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ABSTRACT

Mobile phone applications (apps) can generate background traffic when the end-user is
not actively using the app. If this background traffic could be accurately identified,
network operators could de-prioritise this traffic and free up network bandwidth for
priority network traffic. The background app traffic should have IP packet features that
could be utilised by a machine learning algorithm to identify app-generated (passive)

traffic as opposed to user-generated (active) traffic.

Previous research in the area of IP traffic classification focused on classifying high
level network traffic types originating on a PC device. This research was concerned

with classifying low level app traffic originating on mobile phone device.

An innovative experiment setup was designed in order to answer the research question.
A mobile phone running Android OS was configured to capture app network data.
Three specific data trace procedures where then designed to comprehensively capture
sample active and passive app traffic data. Feature generation in previous research
recommend computing new features based on IP packet data. This research proposes a
different approach. Feature generation was enabled by exposing inherent IP packet
attributes as opposed to computing new features. Specific evaluation metrics were also
designed in order to quantify the accuracy of the machine learning models at

classifying active and passive app traffic.

Three decision tree models were implemented; C5.0, C&R tree and CHAID tree. Each
model was built using a standard implementation and with boosting. The findings
indicate that passive app network traffic can be classified with an accuracy up to
84.8% using a CHAID decision tree algorithm with model boosting enabled. The
finding also suggested that features derived from the inherent IP packet attributes, such

as time frame delta and bytes in flight, had significant predictive value.

Key words: Internet Traffic classification, IP Traffic Classification, Internet Traffic

Categorisation, Internet protocol, Machine Learning.
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1 INTRODUCTION

1.1 Overview of Project Area

Mobile phone applications (apps) can generate background traffic when the end-user is
not using the application. Even if an app has not been opened by the end-user, the app
could still generate traffic on the network. This background network traffic should
have Internet Protocol (IP) packet statistical features that will make it identifiable as

app-generated as opposed to user-generated traffic.

The main reasons mobile apps create passive network traffic is to have content ready
for the end-user when the app is opened, such as syncing emails or loading profile
feeds from social network apps. “Pre-caching” is a well-established technique where
mobile apps and web browser software uses machine learning techniques to guess
what content an end-user will click on next and pre-cache the content (Klein and
Chung, 2006). Pre-caching is implemented to improve the user experience.

By examine IP packets captured from a mobile device, it should be possible to derive
distinct statistical packet features that can be used as input to a machine learning
model. The machine learning model could then be used to correctly identify active

versus passive traffic.

It is important for network operators to know what type of traffic is flowing through
their network. IP traffic categorisation underpins a number of important network
management tasks, such as: 1) Understanding the traffic load on the network 2)
Automated intrusion detection such as Denial of Service (Dos) attack 3) Reallocation
of network resources such as traffic shaping 4) Quality of Service (QoS) management.
Prioritising traffic for high value customers or for particular services 6) ldentify
customer use of the network resource that in some way contravenes the operators terms
of service 7) Legal obligation for lawful interception of IP traffic for persons of
interest to law enforcement agencies 8) Evolution of the type of traffic on a network is
important for long term capacity planning on the network
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1.2 Background

Early research in IP traffic classification focused on port number based approaches. In
port number based packet inspection, port numbers are captured from the IP packet
headers. A packet is classified based on a lookup of the port number against IANA
reserved ports. The classification accuracy for port-based approaches is reported to be
between 50% and 70%.

Researchers then proposed analysis of IP packet payloads. This technique involves
inspecting the payload of each IP packet for features that can be used to classify the
traffic.

Some research suggests using features derived from the full TCP flows. TCP is a
connection-orientated protocol. The TCP protocol sets up a connection between source
and destination points. All packets with the same source address/port and destination
address/port within a time period, or until the connection is terminated, are considered
as one flow. The approach must wait until a flow completes or times-out before
generating features about the statistical characteristics of the flow and packets in the
flow. Examples of flow features include; average flow duration and average packet

size per flow.

A number of papers have investigated IP traffic classification based on packet header
statistical features. The majority of packet based analysis take the position that any
practical IP traffic classification system must be capable of running in real-time on a
live network. To achieve real-time traffic classification a Machine Learning (ML)
system must be lean, for example, the system must meet the following requirements;
use a small feature set, have a fast model training time, have a fast classification time,

low memory requirements and low processing requirements.

The idea of using ML techniques for IP traffic classification was first introduced in the
context of intrusion detection. A machine learning algorithm automatically builds a
classifier by learning the inherent structure of a dataset based on the characteristic
features. ML techniques for real-time and offline analysis have demonstrated high

classification accuracy of up to 99% for a various types of Internet applications traffic.
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1.2.1 Limitations of Current Approaches

There are a number of limitations with the extent of the current body of knowledge in

network traffic categorisation.

The research has primarily focused on personal computer based traffic. There is only a
small body of knowledge, starting in the last 2 years, concerning mobile generating

traffic.

Previous network traffic categorisation research is concerned with identifying types of
network traffic at a very high level. For example, TCP, FTP, Telnet, Web. These
traffic types are too broad. There is a lack of research on specific traffic from
individual services such as Google maps or Apple iTunes. Specific service information

is more valuable to network operators.

Previous research has also focussed on payload based inspection. However, payload
inspection is not practical due to large processing overheads of inspecting all the data
in each IP packet. Also, the increasing amount of encrypted traffic make this task
impossible. Data protection laws may also be a barrier to this type of analysis due to

the potentially sensitive personal information contained in payload data.

Finally, existing research does not appear to utilise the massive amount of IP packet
features available. IP packets have over 100,000 inherent features available that can be
exposed using IP packet analysis software. Some of these features may not be
distinctive or may be unpopulated. However, IP packet features require no processing

to generate and may be very valuable to a machine learning algorithm.

1.2.2 Research Gap in Current Knowledge Base

Based on a review of the body of knowledge on network traffic categorisation, a
number of research gaps have been identified:
e To the best of this author’s knowledge, there is no research into classifying user
generated (active) versus app generated (passive) traffic.

This project will investigate this previously unexamined research area.
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e The vast majority of research is based on a fixed network IP traffic generated
by personal computers.
This research is based on mobile device originating network traffic which is an
important area of research

e Previous research does not take advantage of the large amount of inherent IP
packet features. Instead, previous research had added extra steps, complexity
and processing calculating new features.
This project will leverage the large amount of inherent IP packets features to
allow a machine learning algorithm to successful identify user generated or app

generated traffic

1.3 Research Project

This project will conduct empirical research on network traffic categorisation based on
mobile phone app data. Specifically, this project will build a supervised machine
learning model to distinguish app traffic that is generated by an end-user actively using
a mobile phone application, as opposed to traffic that is generated by the application in

the background without any end-user initiation.

By examine IP packets captured from an Android device, this project will derive
important statistical packet features and then build a classification model to identify
user-generated versus app-generated traffic. Because of the very high number of
features that can be generated, feature selection and reduction will be important parts
of this research.

Being able to distinguish user-generated, also known as active traffic, versus the app-
generated traffic, also known as passive traffic, would have two valuable uses for
mobile phone network operators:

1. Network operators could optimise their networks and improve the customer
experience by prioritising known user-generated traffic. Conversely, the app-
generate or background traffic could be deprioritised because the end-user is
unaware of this traffic and has no experience of it.

2. Network operators need to be able to accurately count the number of active

users of an app. Many apps come pre-loaded on mobile devices and can

13



generate background traffic. Without knowing how to identify this traffic a
network operator may significantly over count the number of active app users.

Based on the gaps identified in the current body of knowledge on network traffic
categorisation, the research question is stated as follows:

“Can passive mobile app traffic be identified using machine learning techniques?”

1.4 Research Objectives

Guided by the research question, the project objectives are:
1. Gain knowledge in the research domain of network traffic classification
2. Design research question experiment solution
3. Implement the experiment solution and capture results
4

Evaluate outcomes from experiment implementation

1.5 Research Methodology

This research will use quantitative research methods based on the numerical analysis
of network traffic data collected from a mobile phone. The data will be based on
network data traces. The first data trace will collect non-user generated traffic. The
second data trace will collect user generated traffic. The quantitative research designs

will be descriptive and will aim to establish the associations between variables.

This research will be based on empirical research methods. Empirical data will be
produced by experiment and conclusions will be based on evaluation of the
experimental data.
The project research methodologies to achieve the project objections are:
1. Complete a literature review of knowledge base
2. Methodical experiment design that is practical and implementable
3. Quantitative research methodology
a. Capture IP data from mobile phone
b. Generate features
c. Select and reduce features

d. Build machine learning classification models

14



4. Critical analysis of results
a. Evaluate accuracy of built models

b. Critically analyse results and report conclusion and future work

1.6 Scope and Limitations

This project will have the following scope limitations:

An Android OS device is used, specifically a HTC One S running Android 4.1.1. An
Android OS device was chosen because special software needs to be installed on the
mobile device to capture network traffic. It is much easier to install this software on an
Android device compart to and Apple device running IOS.

A limited number of mobile apps are considered. 11 specific apps were chosen. This
limitation was introduced for two reasons. Firstly, the 11 apps chosen are the most
commonly downloaded and used apps in the world. Hench using these apps will cover
most traffic scene on a network. The second reason for limitation the number of apps

considered is to control the scope of the research.

Each data trace will cover a 30 minute period. This is to manage the size of the test
data. Packet capture (pcap) files can be very large, for example, the 30 minute data

traces are expected to create approximately 200,000 records.

This project will not cover any IP packet payload inspection. This project will look to
find distinctive packet features rather than directly inspect payload inspection. Also,
payload inspection is complex and in the case of encrypted content, it is not possible to

inspect packet payloads.

This project will not reconstruct of end-to-end TCP flows. This project will look at low

level packet detail not higher level flow detail.

Real time processing is not in scope because testing a real time deployment would be

technically very difficult. However, real-time classification will be considerations will
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be important evaluation metrics. Such as performance in terms of the trade-off between
the model accuracy and processing overhead.

1.7 Document Outline

The remainder of this document is organised as follows:

Chapter 2 reviews the literature relating to network traffic categorisation. The
evolution of network traffic categorisation research is outlined. The limitations in the
research area are identified and discussed. Other important considerations are also

discussed such as the important network issues that relate to this paper.

Chapter 3 outlines the experiment design. This chapter outlines the step by step
experiment process from running data traces on a mobile device, exposing packet
features, the ML techniques to be used and finally, the evaluation criteria for the ML
model.

Chapter 4 documents how the experiment design was implemented. Details of the data
trace process is clearly presented. Analysis of the data packets and feature generation
are also presented. Details of the ML modelling training set up are also discussed.

Chapter 5 reports on the findings from the empirical study, as implemented in Chapter
4. The machine learning models are evaluated against the evaluation criteria.
Weaknesses and limitations are also discussed.

Chapter 6 will providing a clear summary of thesis and contribution to the body of

knowledge. Future work and recommendations are presented to highlight how the

project can be clearly extended and enhanced
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2 LITERATURE REVIEW

2.1 Introduction

This chapter surveys and reviews the literature relating to the network traffic
classification. A history of different approaches to the problem is presented. Different
classification techniques are discussed and assessed. Finally, performance measures
and evaluation criteria used in network traffic classification research are grouped and

explored.

2.1.1 Evolution of Approaches for IP Traffic Classification

This section will highlight the important evolution of the approaches to IP traffic
classification, including the recommended best-in-class techniques based on current

knowledge.

2.1.2 Port Number Based Analysis

Early research in IP traffic classification focused on port number based approaches. In
port number based packet inspection, port numbers are captured from the IP packet
headers. IANA (Internet Assigned Numbers Authority) recommend reserve specific
port numbers for specific application e.g. port number 80 is reserved for web based
applications. A packet is classified based on a lookup of the port number against IANA
reserved ports. The classification accuracy for port-based approaches is reported to be
between 50% and 70% (Moore and Papagiannaki, 2005). Port number based

classification has a number of limitations:

e Port based method are deceive by a simple change of ports used by an
application.

e A server port can serve multiple services. For example, a VVoIP application, a
chat messaging system and a web page browsing request could use the same
port (Li and Moore, 2007).

e Emerging applications often avoid the use of standard ports (Moore and
Papagiannaki, 2005)

e Web applications such as passive FTP or video/voice communication can use
dynamic ports unknowable in advance (Zander et al., 2005).

e The proportion of network traffic that is encrypted is increasing. The port
numbers may not be visible.

17



2.1.3 IP Packet Payload Based Analysis

Some research then proposed analysis of IP packet payloads (Moore and Papagiannaki,
2005). This technique involves inspecting the payload of each IP packet for features
that can be used to classify the traffic. However, there are also major limitations with
this approach;
e Payload analysis tools cannot classify encrypted packets (Bernaille et al., 2006)
e Payload-based schemes have large processing overheads and are very time-
consuming as the process involves inspecting all the data in each IP packet.
e Due to the time-consuming nature of full packet payload inspection it cannot
realistically be considered for real-time in high-speed links

e There are legal and privacy concerns when inspecting packets

2.1.4  Full TCP Flow Based Analysis

Some research suggests using features derived from the full TCP flows (Erman et al.,
2006; Williams et al., 2006; Zander et al., 2005; Zuev and Moore, 2005). TCP is a
connection-orientated protocol. The TCP protocol sets up a connection between source
and destination points. TCP provides reliable, ordered and error-checked delivery of a
stream of packets. All packets with the same source address/port and destination
address/port within a time period, or until the connection is terminated, are considered
as one flow. The approach must wait until a flow completes or times-out before
generating features about the statistical characteristics of the flow and packets in the
flow. Examples of flow features include; average flow duration and average packet

size per flow.

The flow based analysis approach is useful for offline analysis but could never be
utilised in a real network due to the below limitations;

e TCP flows can have variable time duration. IP Traffic is generally made of a
large majority of flows with a short time period and a small number of flows
with a very long time period (Bernaille et al., 2006). A flow must complete
before it can be analysed. This can take a number of minutes.

¢ Flow based analysis has large processing and memory requirements in order to
reconstruct flows

e Approaches relaying on summarise flow information are sensitive to simple
alterations of packet size and inter-arrival times using evasion techniques
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2.1.5 IP Packet Based Analysis

A number of papers have investigated IP traffic classification based on packet header
statistical features (Auld et al., 2007; Bernaille et al., 2006; Kim et al., 2008; Li and
Moore, 2007; Singh et al., 2013).

The majority of packet based analysis take the position that any practical IP traffic
classification system must be capable of running in real-time on a live network. To
achieve real-time traffic classification the ML system must be lean, for example, the
system must meet the following requirements; use a small feature set, have a fast
model training time, have a fast classification time, low memory requirements and low
processing requirements. Singh et al. (2013) investigated near-real time classification
techniques. Bernaille et al. (2006) developed a classifier that only considers the first
five packets of each flow. Karagiannis et al. (2005) proposed a novel method for IP
traffic classification. The authors developed a model that operates “in the dark”, by this
they mean the classification model has no access to packet payload, no knowledge of
port numbers and no additional information other than the packets captured.

Using the statistical features of packets to generate candidate features for a ML model
is the current best practice approach for building ML IP traffic classifiers. The ML
algorithm should be able to classify the IP network traffic using the minimum number
of features possible. This is due to the constraints of practical real-time IP traffic

classification.

2.1.6  History of Machine Learning in IP Traffic Classification

The idea of using ML techniques for IP traffic classification was first introduced in the
context of intrusion detection (Frank, 1994). A machine learning algorithm
automatically builds a classifier by learning the inherent structure of a dataset based on
the characteristic features. ML techniques for real-time and offline analysis have
demonstrated high classification accuracy of up to 99% for a various types of Internet
applications traffic (Nguyen and Armitage, 2008). Refer to Appendix 1 for a full
summary of the classification accuracy of the various ML algorithms used in the

papers reviewed in the Project Summary section above.
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Numerous different ML techniques has been extensively applied to the problem of IP

traffic classification. Below is a summary of the ML techniques used in the papers

reviewed in the Project Summary section above.

Supervised ML techniques

e Decision Tree

@)
@)

Decision Tree (4 papers)
Naive Bayes Tree

e Neural Network

©)
©)
©)
®)

Neural Net (2 papers)

Multilayer Perceptron (MLP)

Radial Basis Function Neural Network (RBF)
Bayesian trained neural network

e K-Nearest Neighbour

o

k-NN (3 papers)

e Support Vector Machine
o SVM (2 papers)
e Various Naive Bayes techniques

o

0O O O O O O

Naive Bayes Algorithm (2 papers)
Naive Bayes Estimator (2 papers)
Bayes Net Algorithm

Bayesian Network

Naive Bayesian classifier

Naive Bayes Discretisation

Naive Bayes Kernel density estimation

Unsupervised ML techniques

e AutoClass (2 papers)
e K-Means
e DBSCAN

2.1.7 Feature Selection

Feature selection is highlighted as a critical step in IP traffic categorisation process,

especially in real-time systems (Fahad et al., 2013; Singh et al., 2013; Williams et al.,
2006; Yuan et al., 2010; Zander et al., 2005). This section will summarise the key

feature selection techniques proposed in the relevant literature.

The goal of feature selection is to reduce the amount of information required to make

good predictions, and to improve the error rate of classifiers. The ability to eliminate

redundant features is an important ML task because it helps to identify the best
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features in order to improve the classification accuracy as well as to reduce the
computational complexity related to the construction of the classifier (Fahad et al.,
2013). Zhang et al. (2013a) demonstrated that a Naive Bayes classifier with feature
discretization demonstrates not only significantly higher accuracy but also much faster

classification speed.

(Fahad et al., 2013) analysed six well-known feature selection techniques to identify
the best features for network traffic based on the following evaluation criteria:
information, dependence, consistency, distance, and transformation. The six feature
selection techniques are

e Information Gain (for information-based criteria),

e Gain Ratio (for information-based criteria),

e Principal Component Analysis (PCA) (for transformation- based criteria),
e Correlation-based Feature Selection (CBF) (for dependence-based criteria),
e Chisquare (for statistical criteria)

e Consistency-based Search (CBC) (for consistency-based criteria).

The Authors propose a LOA (Local Optimisation Approach) feature selection
technique that combines the five well-known feature selection techniques. This
combined technique can compensate for some of the limitations of the individual
techniques. The experimental results also showed that LOA performs significantly

better than any individual technique.

2.1.8 Feature Subset Search Techniques

Williams et al. (2006) created a feature subsets using two subset search techniques.
The Best First and Greedy search methods were used in the forward and backward

directions.

e Greedy search examines changes to the current feature subset through the
addition or removal of features. For a given ‘parent’ feature set, all possible
‘child’ subsets are tested through either the addition or removal of features. The
child subset that shows the highest improvement (goodness measure) replaces
the parent subset. The process is repeated until no more improvement can be
made.

e Best First search is similar to greedy search. The process creates new subsets
based on the addition or removal of features. However, this technique has the
ability to backtrack if the current path no longer shows improvement. A limit is
placed on the number of non-improving subsets that are considered to prevent
the search from backtracking through all possibilities in the feature space
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2.1.9 Feature Reduction Algorithms

Williams et al. (2006) then passed the feature subset generated from the subset search
process to two different algorithms, to create reduced feature sets. These algorithms
evaluate different combinations of features to identify an optimal subset:

e Consistency-based feature subset search searches for the optimal feature subset,
which is the smallest subset of features that can identify instances of a class as
consistently as the complete feature set.

e Correlation-based feature subset search uses an evaluation heuristic. The
heuristic is used to examine the usefulness of individual features along with the
level of inter-correlation among the features. The goal is to find feature subsets
containing attributes that are highly correlated with the class and have low
inter-correlation with each other.

2.1.10 Evaluation Metrics

There are a four main of evaluation metrics proposed in the IP traffic classification
literature for supervised ML algorithms:

e Accuracy: Overall accuracy is the percentage of the sum of all correctly
classified packets/flows over the sum of all testing packets/flows. This metric is
used to measure the accuracy of a classifier on all testing data

e Recall: recall is the ratio of correctly classified packets/flows over all ground
truth data in a class

e Precision: precision is the ratio of correctly classified packets/flows over all
predicted packets/flows in a class

e F-measure: F-Measure is used to evaluate the per-class performance. F-
measure is calculated by

. 2 x precision x recall
F — measure =

precision + recall

There are additional evaluating criteria proposed in the literature for real-time IP traffic
classifiers.

e Model build time (Erman et al., 2006)

e Classification time (Singh et al., 2013)

e System Throughput: (Li and Moore, 2007) defined custom evaluation metrics
for real time classifiers. System throughput is a measure of the computational
complexity in calculating features.

e System Latency: (Li and Moore, 2007) also define latency as the ability to
identify a flow as quickly as possible.

System Throughput and System Latency evaluation metrics are out of scope for this
research. Model build time and Classification Time are in scope.
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2.2 Traffic Classification Papers

This section will summarise the existing research in the area of IP traffic classification
that most closely relate to this project.

Frank (1994) introduced the idea of using Machine Learning (ML) techniques for TCP
flow classification in the context of intrusion detection. This research reviewed
supervised ML techniques; neural network, decision tree, and unsupervised clustering
techniques; k-nearest neighbour (k-NN). The research investigated using feature
selection to improve the classification of network connections. The k-NN model was

found to have a classification accuracy of 95%.

Karagiannis et al. (2005) defined a fundamentally different approach to classifying
traffic flows by identifying patterns of host behaviour at the transport layer. This
research focused on identifying the unique fingerprint of the connection between the
application and the server. The research found that each internet applications/services
has a unique connection fingerprint. The results showed that the research was able to
classify 80%- 90% of the traffic with more than 95% accuracy by identifying

connection patterns.

Moore and Papagiannaki (2005) demonstrated that using port numbers to classify
internet traffic is no longer reliable. This research investigate the inaccuracies in port-
based classification and identified the types of errors that may result. The research also
quantifies the errors encountered. The research devises a Naive Bayes estimator
classification methodology that relies on the full packet payload inspection. The
classifier has an accuracy approach 100% but proves to be a labour-intensive process
due to the full packet payload inspection.

Moore and Zuev (2005) applied a supervised Naive Bayes estimator to categorize
traffic by service type. The authors used a hand classified dataset. The results indicated
a 65% accuracy on per-flow classification using the simplest of Naive Bayes estimator.
The research presents two refinement of Naive Bayes method that improves the overall
accuracy to better than 95%. Firstly using kernel density estimation theory. Secondly
using a method of feature selection and redundancy reduction, Fast Correlation-Based
Filter (FCBF).
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Zander et al. (2005) used the AutoClass unsupervised Bayesian classifier to learn the
natural classes or clusters within network traffic. Each class represents a network
traffic type. Network flows are classified based on statistical characteristics generated
from packet header data. The authors used feature selection to find an optimal feature
set and determine the influence of different features. The authors defined an accuracy
metric termed intra-class homogeneity. The accuracy of the Auto Class classifier was
found to be 86.5%.

Zuev and Moore (2005) created a hand-classified network dataset that was used as
input to a supervised Bayes estimator. The classifier developed requires only the
network protocol headers of unknown traffic for a successful classification. Most
research looks at per flow or per packet accuracy. This research looked at per byte
accuracy. The research demonstrated an accuracy of better than 66% of flows and
better than 83% for packets and bytes.

Bernaille et al. (2006) used a Simple K-Means clustering algorithm to perform
classification using only the first five packets of the flow. This research focused on
classifying packets before the end of a TCP flow. The authors reported a 84.2% to
96.92% classification accuracy by service type. This research specifically considered

real time classification of traffic in terms of memory and processing requirements

Erman et al. (2006) evaluated three unsupervised ML techniques for traffic
classification. The authors compared K-Means and DBSCAN algorithms with
previously used AutoClass technique. Although the authors found that the AutoClass
algorithm produces the best overall accuracy at 97.6% there were positive findings
from the other two clustering techniques. The DBSCAN algorithm placed the majority
of the connections in a small subset of the clusters which can lead to a high predictive
power of a single category of traffic. The K-Means algorithm had an overall accuracy
that was only marginally lower than that of the AutoClass algorithm but may be more

suitable for traffic classification due to its much faster model building time.

Williams et al. (2006) conducted a comparison of five supervised ML algorithms for
practical traffic Classification, namely Naive Bayes Discretisation, Naive Bayes

Kernel density estimation, Decision Tree C4.5, Bayesian Network and Naive Bayes
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Tree. When evaluating each algorithm, the authors specifically considered
computational performance metrics such as build time and classification speed rather
than classification accuracy alone. The authors concluded that classification accuracy
between the algorithms is similar but computational performance differs significantly.
When comparing the classification speed, the authors found that C4.5 is able to
identify network flows faster than the remaining algorithms. The C4.5 algorithm had
the best overall classification accuracy percentage at 94.13%, just ahead of the Bayes
Net algorithm. This research also has extensive investigation into the use of feature

reduction techniques to reduce the feature space.

Auld et al. (2007) designed a network traffic classifier that could achieve a high
accuracy across a range of internet application types based on IP packet header-derived
statistics. The ML technique used was a Bayesian trained neural network that produced
a classification accuracy of up to 99%.

Li and Moore (2007) presented a ML approach to classify live network traffic. The
authors created 12 features based on the packets at the start of each flow, without
inspecting the packet payload, and used a C4.5 decision tree to classify the traffic. The
method could identify different types of applications on live network traffic with
99.8% total accuracy. The research was not exclusively focused on classification
accuracy, the latency and throughput of the classification system were investigated as
highly important considerations.

Kim et al. (2008) conducted an evaluation of three ML traffic classification techniques,
namely Support Vector Machine (SVM), neural network and k-NN. The feature space
was based on transport layer ports, host behaviour, and flow statistical features. The
results showed that SVM consistently achieved the highest classification accuracy at
99.42%.

Yuan et al. (2010) proposed a ML internet traffic classification method based on SVM.
The research pays particular attention to real-time traffic classification considerations
such as computation and storage requirements. This research actively tries to reduce
the feature space to a small number of features that can be generated in real time from

the packet headers. The SVM model achieves a classification accuracy of 99.42%.
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Singh et al. (2013) focused on real time considerations of traffic classification using
machine learning techniques. Five ML techniques were investigated, namely
Multilayer Perceptron (MLP), Radial Basis Function Neural Network (RBF), C 4.5
Decision Tree Algorithm, Bayes Net Algorithm and Naive Bayes Algorithm. The
results showed that the Bayes Net classifier had the highest classification accuracy at
88.12%. However this technique has a long training time which does not meet the
criteria for real-time traffic classification. The number of features was then reduced
using Correlation based Feature Selection (FS) Algorithms, and Consistency based FS
Algorithm was also tested. Using the new dataset the Bayes Net classifier gave the
highest classification accuracy at 91.87% with the real time processing constraints.

Zhang et al. (2013a) investigated improving traffic classification using a limited
amount of training data is available. Traffic flows were described using the discretized
statistical features and flow correlation information modelled by bag-of-flow (BoF).
The authors demonstrate that feature discretization can improve the Naive Bayes
model classification accuracy by approximately 5 percent when only 10 training
samples are available for each traffic class. The overall classification accuracy of the
Naive Bayes classifier was 89.00%.

Zhang et al. (2013b) propose a framework based on Traffic Classification using
Correlation (TCC) information. The approach is designed to address the problem of
very few training samples. The research demonstrates that the TCC approach can be
used on a small number of training samples to effectively improve the classification
accuracy. The nearest neighbour (NN)-based method was found to have the highest

classification accuracy of over 90%.

2.3 Survey Papers

Nguyen and Armitage (2008) reviewed 18 significant works that cover the period from
2004 to early 2007. The survey paper looks at emerging research into the application
of ML techniques in IP traffic classification. This survey paper charts the move away
from port based traffic classification techniques to the emerging techniques that use of
statistical traffic characteristics. The paper also covers the more recent work on ML-

based real-time IP traffic classification in operational networks.
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The paper compiles a list of all the ML algorithms used in each of the papers review.
The paper also contains a full list of statistical packet features generated in each paper
reviewed and information about the level of classification. The paper concludes that a
number of different ML algorithms such as AutoClass, Expectation Maximisation,
Decision Tree, Naive Bayes have demonstrated high classification accuracy of up to

99% for a range of Internet applications traffic.

Callado et al. (2009) explain the main techniques and problems known in the field of
IP traffic classification. Packet-based and flow-based classification approaches are
investigated. The advantages and problems for each approach is summarised. The
paper summarises the many ML techniques used is key papers along with the
evaluation of the accuracy of each technique. The paper also covers open research
topics in the area of traffic classification. The paper concludes that there is no

definitive best technique for IP traffic classification.

2.4 Feature Selection Paper

Feature selection, particularly reducing the feature space is an essential step in the
traffic categorisation process. Fahad et al. (2013) focuses on feature selection for
internet traffic classification. The paper introduces three new metrics, namely
goodness, similarity and stability. These metrics can be used to compare feature
selection techniques as well as to compare the quality of their outputs. The
experimental results show that no existing feature selection technique performs well on
all the three metrics. The paper conclude that identifying the best and most robust
features, in terms of similarity, from the large feature space is critical importance for
IP traffic classification. The results derived from real network traffic data shows that
the Local Optimisation Approach (LOA) has the ability to identify the best features for

traffic classification.

Appendix 1 contains a table that summarises the key points of the above reviewed

research.
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2.5 Discussion

Network traffic classification is a key element in a number of important network
management tasks. Research is the area of Network traffic classification has firmly
focused on network traffic generated from personal computers. Research is the area
has also focused on identifying high level classes or types of data such as web service

or email.

This research will focus on network traffic generated on a mobile device. The
continuing proliferation of mobile devices, the increase in mobile phone network
traffic and mobile devices becoming the primary internet access device means that

research into mobile device traffic classification is very relevant.

Network traffic generated on mobile devices is fundamentally different to network
traffic generated by a personal computer. Users on mobile devices primarily use
mobile apps to access a service as opposed to a web browser on a personal computer.

This research will investigate mobile app traffic generate on a mobile device.

Mobile apps present a further unique problem regarding network traffic. Mobile apps
can be designed to generated background network traffic that was not initiated by a
user. This type of traffic can include checking for new messages, downloading new
content, sending phone location updates etc. There is no existing research into
classifying user generated versus app generated network traffic.

Based on the gaps identified in the current body of knowledge on network traffic
categorisation, the research question is stated as follows:

“Can passive mobile app traffic be identified using machine learning techniques?”’

2.6 Conclusion

This chapter has presented a literature review of the existing knowledge base. Research
gaps have been identified and the research question had been clearly stated. The
research question and the literature review will serve as the foundations for the

experiment design and implementation.

28



3 DESIGN METHODOLOGY

3.1 Introduction

This chapter outlines the experiment design, including the experimental methodology
and introduces the key considerations of this experiment. This project will propose and
innovative experiment design in order to capture and analyse active and passive mobile
phone app network traffic. Important experiment setup decisions, including the data

capture process and machine learning techniques consider are discussed and justified.

This chapter starts by describing the overall solution approach. Then the hardware and
software requirements will be outlined. Next the data collection process is presented.
Followed by feature creation process, feature reduction and machine learning
techniques for modelling. Finally the model evaluation set up is explained. For clarity
and completeness, Chapter 4 (Experiment Implementation) will follow the same

heading structure as this chapter.

3.2 Solution Approach

This research project will follow a five step solution approach outlined in Figure 3-1
below.
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Step Process Software

1. Data Capture ‘/I\ Shark for Root

Data Data Data
Trace Trace Trace
1 2 3

b

| Provisional Data Analysis | _
2. Feature Generation Wireshark
| Expose IP Packet Features |<-<:

| Combine Data |

| Secondary Data Analysis |

3. ML Modelling ; SPSS
| Feature Reduction | '
| Build ML Models |«

4. Evaluation Evaluation SPSS

Figure 3-1 : Experiment Process Diagram

The experiment processes starts by collecting network traffic data generated by apps
on an Android OS mobile phone device. The captured network traffic data will then be
examined and features will be created based on the properties of the IP packets. The
output files containing all the relevant IP packet features will then be passed to

statistical modelling software.

Multiple machine learning techniques are applied to the data. The performance of
each machine learning model will be evaluated based on the evaluation criteria. If the
models are evaluated to have a poor performance, the model evaluation phase may
lead back to the feature selection/generation phase or to another round of model
building in order to improve model accuracy. New IP packet features can be generated

and the models can be re-evaluated.

The sections below outlines the high level process for each of the steps in the

experiment:
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3.2.1 Step 1 - Data Capture

The data collection phase requires mobile phone hardware and software as well as
personal computer based software. The full data capture process will be performed

once which will result in a total of 3 data traces.

3.2.1.1 Hardware: Android device

The first step in the data collection process was to set up the mobile phone device. The
collection task, also known as a data trace, was performed using on an Android device.
The specific device used to capture the data traces was a HTC One S running Android
OS version 4.1.1.

The mobile phone device requires IP packet capture software to be install in order to
capture app network traffic data. The IP packet capture software is non-standard
Android OS software and therefore cannot be installed on a standard Android OS
device. In order to install the necessary packet capture software the Android device

needs to be “rooted”.

Rooting is the process that allows users of devices running the Android mobile
operating system to attain privileged control, also known as "root access" to the
Android OS sub-system. Once the Android OS device has been rooted, users can run

specialized apps that require administrator-level permissions?.

3.2.1.2 Software: Shark for Root

Once the device is rooted the IP packet capture software is installed on the mobile
device. This project uses Shark for Root software available from the Google Play
Android Store?. The Shark for Root software will be used to capture all IP packets

created by the mobile apps during the data collection events outlined below.

L http://en.wikipedia.org/wiki/Rooting %28Android OS%29 Date Accessed 20/11/2014
2 https://play.google.com/store/apps/details?id=Iv.n30.shark Date Accessed 01/10/2014
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3.2.1.3 Apps: Applications considered

A specific set of eleven apps were chosen to be used during the data trace process.
These apps have been chosen for two reasons, they are either the most downloaded
apps from the Google Play Store or they are the most used apps on mobile networks*.
By limiting the experiment to these apps, the experiment will cover the apps that take
up the most network bandwidth. This increases the relevance and value of the project.

Limiting the number of apps also allows the scope of the project to be clearly defined.
The limited number of apps will also help during the analysis phase when captured
packets can be attributed to a specific app if required. The list of eleven apps in scope
for this project are:
1. Facebook
Facebook Messenger
YouTube
Gmail
Instagram
Snapchat
Twitter
WhatsApp
Viber
10. Skype
11. Angry Birds

© 0o N o g bk~ w DN

3.2.1.4 Process: Data Traces

The data traces will capture network IP packets generated by apps running on the
mobile device. In order to get samples of active and passive app network traffic data,
three separate data traces have been designed. Each trace will capture a specific type of
active or passive app network data.

Shttp://www.comscore.com/Insights/Presentations-and-Whitepapers/2014/The-US-Mobile-

App-Report Date Accessed 01/02/2015
http://en.wikipedia.org/wiki/List of most downloaded Android applications Date Accessed
01/02/2015
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Data trace 1 will capture active app network traffic data. This data trace will capture
active, user-generated traffic over a period of 30 minutes directly from the mobile
device. During the data trace capture period, each of the eleven apps will be opened
and specific actions will be performed on each app. The app actions will include
opening the app, opening content, streaming videos, VolIP calls, sending message and

receiving message.

In order to fully capture passive app network data, two separate data traces have been

deigned.

Data trace 2 is designed to capture passive app network traffic. Specifically, data trace
2 is designed to capture passive app network data when the specified apps are known

to be open on the phone but the apps are not actively being used by the end-user.

Data trace 2 will be undertaken following on from data trace 1 with a 5 minute gap
after the end of data trace 1. The mobile phone device will then be left idle for a period
of 30 minutes. No actions at all will be performed on the mobile phone device during
the idle time to allow passive app network traffic to be isolated using this data trace set

up.

Data trace 3 is designed to capture passive app network traffic when no apps have
specifically been opened by the end-user. For this data traces, the mobile phone will be
restarted. There will be a five minute wait so that phone and the apps are in steady
state post start-up. The device will then be left idle for a period of 30 minutes.
Similarly to data trace 2, no actions at all will be performed on the mobile phone
device during the idle time to allow passive app network traffic to be isolated using
this data trace set up.

It is important to distinguish between the two different situations captured in data trace
2 and data trace 3. The two different data traces will allow this project to capture the
network traffic generated by an app that has been opened but is no longer in use, and

an app that has never been opened but is sending background data.
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3.2.1.5 Data Preparation

After the data is collected, the data in each data trace needs to be tagged in preparation
for the modelling phase of the project. Each record in data trace 1 will be tagged as
“active”. Each record in data trace 2 and 3 will be tagged as “passive”. These datasets
will form the basis of the training and testing data for the machine learning algorithms.
The data traces are then exported from the mobile device to a PC for analysis and

prepared for the modelling phase.

3.2.2 Step 2 - Feature Generation

3.2.2.1 Software: Wireshark

Personal computer based packet analysis software is required as part of this project.
Wireshark software® was chosen for this task. Wireshark software is a fully featured,
open source network packet analysis software®. The system specification of the
personal computer used in this research is as follows:

e OS —Windows 7 Professional Service Pack 1

e Processor — Intel Core i5 — 3320m CPU @ 2.60GHz

e RAM-16.0GB

The Wireshark software enables two key tasks in this project:
1) Inspect and analyse the network packets. For example
e Review the data and check the data properties such as data volumes for each
protocol or packet size distributions.
e Build visualisation such as input/output (10) graphs of network data over time.
e Reconstruct TCP flows from network packet
2) Build data record features for machine learning stage
e Using Wireshark software, IP packet attributes can be exposed. By default
Wireshark only shows approx. 20 general IP packet attributes such as IP
address and port numbers. Other packet attributes need to be specifically added

to the Wireshark view using specific commands.

5 www.wireshark.org Date Accessed 12/02/2015
6 http://en.wikipedia.org/wiki/Wireshark Date Accessed 12/02/2015
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e For a full list of available packet name attributes please see the Wireshark

Display Filter Reference Index web page’.

3.2.2.2 Provisional Data Analysis

The provisional data analysis task is focused on examining the network properties of
the data using the in-built tools in the Wireshark software. The in-build analysis tools
are specially designed to allow network data to be reconstructed and viewed from a
network level. The in-built analysis tools allow the data to be examined in a way that
would not be possible within statistical analysis software.

It is anticipated that the three sub-tasks will be undertaken during this task. 1) Data
record exploration to understand the high level characteristics of the dataset 2)
TCP/UDP flow reconstruction to show how may flows were created within each data
trace 3) Network input/output (10) graphs to help visualise the traffic flow on the
network and potentially highlight any differences between the active and the passive

traces.

3.2.2.3 Expose IP Packet Features

Network IP packets have hundreds of potential features available. In Wireshark the
packet attributes are called display filters. For example, the TCP protocol part of the IP
packet has 207 display filters®. Wireshark's most powerful feature is its vast array of
display filters (over 174000 fields in 1000 protocols as of version 1.12.3)°. Some
display filters may not be populated for an IP packet because not all the attribute are
populated within and IP packet. Also encrypted network packets will have a reduced
set of display filters available because attributes can’t be identified due to the

encryption.

There are a large amount of features recommended in the literature. Nguyen and

Armitage (2008) presented a list of features previously used in 18 key papers in the

" https://www.wireshark.org/docs/dfref/ Date Accessed 12/02/2015

8 https://www.wireshark.org/docs/dfref/t/tcp.html Date Accessed 12/02/2015

9 https://www.wireshark.org/docs/dfref/ Date Accessed 12/02/2015
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area of IP traffic classification. A summary of the key features are presented below.

The number of papers that the feature appears in is shown in square brackets.

e Packet features

©)

o

Packet length [5]

Packet length statistics (min, max, mean, std dev.) [4]

Inter-Packet lengths statistics (min, max, mean, std dev.) [1]

Average inter packet gap [1]

Packet Inter-arrival time (minimum, mean, maximum and standard
deviation) [5]

Packet arrival order [1]

e Protocol features

(@]

o

o

Size of TCP/IP control fields [1]

Protocol [2]

Numerous TCP-specific values derived from TCP trace (e.g. total
payload bytes transmitted, total number of PUSHED packets, total
number of ACK packets carrying SACK information etc.) [1]

e Bytes features

(@]

o

o

o

o

Payload size [2]

mean payload length excluding headers [2]

Number of bytes transferred (in each direction and combined) [1]
Number of bytes transferred [1]

Message size (the length of the message encapsulated into the transport

layer protocol segment) [1]

e Flow features

Flow volume in bytes and packets [1]

Flow metrics (duration, packet-count, total bytes) [1]

Flow duration [3]

Total packets in each direction and total for bi-directional flow [1]

Total number of packets [3]
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Similar to previous research this project will be based on packet level analysis, as
opposed to flow based analysis. This project will take a different approach to previous

literature when it comes to feature generation.

Previous research has tried to compute packet or flow features such as “Mean payload
length excluding headers”. Computing packet or flow features can have significant
processing overheads. Also, waiting for a flow to complete could mean storing all
contents of the flow, possible in memory for a considerable period of time. There will
also be a very large number of flows active on a network at any point in time. Storing

all flows until completion is not possible in real world networks.

This project will look at inherent packet features only. Inherent IP packet features are
available to a classification algorithm as soon as the packet is presented. No feature
computation will be considered. This approach is taken for two reasons 1) to allow for
real time deployment where fast classification of packets is required as each packet
arrives 2) to test if feature computation is necessary or inherent packet features alone
can be used by a machine learning algorithm to classify active versus passive network

traffic with an equivalent level of accuracy as previous research.

This project will also look to identify new features, not previously considered in
research that could be beneficial during the machine learning modelling phase.
Identifying new features is especially important for this project of the approached
taken not to compute new features. A propriety set of features will be required. The
new feature generation process will be enabled by the large number of inherent IP
packet attributes available. It is anticipated that the feature generation will be an

iterative process.

3.2.3 Step 3 — Machine Learning Modelling

Supervised learning techniques are the predominant ML classification used in research
in IP traffic classification. This research will also investigate supervised learning
techniques to try to identify user-generated versus app-generated traffic. Please refer to
Section 2.1.6 for an overview of ML techniques previously used in the area of IP
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traffic classification. These ML techniques will form the starting point for this phase of

the project. Other techniques may be used if deemed appropriate.

3.2.3.1 Software: SPSS

This project requires machine learning software to build the end to end machine
learning models. The software is also used to evaluate the performance of the machine
learning techniques. IBM SPSS Software was chosen as the software to build and test
the machine learning algorithms (IBM SPSS Modeler 15.0). IBM SPSS software was
chosen for the below reasons:

e Industry leading statistical analysis software.

e Fully featured statistical analysis tool

e Full suite of ML algorithms available, including ML techniques considered in

this research
e Access — software is available for this research for free

e Experience and expertise in using this software

3.2.3.2 Combine Data

Each of the individual data trace files will be passed to the SPSS software as csv files.
The files will then be combined to create a single dataset that can be used in the ML

model building process.

3.2.3.3 Secondary Data analysis

Using SPSS the final dataset is analysed. This is an important data understanding
phase. The analysis is broken out by the active and passive indicator to allow for
analysis of features that may be distinctive between the active and passive datasets and
therefore have high importance factors for machine learning algorithms. During this
step the final data preparation tasks will take place such as filtering non distinctive or

null value features.

3.2.3.4 Feature Reduction

This project will attempt to find the best features to use to detect user-generated versus
app-generated IP traffic. The best features to use will vary based on the data mining

technique and the data being analysed. The task at this step is to identify the optimal
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set of features that minimizes the processing cost, while maximizing the classification

accuracy.

3.2.3.5 Build Machine Learning Models

The literature review section outlined the numerous different ML techniques that have

been extensively applied to the problem of IP traffic classification. Supervised ML

techniques are much more prevalent in the literature. Below is a summary of the ML

techniques used in the papers section above.

Supervised ML techniques

e Decision Tree

o

o

Decision Tree [4 papers]
Naive Bayes Tree

e Neural Network

o

o

o

o

Neural Net [2 papers]
Multilayer Perceptron (MLP)

Radial Basis Function Neural Network (RBF)

Bayesian trained neural network

e K-Nearest Neighbour

o

k-NN [3 papers]

e Support Vector Machine
o SVM [2 papers]

e Various Naive Bayes techniques

o

o

o

Naive Bayes Algorithm [2 papers]
Naive Bayes Estimator [2 papers]
Bayes Net Algorithm

Bayesian Network

Naive Bayesian classifier

Naive Bayes Discretisation

Naive Bayes Kernel density estimation

Unsupervised ML techniques

e AutoClass [2 papers]
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e K-Means
e DBSCAN

This project will look at the five supervised ML learning techniques. These techniques
have been chose because they are the most used techniques in the relevant literature

and are the best performing ML learning techniques based on the experimental outputs.

ML Technique No. Papers in No of time Best Average
Literature Review Performing Accuracy
with Technique Technique
Decision Tree 4 2 96.9%
SVM 2 2 98.7%
Naive Bayes Estimator 2 2 89.1%
Neural Network 2 1 95-97%
KNN 3 1 >90%

Table 3-1 : Machine Learning Techniques in Scope

3.2.4  Step 4 - Model Evaluation

In the evaluation task, the most commonly used evaluation criteria found in the

literature are applied to the machine learning models built as part of this experiment.

3.2.4.1 Evaluation Criteria

The evaluation criteria will be based on the evaluation metrics outlined in the literature
review. There are a four main of evaluation metrics proposed in the IP traffic
classification literature for supervised ML algorithms: accuracy, precision, recall and
F-measure: There are two additional evaluating criteria proposed in the literature for
real-time IP traffic classifiers that will be considered in this research; model build time
and classification time. Refer to Section 2.1.10 for full details of the evaluation criteria.
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3.3 Expected Results

The expected results from this research would be to develop a supervised machine
learning model that performs well at classifying active and passive app network data

based on the chosen evaluation metrics.

3.4 Conclusion

This chapter has outlined the design methodology for the project experiment. The
experiment, as designed, should allow this research project to develop a machine
learning algorithm that can accurately identify active and passive app network data.
The next chapter will detail how the experiment design methodology was
implemented.
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4 EXPERIMENT IMPLEMENTATION

4.1 Introduction

This chapter outlines the experiment implementation. The implementation of each step
in the experiment designed is outlined and discussed. This chapter will follow the same

heading structure as Chapter 3 Design Methodology.

4.2 Solution Approach

The experimental implementation followed a five step solution approach outlined in

experimental design chapter.

4.2.1 Step 1 - Data Capture

The data collection phase requires mobile phone hardware and software as well as

personal computer based software.

4.2.1.1 Hardware: Android device

The first step in the data collection process is to set up the mobile phone device. The
HTC One S running Android OS version 4.1.1 is rooted to prepare the device for the

installation of the required IP packet capture software.

4.2.1.2 Software: Shark for Root

Once the device is rooted the IP packet capture software is installed on the mobile
device. Shark for Root software was installed from the Google Play Android Store.

4.2.1.3 Apps: Applications considered

A specific set of eleven apps were chosen to be used during the data trace. These apps
were downloaded from the Google Play Android Store and installed on the device. If
necessary, accounts were set up within the app to allow access to the app and to

facilitate app traffic generation.
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4.2.1.4 Process: Data Traces

In order to capture samples of active and passive app network traffic data, three

separate data traces were implemented. Each trace captured a specific type of active or

passive app network data. The full data capture process was performed once which

resulted in a total of 3 data traces.

4.2.1.4.1 Data Trace Process

Data trace 1 captured active app network traffic data.

Trace 1 — Active trace

a.
b.

C.

Restart phone — wait 1 minute

Open Shark For Root software on mobile device

Start data capture with parameters —I wlan0 —s 0

Open and Use all 11 apps for 30 minutes.

Dates and time:

(Nov 27" at 5.53pm to 6.25)

Actions

YouTube
1. Watch 1 min video - stop
2. Watch 2" 1 minute video.
Gmail
1. Opened app twice
2. Sent 2 emails
Facebook
1. Opened App twice
2. Open Facebook time line
3. Browse who to follow section
4. Open Facebook wall profile page
Twitter
1. Opened app twice
2. Send 2 tweets
Angry Birds
1. Opened app once

2. Play game for 1 minute
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vi. Skype
1. Opened app twice
2. 3 messages sent — 3 received
3. 1 minute video call
vii. WhatsApp
1. Opened app 3 times
2. 4 messages sent — 4 received
viii. Facebook Messenger
1. Opened app 3 times
2. 4 messages sent — 4 received
ix. Viber
1. Opened app 3 times
2. 4 messages sent — 4 received
X. Snapchat
1. Opened app twice
2. 2 pictures sent
xi. Instagram
1. Opened app twice
2. 1picsent—
3. 2 users followed
4. multiple pics browsed
5. 1 person started following me.

In order to fully capture passive app network data, two separate passive data traces
were implemented. Data trace 2 was implemented to capture passive app network
traffic when an app may have been left running on the mobile device.
Data Trace 2 — Passive trace 1

a. Following above test — wait 5 minutes

b. Apps are open and may be running on the device but there is no user

interaction with the apps

c. Open Shark For Root software on mobile device

d. Start data capture with parameters —I wlan0 —s 0

e. Do not use any apps for 30 minutes. Phone is completely idle
i. Dates and time (Nov 27" at 6:30pm to 7:00)
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Data trace 3 was implemented to capture passive app network traffic when no apps
have specifically been opened by the end-user.
Data Trace 3 — Passive trace 2

a. Restart phone

o

Wait 5 minutes so that phone is in a steady state
No apps were opened

o o

Open Shark For Root software on mobile device

@

Start data capture with parameters —I wlan0 —s 0

=h

Do not use any apps for 30 minutes. Phone is completely idle
i. Dates and times (Nov 27" at 7:15 pm to 7:45)

4.2.1.5 Data Preparation

Each record in data trace 1 were tagged as “active”. Each record in data trace 2 and 3
were tagged as “passive”. These datasets form the basis of the training and testing data
for the machine learning algorithms. The data traces are then exported from the mobile

device to a PC for analysis and prepared for the modelling phase.

4.2.2 Step 2 - Feature Generation

This section starts by examining the data captured on the mobile device. Then the
process of exposing the inherent IP packet features is documented. Finally the output

record format is presented.

4.2.2.1 Software: Wireshark

Wireshark software was installed and configured on the experiment PC hardware.

4.2.2.2 Provisional Data Analysis

Wireshark has a number on in-built tools that allows for easy analysis of the network
characteristics of captured network traffic data. This section outlines the provisional

data analysis using some of the Wireshark tools.
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4.2.2.2.1 Data Exploration

This section focuses on exploring and understanding the characteristic of the data
collected. Visualisations were created to help add meaning to the data. A clear
understanding of the data characteristics will lead to an optimised machine learning

process and improved interpretation of the results.

The data exploration task was undertaken using the Wireshark software. The packet
capture (.pcap) files are collected from the mobile device and opened using the

Wireshark software. Table 4-1 shows the number of records in each data traces.

Data Trace Name Number of Records
Data Trace 1.1 (Active) 128,856
Data Trace 1.2 (Passive) 10,234
Data Trace 1.3 (Passive) 17,976
Total 157,066

Table 4-1 : Data Traces Record Summary

4.2.2.2.2 Flow Reconstruction

Network flows are point to point connections between source and destination ports.
The network flows in the captured data traces were reconstructed using Wireshark.
This project is based on packet level analysis rather than flow level analysis but it is
important to understand the number and types of flows present in the data in order to
have a full understanding of the data.

Table 4-2 shows the count of each type of network flow found in each of the data
traces. The active data trace has a far greater number of flows compared to the two
passive data traces. UDP network flows are significantly higher in the active data trace.

Trace TCP Flows UDP Flows IPv4 Conversations
Trace 1.1 (Active) 502 467 223
Trace 1.2 (Passive 1) 152 26 24
Trace 1.3 (Passive 2) 101 15 28

Table 4-2 : Network flow reconstruction analysis
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4.2.2.2.3 End Point Analysis

End point analysis allows the number of end point IP addresses to be analyses. End
point analysis was performed using the Wireshark software. Table 4-3 shows the
number of end point IP address identified in each of the data traces. The active data
traces has network traffic going to significantly more IP addresses than both of the
passive data traces.

Trace Total End Point IP Addresses
Trace 1.1 (Active) 223
Trace 1.2 (Passive 1) 24
Trace 1.3 (Passive 2) 31

Table 4-3 : End point IP address analysis

4.2.2.2.4 Network 10 Graphs

Using Wireshark, network 10 graphs can be generated. The IO graphs are graphic
representation of the number of packets travelling on the network over a period of
time. The 10 graph visualisations can also be very useful to understand the differences

in packet volumes between the active and passive traces.

The 10 graphs show the three main protocols detected by volume, TCP in blue, UDP
in red and ICMP in green. The units in the graph are packets. The time interval is 1

second. The x-axis shows time of day and the y-axis shows packet count.

4.2.2.2.4.1 Active Trace: Network 10 Graph

Figure 4-1 shows the 10 graph created for the active data trace. The graphs shows a
visual representation of the packets associated with each of the 3 main protocols. The
y-axis scale is 0-1000 packets.

In general, there is a constantly high stream of packets across the whole data trace. The

increase in UPD (red line) traffic at 18:01 to 18:02 is the 1 minute Skype call
established as part of the data trace actions outlined in Section 4.2.1.4.1.
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Figure 4-1: 10 Graph 1 - Active data trace (Scale 0-1000)

4.2.2.2.4.2 Passive Trace 1: Network 10 Graph

Figure 4-2 shows the 10 graph created for the first passive data trace 1. The graphs
shows a visual representation of the packets associated with each of the 3 main
protocols. The y-axis scale is 0-1000 packets. In general, there is a relatively low

stream of packets across the first passive data trace.
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Figure 4-2 : 10 Graph 2 - Passive data trace 1 (Scale 0-1000)

In order to demonstrate that even though the steam of packets is low, there is a
constant flow of packets across the data trace, the same graph as Figure 4-2 was
created with a y-axis rescaled to 0-100 packets. Figure 4-3 shows the re-scaled 10

Graph.
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Figure 4-3 : 10 Graph 3 - Passive data trace 1 (Scale 0-100)

4.2.2.2.4.3 Passive trace 2

Figure 4-4 shows the 10 graph created for the second passive data trace. The graphs
shows a visual representation of the packets associated with each of the 3 main
protocols. The y-axis scale is 0-1000 packets. In general, there is a relatively low

stream of packets across the second passive data trace
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Figure 4-4: 10 Graph 4 - Passive data trace 2 (Scale 0-1000)

In order to demonstrate that even though the steam of packets is low, there is a
constant flow of packets across the data trace, the same graph as Figure 4-4 was
created with a y-axis rescaled to 0-100 packets. Figure 4-5 shows the re-scaled 10
Graph.
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Figure 4-5: 10 Graph 5 - Passive data trace 2 (Scale 0-100)

The 10 graphs from the three different data traces were compared and clearly highlight

the very different characteristics of the active and passive traces.

4.2.2.3 Expose IP Packet Features

Each record in the data trace datasets represents a single network IP Packet. Network

packets have hundreds of potential features available. The section will outline the

network packet features examined and which of these features were used in the

machine learning process.

Network packets have hundreds of potential features available. In Wireshark the

network packets attributes are called display filters. Wireshark has over 174,000

display filters available, as of software version 1.12.3.

The primary display filters examined as part of this project were

Frame
Eth

IP

TCP
UDP
HTTP
x509sat
SSL
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The IP packets were exposed using the preference screen in Wireshark.

Ml Wireshark: Preferences - Profile: Default — - = ] )

= User Interface
Layout [The first list entry will be displayed as the leftmost column - Drag and drop entries to change column order]
— Displayed Title Field type

S5L Handshake Type  Custom (ssl.handshaketype)

Certificate SSL String  Custom (<509sat.uTFBString)

Certificate DNS Name Custom (<509¢e.dNSName)

Certificate String Custom (<509sat.printableString)

Font and Colors
Capture
Filter Expressions

Name Resolution

Printing Host Custom (http.host)

5 Protocals User Agent Custom (http.user_agent)
Referer URD Custom (http.referer)

Requested URD Custom (http.request.uri)

# Statistics

FrameTimeEpoch  Custom (frame.time_epoch)

FEEEEEEEEE

Frame Relative Time  Custom (frame.time _relative)

Frame Time Delta Custom (frame.time_dekta) =

Figure 4-6 : Wireshark preference menu

4.2.2.3.1 Output Data record format — Data dictionary

After completing the examination of the main packet attributes, 49 field were
identified to form the output record. This section outlines the data dictionary for the
output data set. The output dataset from this step will form the input to the next step,

ML modelling.

Note that the data is at packet level. Also the data is bi-directional, for example the IP
address of the mobile device is the source IP address in outbound data records, for

inbound data records the IP address of the mobile device is the destination IP address.

Some fields will not be useful for ML but were left in to help with data exploration and
troubleshooting, such as IP Frame Number, TCP Flow No. and TCP Sequence

Number. A full table of the data dictionary is available in Appendix B.

4.2.3 Step 3 - Machine Learning Modelling

Supervised learning techniques are the predominant ML techniques used in research in
IP traffic classification. This research also investigated supervised learning techniques
to attempt to identify user-generated versus app-generated traffic. Please refer to
Section 2.1.6 for an overview of ML techniques previously used in the area of IP
traffic classification. These ML techniques formed the starting point for this phase of
the project.
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4.2.3.1 Software: SPSS

This project requires machine learning software to build the end to end machine

learning models. IBM SPSS Modeler 15.0 was installed on the research PC device.

4.2.3.2 Combine Data

Each of the individual data trace were loaded into the SPSS software via intermediate
csv files. The files were then combined to create a single dataset that can be used in the

machine learning modelling process.

4.2.3.3 Secondary Data Analysis

Once the data is available in SPSS, secondary data analysis was undertaken. The
secondary data analysis was concerned with examining the statistical characteristics of

the data that may be important considerations during the ML model build step.

A number of key graphs were created that highlight the important characteristics of the
data. The first graph created was used to examine the protocols present in the full data
set. Figure 4-7 shows a bar chart of the number of packets (data rows) by protocol. The
graph shows that there are 4 main protocols in the data trace TCP, ICMP, TLSv1 and
UDP. Table 4-4 shows the percentage of the total packets by protocol.
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Figure 4-7 : Bar Chart of Total Packets by Protocol
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Protocol Packet Count | 9% of Total Packets
TCP 82,753 52.7%
ICMP 34,593 22.0%
TLSv1 13,823 8.8%
UDP 11,819 7.5%
SSLv3 4,088 2.6%
HTTP 3,784 2.4%
TLSv1.2 3,619 2.3%
0x886¢c 1,287 0.8%
DNS 569 0.4%
ARP 337 0.2%

Table 4-4 : Breakdown of Top 10 Protocols

The next step in analysing the protocol characteristics of the data was to break out the

protocol bar chart by active versus passive traces. This process allows for a side by

side comparison of the protocol characteristics of the data, which highlighted key

differences the active and passive datasets. Figure 4-8 shows very different counts of

packets in each protocol between the active and passive traces. Also, there is almost no

UDP in the passive trace. There is almost no secure protocol traffic either (SSLv3 or

TLSv1.2).

Active

Passive

0,
om
TCP cmP uUpP

TLSvi  SSLva  TLSwI

sssssssssssssssssssss

uuuuuuu
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Figure 4-8 : Active versus Passive - Bar Chart of Total Packets by Protocol
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The destination IP addresses were then analysed. Figure 4-9 shows a bar chart of the
number of packets by destination IP address broken out by active versus passive
datasets. The graph is limited to the top 30 destination IP addresses. Also, the IP
address of the mobile device has been excluded from the graph. Figure 4-9 highlights

the wider range of destination IP addresses found in the active data trace.
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Figure 4-9 : Bar Chart of Total Packets by Destination IP Address

The Time Frame Delta feature was then analysed. Figure 4-10 shows a distribution of
the Time Frame Delta values broken out for the active and passive data traces. Time
Frame Delta is a measure in seconds (to 6 decimal places) of the time between
successive network frames or packets arriving at the data capture point.

Figure 4-10 highlights that for the active trace, almost all Time Frame Delta values are

close to zero. Whereas for the passive trace there is a far greater spread of Time Frame
Delta values.
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Figure 4-10 : Distribution of the Time Frame Delta feature values

The next feature analysed was Bytes Total. Bytes total is a count of the number of
bytes contained in each network packet. Figure 4-11 shows a distribution of the Bytes
Total broken out for the active and passive data traces. The difference in the two
distribution graphs can clearly be seen in Figure 4-11. The active trace has a large
number of packets with approx. 1500 bytes, whereas the passive data trace has very

few packets with a large number of bytes.
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Passive
|
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Figure 4-11 : Distribution of the Bytes Total feature values
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In summary, the secondary data analysis phase highlighted some key differences in the
characteristics of the active and passive data sets. These differences will be used by the
machine learning algorithms to try to accurately classify active and passive data

records.

4.2.3.4 Feature Reduction

This section outlines the feature reduction tasks. The input dataset into the ML model

has 49 features based on the complete data trace dataset.

Following analysis and data inspection, 12 features were filtered out of the data set.
3 Features were removed because they were identifying record values:
e |P Frame Number
e TCP Flow No
e TCP Sequence No
9 Features were removed because they contained sparse or no data values
e Info
e DNS Answer Count
e DNS Query Name
e SSL Handshake Type
e Certificate SSL String
e Certificate DNS Name
e Certificate String
e User Agent
e TCP Option Len

As part of the modelling process, the feature space was further reduced. For example,
an implementation of a CHAID decision tree reduced the feature space by ignoring 27
features listed below:

e Time

e Source IP Address

e Destination IP Address

e Combined Ports

e TCP Flag Syn
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TCP Flag Ack

TCP Flags

DNS IP Addresses

Host

Referer URI

Requested URI

Frame Time Epoch

Frame Relative Time

TCP Window Size Scalefactor
TCP Ack RTT

TCP Window Size Value
TCP Options

TCP Options MSS

TCP Options Sack Perm
TCP Options Sack Count
TCP Options Sack Len
TCP Options Time tsval
TCP Options Type

TCP Options Type Class
TCP Options Type Number
TCP Options WScale Shift
TCP Options WScale Multi

The CHAID decision tree found for example found 10 features with a predictor

importance.

Frame Time Delta
TCP Bytes in Flight
Protocol

TCP Window Size
Source Port

Bytes Total

TCP Options Time tsec
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e TCP Options Kind
e TCP Flag Fin

e Destination Port

4.2.3.5 Build Machine Learning Models

The experiment implemented five supervised ML techniques; Decision trees, SVM,
Naive Bayes Estimator, Neural Networks and KNN. These techniques have been chose
because they are the most used techniques in the relevant literature and are the best

performing ML learning techniques based on the experimental outputs.

SVM, Naive Bayes Estimator, Neural Networks and KNN were found to have low
overall model accuracy after the initial model build phase and were excluded from

further investigation.

During the model building phase three decision tree algorithms emerged as having a
high overall model accuracy, C5.0, CHAID Tree and C&R Tree. These models formed

the focus of the full model development and evaluation.

4.2.4  Step 4 - Model Evaluation

This project attempted to find the best features to use to detect user-generated versus
app-generated IP traffic. The best features to use will vary based on the data mining
technique and the data being analysed. The task at this step is to identify the optimal
set of features that minimizes the processing cost, while maximizing the classification
accuracy. Please refer to the Feature Selection section above for a list of previously use
feature selection techniques in the area of IP traffic classification. These techniques
will form the starting point of the feature reduction process. Other techniques may be

used if deemed appropriate.

Although the three decision tree models were found to have a high overall model
accuracy, two of the models (CHAID tree and C&R tree) had low precision values
when classifying passive traffic. Following an initial review of the evaluation metrics
model boosting was implemented on the three decision tree models to specifically try

to improve the passive traffic classification precision metric.
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4.3 Strength and Limitations of Experiment Approach

This section will outline the strengths and limitation of the experimental approach.

The strengths of the experimental approach are as follows:

There

The research sets out an innovative experimental approach to capture, analyse
and run predictive analytics on mobile network data traffic

The experimental approach sets out a clear, robust and repeatable end-to-end
process for mobile device network traffic predictive analytics.

The research uses the inherent IP Packet features rather than generating
features. Generating features can be time consuming and processor intensive.
The experimental approach sets out to find new features not considered in

previous research.

are some limitations with the experimental approach that need to be

acknowledged:

Only one device was used to capture the data. Using only one device make it
easier to attribute traffic to a device. Using multiple devices would address real
world deployment considerations.

A limited number of apps were considered in order to set a manageable scope
for the research. Apps can have very different architectures so including more
apps would increase the validity of the research.

The data traces were captured for a limited time period of 30 minutes in order
to keep the output data at a manageable level. Longer data traces could show
characteristics of the data not captured in this experimental set up.

The research only focused on a device running Android OS. Running data
traces on an Apple device is far more complex process then running data traces
on and Android device. Apple I0S has an equivalent mobile market share to
Androidl® so the research would benefit from network data captured on an

Apple 10S device.

Ohttps://gigaom.com/2015/02/04/android-and-ios-are-nearly-tied-for-u-s-smartphone-

market-share/ Date Accessed 10/02/2015
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4.4 Expected Results

The expected results from this research would be to develop a supervised machine
learning model that performs well at identifying active and passive app network traffic

based on the chosen evaluation metrics.

4.5 Conclusion

This chapter has outlined the design methodology for the project experiment. The
experiment, as designed, should allow this project to develop a machine learning
algorithm that can accurately identify active and passive app network data. The next

chapter will detail how the experiment design methodology was implemented.
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5 EVALUATION AND DISCUSSION

5.1 Introduction

This chapter presents the findings from the empirical study, as specified in Chapter 4.
The results were analysed and compared to the findings from the literature review. The

weaknesses and limitations of the research are presented and critically discussed.

5.1.1 Evaluation Criteria

The evaluation criteria were based on the prominent evaluation metrics identified in
the literature review of relevant research in the area of network traffic classification, as

outlined in the section 2.1.10.

There are a four main of evaluation metrics proposed in the IP traffic classification
literature for supervised ML algorithms:

e Accuracy

e Recall (or Sensitivity or True Positive Rate (TPR))

e Precision (or Positive Predictive Value (PPV))

e [F-Measure

The first step in evaluating the ML models created was to create a confusion matrix for
each model. Predicting passive traffic correctly is the main objective of the research.
Passive traffic makes up only 18% of the total dataset so it is important to specifically
understand how accurately a model can predict passive traffic. For example, a model
could have an overall accuracy of 82% but still predict all passive traffic incorrectly. In
a real work network correctly identifying passive traffic is vital because passive traffic
can be deprioritised on the network due to the fact that the end-user is not actively
seeking the data.

61



Predicted Class
Passive Active
" Passive True Positive False Positive
‘—3 (TP) (FP)
g Active False Negative True Negative
< (FN) (TN)

Table 5-1 : Confusion Matrix Example

Based on the confusion matrix, the evaluation criteria were then calculated as follows:

Evaluation Criteria Calculation

Accuracy (TP+TN)/(TP+TN + FP + FN)
Recall TP / (TP+FP)

Precision TP/ (TP+FN)

F-Measure (2 x Precision x Recall) / (Precision + Recall)

Table 5-2 : Evaluation Criteria Calculations

After a preliminary review of the results, it became clear that an additional evaluation
criteria would need to be included. Negative Predictive Value (NPV) was added to the
list of evaluation criteria. For clarity NPV will be referred to as Active Predictive
Precision (APP). The existing precision metrics is a measure of passive traffic
precision. For clarity precision, in this context, will be referred to as Passive Predictive

Precision (PPP). Table 5-3 shows the PPP and APP metric calculations

Evaluation Criteria Calculation
Passive Predictive Precision (PPP) | Precision = TP/ (TP+FN)
Active Predictive Precision (APP) NPV =TN/ (TN + FN)

Table 5-3 : Passive and Active Predictive Precision Metrics

By comparing the PPP and APP metrics side by side the true accuracy of each model
at predicting each class can be easily interpreted. A good model should have a high

percentage value for both evaluation criteria.
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There are two secondary evaluation criteria metrics that were considered. These
metrics are posed in the literature relating to evaluating real time IP traffic classifiers.

Table 5-4 shows the real-time evaluation metric calculations.

Evaluation Criteria Calculation
Model Build Time Total time to build model
Classification Time Records classified in 1 sec

Table 5-4 : Real time evaluation criteria

5.1.2 Machine Learning Models Considered

The experiment implemented five supervised ML techniques; Decision trees, SVM,
Naive Bayes Estimator, Neural Networks and KNN. SVM, Naive Bayes Estimator,
Neural Networks and KNN were found to have low overall model accuracy after the

initial model build phase and were excluded from further investigation.

During the model building phase three decision tree algorithms emerged as having a
high overall model accuracy, C5.0, CHAID Tree and C&R Tree. These models formed

the focus of the full model development and evaluation.

5.2 Evaluation of Results

In this section the overall experiment results are presented. The evaluation metrics for
each of the three ML models built are presented, compared and critically evaluated.

The key findings are compared to the findings from the literature review.

The experimental setup and parameters of each model are detailed in Appendix D, E
and F.
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5.2.1 Evaluation Criteria Results and Comparison

Table 5-6 shows the evaluation metric results for the three ML models built during the

experiment implementation.

CHAID C&R C5.0
Evaluation Criteria Std. Boost Std. Boost Std. Boost
Accuracy 88.3% 95.5% 90.4% 92.4% 95.6% 95.6%
Precision 50.2% 84.8% 60.7% 79.7% 75.8% 75.6%
Recall 76.6% 89.7% 81.2% 78.4% 99.4% 99.9%
F-Measure 60.7% 87.2% 69.4% 79.1% 86.0% 86.1%

Passive Predictive Precision 50.2% 84.8% 60.7% 79.7% 75.6% 75.8%

Active Predictive Precision 96.6% 97.9% 96.9% 95.2% 99.9% 99.9%
Model Build Time (mm : ss) 00:14 10:37 00:15 10:28 00:52 12:46
Classification Time

1026 400 1000 470 800 500
(Records per second)

Table 5-5 : Results - Evaluation Metrics

Round 1 in the model building phase covered developing a standard implementation of
the ML techniques. The Std. column in Table 5-6 (highlighted in grey) contains the
round 1 results. Round 2 in the model building phase covered developing an
implementation of the ML techniques with model boosting enabled. The Boost column
in Table 5-8 contains the round 2 results. The model with the highest combination of
PPP and APP in round 1 was the C5.0 tree (highlighted in yellow). After model
boosting was enabled, the model with the highest combination of PPP and APP in
round 2 was the CHAID tree (highlighted in green).

5.2.2 Round 1 - Standard Model Implementation

This section discusses the results from the round 1 model development. APP is very
high across all models in round 1 ranging from 96% to 99%. However PPP is lower
and had a much wider range from 50.2% to 75.8%. The models are evaluated based on
a combination of PPP and APP but due to the consistently high APP values, PPP was

the main evaluation metric.
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5.2.2.1 CHAID Tree

The standard implementation of the CHAID tree model had the lowest PPP and the
lowest combination of PPP and APP. Although APP was very high at 96.6%, PPP is

only 50.2%. The model failed to accurately predict passive traffic.

Table 5-1 shows the predictor importance within the model. Two features stand out as
important predictors, Frame Time Delta and TCP Bytes in Flight. The preliminary data
analysis detailed in Figure 4-10 highlighted the different characteristics of the Frame
Time Delta feature in the active and passive data sets.

Predictor Importance

Target: Target

Frame Time Delta
TCP Bytes in Flight

Protacol :l

TCP Window Size | |
Source Port ]
Bytes Total :l

TGP Options Time ... ||
TCP Options Kind ||
TCP Flag Fin |

Destination Port

00 0.2 04 06 08 1.0

Least Important Most Important

Figure 5-1 : Feature Predictor Importance

5.2.2.2 C&R Tree

The standard implementation of the C&R tree had a slightly higher PPP value at
60.7% comparted to the CHAID tree. The C&R model had a similarly high APP value

of 96.9%. The PPP value is still consider too low.
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5.2.2.3 C5.0 Tree

The C5.0 tree was the best performing model in round 1. Similar to the CHAID and
C&R trees the C5.0 tree had a high APP at 99.9%. The PPP was 75.8. The PPP was
15% higher than the second place C&R model.

5.2.2.4 Results comparison with literature review

This section will compare the findings from model building round 1 with equivalent
findings from the literature review. The evaluation metric used by pervious research is
overall model accuracy. Because of the importance of correctly predicting passive
traffic this research use a specific PPP evaluation metric, but the overall accuracy
metric for each model is available. Table 5-7 shows the overall accuracy metric for the

models built in round 1.

Model Overall Accuracy
C5.0 Decision Tree 95.6%
C&R Tree 90.4%
CHAID 88.3%

Table 5-6 : Round 1 — Overall Model Accuracy

Table 5-8 shows the overall accuracy metric for decision trees presented in the

literature review.

Paper Algorithm Best Performing | Overall Accuracy
Li and Moore, 2007 C4.5 Decision Tree Y 99.8%
Williams et al., 2006 | C4.5 Decision Tree Y 94.13%
Singh et al., 2013 C4.5 Decision Tree N 83.1%

Table 5-7: Literature Review - Decision Tree Overall Accuracy

The decision trees built in this research have a very similar overall accuracy range to
previous decision tress built in previous research. There is a difference in the datasets
between this research and previous research. Also, there is a difference in the decision

tree algorithms used in this research and previous research. The C5.0 decision tree
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used in this research is the most similar to previous research that used a previous
implementation of the same algorithm, C4.5 decision tree. The C&R tree and the

CHAID tree do not specifically appear in previous research.

Model boosting is not covered in previous literature. Previous research only
investigated the C4.5 decision tree algorithm which does not support boosting. Support
for boosting was added in the C5.0 algorithm implementation, which allowed this

research to extend the experiment into model boosting development and evaluation.

5.2.2.5 Round 1 Evaluation

APP is very high across all tree decision tree algorithm implementations. However
PPP varies widely. The PPP value could still be improved. Other ML algorithms have
already been discounted so the next step was to continue evaluation decision tree

algorithms by extending their capabilities using model boosting.

5.2.3 Round 2 - Boosting Model Implementation

This section discusses the results from the round 2 model development. This round of
development used the same decision tree algorithms as round 1 but added model

boosting capabilities with the specific purpose of improving PPP.

5.2.3.1 C5.0 Tree

After round 1 the C5.0 was the best performing algorithm based on having the highest
PPP. The C5.0 model was implemented again with model boosting. However there is
no improvement in the model percussion metrics. After reviewing the output from the
model ensemble each successive model shows no improvement in overall accuracy. In
this case, with the specific research data model boosting does not increase the overall
accuracy of the C5.0 Model. The C5.0 model drops to 3" place in round 2 evaluation.
It is worth noting that the C5.0 model with boosting classified almost 100% of active

traffic correctly.
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5.2.3.2 C&R Tree

The C&R tree model was the second place model after round 1. Following
implementing the model with boosting functionality the C&R model was evaluated to
be in second place in round 2 also. The model with boosting enabled does show an
improvement in PPP from 60.7% to 79.7%.

Figure 5.2 shows the overall accuracy improvement in the C&R tree with and without

boosting enabled.

Model Summary
Target: Target

Quality

Worse Better

Ensemble 02 4% v

Reference

Model 89.7%

Naive

Model 82.0%

0% 25% 0% Ta% 100%

Accuracy

Figure 5-2 C&R Tree Model with Boosting — Accuracy comparison

Figure 5-3 shows the list of features used by the C&R tree model ensemble and how
frequently the feature was used by a component model. A total of 22 features
considered by the model ensemble. The large number of features used by the model,
and the high overall accuracy results, supports the assumption that inherent IP packet
attributes can be used to classify active and passive network traffic or network traffic

in general.
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Figure 5-3 : C&R Tree Features and Frequency

5.2.3.3 CHAID

The CHAID model was evaluated in 3" position in round 1. However, there was a

significant improvement in PPP from 50.2% to 84.8% in round 2 with model boosting
enabled. APP increased slightly from 94.6% to 97.9%. Overall the combination of PPP

and APP were highest for the CHAID implementation with boosting.
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Figure 5.4 shows the overall accuracy improvement in the CHAID model with and

without boosting enabled.

Model Summary
Target: Target

Quality

Worse Better

Ensemble g5 5% v

Reference
Haive 82 0%

Model

0% 25% a20% 75% 100%

Accuracy

Figure 5-4 : CHAID Model with Boosting — Accuracy comparison

Figure 5-5 shows the list of features used by the CHAID model ensemble and how
frequently the feature was used by a component model. A total of 16 features were
utilised by the model ensemble. Similar to the C&R model, the large number of
features used by the model, and the high overall accuracy results, supports the
assumption that inherent IP packet attributes can be used to classify active and passive

network traffic or network traffic in general.
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Figure 5-5 : C&R Tree Features and Frequency

5.2.3.4 Round 2 Evaluation

Implementing model boosting led to a significant improvement in PPP in the two of
the three decision tree models. There was no change in PPP in the C5.0 model with
boosting which was unexpected. The CHAID tree model showed the largest
improvement in PPP. APP was already very high in standard model implementation
and remained high or increased slightly in the models with boosting. The models with
boosting utilised up to 22 features which supports the assumption that inherent IP

packet features can be used to classify network traffic.
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5.2.4 Real Time Evaluation Criteria

Two real time evaluation metrics were considered; Build Time and Classification
Time. Classification time is particularly important because in real world networks the

traffic volume will be very high and fast classification is critical.

The best performing model based on PPP and APP metrics was the CHAID model
with boosting. This model can classify 400 records per second*'. However the C5 Tree
model without boosting can classify 800 records per second. The CHAID model with
boosting uses a model ensemble which is slower to classify than a single tree. Also, the
CHAID model ensemble has a larger feature space which can increase classification

time.

The CHAID model with boosting has a PPP of 84.8%. The C5 Tree model without
boosting has a PPP of 75.8%. In a real work network situation, the absolute difference
in accuracy of 9% would probably be sacrificed for an algorithm that can run twice as

fast.

5.3 Discussion

This section will discuss the key findings from the research.

Overall, the best performing model based on a combination of PPP and APP was the
CHAID tree with boosting. The model had a PPP vale 84.8% and APP value of 97.9%.
CHAID trees can generate non-binary trees, meaning that some splits have more than
two branches Unlike the C&R trees for example. CHAID tends to create a wider tree

than the binary growing methods. CHAID trees can work for all types of inputs.

The research found that decision trees algorithms have the highest accuracy for
network traffic classification problems. This finding is backed up by previous research

outlined in the literature review.

11 Based on running the algorithm on PC with system specification as outlined in section
3221
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The research implemented and evaluated three decision tree algorithms that were not
observed in the literature review. C5.0, CHAID Tree and C&R tree were each. Each
model generally performed well after a full evaluation of round 1 and round 2 model
building implementations. APP was consistently high in round 1 and round 2. PPP was

low with standard implementation but improved with boosting.

Model boosting produce significant PPP improvement in the CHAID tree and C&R
tree models. For the CHAID tree with boosting, PPP changed significantly from 50.2%

to 84.8%. There was no chance in C5.0 with boosting which was unexpected

Using the inherent IP packet attributes worked well. The high PPP figures produced by
the models backed up assumption that the IP packet attributes can be used to classify
network traffic. Some of the IP packet attributes that worked well were, Time frame
delta, Bytes total, Bytes in flight and TCP window size

5.4 Strengths and Limitation of Results

This section will outline the strengths and limitation of the results and key findings.

Results and key finding strengths:

e Results suggest that decision tress were the most accurate ML model to use for
the network classification problems. This finding was backed up by research
covered in the literature review.

e The research presents the results for three decision tree algorithms not previous
covered in the literature.

e The results suggest the classification of low level traffic (active or passive)
with a very high degree of accuracy. Previous research has focused on much
higher level traffic such as traffic class types like email or FTP.

e The results highlight the need for specific evaluation metrics for low level
traffic classification, namely PPP and APP

e The large number of features used by the model, and the high overall accuracy
results, supports the assumption that inherent IP packet attributes can be used

to classify active and passive network traffic or network traffic in general.
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Results and key finding limitations:

Overall limitation is that the data the results are based on relates to a single
device and a single data trace.

The results outline new features using the inherent IP packet attributes. Most of
the features used in the models have not been covered by previous research so
there is no knowledge base to compare to.

The results outline three implementation of decision trees, C5.0, CHAID and
C&R. Although C4.5 models have been covered by previous research, there is
no knowledge base to compare to for the CHAID and C&R tree models.
Previous literature documented SVM and Naive Bayes Estimators models that
had a high degree of accuracy in network traffic classification problems. These
models were found to have low accuracy in this research.

The implementation of the C5.0 model with boosting showed no accuracy
improvement against the standard implementation of the model. This was an

unexpected finding.

5.5 Conclusion

Using data traces captured on a mobile device, this study designed and implemented an

experiment to answer a specific research question

“Can passive mobile app traffic be identified using machine learning techniques?”’

The findings indicate that passive traffic can be classified using decision tree

algorithms with an accuracy up to 84.8%. Using the inherent attributes of IP packets to

create features worked well. The IP packets attributes produced predictive features that

could be utilised by the ML models to produce a high model accuracy.

The findings demonstrate that the standard implementation of the three decision tree

models had a high overall accuracy but a low PPP. Boosting implementations of each

model led to significant increase in PPP apart from C5.0 model.
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Although the findings show that boosting models produce the most accurate
classification models, it is unlikely the boosting models would be deployed on a real

world network due to the slow classification time.
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6 CONCLUSION

6.1 Introduction

This chapter revisits the overall aim and objectives of this research study. A summary

of the key findings is presented. The contribution of this research to the existing body

of knowledge are discussed. The limitation of the research are then explained. Finally,

areas for further research specifically related to this research are also outlined.

6.2 Problem Definition & Research Overview

The research process followed a logical set of steps with each step informing the

subsequent steps. Figure 6-1 shows the steps involved in the research process and how

the output of each step cascaded down as input to the next step.

The Problem

> Identify
Research Gap

=

The Research
Question

: Experiment
Design

::> Experiment
Implementation
:> The Findings

Figure 6-1 : Research Process Steps - Summary Diagram
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6.2.1 The Research Problem

The research problem was concerned with the area of network traffic classification.
Network traffic classification informs key actions for network operations in real-world

network. There is a significant knowledge base in the research area.

This research focused a specific network traffic classification problem. Mobile phone
applications (apps) can generate background traffic when the end-user is not actively
using the app. If this background traffic could be accurately identified, network
operators could de-prioritise the traffic and free up network bandwidth for priority
network traffic. The background app traffic should have IP packet features that could
be utilised by a machine learning algorithm to identify app-generated (passive) traffic

as opposed to user-generated (active) traffic.

6.2.2 The Research Gap

Based on a review of the body of knowledge on network traffic categorisation, a
number of research gaps were identified:
e To the best of this author’s knowledge, there is no research into classifying user
generated (active) versus app generated (passive) traffic.
This project will investigate this previously unexamined research area.
e Vast majority of research is based on a fixed network IP traffic generated by
personal computers.
This research is based on mobile device originating network traffic which is an
important area of research
e Previous research does not take advantage of the large amount of inherent IP
packet features. Instead, previous research had added extra steps, complexity
and processing calculating new features.
This project will leverage the large amount of inherent IP packets features to
allow a machine learning algorithm to successful identify user generated or app
generated traffic
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6.2.3 The Research Question

Informed by the gaps identified in the body of knowledge a research question was
designed with a focus on classifying low level mobile device network data. Using data
traces captured on a mobile device, this study designed and implemented an

experiment to answer a specific research question

“Can passive mobile app traffic be identified using machine learning techniques?”

Guided by the research question, the project objectives are:
1. Gain knowledge in the research domain of network traffic classification
2. Design research question experiment solution
3. Implement the experiment solution and capture results
4

Evaluate outcomes from experiment implementation

6.2.4 Summary of the Experiment Design

An innovative experiment setup was designed in order to attempt to answer the
research question. A mobile phone running Android OS was configured to capture
network data based on. Three specific data trace procedures where then designed to

capture active and passive app traffic.

Feature generation in previous researched recommend computing new features based
on IP packet data. This research designed a different approach. Feature generation was

enabled by exposing inherent IP packet attributes.

6.2.5 Summary of the Experiment Implementation

The experiment processes was initiated by collecting network traffic data generated by
apps on an Android OS mobile phone device. The captured network traffic data was
then examined and features were created based on the properties of the IP packets. The
output files containing all the relevant IP packet features were passed to statistical

modelling software.

78



Multiple machine learning techniques were then applied to the data. Decision tree
algorithms were found to have the highest model accuracy for classifying active and
passive traffic. Three decision tree models were built; C5.0, C&R Tree and CHAID.

The performance of each machine learning model was evaluated based on the
evaluation criteria identified in the literature review. After the first round of ML
modelling the overall accuracy of the models was found to be high, ranging from
88.3% to 95.6%. However, passive traffic prediction accuracy was found to be low at
50.3%. A second round of modelling was implemented using model boosting with the
same three decision tree models. Significant improvement was observed in the

accuracy in predicting passive traffic.

6.2.6 Summary of Findings and Conclusions

The findings indicate that passive app network traffic can be classified with an
accuracy up to 84.8% using a CHAID decision tree algorithm with model boosting

enabled.

The experiment implementation, as specified in the experiment design, proved to be a
very good process to test the research question. The data capture process captured
clean and useful data. The different software elements were well chosen and there
were no integration issues. Using the inherent IP packet attributes as input features
also worked well and findings backed up assumption that the IP packet attributes could
have a high predictive value to ML models.

The models produced by the research had high accuracy and PPP values. This research
found that decision trees algorithms have the highest accuracy for network traffic
classification problems. This finding is backed up by previous research outlined in the

literature review. New decision tree algorithms were investigated.

Summary of key findings from model build phase:
e APP was high across all modes in round 1 and round 2
e PPP was low in round 1 but improved significantly in round 2
e PPP changed significantly for CHAID with boosting from 50.2% to 84.8%
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No chance in ¢5.0 with boosting which was unexpected
In the real word the standard implementation of the C5.0 tree would probably

be deployed due to acceptable PPP value and fast classification time.

6.3 Contributions to the Body of Knowledge

This dissertation makes a practical contribution to the knowledge base in the following

ways:

Extends the limited knowledge base of mobile device network traffic
classification.
New research in low level network traffic classification. Active v passive
traffic classification rather than high level traffic class types.
Innovative experimental design
o Robust, end-to-end experiment process design for mobile device data
capture, analysis and modelling
o 3 specifically designed data traces to capture active and passive network
traffic from mobile device.
New approaches proposed for feature generation by leveraging the large
number of IP packet attributes. No computation needed. New features such as
Frame Time Delta, Bytes in flight and TCP window size shown to be
significant predictors of active and passive traffic
Extend the knowledge of machine learning techniques used network traffic
classification by developing models using C&R and CHAID decision trees.
Extend research in using model boosting for network traffic classification.
New evaluation metrics proposed for active and passive model accuracy;

Passive Predictive Precision and Active Predictive Precision.
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6.4 Experimentation, Evaluation and Limitation

There are a number of limitations with the research that should be considered:

Research Limitations:
e Device

o Only asingle device was used to capture data. This means that it is easy
to relate traffic to a specific device. Using multiple devices to create
network traffic would deliver more robust research.

o Only Android OS considered. Apple 10S has a similar market share to
Android and can reasonably be expected to generate large volume of
network traffic.

e Data Trace

o Only one dataset was created during an hour on a single day. Having
more data sets, from different times, would allow for comparison of the
two separately gathered data set. Having multiple data sets will also
allow for testing and comparison of the machine learning models. This
should reduce the risk of incorrect findings that may occur when only
one data set was used.

e Mobile Apps

o Only 11 specific apps were considered.

o The data trace captured app generated traffic at one point in time. App
network architectures can change over time. Popular apps can make use
of Content Delivery Networks (CDNs). These CDNs that can change
architecture frequently.

o Any model would need to be checked regularly with new data traces.

e App actions:

o The data traces captured a limited number of app actions, opening the
app, downloading content, sending message. This may not be a true
reflection of how apps are used on real word networks.

e Encrypted traffic:
o Secure, encrypted traffic is consistently increasing on networks. It is

unknown what impact an increase in encrypted traffic will have on this
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research but it could impact the number of IP attributes available for

modelling

Research Strengths:

e [P classification of mobile app generated traffic

e Low level classification of active and passive app traffic

e Innovative and original experiment design

e New decision tree models developed as part of this research

e Research demonstrates the predictive power of inherent IP packet attributes.

e The large number of features used by the model, and the high overall accuracy
results, supports the assumption that inherent IP packet attributes can be used
to classify active and passive network traffic or network traffic in general.

6.5 Future Work & Research

This section outlines how this research could be extended and identifies areas for

future research.

e Data Traces
o Future research could create multiple data traces could be created and
used to build models to fully test the robustness of the model output
o Data traces could be run at different time of day
o Increase number of apps considered
o Include more mobile phone OS platforms such as Apple 10S
e Feature generation
o Future research could explore more of the Wireshark display filters
available (over 174000 fields in 1000 protocols as of version 1.12.3)
e Extend to real word network with real-time testing
o Future research could test if active and passive network traffic
classification can be deployed on a real work network.
o Consider computational speed issue on real world network such as
System Throughput: (Li and Moore, 2007) and System Latency: (Li

and Moore, 2007) metric proposed in the literature
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6.6 Conclusion

This research attempted to answer a very specific research question - Can passive

mobile app traffic be identified using machine learning techniques?

Guided by the research question, the project objectives were:
1. Gain knowledge in the research domain of network traffic classification
2. Design research question experiment solution
3. Implement the experiment solution and capture results
4

Evaluate outcomes from experiment implementation

By implementing an innovative experiment design the findings indicate that passive
app network traffic can be classified with an accuracy up to 84.8% using a CHAID
decision tree algorithm with model boosting enabled. At the same time the project
objectives have been achieved.

This dissertation makes a practical contribution to the knowledge base to help inform

practitioners.

Future work recommendations have been documented to help shape the direction of

future research.
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APPENDIX A - LITERATURE REVIEW SUMMARY TABLE

Summary of key points from papers in literature review:

Packet
Author or
Flow Based

Supervised (Classification)
Network Layer or
Unsupervised (Clustering)

Real-Time
Consideration

Payload

Best performing

Supervised Algorithms Used Algorithm

Unsupervised Algorithms Used Accuracy Metrics Accuracy

Inspection

(Frank, 1994) Packet header statistical Transport Layer Supervised Decision Tree Classification Error
features Neural Net
k-NN
(Karagiannis et al., 2005) ~ ~ Yes Transport Layer ~ ~ ~ ~ Correctly labelled Traffic 95%
(Accuracy)
Completeness
(Moore and Papagiannaki, 2005) | Packet header statistical | Full payload No Transport Layer Supervised Authors developed a content-based ~ Content based Packets correctly identified | approaching 100%
features inspection classification process classification
(Moore and Zuev, 2005) Packet header statistical No No Transport Layer Supervised Naive Bayes Estimator ~ Naive Bayes Estimator Average percentage of >95%
features accurately classified flows
(Zander et al., 2005) Flow statistical No No Application Unsupervised ~ AutoClass unsupervised Bayesian AutoClass Author defined metric 86.50%
properties classifier termed intra-class
homogeneity
(Zuev and Moore, 2005) Flow statistical No No Transport Layer Supervised Naive Bayes Estimator ~ Naive Bayes Estimator Average percentage of 83%
properties accurately classified flows
(Bernaille et al., 2006) Packet header data (First No Yes Transport Layer Unsupervised ~ K-Means K-Means Average percentage of 84.2% t0 96.92%
5 packets of a flow) accurately classified flows (Accuracy by
Application)
Erman et al., 2006) Flow statistical No No Transport Layer Unsupervised ~ Compares K-Means and DBSCAN AutoClass Overall Accuracy 97.60%
properties with previously used AutoClass.
(Williams et al., 2006) Flow statistical No Yes Transport Layer Supervised Naive Bayes Discretisation ~ Decision Tree C4.5 Accuracy 94.13%
properties Naive Bayes Kernel density estimation (Speed) Precision
Decision Tree C4.5 Recall
Bayesian Network & Speed
Naive Bayes Tree
(Auld et al., 2007) Packet header statistical No No Transport Layer Supervised Bayesian trained neural network ~ Bayesian trained neural Average percentage of 95-99%
features Naive Bayesian classifier. network accurately classified flows
(Li and Moore, 2007) Packet header statistical No Yes Transport Layer Supervised Decision Tree C4.5 ~ Decision Tree C4.5 Accuracy 99.80%
features Precision
Recall
& Latency and Throughput
of the ML system
(Kim et al., 2008) Packet header statistical No No Transport Layer Supervised SVM ~ SsVMm Accuracy 98%
features Neural Net Precision
k-NN Recall
& F-Measure
(Yuan et al., 2010) Network flow parameter No Yes Transport Layer Supervised SVM ~ SsVM Average percentage of 99.42%
obtains from the packet accurately classified flows
headers
(Singh et al., 2013) Packet header statistical No Yes Transport Layer Supervised Multilayer Perceptron (MLP) ~ Bayes Net Classification Accuracy 91.80%
features Radial Basis Function Neural Network (*Near real time Recall
(RBF) classification) Precision
C 4.5 Decision Tree Algorithm Training time
Bayes Net Algorithm Number of features used
Naive Bayes Algorithm Packet capture duration
(Zhang et al., 2013a) flow statistical features No No Transport Layer Supervised Naive Bayes Algorithm ~ Naive Bayes Algorithm Classification Accuracy 89.00%
F-Measure
(Zhang et al., 2013b) flow statistical features No No Transport Layer Supervised k-NN ~ k-NN >90%
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APPENDIX B — DATA DICTIONARY

Data dictionary for output from experiment implementation. .

Feature Name Example Data Type | Wireshark Attribute Description

IP Frame Number 10 integer frame.number Number to identify each frame (sequential)

TCP Flow No. 3 integer tcp.stream Number to identify each TCP flow (sequential)

TCP Sequence No. 28 integer tcp.seq TCP sequence number used to keep track of
how much data has been sent.

Protocol TCP string protocol The protocol of the network frame

Time 12.17324 seconds frame.time_relative Time since reference or first frame

Bytes Total 1484 integer frame.len Frame length on the wire in bytes

Source IP Address 192.168.1.14 string source.address Source IP address of the client

Source Port 38346 integer tep.sreport Source port number of the client

Destination IP Address 74.125.24.156 string destination.address Destination IP address of the server

Destination Port 443 integer tcp.dstport Destination port number of the server

Combined Ports 38346 , 443 string tcp.port Source and destination port numbers separated
by a comma

Info Server Hello string information Frame information string

TCP Flag Syn Set string tep.flags.syn Flag to indicate if TCP Syn was set

TCP Flag Ack Set string tep.flags.ack Flag to indicate if TCP Ack was set

TCP Flag Fin Not Set string tep.flags.fin Flag to indicate if TCP Fin was set

TCP Flags 0x0018 string tcp.flags TCP Flags expressed in hexadecimal

DNS Answer Count 5 integer dns.count.answers The number of answers in the DNS query
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response

DNS Query Name www.googleadservices.com string dns.gry.name DNS query name for DNS lookup

DNS IP Addresses 74.125.24.156, 74.125.24.157, | string dns.a The IP addresses returned by the DNS server

SSL Handshake Type Client Hello string ssl.handskake.type Details of the SSL handshake type

Certificate SSL String *.rovio.com string x509sat.uTF8String Details of the SSL string in the security
certificate from the host

Certificate DNS Name *.g.doubleclick.net string x509ce.dNSName DNS details from the security certificate from
the host

Certificate String DigiCert string x509sat.printableString Details of the security certificate from the host

Inc,www.digicert.com,
Host i.instagram.com string http.host The host string
User Agent Instagram 6.11.2  Android | string http.user_agent The user agent is the software that has created
(16/4.1.1..... the network traffic

Referer URI WWW.rte.ie/news string http.referer The full referrer URI

Requested URI fapps/YouTube string http.request.uri The full URI requested

Frame Time Epoch 1417110806.000000 seconds frame.time_epoch Epoch time is a system for describing instants in
time

Frame Time Delta 0.081276 seconds frame.time_delta Time delta from previous captured frame

TCP Window Size 43648 integer tcp.window_size Calculated window size

TCP Window Size Value 1024 integer tcp.window_size_value Window size value

TCP Window Size S-factor 64 integer tcp.window_size_scalefactor Window size scaling factor

TCP Bytes in Flight 122 integer tcp.analysis.bytes_in_flight Bytes in flight

TCP Ack RTT 0.0345234 float tcp.analysis.ack_rtt The Round Trip Time to ACK the segment
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http://www.rte.ie/news

TCP Options 0101080afff string tcp.options TCP Options header section

TCP Options MSS 0 integer tcp.options.mss TCP MSS Option

TCP Options Kind Timestamp string tep.option_kind TCP Option kind

TCP Option Len 4,2,10,3 string tcp.option_len TCP Option length

TCP Options Sack Perm True String tcp.options.sack_perm TCP SACK Permitted Option

TCP Options Sack Count 3 integer tcp.options.sack.count TCP SACK Count

TCP Options Sack Len 10075338 Long Int tcp.options.sack_le TCP SACK Left Edge

TCP Options Time tsec 167128 integer tcp.options.timestamp.tsecr Timestamp echo reply

TCP Options Time tsval 687677493 Long Int tcp.options.timestamp.tsval Timestamp value

TCP Options Type 1 integer tcp.options.type TCP Option type

TCP Options Type Class control string tcp.options.type.class Class

TCP Options Type Number No-Operation string tcp.options.type.number TCP Type number

TCP Options WScale Shift 9 integer tcp.options.wscale.shift TCP window scale option shirt count
TCP Options WScale Multi 512 integer tcp.options.wscale.multiplier TCPwindow scale option multiplier
TCP Window Size 43648 integer tcp.window_size Calculated window size
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APPENDIX C - SPSS STREAM

Overview of stream built using IBM SPSS software.
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APPENDIX D - C5.0 TREE MODEL SETUP

Standard Implementation: Model Setup

Analysis

Tree depth: 21

Cross Validation

Mean: 99.0
Standard Error: 0.0

Analysis of Append (23-Feb-2015 22:50:58)

Fields

Target

Inputs

Build Settings

Number of records: 157,066
Analysis Accuracy: 95.566%

Target

Frame Time Delta

TCP Window Size Value
Bytes Total

TCP Options Time tsec
TCP Options Time tsval
Protocol

Destination Port

Source Port

TCP Window Size Scalefactor
TCP Window Size

TCP Ack RTT

TCP Bytes in Flight

TCP Options Type Class
TCP Options WScale Shift

Use partitioned data: false

Calculate predictor importance: true

Calculate raw propensity scores: true

Calculate adjusted propensity scores: false
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Use weight: false

Output type: Decision tree

Group symbolics: false

Use boosting: false

Cross-validate: true

Number of folds: 10

Mode: Expert

Pruning severity: 75

Minimum records per child branch: 2

Winnow attributes: false

Use global pruning: true

Use misclassification costs: false
Training Summary

Algorithm: C5

Model type: Classification

Stream: C:\Users\IBM_ADMIN\Desktop\Dissertation\SPSS
Packets\Stream5 - Packets All Data.str

User: IEI76422

Date built: 03/03/15 22:50

Application: IBM® SPSS® Modeler 15

Elapsed time for model build: 0 hours, 0 mins, 54 secs

Boosting Implementation: Model Setup
Fields
Target
Target
Predictors(Inputs)
Use partitioned data: false
Build Options

Obijectives

Models\Model

What is your main objective?: Enhance model accuracy (boosting)

Basics
Maximum Tree Depth: 5

Prune tree to avoid overfitting: true

2
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Maximum difference in risk (in standard Errors): 1.0
Maximum surrogates: 5
Stopping Rules
What to use for node size requirement: Use percentage
Minimum records in parent branch(%): 2.0
Minimum records in child branch(%): 1.0
Minimum records in parent branch: 100
Minimum records in child branch: 50
Costs & Priors
Use misclassification costs: false
How to use priors: Based on training data
Adjust priors using misclassification costs: false
Ensemble
Number of component models for boosting and/or bagging: 10
Advanced
Overfit prevention set(%): 30.0
Replicate Results: true
Random seed: 681644031
Significance level for splitting: 0.05
Significance level fro merging: 0.05
Adjust significance values using Bonferroni method: true
Allow resplitting of merged categories within a node: false
Chi-Square for categorical targets: Pearson
Minimum change in expected cell frequencies: 0.0010
Maximum iterations for convergence: 100
Minimum change in impurity: 1.0E-4
Impurity measure for categoriacl targets: Gini
Training Summary
Method: Decision Trees
Records used in training: 1,884,792
Model type: Classification
User: IEI76422
Application: IBM SPSS Modeler Common 15.0.0.0
Date built: 04 March 2015 16:45:28 GMT
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Predictors used in model
TCP Options Sack Len
TCP Window Size
TCP Window Size Value
TCP Options Time tsec
Destination Port
TCP Window Size Scalefactor
TCP Bytes in Flight
Bytes Total
TCP Flags
Source Port
TCP Options Time tsval
Frame Time Delta
TCP Options WScale Shift
TCP Options WScale Multi
Protocol
TCP Ack RTT
Source IP Address
TCP Options Sack Count
TCP Flag Ack
TCP Flag Fin
TCP Flag Syn
TCP Options Kind
TCP Options Type
Destination IP Address



APPENDIX E - C&R TREE MODEL SETUP

Standard Implementation: Model Setup
Analysis
Tree depth: 5
Fields
Target
Target
Inputs
Protocol
Bytes Total
Source IP Address
Source Port
Destination Port
TCP Flag Fin
TCP Flags
Frame Time Delta
TCP Window Size
TCP Window Size Value
TCP Window Size Scalefactor
TCP Bytes in Flight
TCP Ack RTT
TCP Options Sack Len
TCP Options Time tsec
TCP Options Time tsval
TCP Options WScale Shift
TCP Options WScale Multi
Build Settings
Use partitioned data: false
Calculate predictor importance: true
Calculate raw propensity scores: false
Calculate adjusted propensity scores: false
Use frequency: false
Use weight: false

95



Levels below root: 5
Mode: Expert
Maximum surrogates: 5
Minimum change in impurity: 0.0
Impurity measure for categorical targets: Gini
Stopping criteria: Use percentage
Minimum records in parent branch (%): 2
Minimum records in child branch (%): 1
Prune tree: true
Use standard error rule: false
Prior probabilities: Based on training data
Adjust priors using misclassification costs: false
Use misclassification costs: false
Training Summary
Algorithm: C&R Tree
Model type: Classification
Stream: C:\Users\IBM_ADMIN\Desktop\Dissertation\SPSS
Packets\Stream4 - Packets All Data.str
User: IEI76422
Date built: 04/03/15 16:39
Application: IBM® SPSS® Modeler 15
Elapsed time for model build: 0 hours, 0 mins, 14 secs

Boosting Implementation: Model Setup

Fields
Target
Target
Predictors(Inputs)
Use partitioned data: false
Build Options

Objectives

Models\Model

What is your main objective?: Enhance model accuracy (boosting)

Basics

2
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Maximum Tree Depth: 5
Prune tree to avoid overfitting: true
Maximum difference in risk (in standard Errors): 1.0
Maximum surrogates: 5
Stopping Rules
What to use for node size requirement: Use percentage
Minimum records in parent branch(%): 2.0
Minimum records in child branch(%): 1.0
Minimum records in parent branch: 100
Minimum records in child branch: 50
Costs
Use misclassification costs: false
How to use priors: Based on training data
Adjust priors using misclassification costs: false
Ensemble
Number of component models for boosting and/or bagging: 10
Advanced
Overfit prevention set(%): 30.0
Replicate Results: true
Random seed: 701499504
Significance level for splitting: 0.05
Significance level fro merging: 0.05
Adjust significance values using Bonferroni method: true
Allow resplitting of merged categories within a node: false
Chi-Square for categorical targets: Pearson
Minimum change in expected cell frequencies: 0.0010
Maximum iterations for convergence: 100
Minimum change in impurity: 1.0E-4
Impurity measure for categoriacl targets: Gini
Training Summary
Method: Decision Trees
Records used in training: 1,884,792
Model type: Classification
User: IEI76422
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Application: IBM SPSS Modeler Common 15.0.0.0
Date built: 24 February 2015 23:52:43 GMT
Predictors used in model

Frame Time Delta

TCP Flag Fin

TCP Window Size Value

Source Port

Destination Port

TCP Options Kind

Bytes Total

TCP Bytes in Flight

TCP Options Time tsec

Protocol

TCP Window Size

TCP Options Time tsval

TCP Flags

Source IP Address

Destination IP Address

TCP Window Size Scalefactor

TCP Options Type Class

TCP Flag Syn



APPENDIX F - CHAID TREE MODEL SETUP

Standard Implementation: Model Setup
Analysis
Tree depth: 4
Analysis of Append (23-Feb-2015 19:31:46)
Number of records: 157,066
Analysis Accuracy: 88.308%
Analysis of Append (23-Feb-2015 20:25:42)
Number of records: 157,066
Analysis Accuracy: 88.308%
Analysis of Append (23-Feb-2015 20:30:21)
Number of records: 157,066
Analysis Accuracy: 88.308%
Fields
Target
Target
Inputs
Protocol
Bytes Total
Source Port
Destination Port
TCP Flag Fin
Frame Time Delta
TCP Window Size
TCP Window Size Value
TCP Bytes in Flight
TCP Options Kind
TCP Options Time tsec
Build Settings
Use partitioned data: false
Calculate predictor importance: true
Calculate raw propensity scores: false
Calculate adjusted propensity scores: false
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Continue training existing model: false
Use frequency: false

Use weight: false

Levels below root: 5

Alpha for Splitting: 0.05

Alpha for Merging: 0.05

Epsilon For Convergence: 0.001
Maximum iterations for convergence: 100
Use Bonferroni adjustment: true

Allow splitting of merged categories: false
Chi-Square method: Pearson

Stopping criteria: Use percentage
Minimum records in parent branch (%): 2
Minimum records in child branch (%): 1

Use misclassification costs: false

Training Summary

Algorithm: CHAID
Model type: Classification
Stream: C:\Users\IBM_ADMIN\Desktop\Dissertation\SPSS

Packets\Stream4 - Packets All Data.str

User: IEI76422
Date built: 25/02/15 13:51
Application: IBM® SPSS® Modeler 15

Elapsed time for model build: 0 hours, 0 mins, 14 secs

Boosting Implementation: Model Setup
Analysis

Tree depth: 40

Cross Validation
Mean: 99.3
Standard Error: 0.0

Models\Model

2 -
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Fields
Target
Target
Inputs
Frame Time Delta
TCP Window Size Value
Bytes Total
TCP Options Time tsec
TCP Options Time tsval
Protocol
Destination Port
Source Port
TCP Window Size Scalefactor
TCP Window Size
TCP Ack RTT
TCP Bytes in Flight
TCP Options Type Class
TCP Options WScale Shift
TCP Options Kind
TCP Options WScale Multi
TCP Options Sack Len
TCP Options Type
Build Settings
Use partitioned data: false
Calculate predictor importance: true
Calculate raw propensity scores: true
Calculate adjusted propensity scores: false
Use weight: false
Output type: Decision tree
Group symbolics: false
Use boosting: true
Number of trials: 10
Cross-validate: true
Number of folds: 10
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Mode: Expert

Pruning severity: 75

Minimum records per child branch: 2

Winnow attributes: false

Use global pruning: true

Use misclassification costs: false
Training Summary

Algorithm: C5

Model type: Classification

Stream: C:\Users\IBM_ADMIN\Desktop\Dissertation\SPSS = Models\Model 2 -
Packets\Streamb - Packets All Data.str

User: IEI76422

Date built: 04/03/15 15:57

Application: IBM® SPSS® Modeler 15

Elapsed time for model build: 0 hours, 12 mins, 46 secs
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APPENDIX G - GAIN CHARTS

—BBEST-Targed|
, ~—BR-Target|
.g
0 20 40 Percentile 60 80 100
Target = "Passive”
Figure 6-2 : CHAID Tree Gain Chart
—BBEST-Target|
—BR-Targef]

% Gain

20
Percentile

Target = "Passive"
Figure 6-3 : C&R Tree Gain Chart
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Figure 6-4 : C5.0 Tree Gain Chart
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