituting the equations (4.33) and (4.39) into equation (4.22), and using the 

new contention measurement as described in section 4.4.2.2, then the node capacity of k 

estimated by the neighbour node 𝐶𝑚𝑎𝑚𝑚𝑖(𝑘)𝑎𝑎𝑆 can be derived as: 

 𝐶𝑚𝑎𝑚𝑚𝑖(𝑘)𝑎𝑎𝑆 = 𝐴𝐴𝐴(𝑘)𝑎𝑎𝑆 × 

                           �1 − (�𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)𝑎𝑏𝑎𝑎 +
𝑀

𝑗≠𝑘

�𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)𝑎𝑏𝑎𝑎 × �
𝑁 −𝑀
𝑀

�)
𝑀

𝑗≠𝑘

−
1
2
��𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)𝑓𝑚𝑚𝑖 + �𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)𝑓𝑚𝑚𝑖 ×

𝑁 −𝑀
𝑀

𝑀

𝑗≠𝑘

𝑀

𝑗≠𝑘

��                   (4.40) 

Then substituting the equation (4.40) and equation (4.33) into equation (4.23), the final 

form of the remote estimator of the node Capacity Utilization (%𝐶𝐶𝑎𝑎𝑆(𝑘)) is given as: 

%𝐶𝐶(𝑘)𝑎𝑎𝑆 =
𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)𝑎𝑏𝑎𝑎 + 𝐵𝐶𝑖𝑙𝑚𝑖(𝑘)𝑓𝑚𝑚𝑖

𝐶𝑚𝑎𝑚𝑚𝑖(𝑘)𝑎𝑎𝑆 × 100%                        (4.41) 

4.5 Statistical Characterization of the Estimator Error 

This thesis is essentially a study of the performance of the estimator, i.e. how accurately 

can the estimator measure the actual Capacity Utilization experienced by a node. The 

main source of error in the estimator is the traffic load experienced by the node being 

observed which may not be the same as that experienced by the node performing the 

estimation, i.e. the monitor mode. Specifically, the error arises from the traffic load of 
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those nodes that cannot be observed by the monitor node. 

For the purposes of the analysis, this source of error is considered to be a random variable. 

Consequently, the objective of the analysis is to ascertain the impact of this unobservable 

traffic load on the accuracy of the estimator. Therefore, this analysis will necessarily 

involve a statistical characterisation of the error associated with the estimate of Capacity 

Utilization produced by the estimator. We use the absolute relative error (ARE) to measure 

the accuracy of our remote Capacity Utilization estimator which is defined as: 

𝐴𝐴𝐸𝑐𝑉𝑉𝐸𝐸 𝑅𝐸𝑉𝐸𝐸𝐸𝑅𝐸 𝐴𝐸𝐸𝑐𝐸 = �
%𝐶𝐶(𝑘)𝑚𝑎𝑆𝑏𝑚𝑖 − %𝐶𝐶(𝑘)𝑎𝑎𝑆

%𝐶𝐶(𝑘)𝑚𝑎𝑆𝑏𝑚𝑖
�         (4.42) 

Where %𝐶𝐶(𝑘)𝑚𝑎𝑆𝑏𝑚𝑖 is the actual Capacity Utilization of node k, and %𝐶𝐶(𝑘)𝑎𝑎𝑆 is the 

remote estimated Capacity Utilization of node k by its neighbour node. Then we use the 

ns2 simulator to generate a large numbers of topologies with random node locations and 

traffics. The analysis of the results will then be used to validate our model and 

assumptions. The simulation scenarios and results are discussed in Chapter 5. 

4.6 Node Saturation Detection 

4.6.1 A New Algorithm in Detecting Node Saturation 

A new algorithm to detect node saturation that combines the remote Capacity Utilization 

estimator and a simple Bayesian decision process based upon a Capacity Utilization 

threshold parameter (referred to as CUTH) is proposed as a potential application to 

illustrate the usage and show the accuracy of the Capacity Utilization estimator. This 

threshold parameter can be optimized by selecting an appropriate value for the saturation 

probability of the node. After the decision, the observing node can broadcast the 

saturation information to its neighbours using its beacon frames so that they may take 

preventative actions to avoid further deterioration in the node’s saturation condition. The 
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detection algorithm is shown as Figure 4.18. 
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Figure 4.18: Algorithm for Node Saturation Detection 

Two metrics Failed Detection Ratio (FDR) and False Alarm Ratio (FAR) are used to 

assess the performance of this method. FDR defined in equation (4.43) corresponds to the 

case where a saturated network node is detected as being non-saturated and indicates the 

accuracy with which this method can accurately and correctly detect node saturation. 

𝐴𝐷𝑅 = 𝑃(%𝐶𝐶(𝑘)𝑎𝑎𝑆 < 𝐶𝐶𝑇𝑇|𝑆𝐸𝐸𝑉𝐸𝐸𝐸𝐸𝑐𝑐)                                  (4.43) 

FAR defined in equation (4.44) corresponds to the case where a non-saturated node is 

determined to be a saturated node, the consequence of this false alarm is that the resulting 

unnecessary preventive actions may have an adverse impact on the network performance. 

𝐴𝐴𝑅 = 𝑃(%𝐶𝐶(𝑘)𝑎𝑎𝑆 > 𝐶𝐶𝑇𝑇|𝑁𝑐𝑐𝑆𝐸𝐸𝑉𝐸𝐸𝐸𝐸𝑐𝑐)                              (4.44) 

The metrics FDR and FAR are related to the CUTH value used in this method where 

increasing the CUTH threshold increases the FDR and reduces the FAR. Similarly, 

reducing the CUTH threshold reduces the FDR, but increases the FAR. Both FDR and FAR 

are unavoidable aspects of the detection algorithm and need to be balanced against each 

other. For example, a high FDR can give rise to packet losses and unacceptable delay. 

However, a high FAR is also serious due to its potential to unnecessarily waste the 

network resources. 
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A minimum error-rate classifier based upon Bayesian decision theory [148, 149] is used 

to perform a trade-off between FDR and FAR in finding the optimal value of CUTH. The 

optimal CUTH corresponds to the probability of node saturation in the network, i.e. the 

higher probability of node saturation, the lower the optimal Capacity Utilization threshold 

that can be chosen (discussed in Chapter 5).  

4.6.2 The Performance of the Saturation Detection Algorithms 

In order to analyse the accuracy of our remote Capacity Utilization estimator, we select 

two other simple algorithms, queue monitoring and regularly pinging (discussed in 

Chapter 3) to compare the FDR and FAR. 

Once a node is saturated, the node cannot win a sufficient number of transmission 

opportunities which leads to an increase in queue size that causes the delay to increase 

and may lead to packet loss. Local queue monitoring has a number of advantages such as 

low complexity and high accuracy of detection. Most proposed detection schemes use 

different queue size thresholds to make a decision regarding node saturation. The 

threshold selection is a key problem to evaluate the detection performance. Larger 

threshold may cause an increased detection delay that may give a rise to a congestion 

condition that leads to packet losses. Owing to the dynamically changing queue size, we 

use the average queue size over a measurement interval as the threshold to detect node 

saturation for simplicity. However, it is recognised that in some cases, this approach can 

produce a poor measurement of saturation owing to the large variance often observed in 

queue lengths [150]. The average queue size threshold for determining the saturation is 

pre-defined as 1 (using the widely used definition adopted in Bianchi’s model [30]) and 

make the observed node monitor its buffer during a measurement interval (we also define 

this interval as 1 second for comparison with our algorithm) to detect node saturation in 

this thesis. If this average value is greater than a predefined queue size threshold then the 
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node is determined to be saturated. It is to be noted the predefined queue size threshold 

can be defined as some other value (or may even be adaptively adjusted). However, this is 

beyond the scope of this thesis. 

Another simple saturation detection mechanism is to have the observer neighbour nodes 

regularly ping the observed node to determine if they are operating normally. The 

observer node sends ping packets to the observed node and records the timestamp, and 

then the receiver node returns it immediately in order to measure the round-trip time 

(RTT). In this thesis, if the sender node cannot receive the return packets from observed 

node within a measurement interval (again defined as 1 second to permit a meaningful 

comparison of the algorithms) for measuring the RTT, we assume that the observed node 

is saturated. In order to improve the accuracy, a predefined RTT threshold could also be 

used to detect saturation. However, this is beyond the scope of this thesis. The 

performance of these two methods will be discussed in section 5.4.1. 

The version 2.35 of the ns2 simulator used includes both queue management and the ping 

protocol and thus does not require any modifications to the ns2 source files. 

4.7 Summary 

This chapter gives a detailed description of the remote node capacity utilization estimator 

with a description of the MAC bandwidth components framework. It introduces the 

average contention measurement, load bandwidth measurement, access bandwidth 

measurement and neighbour load bandwidth measurement. Then it describes the 

calculation method for the AEF, a factor that measures how efficiently a node contends 

for access to the wireless medium, the node capacity and the Capacity Utilization. 

However, there will be an error associated with this measurement by the neighbour nodes 

owing to the differences in the wireless medium as observed at their different locations. A 
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model of the error associated with the remote Capacity Utilization estimator is used to 

analyse the sources of error associated with the estimator. The simulation results used for 

validating the predictions will be presented in Chapter 5. In order to minimize this error, 

three assumptions are employed to improve the remote estimator. The detection of node 

saturation is selected as one of the wireless applications of this estimator and two 

parameters FAR and FDR are employed as the performance criteria to evaluate the 

performance of our remote estimator.    
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Chapter 5 Simulation Results and 
Performance Evaluation 
This chapter presents and analyses the simulation results and the performance evaluation 

of our remote Capacity Utilization estimator. A large number of random topologies are 

generated with random traffic by the ns2 simulator to validate and test the model. The 

absolute relative error (ARE) is employed to measure the accuracy of the Capacity 

Utilization estimator. Chapter 4 presented an error model associated with the estimates 

and made some performance predictions. This chapter analyses the accuracy of the 

estimator and discusses the factors that determine the accuracy of our estimator. The 

modifications implemented to improve the accuracy by using three assumptions are also 

presented in this chapter. Finally, node saturation detection is selected as an application to 

show the usage and accuracy of the remote Capacity Utilization estimator. 

5.1 Simulation Set Up and Scenarios 

The error associated with the remote Capacity Utilization estimator can be considered as 

a random variable. Therefore, this analysis will necessarily involve a statistical 

characterisation of the error associated with the estimate of the Capacity Utilization 

produced by the estimator. Different scenarios with random parameters are generated to 

test the accuracy of the Capacity Utilization estimator and to identify the factors that 

impact on the estimator accuracy as discussed in chapter 4. 

5.1.1 Simulation Set Up 

The simulation parameters pertain to IEEE 802.11b operation without the RTS/CTS 

mechanism and using an omnidirectional antenna. In order to avoid the interference from 

out of reception range nodes but within the interference range, both the reception range 
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and the interference range are set to 50 meters (in practice this range depends on the 

transmit power and operating environment). The buffer size of every node is 50. 

(a) (b)  

Figure 5.1: (a) Coordinate Generation of Nodes (b) An Example Topology with 3 

Neighbours 

In this thesis, we use the Mersenne Twister [143] algorithm as the pseudo random number 

generator where the seed used is the system time. In order to obtain the uniform random 

distribution of the nodes’ positions, we first randomly generate a node’s coordinates (x, y), 

where the x and y values are random real numbers selected from [0.00, 100.00]. If the 

generated node is located outside of the circle in red area as Figure 5.1 (a), we drop this 

coordinate of the node and generate a new set of random coordinates. 

Figure 5.1 (b) shows one of the generated topologies. It can be seen that the observed 

node has three neighbours (i.e. N = 3), where neighbours 1 and 2 can hear two of the 

observed node’s neighbours transmissions (i.e. M = 2), and neighbour 3 only can hear one 

of the observed node’s neighbours transmissions (i.e. M = 1). In order to avoid the impact 

of the routing protocol used, a single hop only is considered in this thesis. The neighbour 

nodes only send traffic to the observed node and the observed node sends its traffic load 
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to the gateway node. In all test scenarios, the position of the observed node and the 

gateway is fixed, however its neighbours’ position will be randomly determined. 

5.1.2 Scenarios Test 

In our Capacity Utilization estimator, the partial observed load traffic produces an 

unavoidable error associated with the estimation of Capacity Utilization (%CU). We 

established a set of different categories of scenarios to investigate the accuracy of the 

Capacity Utilization estimator and to validate the error model discussed in chapter 4. All 

the following scenarios comprise 1,000 random topologies of 30 seconds simulation 

which results in a total of 30,000 separate %CU estimates for every neighbour of the 

observed node. The network traffic load is divided into two parts: the traffic load sent 

from the neighbour nodes and from the observed node. This is because they have 

different impacts on the accuracy of the Capacity Utilization estimator. All the scenarios 

use Poisson traffic except for scenario B-7 and C-7, as it explores the performance of our 

estimator under Exponential On-Off traffic. Poisson traffic is one of the most widely used 

traffic models employed to investigate the network performance. At a time t, the total 

number of packets n(t) follows a Poisson distribution with the parameters 𝜆𝐸 and can be 

written as: 

𝑃(𝐸) =
𝐸−𝜆𝑆 × (𝜆𝐸)𝑚

𝑐!
                                                    (5.1) 

The inter-arrival time period T of two consecutive packets with fixed packet size follows 

an exponential distribution as 𝐴(𝐸) = 1 − 𝐸−𝜆𝑇. The symbol λ represents the expectation 

of packet arrival numbers per unit time (average packet arrival rate) and 𝜆 = 1
𝐸(𝑆)

. In 

Exponential On-Off traffic model, packets are generated with a fixed size and at a 

constant rate. The durations of the “On” and “Off” intervals follow a Gaussian 

distribution with mean values equal to predefined value. The different traffic and 
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topology scenarios are presented in Table 5.1. The observed node’s position is fixed and 

its neighbour nodes are located randomly within its reception range. The parameters are 

uniformly randomly selected from a specific range of traffic load which is denoted as 

x1~x2, where x1 and x2 represent the minimum value and maximum value respectively. In 

this chapter, NonModCU and ModCU represent the Capacity Utilization estimator before 

and after the improvement modifications respectively. 

Scenarios of Group A: These scenarios present two general cases to analyse the 

performance of the estimator before and after the modifications have been implemented 

to improve the accuracy. 

Scenarios of Group B: The scenarios in this group investigate the factors that influence 

the accuracy of the Capacity Utilization estimator before the modifications are 

implemented. 

Scenarios of Group C: The factors that have an impact on the accuracy of the Capacity 

Utilization estimator after the modifications are studied in this group. 

Scenarios B-1 and C-1: The effect of the number of neighbours (N) located within the 

reception range of the observed node on the accuracy of the estimator before and after the 

modifications. In order to avoid an increase in the traffic load with the growth of N, the 

total traffic load of neighbour nodes for every scenario is set within a fixed range, i.e. the 

packet size is uniformly randomly selected between 50 bytes and 1500 bytes and the total 

packet rates of the neighbour nodes (referred to as NLpr) are the same for all scenarios, 

thus the packet rate for every neighbour is 𝑁𝐿𝑝𝑓
𝑁

. In this thesis, in a lower traffic range case, 

the NLpr is set to 200~300 pps. In a higher traffic range case, the total traffic load is 

double (i.e. 400~600 pps) that of the lower traffic range. 
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Scenarios B-2 and C-2: These two scenarios assess the impact of the number of 

neighbours of the observed node that can be monitored (M) on the accuracy of the 

estimator before and after the modifications. The results for N = 3 and N = 5 with the 

number of observable neighbours M are chosen for discussion in this chapter. The results 

for other scenarios are presented in Appendix C and D. 

Scenarios B-3 and C-3: An investigation of the impact of the packet size of the observed 

node’s traffic load on the accuracy of the estimator before and after the modifications is 

performed here. The packet rate of the observed node is uniformly randomly selected 

between 10 and 100 pps and the packet sizes used are: 128, 256, 512, 1024, and 1500 

bytes. 

Scenarios B-4 and C-4: A further investigation of the influence of the packet rate of the 

observed node on the accuracy of the estimator before and after the modifications. The 

packet size of the observed node’s traffic load is random and the packet rates of the 

observed node’s traffic load used are: 10, 25, 50, 100, 200 and 500 pps.  

Scenarios B-5 and C-5: The influence of the variations of the packet size of the 

neighbour nodes’ traffic load on the accuracy of the estimator before and after the 

modifications. The neighbours’ traffic loads are similar to the scenarios A-3 and B-3.  

Scenarios B-6 and C-6: These two scenarios investigate the influence of the traffic 

packet rate of the neighbour nodes on the accuracy of the estimator before and after the 

modifications. The neighbours’ traffic loads are similar to the scenarios A-4 and B-4.  

Scenarios B-7 and C-7: This scenario uses Exponential On-Off traffic to investigate the 

accuracy of the estimator before and after the modifications. During "on" periods, packets 

are generated at a constant rate. During "off" periods, no traffic is generated. Burst times 

and idle times are taken from exponential distributions. This traffic is more representative 
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of “real world” traffic than Poisson traffic [86, 151]. In order to test the impact of “on-off” 

period on the accuracy of the estimator, the average “on” period is set equal to average 

“off” period with different values (i.e. where the average “on” time = 0.5 s, 2 s and 5 s). 

The simulation time is 100 seconds in this scenario in order to obtain more %CU 

estimates values. The packet size and rate of traffic load for all nodes are uniformly 

randomly selected between 50~1500 bytes and 10~100 pps respectively. 

Scenarios of Group D: The detection of node saturation is used as one of the potential 

applications to validate the feasibility and the accuracy of the Capacity Utilization 

estimator after the modifications compared with other two simple node saturation 

mechanism: queue monitoring and regularly pinging. The FDR and FAR of the node 

saturation are the two criteria used to evaluate the performance of the estimator in a 

practical application. Nine different scenarios of N = 2, 3, 4, 5, 6, 7, 8, 9, and 10, have 

been used to examine the FDR and FAR of this group. 

Scenarios D-1: All the nodes send high traffic levels within a random selection range in 

these scenarios in order to force the observed node into saturation. Then the estimator is 

used to investigate the Capacity Utilization of the observed node through neighbour 

nodes and to calculate the FDR.  

Scenarios D-2: In order to ensure the same saturation probability under different N cases, 

the total traffic load for all neighbour nodes is fixed. 1,000 topologies under non-saturated 

operation observed for every case are selected to calculate the FAR.  
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Table 5.1 Classification of Simulation Test Scenarios 

Scenarios N 
Traffic load of Observed Node Traffic load of Neighbour node 

Metric 
Traffic 

Type 
Test Target 

Packet Size (PS) Packet Rate (PR) Packet Size (PS) Packet Rate (PR) 

A-1 2 50~1500 10~25 50~1500 10~25 NonModCU Poisson General Case 

A-2 5 50~1500 100~250 50~1500 100~250 NonModCU Poisson General Case 

A-3 2 50~1500 10~25 50~1500 10~25 ModCU Poisson General Case 

A-4 5 50~1500 100~250 50~1500 100~250 ModCU Poisson General Case 

B-1-1 
2-10 50~1500 100~100 50~1500 

200~300 for total 

neighbour load 

NonModCU 
Poisson 

Variation of N 
C-1-1 ModCU 

B-1-2 
2-10 50~1500 100~100 50~1500 

400~600 for total 

neighbour load 

NonModCU 
Poisson 

C-1-2 ModCU 

B-2 
2-10 2-10 50~1500 100~100 

200~300 for total 

neighbour load 

NonModCU 
Poisson Variation of M 

C-2 ModCU 

B-3 
5 

128,156,512, 

1024, 1500 
10~100 50~1500 10~100 

NonModCU 
Poisson 

Variation of 

BWload(k) C-3 ModCU 

B-4 5 50~1500 10,25,50,100, 

200,500 

50~1500 10~100 NonModCU Poisson Variation of 

BWload(k) C-4 ModCU 
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Scenarios N 
Traffic load of Observed Node Traffic load of Neighbour node 

Metric 
Traffic 

Type 
Test Target 

Packet Size (PS) Packet Rate (PR) Packet Size (PS) Packet Rate (PR) 

B-5 
5 50~1500 10~100 

128,156,512, 

1024,1500 
10~100 

NonModCU 
Poisson 

Variation of 

∑ 𝐵𝐶𝑖𝑙𝑚𝑖(𝑗)𝑗≠𝑘  

C-5 ModCU 

B-6 
5 50~1500 10~100 50~1500 

10,25,50,100,200,

500 

NonModCU 
Poisson 

C-6 ModCU 

B-7 
5 50~1500 10~100 50~1500 10~100 

NonModCU 
On-OFF 

Different Traffic 

Type C-7 ModCU 

D-1 3-10 50~1500 500~1000 50~1500 500~1000 ModCU Poisson FDR 

D-2 3-10 50~1500 10~200 50~1500 
400~600 for all 

nodes 
ModCU Poisson FAR 
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5.2 Analysis of the Accuracy of the Capacity Utilization Estimator 

without the Modifications 

This section presents the simulation results for Group A and B scenarios for the Capacity 

Utilization estimator before the modifications are implemented. The factors influencing 

the performance of Capacity Utilization estimator are identified. The ground truth data 

(i.e. the actual MAC bandwidth components) are directly calculated from the ns2 

simulator trace file. These are then compared with the results obtained indirectly from the 

average contention measurement and quadratic fitted curves (i.e. the Capacity Utilization 

estimator process) as shown in Figure 5.2. In this thesis, we use the empirical Cumulative 

Distribution Function based upon the assumptions that each error associated with the 

Capacity Utilization estimation is independent (for simplicity we use the term CDF to 

refer to the empirical CDF). 

ns2 
Simulator

Input Parameters

Output
Tracefile

Direct Calculation of 
MAC bandwidth component

Load Bandwidth Measurement 
(successful and failed transmissions)

&
Average Contention and 

Access Bandwidth Measurement

Remote Observation

Local Calculation

Actual Capacity Utilization value

Error Calculation
(i.e. Absolute Relative Error )

Estimated Capacity Utilization value

 

Figure 5.2: The Data Collection Process 

The results for scenarios A-1 and A-2 are shown in Figure 5.3 which presents the CDF of 

the absolute relative error (ARE) of our Capacity Utilization (%CU) estimator before the 

modifications. The corresponding PDFs (probability density function) of all the scenarios 

are given in Appendix C. It can be seen here that 94% of the %CU estimates and 1% of 



Chapter 5 Simulation Results and Performance Evaluation 

131 

 

the %CU estimates have an ARE less than 10% under scenarios A-1 and A-2 respectively. 

Similarly, 90% of the %CU estimates have an ARE less than 9% and 64% of the ARE 

under scenarios A-1 and A-2 respectively. 
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Figure 5.3: The CDF of the ARE for NonModCU in (a) Scenario A-1 and (b) Scenario A-

2 

This shows that the accuracy of our estimator under scenario A-1 is much higher than that 

under scenario A-2 due to a number of different factors such as a different number of 

neighbours, traffic load of the observed node and the neighbour nodes. We next 

investigate the impact of various factors on the accuracy of the Capacity Utilization 

(%CU) estimator in order to identify the sources of error from the predictions provided by 

the error model before the modifications are applied. The six main factors that are 

considered here are listed below:  

• The number of neighbour nodes (N) 

• The number of observable neighbours of the observed node (M) 

• The traffic load of the observed node consisting of various combinations of different 

packet sizes and packet rates 
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• The traffic load of the neighbour nodes consisting of various combinations of 

different packet sizes and packet rates 

• Traffic type 

5.2.1 Different Number of Neighbour Nodes (N) 
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Figure 5.4: The CDF of the ARE of NonModCU under Different N Scenarios with (a) 

Lower Traffic Load (b) Higher Traffic Load 

Scenario B-1-1 and B-1-2 describes the impact of the different numbers of neighbour 

nodes (N = 2, 3, 4, 5, 6, 7, 8, 9 and 10) on the accuracy of the Capacity Utilization 

estimator under different levels of network traffic loads. The traffic load of the neighbour 

nodes in Figure 5.4 (b) is twice as high as that in Figure 5.4 (a). It can be seen in Figure 

5.3 (a) that 90% of the %CU estimates have an ARE less than 35%. In Figure 5.4 (b), as 

the number of neighbours increases, ARE becomes greater, i.e. 90% of the %CU 

estimates where N = 3, 6, and 10 have an ARE less than 55%, 63% and 72% respectively.  

In order to further analyse the performance of the estimator, the relationship between the 

fraction of the %CU estimates that have an ARE less than 10% and the number of 

neighbours is shown in Figure 5.5. 
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Figure 5.5: Fraction of the %CU Estimates that Have an ARE less than 10% as a Function 

of N 

Figure 5.5 shows that the fraction of the %CU estimates before the modifications that 

have an ARE less than 10% decreases with an increase in the number of neighbours N. 

When the traffic load is lower, there are 59% of the %CU estimates experiencing an ARE 

less than 10% where N = 2, then this fraction drops to 20% of the %CU estimates where 

N = 6. After that, with the growth of N the fraction of topologies decreases gradually, i.e. 

11% of the %CU estimates have an ARE less than 10% where N = 10. When the traffic 

load is higher, the fraction of %CU estimates shows a similar trend and drops even more 

drastically with an increase of N. 

The reasons for the results presented in Figure 5.4 and 5.5 can be explained as follows: 

First of all, the number of unobservable neighbours of the observed node increases with 

the number of neighbours. This causes an increasing difference in the state of the medium 

between the observing and observed node which leads to an increased underestimation of 

the Capacity Utilization value. More importantly, the probability of a large number of 

unobservable neighbours falls as the number of neighbours increases as shown in Figure 
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5.5 (this will be discussed later in section 5.2.2). Thus with an increase in the number of 

neighbours, the accuracy of the %CU estimator falls dramatically at first and then reduces 

more gradually. Thirdly, a large number of neighbour nodes with a high packet rate 

causes a high contention as shown in Figure 5.4 (b) and leads to a high actual Capacity 

Utilization. The error associated with the estimates depends on both the actual Capacity 

Utilization value and the measured Capacity Utilization value. Thus the accuracy of 

the %CU estimator in Figure 5.4 (a) is higher than that in Figure 5.4 (b). 

5.2.2 Different Number of Observable Neighbours of the Observed Node (M) 

 

Figure 5.6: Probability Distribution of the Number of Observable Neighbours M 

The chart in Figure 5.6 shows the probability distribution of M under N different 

scenarios generated by a Monte-Carlo method (i.e. it generates the node locations 

randomly within a predefined reception range of the observed node and calculates the 

ratio of M and N, and aggregates the results [152]). With the growth in the number of 

observable neighbours of the observed node (M), the PDF of M increases at first, climbs 

to maximum when 𝑀 = 𝑁+1
2

 (where N is odd) or 𝑀 = 𝑁
2

+ 1 (where N is even), and then 

begins to decrease. For example, if the number of neighbours N is 5, for one of its 
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neighbours, the probability of observing 1, 2, 3, 4, and all of the observed node’s 

neighbours is approximately 6%, 20%, 31%, 29% and 14% respectively.  

This chart is used to explain the results in section 5.2.1, i.e. the accuracy of our estimator 

decreases dramatically at first and then reduces more gradually with an increase in the N 

value. The specific data values of all probabilities can be found in Appendix B. 
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Figure 5.7: The CDF of the ARE of NonModCU where (a) N = 3 (b) N = 5 

In order to test the accuracy of our %CU estimator (before the modifications) under the 

influence of different values of M, the CDF of the ARE where N = 3 and N = 5 under 

scenarios B-2 is plotted as Figure 5.7. As can be seen from Figure 5.7 (a), 90% of 

the %CU estimates experience an ARE less than 7%, 30% and 45% where M = 1, 2, and 3 

respectively. Figure 5.7 shows that the fraction of the %CU estimates that have an ARE 

less than 10% have been accompanied by a corresponding increase in the number of 

observable neighbours, i.e. 95%, 17% and 2% of the %CU estimates have an ARE less 

than 10% where M=1, 2, and 3 respectively. This is because as the number of observable 

neighbours increases, the difference in the state of the medium becomes smaller which 

leads to a higher accuracy in the %CU estimates.  
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5.2.3 Different Traffic Load of the Observed Node 

This section investigates the impact of the traffic load sent from the observed node on the 

accuracy of the %CU estimator. The simulation results in Figure 5.8 from scenario B-3 

and B-4 consist of different packet sizes and packet rates for the traffic loads.  
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Figure 5.8: The CDF of the ARE of NonModCU for Different (a) Packet Sizes (b) Packet 

Rates of Traffic Load of the Observed Node 

It can be seen here that 90% of the %CU estimates have an ARE less than 40%. There is 

no significant difference in changing the packet size of the observed node’s traffic load as 

shown in Figure 5.8 (a) due to the fact that most transmitted frames sent from the 

observed node (except for failed transmissions) can be observed by its neighbour node. In 

Figure 5.8 (b), there is a small decrease when the packet rate is small (10 pps) due to a 

higher probability of a failed transmission. This will lead to an underestimation of the 

traffic load of the observed node that in turn gives rise to an underestimation of Capacity 

Utilization. 

5.2.4 Different Traffic Load of Neighbour Nodes of the Observed Node 

The traffic load of the observed node does not influence the accuracy of our estimator. 

However, the traffic load of neighbour nodes has a significant impact on the %CU 
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estimator due to the partially observed traffic load. The greater the difference in the state 

of the medium, the larger the error associated with the %CU estimate. 

 

Figure 5.9: The CDF of the ARE of NonModCU for Different (a) Packet Sizes (b) Packet 

Rates of Neighbour Traffic Load 

Scenarios B-5 and B-6 with N = 5 for different packet sizes and packet rates of neighbour 

traffic have been generated and plotted in a CDF graph as shown in Figure 5.9. Here 90% 

of the %CU estimates where the packet size of the neighbour traffic load is equal to 128, 

512, 1024, and 1500 bytes have an ARE less than 13%, 25%, 55% and 74% respectively 

in Figure 5.9 (a). Also 90% of the %CU estimates where the packet rates of neighbour 

traffic load is equal to 10, 100, and 500 pps have an ARE less than 7%, 68%, and 73% 

respectively in Figure 5.9 (b).  

As shown in the results, less than 20% of the %CU estimates have an ARE less than 10% 

under heavier traffic loads, such as a large packet size (i.e. ≥ 1024 bytes) or a higher 

packet rate (i.e. >100ps). Several reasons can account for the above results. Firstly, a high 

neighbour load gives rise to a high Capacity Utilization value and a greater difference in 

the state of the medium that leads to a large error associated with the estimation, as 

predicted by the error model in Chapter 4. Also, the high traffic rate increases the 
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collision probability among the network nodes that leads to a higher probability of failed 

transmissions. This will lead to an underestimation of the neighbour traffic load and the 

Capacity Utilization value. Finally, a large packet size under a high traffic rate may also 

cause a high collision probability among hidden nodes that overestimates the nodes 

Capacity Utilization value. Consequently, a high traffic rate in the neighbour load has the 

largest impact compared to the other factors on the accuracy of the Capacity Utilization 

estimator. In the worst case scenario, such as a large number of neighbours with saturated 

loads, the Capacity Utilization estimator has a lower accuracy. However, this case is an 

unusual situation to encounter in real IEEE 802.11 networks [86]. 

5.2.5 Different Traffic Types 

 

Figure 5.10: The Normalized Load Bandwidth of Exponential On-Off Traffic with 

Different Average “On” Periods 

In scenario B-7, we set different average “On” time periods where the average “On” is 

equal to 0.5 second, 2 seconds and 5 seconds as shown in Figure 5.10, the traffic type of 

the observed node is still Poisson traffic in order to obtain a continuous traffic load being 

sent from the observed node for measurement. The result in Figure 5.11 shows that the 

estimator performance under On-Off traffic has a higher accuracy compared to that under 
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Poisson traffic (i.e. 70% and 28% of the %CU estimates have an ARE less than 10% 

respectively) due to a reduction in the average number of unobservable neighbours. This 

will lead to the total neighbour traffic load being smaller under On-Off traffic type than 

that under continuous traffic. In other words, the average value of the aggregated 

neighbour traffic load is reduced under On-Off traffic. Therefore, the estimator would be 

expected to observe an improved performance compared to Poisson traffic under scenario 

B-7. For example, suppose an observed node has 5 neighbours (N = 5), but there are only 

3 of them sending traffic at some time interval which reduces the total traffic load of 

neighbours and hence the actual Capacity Utilization value. From the perspective of one 

of its neighbours, the number of unobservable neighbours of the observed node is 4 (N = 

5, M = 1) and only two of them are sending traffic, thus the estimate is much closer to the 

actual traffic load of neighbours than that under continuous traffic. 
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Figure 5.11: The CDF of the ARE of NonModCU under On-Off traffic 
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5.2.6 Conclusions 

In this section, six factors have been investigated to determine the accuracy of the remote 

Capacity Utilization estimator before the modifications to improve the accuracy were 

implemented under the various test scenarios. These conclusions are as follows: 

• With the growth in the number of neighbour nodes, the accuracy of the estimator 

decreases gradually. 

• When the number of observable neighbours increases, the accuracy of the estimator 

will increase. 

• The traffic load sent from the observed node has a minor impact on the estimator. 

• The accuracy of the estimator decreases dramatically with an increase in the 

neighbour traffic load. 

• The worst case for the estimator is where all neighbours send saturated traffic as 

shown in scenario B-6 under a heavy neighbour packet rate. 

• Under On-Off traffic, the average number of unobservable neighbours and average 

traffic load sent from all neighbours is lower than that under continuous traffic. This 

leads to a higher accuracy in the estimator. 

• Two key factors determine the performance of the remote Capacity Utilization 

estimator, namely the number of unobservable nodes and the traffic load of the 

unobservable nodes.  

• In conclusion, the remote Capacity Utilization estimator has a higher accuracy under 

a smaller number of neighbours, a larger number of observable neighbours or under 

any light traffic load sent from neighbour nodes. 
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5.3 Performance Evaluation of the Capacity Utilization Estimator after 

the Modifications 
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Figure 5.12: CDF of ARE for ModCU in (a) Scenario A-3 and (b) Scenario A-4  

From the simulation results presented in Figure 5.12(a) and 5.12(b), the Capacity 

Utilization estimator in “red” shows a poor performance under certain conditions such as 

a large number of neighbours, a small number of observable neighbours or a high 

neighbour traffic load. Thus we have proposed some modifications to improve the 

accuracy of the estimator. The impact on these modifications on the accuracy of the 

estimator will be investigated in this section. It should be noted here that our estimator 

always produces an underestimation of the Capacity Utilization before the modifications 

and therefore the ARE will be less than 100%. However, when the modifications are 

applied, the Capacity Utilization produced by the estimator can be either an 

underestimation or an overestimation. Consequently, it is possible to have ARE values 

greater than 100%, however these values were found to occur infrequently in the majority 

of the scenarios investigated, see the PDFs results in Appendix D. Therefore, for 

convenience we will only consider values of ARE between 0 and 100% in the graphs 

presented in this section. 
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The comparison of the ARE of the estimator before (NonModCU) and after the 

modifications (ModCU) for two general cases in scenarios A-3 and A-4 is shown in 

Figure 5.12. The estimator after the modifications exhibits a significant improvement in 

the accuracy, i.e. 98% of the %CU estimates have an ARE less than 10% in Figure 5.12(a), 

90% of the %CU estimates after the modifications have an ARE less than 30% compared 

to 90% of the %CU estimates before the modifications have an ARE less than 65% as 

shown in Figure 5.12(b). 

5.3.1 The Impact of Factors on the Accuracy of the Estimator after the 

Modifications 
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Figure 5.13: The CDF of the ARE of ModCU under Different N Scenarios with (a) Lower 

Traffic Load (b) Higher Traffic Load 

There is a clear improvement in the accuracy of the %CU estimator after the 

modifications as shown in Figure 5.13 (scenario C-1-1 and C-1-2 respectively) where 90% 

of the %CU estimates for all N cases have an ARE less than 13% and 33% under low and 

high traffic loads respectively. In Figure 5.14, the dashed line and the solid line is the 

estimate before and after the modifications respectively. Under lower traffic loads, 

approximately 84% of the %CU estimates after the modifications have an ARE less than 
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10%. The accuracy of the estimator is independent of the number of neighbours due to the 

unobserved neighbour load and the contention can be corrected by the modifications. 

However, under a heavy traffic load, the accuracy of the estimator after the modifications 

is reduced with an increase in the number of neighbour nodes. This is because most 

collisions involve three or more nodes when the number of neighbours is large but 

our %CU estimator assumes the most collisions involve just 2 nodes (Assumption 3). The 

further improvement of Assumption 3 under some topologies with many neighbours under 

heavy traffic will be investigated in the future work.  

 

Figure 5.14: Fraction of the %CU Estimates after the Modifications that Have an ARE 

less than 10% as a Function of N 

After the modifications, the Capacity Utilization estimator exhibits an improvement in the 

accuracy under different numbers of observable neighbours (M) as shown in Figure 5.15, 

i.e. 90% of the %CU estimates have an ARE less than 25% and 33% where N = 3 and 5 

respectively.  
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Figure 5.15: The CDF of the ARE of ModCU where (a) N = 3 (b) N = 5 

When the number of observable neighbours is larger, i.e. M ≥ 3, more than 75% of 

the %CU estimates have an ARE less than 10% where N = 5 and N = 7 as shown in Figure 

5.16. 

 

Figure 5.16: Fraction of the %CU Estimates after the Modifications that Have an ARE 

less than 10% as a function of M 

Our estimator has been modified by using Assumption 1 where the mean load of the 

unobservable neighbour nodes is equal to the mean load of the observable nodes to 
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estimate the traffic load of the unobserved neighbour nodes. Thus the estimator produces 

a higher accuracy when the number of observable neighbours is large since more 

information on the traffic load can be obtained. 

As shown in Figure 5.17, it can be seen that different packet sizes and packet rates sent 

from the observed node do not have any significant impact on the accuracy of the %CU 

estimator after the modifications. This is because the failed transmitted frames can be also 

measured by the remote neighbour nodes by utilizing the retransmission flag. However, 

our estimator minimizes the error associated with the Capacity Utilization estimate, i.e. 

only 30% of the %CU estimates before the modifications have an ARE less than 10% 

compared to approximately 90% of the %CU estimates after the modifications have an 

ARE less than 20% and 70% of the %CU estimates have an ARE less than 10%. 
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Figure 5.17: The CDF of the ARE of ModCU for Different (a) Packet Sizes (b) Packet 

Rates of Traffic Load of the Observed Node 

When the traffic load of the neighbour nodes increases, our estimator after the 

modifications also produces a decrease in the accuracy as shown in Figure 5.18 and 

Figure 5.19. More than 80% of the %CU estimates have an ARE less than 10% under 

lower neighbour traffic loads (packet size ≤ 512 bytes or packet rate ≤ 50 pps) where N = 
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5. Under heavier traffic loads (packet size =1500 bytes or packet rate > 100 pps), only 40% 

of the %CU estimates have an ARE less than 10%. 
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Figure 5.18: The CDF of the ARE of ModCU for Different (a) Packet Sizes (b) Packet 

Rates of Neighbour Traffic Load 
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Figure 5.19: Fraction of the %CU Estimates after the Modifications that Have an ARE 

less than 10% as a Function of (a) Packet Size and (b) Packet Rate 

The main reasons for the lower accuracy of the estimator under heavier traffic loads have 

been discussed in section 5.2.4. In addition, the high traffic rate increases the collision 

probability among the network nodes, more collisions involving 3 or more nodes and 



Chapter 5 Simulation Results and Performance Evaluation 

147 

 

halving the total failed bandwidth of all neighbour nodes may cause an overestimation of 

neighbour load that leads to an overestimate of nodes Capacity Utilization. However the 

accuracy of the estimator is still improved by the modifications, i.e. 0% of the %CU 

estimates before the modifications have an ARE less than 10% when all the neighbours 

are saturated (i.e. the packet rate of every neighbour node is greater than 500 pps). 

To further explain these results, two scenarios under an increased interference range (in 

order to avoid the “hidden nodes” problem under different neighbour traffic loads) are 

presented here. We can see that the ARE of the neighbour load estimates are similar to 

Figure 5.20 (a) under both low and high traffic loads of neighbour nodes, the ARE of the 

Capacity Utilization estimator still decreases under heavier traffic loads as shown in 

Figure 5.20 (b). In order to improve the accuracy of the estimates under heavy neighbour 

loads, the total neighbour load estimates should be more accurate than those under a low 

neighbour load. However, the network traffic load of unobservable neighbours is 

unpredictable which makes the estimation less accurate. 
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Figure 5.20: The CDF of the ARE of (a) Improved Estimated Neighbour Load (b) ModCU 

Under Exponential On-Off traffic, the Capacity Utilization estimator after the 

modifications still produces a higher accuracy than that under Poisson traffic, i.e. 90% of 
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the %CU estimates have an ARE less than 10%, see Figure 5.21. This is because the 

average number of unobservable neighbours and the average traffic load is reduced which 

produces a lower contention and hence collision probability. This will lead to a higher 

accuracy in the estimator. 
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Figure 5.21: CDF of the ARE of ModCU under Exponential On-Off traffic 

5.3.2 Conclusions  

In this section, the accuracy of the Capacity Utilization estimator after the modifications 

have been implemented has been investigated under different scenarios. The following 

conclusions can be drawn from these results under the test scenarios: 

• The modifications significantly improve the accuracy of the estimator under all 

scenarios. 

• When the traffic load of neighbour nodes is low, the accuracy of the Capacity 

Utilization estimator will be independent of the number of neighbours. However, the 

accuracy of the Capacity Utilization estimator decreases with a reduction in the 

number of observable neighbours. 
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• The traffic load of the observed node has no impact on the accuracy of the accuracy of 

the Capacity Utilization estimator. The accuracy of the estimator after the 

modifications decreases with an increase in the traffic load of neighbour nodes. 

• Under On-Off traffic, the Capacity Utilization estimator after the modifications 

exhibits a higher accuracy than that under continuous traffic due to the lower average 

number of unobservable nodes and average traffic load. 

• The benefits arising from the improvement modifications proposed in chapter 4 have 

been validated in that they have been shown to significantly improve the accuracy of 

the remote contention estimation, the neighbour load estimation and the Capacity 

Utilization estimator. 

5.4 Saturation Detection 

As described in Chapter 2, once node saturation can be detected, the remote clients can 

select and associate with another non-saturated AP in order to maintain the network 

connectivity and alleviate the saturation situation. Also, in multi-channel networks, once a 

node finds that its neighbour node is saturated in the current channel, it can re-select 

another channel to avoid congestion and possible packet losses. The node can also re-

route to find another path when there is a saturated neighbour node in its next hop in 

order to guarantee its QoS requirement. Therefore, this section investigates our Capacity 

Utilization estimator after the modifications in an application to detect node saturation in 

WLANs. Two other algorithms, queue observation (local measurement) and regularly 

pinging (active approach) are used to compare and evaluate the accuracy in node 

saturation detection by using two criteria, namely the FDR and FAR. 
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5.4.1 A Comparison of the Three Methods 

 

Figure 5.22: Average Queue Size in the Example Topology 

We randomly selected one of 1,000 topologies from scenario D-1 where N = 5 as an 

example topology to show the use of the three detection algorithms. The specific packet 

size, packet rate, and topology can be found in Appendix E. Figure 5.22 shows the 

average queue size from t = 10 seconds to t = 34 seconds in a simulation. At t = 13, 23, 

and 33 seconds, the average queue size is approximately 1, 0.8 and 2.7 respectively. 

Under the saturation case, once the average queue size is lower than 1, we assume that it 

is a false alarm. Otherwise, if the average queue size is higher than or equal to 1 under 

non-saturated case, we assume that it is a failed detection. 

 

Figure 5.23: RTTs of Ping Packets in the Example Topology 
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If the traffic load of the observer nodes is heavy, the ping packets may be dropped before 

being transmitted due to buffer overflow. Therefore, we set an extra neighbour node, 

called the ping node with a random position to send ping packets in the simulation. The 

ping node can send one or more ping packets every measurement interval to measure the 

round-trip time (RTT) or average RTT respectively. However, sending extra ping packets 

will consume the channel bandwidth which can have a negative impact on performance of 

a network due to the increased contention on the medium. In order to facilitate a valid 

comparison between three methods, they all use a standard time interval of 1 second. We 

send 1 ping packet per second where a packet size of 50 bytes has been used. The RTTs of 

the ping packets from the ping node in the example topology are shown in Figure 5.23. It 

can be seen that there is no ping echo packet returned at t = 15 seconds, and hence we 

assume that the observed node is saturated at this time. 

 

Figure 5.24: The Remote Capacity Utilization Estimation in the Example Topology 

In Figure 5.24, the red dashed line represents the actual Capacity Utilization value of the 

observed node, and the solid lines are the Capacity Utilization estimation performed by 

the different neighbour nodes of the observed node. At t = 20 seconds, it can be seen that 

Neighbour 4 performs an overestimation of %CU, and Neighbour 3 shows an 

underestimation of %CU. The %CU values estimated by Neighbour 1, 2, and 5 are close 
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to the actual Capacity Utilization value of node k. If the %CU estimation is equal to 

100%, we assume that the observed node is saturated. 

This example topology only illustrates how these three detection algorithms operate and 

does not represent any comparison of results. In the next section, 1,000 topologies with 

random parameters where N = 2, 3, 4, 5, 6, 7, 8, 9, and 10 described in scenario D-1 and 

D-2 are generated to analyse the accuracy of detecting node saturation by using these 

three algorithms. 

5.4.2 The Capacity Utilization Estimator in Node Saturation Detection  

Two scenarios D-1 and D-2 are presented to investigate the FDR and FAR respectively. 

The original PDFs results can be found in Appendix E. The simulation results in Figure 

5.25 and 5.26 show that the relationship between FDR, FAR and the Capacity Utilization 

threshold parameter CUTH. 
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Figure 5.25: Relationship between FDR and CUTH 

It can be seen that there is an increase in both FDR and FAR with an increase of the 

number of neighbours N. This is because that our Capacity Utilization estimator performs 

with a higher accuracy under the smaller number of neighbours and light network traffic 

load. If the CUTH is set as 1 which represents the situation when the estimator measures 
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its neighbour’s Capacity Utilization value to be 100%, it decides that this neighbour is 

saturated. The FDR decreases with the growth in the number of neighbour nodes as 

shown in Figure 5.25. The FDR is 15% where N = 2 and is approximately 50% where N = 

10. However, by using CUTH = 1 as shown in Figure 5.26, the FAR is less than 2% for all 

scenarios. 
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Figure 5.26: Relationship between FAR and CUTH 

Using a CUTH less than 100% will decrease the FDR but increase the FAR.  In order to 

find an optimal threshold CUTH that achieves a trade-off between FDR and FAR, a 

minimum error-rate classifier based upon Bayesian decision theory is employed here as 

shown in Figure 5.27.  

The optimal CUTH is selected based upon the saturation probability, i.e. the value of the 

optimal CUTH is reduced by an increase in the saturation probability. For example, if the 

network saturation probability is 10%, the optimal CUTH can be set as 0.8. If the 

saturation probability is 50%, the FDR is less than 5% and FAR is 20% where an optimal 

CUTH = 0.6 as shown in Figure 5.27. The saturation probability depends upon the number 

of neighbour nodes and their traffic load. Thus the CUTH can be adaptively adjusted. For 
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example, when the number of neighbours is larger or during the peak period of network 

traffic, the CUTH can be decreased to a smaller value automatically. 
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Figure 5.27: Relationship between Probability of Saturation and Optimal CUTH 

5.4.3 Comparison of Three Node Saturation Detection Algorithms 

The FDR and FAR results generated by three algorithms and using a CUTH = 0.8 are 

shown in Table 5.2 and Figure 5.28. 

It can be seen that the queue observation method has the lowest FDR due to the nature of 

node saturation. Once a node is saturated, there is at least one packet that cannot win a 

transmission opportunity. However, the FAR of this method increases with an increase of 

the number of neighbours. This is because the waiting time of the packets in the queue 

not only depends on the maximum buffer size but is also related to the contention. The 

larger the contention, the longer the deferral time that will be required. 

The regularly pinging method produces both higher FDR and FAR due to the RTT 

dependence on the contention on the medium. Firstly, the node could return ping echo 

packets because it may still win the transmission opportunities when it is saturated. This 

leads to a higher FDR. Moreover, the collision probability of ping packets increases with 
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an increase in contention. Therefore, the observed node may not receive the ping packets 

or fail to return the packets due to unavoidable collisions when the node is not saturated. 

Both FDR and FAR of the regularly pinging method indicate that this method does not 

scale well. 

Table 5.2 FDR and FAR of the Three Algorithms 

 Queue Monitoring Regularly Ping 
%CU estimator 

(Using CUTH = 1) 

%CU estimator 

(Using CUTH = 0.8) 

 FDR FAR FDR FAR FDR FAR FDR FAR 

N = 2 0% 4.1% 44.9% 2.1% 15.6% 0.34% 1.9% 1.1% 

N = 3 0% 4.9% 38.4% 3.6% 20.1% 0.11% 8.5% 0.5% 

N = 4 0% 5.6% 35.5% 5.1% 21.9% 0.11% 9.2% 0.8% 

N = 5 0% 6.7% 32.1% 5.9% 26.8% 0.38% 10.8% 1.9% 

N = 6 0% 7.4% 29.3% 6.9% 32.5% 0.52% 10.2% 2% 

N = 7 0% 8.2% 30.1% 8.7% 38.4% 0.9% 10.8% 2.8% 

N = 8 0% 9.2% 26.9% 10.3% 40.8% 0.86% 10.7% 2.5% 

N = 9 0% 10.9% 25.3% 12.3% 44.8% 1.4% 12.2% 3.3% 

N = 10 0% 11.4% 23.9% 14.3% 51.9% 1.7% 15.4% 3.8% 

 

Our %CU estimator produces the lowest FAR among the three detection algorithms due 

to its high accuracy under the light traffic which has been discussed in previous section. 

However, our estimator has a poor FDR in scenario D-2 because the heavy traffic loads 

have the biggest impact on the accuracy of the estimation. After using a CUTH = 0.8, our 

FDR is reduced from 15.6% to 1.9%, from 26.8% to 10.8% and from 51.9% to 15.4% 
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where N =2, 5, and 10 respectively, as shown by the grey solid line and yellow solid line 

in Figure 5.28. 

 

Figure 5.28: The Comparison of FDR and FAR among Three Algorithms 

The above results show the accuracy for our Capacity Utilization estimator by using an 

optimal CUTH = 0.8 in detecting saturated nodes that produces a FDR less than 15% and a 

FAR less than 5%. Compared to other two algorithms, we have a lower FDR than that of 

the regularly pinging method, and the lowest FAR among three algorithms. Moreover, our 

Capacity Utilization estimator is more reliable and has no overhead in detecting node 

saturation. In summary, the simulation results under the tested scenarios indicate the 

feasibility and accuracy of our Capacity Utilization estimator in detecting node saturation. 

Once the node saturation can be detected accurately, other applications such as AP 

selection, channel selection and resource aware routing can benefit by providing a better 

performance for WLANs users. 
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5.5 Summary 

The simulation results and performance evaluation of our Capacity Utilization estimator 

have been presented in this chapter. Four different scenarios of groups are investigated by 

using the ns2 simulator to investigate the accuracy of our Capacity Utilization estimator 

before and after applying the modifications, to compare the improvement in the accuracy, 

and to validate the effectiveness of the modifications. Finally, we investigate node 

saturation detection in an application to evaluate the performance of our estimator. 

The effect of varying various network parameters such as the number of neighbours, the 

number of observable neighbours of the observed node, the traffic load of the observed 

node, traffic load, and traffic type on the accuracy of our Capacity Utilization estimator 

before and after the modifications has been investigated in this chapter. 

The error associated with the Capacity Utilization estimation through remote observation 

method is unavoidable but can be minimized. Our modified estimator performs with high 

accuracy and significantly minimizes the error of the original estimation on average. We 

thus conclude that the modifications implemented to improve the estimate of neighbour’s 

Capacity Utilization value are feasible. A simple node saturation detection scheme using 

the Capacity Utilization estimator is investigated where its performance is compared with 

two other schemes and the results show that the feasibility, usage and accuracy of our 

estimator. 
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Chapter 6 Conclusions and Future 
Work 
In wired networks, the capacity of a link is generally defined as the maximum 

transmission rate that can be achieved on the link. Two wired nodes use some form of a 

cable to connect them, thus the capacity of a link can be considered as a constant value 

that depends only the communications protocols used. However, due to the shared nature 

of the wireless medium, the IEEE 802.11 MAC layer mechanism, dynamic rate adaption, 

fading and interference the estimation of wireless capacity is far more challenging in 

WLANs. Therefore, the definitions and methodology of capacity estimation used in wired 

networks are not appropriate for WLANs.  

The work presented in this thesis is a significant contribution to developing an estimator 

based upon remote observations performed by neighbour nodes, designed to provide an 

accurate estimation of node Capacity Utilization in WLANs, which reflects the usage of 

the WLAN node capacity. By passively analyzing the transmitted packets, the node 

Capacity Utilization estimator uses remote observations performed by neighbour nodes 

instead of local measurements at the node itself. Our Capacity Utilization estimator 

described in Chapter 4 extends the MAC bandwidth components model [13] and presents 

the specific methodology used to measure traffic load, contention, node capacity and the 

Capacity Utilization value. However, hidden nodes present a challenge for neighbour 

nodes to estimate the available capacity of observed nodes accurately. The error 

associated with the estimation is unavoidable due to the differences in the wireless 

medium as observed by the different locations of the nodes. Three simple and reasonable 

assumptions were introduced to minimize the error associated with this Capacity 

Utilization estimation. We assume that (1) the mean load of the unobservable neighbour 

nodes is equal to the mean load of the observable nodes; (2) all the frames from the 
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unobservable neighbours of the observed node are transmitted with a uniform time 

interval within measurement interval of interest; (3) most collisions involve just two nodes 

to estimate the load bandwidth due to failed transmissions. These modifications have 

been shown to significantly reduce the error associated with the estimation of Capacity 

Utilization for all the test scenarios considered in Chapter 5. Assumptions 1 and 3 are 

used to correct the error associated with the neighbour load estimation, and Assumption 2 

is employed to correct the contention estimation. 

The main source of error in the Capacity Utilization estimator is the traffic load 

experienced by the node being observed which may not be the same as that experienced 

by the node performing the estimation, i.e. the monitor mode. An error model is 

introduced in Chapter 4 to analyse the performance of our estimator and make some 

performance predictions. This source of error is considered to be random. A performance 

evaluation of our Capacity Utilization estimator is essentially a study of the accuracy of 

our estimator. Therefore, an absolute relative error (ARE) metric is used to compare the 

actual Capacity Utilization experienced by a node with our remote Capacity Utilization 

estimator and to investigate the impact of unobserved traffic load on the accuracy. The 

investigation of factors influencing the accuracy of our estimator such as the number of 

neighbours, the number of observable neighbours of observed node, the traffic load of 

observed node and its neighbour nodes, and different traffic types are introduced and 

examined in Chapter 5. From the simulation results, we can determine the impacted 

factors and conclude that our modified estimator is capable of producing accurate 

measurements. 

Node saturation is a situation that can arise where the node cannot win a sufficient 

number of transmission opportunities to satisfy its traffic load under heavy network load 

conditions. If the %CU is equal to 100%, it means that the current load is consuming all 
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of the available capacity and the node cannot transmit any more frames. Detecting node 

saturation is one of the applications of this estimator used to demonstrate the usage of our 

Capacity Utilization estimator. A minimum error-rate classifier based upon Bayesian 

decision theory is introduced to perform a trade-off between FDR and FAR in finding the 

optimal value of Capacity Utilization threshold. The results are compared with other two 

saturation detection algorithms (i.e. a queue observation method and a regularly pinging 

method) in order to demonstrate the feasibility and accuracy of our Capacity Utilization 

estimator in detecting node saturation. 

In this chapter, a brief review of the work will be conducted in the following and some 

future research topics are proposed. 

6.1 Conclusions 

From what has been discussed above, the following conclusions can be summarized as: 

• Current capacity estimation tools exhibit many shortcomings in the aspects of 

accuracy, reliability and overhead in the estimation of capacity and available 

bandwidth. The accuracy of active probing methods is significantly impacted by the 

traffic load in wireless networks which reduces the accuracy of the estimation. 

Transmitting a number of probing packets also has an impact on the existing traffic 

and network performance, i.e. it can result in a high overhead. Compared to active 

approaches, the passive approaches which monitor the channel locally have a lower 

overhead. However, many factors such as collision probabilities, the number of 

deferral intervals and backoff time, retransmissions, interference range and hidden 

nodes can affect the accuracy of the estimation. The passive approaches can be 

divided into two methods: local measurement and remote observation. However, the 

local measurement requires an additional dissemination mechanism to broadcast the 
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estimation of capacity information to its neighbour nodes for taking further actions. 

This may increase the overhead, make the applications more complex and the 

communications may not be completely reliable due to the packet losses or delay.   

• Our Capacity Utilization estimator measures the node capacity and Capacity 

Utilization of a WLAN node. The node capacity is defined as the bandwidth available 

under the current load conditions and represents the maximum load that can be 

achieved by the node provided that the other network nodes maintain their current 

load. The Capacity Utilization is the ratio of the bandwidth utilized by a node in 

transmitting its load and the node capacity.  

• Compared to other proposed passive local measurement or active bandwidth 

estimation algorithms, our Capacity Utilization estimator based upon neighbour 

observations eliminates the shortcomings of both of them. The remote Capacity 

Utilization estimator is more reliable, accurate, and completely passive and has no 

impact on the existing network traffic and network performance. From the perspective 

of wireless applications, our estimator can be used to directly optimize and improve 

the performance of those applications, such as the AP selection mechanism in ANDSF, 

resource aware routing, channel selection and admission control. 

• Our Capacity Utilization estimator considers both successful and failed transmissions, 

models the IEEE 802.11 DCF exponential backoff mechanism and takes explicit 

account of hidden nodes. 

• The main shortcoming is the unavoidable error associated with the Capacity 

Utilization estimation because the monitor node and the observed node do not 

necessarily see the same neighbour nodes, i.e. they do not experience the same 

medium. The main factors that affect the accuracy of estimations are as follows: the 

number of unobservable neighbours of the observed node and the traffic load of 
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unobservable neighbour nodes. 

• The factors influencing the accuracy of the Capacity Utilization estimator before and 

after the modifications are investigated in chapter 5. The remote Capacity Utilization 

estimator has a higher accuracy under a smaller number of neighbours, a larger 

number of observable neighbours, and a light traffic load sent from neighbour nodes. 

• In order to minimize the error associated with the estimation, the Capacity Utilization 

estimator uses three reasonable assumptions. The accuracy of the Capacity Utilization 

estimation has been shown to be significantly enhanced as a result of the 

modifications. 

• Our Capacity Utilization estimator is evaluated by two metrics, namely the failed 

detection ratio (FDR) and false alarm ratio (FAR) in a node saturation detection 

application. An adjustable threshold CUTH selected through different saturation 

probability allows for a trade-off between FDR and FAR in order to enhance the 

accuracy. The simulation results show the feasibility, usage and accuracy of our 

Capacity Utilization estimator in detecting node saturation compared with queue 

monitoring method and a regularly pinging method. 

• Based on the analysis presented in this thesis, it has been shown that our estimator 

which uses remote observations performed by neighbour nodes is feasible, applicable 

and accurate in measuring neighbours’ Capacity Utilization. It also can be utilized in 

wireless networks with multiple-neighbours and is applicable in many wireless 

applications. 

6.2 Suggestions for Future Work  

This section presents some suggestions for possible future work that could extend the 

work of this thesis. 
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6.2.1 Validate, Improve and Extend the Performance of the Capacity 

Utilization Estimator 

In this section, some additional future work is proposed that could address some of the 

weaknesses and limitations of our estimator: 

• Validation and implementation on a testbed experiment. In this thesis, we have used 

the ns2 simulator to test the feasibility and evaluate the performance under the test 

scenarios. Our Capacity Utilization estimator should be validated and implemented in 

a testbed experiment in both indoor and outdoor environments in order to examine the 

performance of the estimator under channel errors due to interference or fading 

caused by physical objects such as walls and doors. An IEEE 802.11 a/b/g wireless 

adapter card on a PC based on Linux platform installed with the modern Atheros 

driver (due to the development of madwifi [153] has ceased in 2008) such as ath5k 

[154] (for IEEE 802.11a/b/g), ath9k [155] (for IEEE 802.11a/b/g/n) or ath10k [156] 

(for IEEE 802.11ac) can be used to configure an monitor mode interface. Using this 

interface, a Libpcap [157] program can be employed to monitor the network, capture 

the packets, analyse their transmissions and estimate the Capacity Utilization of 

neighbour nodes within its reception range. 

• Further improving the accuracy of the Capacity Utilization estimator. The size of 

sliding window has an impact on the accuracy of the average contention estimation. A 

smaller sliding window size may cause an underestimation of average contention 

under a high level of frame retransmissions. Conversely, a larger sliding window size 

may lead to an overestimation of average contention when the level of retransmissions 

is lower. Therefore, the size of sliding window (described in Chapter 4) should be 

adaptively adjusted where the higher the collision probability or the level of 

retransmissions  within the reception range of the observed node, the larger the size of 
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the sliding window that should be used. Moreover, when the number of neighbours is 

large and there is a high traffic rate among the network nodes, many collisions will 

involve three or more nodes. Thus the Assumption 3 will need to be modified to adjust 

the collision probabilities dynamically. The probability distribution of collisions can 

be calculated by an analytical method or modeled and measured through simulation, 

i.e. the probability of the collisions involving two P2n, three P3n or more Hn nodes PHn. 

When the collision probability exceeds a predefined collision probability threshold, 

the estimator should assume that most collisions involve in three nodes or more. The 

neighbour load bandwidth should be:  
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• Extending the Capacity Utilization estimator to include EDCA operation under the 

IEEE 802.11e standard. Currently, our Capacity Utilization estimator is designed for 

the original IEEE 802.11 DCF MAC mechanism where each node competes for 

access under the same MAC mechanism conditions. Each network nodes measures 

average contention and access bandwidth by using a fixed contention window size 

(e.g. CWmin = 31, CWmax = 1023 in IEEE 802.11b networks), interframe space (a fixed 

DIFS value) and retry counters in the present scheme. However, DCF does not 

support QoS and priority traffic categories for real-time streaming multimedia 

applications in WLANs. The prioritised access mechanism EDCA specified by IEEE 

802.11e [23] defines four access categories (ACs) with different AIFSN, ECWmin, and 

ECWmax parameters permitted (which have been discussed in Chapter 2) to 

differentiate the service types in order to support QoS guarantees for real-time 
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applications. Therefore, our Capacity Utilization estimator will be further extended to 

include the EDCA mechanism in IEEE 802.11e. However, the contention is difficult 

to measure because the deferral time interval and backoff interval of a frame depends 

on the traffic priority. Our sliding window scheme which employs a fixed sliding 

window size calculated to measure average contention will not be appropriate for 

EDCA operation. Moreover, our Assumption 2 will not be suitable due to the 

unpredicted interval of AIFS and backoff of unobserved transmitted load (i.e. 

unknown traffic priority). A new mechanism to estimate the average contention and 

BWaccess bandwidth based upon EDCA mechanism instead of using sliding windows 

needs to be developed and designed in the future.  

• Including support for rate adaption mechanism. Currently, the Capacity Utilization 

estimator does not include the impact of the line rate adaption mechanism. However, 

the line rate is not constant and is dynamically adjusted according to the 

communication conditions. In IEEE 802.11b, the line rate can be reduced from 11 

Mbps to 5.5 Mbps, then 2 Mbps and 1 Mbps due to poor RF condition. In this thesis, 

the line rate is assumed to be fixed (the maximum value of 11 Mbps) which will lead 

to errors being associated with the Capacity Utilization estimation in real 

environments. When the WLAN adapter receives a packet, the driver (i.e. ath5k) can 

decode the frame and obtain the transmission rate through the modulation scheme 

used for the frames. Then we can calculate the load bandwidth of the observed node 

and neighbours and estimate the load bandwidth of the unobserved neighbours by 

Assumption 1. The impact of this rate adaption mechanism under IEEE 

802.11a/b/g/n/ac on the accuracy of estimator will be investigated in the future, i.e. a 

lower line rate will produce larger traffic loads that will give rise to a higher actual 

Capacity Utilization value and larger errors associated with the estimators. 
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6.2.2 Wireless Application Areas for the Capacity Utilization Estimator 

In this section, the challenges and potential applications for our estimator in other WLAN 

areas will be introduced: 

• Our Capacity Utilization estimator will be investigated to support AP selection and 

handoff in ANDSF. In traditional networks, the client selects an AP based upon RSSI. 

However, it is not suitable for large scale wireless networks such as public hotspots 

(i.e. an airport or a university campus) because it may cause higher contention in the 

medium, overload of an AP, AP saturation or congestion due to an asymmetric flow of 

traffic, i.e. numerous clients downloading via a single AP, and the underutilization of 

the other APs’ resources which may degrade the performance of the whole network. 

Using RSSI as an indicator to support AP selection also cannot maintain the load 

balancing that leads to the unsatisfied requirements of users. Therefore, before a client 

attempts to associate with an AP, the client could check both the Capacity Utilization 

information of APs and RSSI before making an association decision. Compared to the 

IEEE 802.11k mechanism [12], the remote Capacity Utilization estimator does not 

need any information exchange before the association phase. A hybrid AP selection 

mechanism that combines our Capacity Utilization estimator and RSSI of two or more 

APs can be designed to provide a better performance to wireless uses. Three 

approaches can be employed to solve this problem for AP selection mechanism in the 

future: 

I. Firstly, the clients can simply choose an AP with the lower Capacity Utilization 

whose RSSI can maintain the connection. 

II. Secondly, this algorithm classifies the traffic into different priorities to select 

different APs, i.e., for time-sensitive traffic types such as Voice or Video traffic 

types which have smaller packet sizes, it should choose the AP with the stronger 
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signal in order to avoid rate adaption due to poor link quality. For some non-time 

sensitive traffic types which have larger packet sizes such as Email, Web request 

or offline download, it should choose the AP with the lower Capacity Utilization 

which indicates a lower contention that may have a lower collision probability, 

lower retransmission probability, and even lower packet losses. 

III. Thirdly, a new metric which considers both Capacity Utilization and RSSI can be 

developed to evaluate the performance the APs within the reception range. This 

metric called the Connection Quality (CQ) of AP k can be defined as: 

𝐶𝐶(𝑘) =
%𝐶𝐶(𝑘)

%𝑅𝑆𝑆𝐷(𝑘)                                                        (6.2) 

Where 𝑅𝑆𝑆𝐷 is the actual signal strength value (dB), 𝑅𝑆𝑆𝐷𝑚𝑚𝑚 is the minimum signal 

strength required to maintain a reliable connection (e.g. -95 dBm [158] for most 

chipsets), %𝑅𝑆𝑆𝐷(𝑘) reflects the ratio of real signal strength that can be derived as: 

%𝑅𝑆𝑆𝐷(𝑘) =
𝑅𝑆𝑆𝐷 − 𝑅𝑆𝑆𝐷𝑚𝑚𝑚

𝑅𝑆𝑆𝐷𝑚𝑚𝑚
                                               (6.3) 

Both smaller %𝐶𝐶(𝑘) and larger %𝑅𝑆𝑆𝐷(𝑘) value lead to smaller CQ values which 

would indicate that an AP k is capable of providing a more reliable connection and 

lower Capacity Utilization. Thus the client should associate with the AP with the 

smaller CQ value. This CQ metric could be used to support information discovery in 

ANDSF. 

Moreover, an intelligent seamless handover mechanism for WLANs through the use 

of our Capacity Utilization estimator can also be developed in the future in order to 

guarantee the QoS of the mobile users’ applications. When the mobile users’ traffic 

loads requirement cannot be satisfied, the users can switch to the AP which has the 

lower Capacity Utilization. 

• A channel selection and assignment mechanism by employing our remote Capacity 
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Utilization estimator in order to avoid the node saturation or congestion in multi-

channel networks can be investigated in the future. The traditional channel selection 

and assignment methods are divided into static channel assignment [44] which assigns 

the channel to the WLANs nodes permanently, dynamic channel assignment [45] 

which allocates the channel dynamically after receiving the request, and hybrid 

channel assignment [46]. However, none of them considers the Capacity Utilization 

of the channels used. Our estimator can be used as a simple metric to select the 

appropriate channel for the users to satisfy their traffic load requirement. Once the 

user detects that its neighbour nodes in the current channel are saturated, then the user 

can scan the other channels in WLANs to find another appropriate channel to avoid or 

alleviate node saturation and congestion. 

• Our Capacity Utilization estimator will be used as a route metric to find paths from a 

source node to destination node in the future. Generally, there are two parts in finding 

a good path in WLANs: routing metrics and routing information dissemination [159]. 

The metric hop counter [160], average RTT [161], expected transmission count [41] 

and effective number of transmissions [162] have been proposed as a routing metric to 

provide better performance of user service. However, most of them need to measure 

the metric of a “link” between a pair of nodes and require information dissemination. 

Moreover, some routing metric and routing protocols have a high overhead (e.g. 

DSDV [37]) and latency (e.g. AODV [39]) in finding a path which does not consider 

the resource utilization and the user’s traffic load requirement. Therefore, we can use 

our Capacity Utilization estimator to design and support routing protocols in the 

future, i.e. Capacity Utilization aware routing (CUAR). The node monitors its 

neighbours’ Capacity Utilization value periodically or under poor QoS link conditions, 

then re-routes by selecting a new path using the neighbours’ Capacity Utilization 
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information to satisfy its QoS requirement. The network node checks its next-hop 

neighbour nodes’ Capacity Utilization and combines it with the hop counter metric 

[160] which is a popular shortest-path metric used to minimize the end-to-end delay. 

Taking the Capacity Utilization metric into account in routing protocols may 

effectively and promptly avoid the node saturation condition that can gave rise to 

packet delay and losses. 
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Appendices 
Appendix A  

Table A.1 The Parameters Set Up of IEEE 802.11b Networks 

Parameters Set Up 

Radio Propagation Model Two-Ray Ground 

Antenna Model Omni-Directional Antenna 

Maximum Packet in Buffer 50 

Routing Protocol DSDV 

Maximum UDP Packet Size 1500 Bytes 

CWmin 31 

CWmax 1023 

Short Retry Limit 7 

Long Retry Limit 4 

Slot Time 20 μs 

SIFS 10 μs 

DIFS 50 μs 

Short Preamble 72 Bits 

PLCP Header Length 48 Bits 

PLCP Data Rate 2Mbps (for short preamble) 

Line Rate 11Mbps 

Basic Rate 1 Mbps 
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RTS Threshold 3000 Bytes 

Transmit Power 1.561611e-1 W 

Reception Range 50 meters 

Interference Range 50 meters 

Channel Frequency 2.472 GHz 
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Appendix B 

Table B.1 The Data Values of all Probabilities of the Number of Observable 

Neighbours M under Different N 

N 

M 
2 3 4 5 6 7 8 9 10 

1 0.438 0.211 0.1089 0.0584 0.03281 0.018769 0.010989 0.006462 0.0039 

2 0.562 0.452 0.307 0.2019 0.1302 0.084134 0.054397 0.035067 0.022763 

3  0.337 0.37 0.3121 0.2436 0.181058 0.130919 0.094185 0.066567 

4   0.214 0.2842 0.2787 0.245023 0.203155 0.161912 0.126128 

5    0.1432 0.2151 0.234452 0.225894 0.203451 0.175407 

6     0.0997 0.164196 0.193161 0.198452 0.191057 

7      0.072368 0.126733 0.157944 0.170786 

8       0.054156 0.100758 0.129869 

9        0.041769 0.08047 

10         0.032963 
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Appendix C 

 

Figure C.1: The PDF of the ARE for NonModCU in (a) Scenario A-1 and (b) Scenario A-

2 

 

 

Figure C.2: The PDF of the ARE of NonModCU under Different N Scenarios with (a) 

Lower Traffic Load (a) Higher Traffic Load 
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Figure C.3: The (a) PDF and (b) CDF of the ARE of NonModCU where N = 2 

 

Absolute Relative Error

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

M = 1
M = 2
M = 3

 

Figure C.4: The PDF of the ARE of NonModCU where N = 3 
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Figure C.5: The (a) PDF and (b) CDF of the ARE of NonModCU where N = 4 
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Figure C.6: The PDF of the ARE of NonModCU where N = 5 
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Figure C.7: The (a) PDF and (b) CDF of the ARE of NonModCU where N = 6 

 

 

Figure C.8: The (a) PDF and (b) CDF of the ARE of NonModCU where N = 7 
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Figure C.9: The (a) PDF and (b) CDF of the ARE of NonModCU where N = 8 

 

 

Figure C.10: The (a) PDF and (b) CDF of the ARE of NonModCU where N = 9 
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Figure C.11: The (a) PDF and (b) CDF of the ARE of NonModCU where N = 10 

 

 

 

Figure C.12: The PDF of the ARE of NonModCU for Different (a) Packet Sizes (b) Packet 

Rates of Traffic Load of the Observed Node 
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Figure C.13: The PDF of the ARE of NonModCU for Different (a) Packet Sizes (b) Packet 

Rates of Neighbour Traffic Load 
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Figure C.14: The PDF of the ARE of NonModCU under On-Off traffic 
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Appendix D 

 

Figure D.1: PDF of ARE for ModCU in (a) Scenario A-3 and (b) Scenario A-4 

 

 

Figure D.2: The PDF of the ARE of ModCU under Different N Scenarios with (a) Lower 

Traffic Load (a) Higher Traffic Load 

 

Absolute Relative Error

(a)

(b)

Absolute Relative Error

Pr
ob

ab
ili

ty
 D

en
sit

y 
Fu

nc
tio

n

Scenario  A-1, NonModCU
Scenario  A-3, ModCU

Pr
ob

ab
ili

ty
 D

en
sit

y 
Fu

nc
tio

n

Scenario  A-1, NonModCU
Scenario  A-3, ModCU

Absolute Relative Error

(a) (b)

Absolute Relative Error

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

N = 2
N = 3
N = 4
N = 5
N = 6
N = 7
N = 8
N = 9

N = 10

N = 2
N = 3
N = 4
N = 5
N = 6
N = 7
N = 8
N = 9

N = 10



Appendices 

203 

 

 

Figure D.3: The (a) PDF and (b) CDF of the ARE of ModCU where N = 2 
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Figure D.4: The PDF of the ARE of ModCU where N = 3 
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Figure D.5: The (a) PDF and (b) CDF of the ARE of ModCU where N = 4 
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Figure D.6: The PDF of the ARE of ModCU where N = 5 
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Figure D.7: The (a) PDF and (b) CDF of the ARE of ModCU where N = 6 

 

 

Figure D.8: The (a) PDF and (b) CDF of the ARE of ModCU where N = 7 

Absolute Relative Error

(a)

(b)

Absolute Relative Error

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
Fu

nc
tio

n

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

M = 1
M = 2
M = 3
M = 4
M = 5
M = 6

M = 1
M = 2
M = 3
M = 4
M = 5
M = 6

Absolute Relative Error

(a)

(b)

Absolute Relative Error

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

M = 1
M = 2
M = 3
M = 4
M = 5
M = 6
M = 7

M = 1
M = 2
M = 3
M = 4
M = 5
M = 6
M = 7



Appendices 

206 

 

 

Figure D.9: The (a) PDF and (b) CDF of the ARE of ModCU where N = 8 

 

 

Figure D.10: The (a) PDF and (b) CDF of the ARE of ModCU where N = 9 
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Figure D.11: The (a) PDF and (b) CDF of the ARE of ModCU where N = 10 

 

 

Figure D.12: The PDF of the ARE of ModCU for Different (a) Packet Sizes (b) Packet 

Rates of Traffic Load of the Observed Node 
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Figure D.13: The PDF of the ARE of ModCU for Different (a) Packet Sizes (b) Packet 

Rates of Neighbour Traffic Load 
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Figure D.14: The PDF of the ARE of ModCU under On-Off traffic 
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Appendix E 

 

Figure E.1: The Example Topology 

 

Table E.1 The Parameters of Traffic Load of the Example Topology 

 N M 
Packet Size 

(bytes) 

Packet Rate 

(pps) 

Traffic 

Type 

The Observed Node 5 5 1101 191 Poisson 

Neighbour 1 5 2 239 94 Poisson 

Neighbour 2 5 5 1209 115 Poisson 

Neighbour 3 5 3 542 97 Poisson 

Neighbour 4 5 3 1097 114 Poisson 

Neighbour 5 5 4 85 84 Poisson 
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Figure E.2: The PDF of ModCU Measurement under Scenario D-1 

 

Figure E.3: The PDF of ModCU Measurement under Scenario D-2 
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