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ABSTRACT 1 

Physical stress (i.e. bruising) during harvesting, handling and transportation triggers 2 

enzymatic discoloration of mushrooms, a common and detrimental phenomenon largely 3 

mediated by polyphenol oxidase (PPO) enzymes. Hyperspectral imaging (HSI) is a non-4 

destructive technique that combines imaging and spectroscopy to obtain information from a 5 

sample. The objective of this study was to assess the ability of HSI to predict the activity of 6 

PPO on mushroom caps. Hyperspectral images of mushrooms subjected to various damage 7 

treatments were taken, followed by enzyme extraction and PPO activity measurement. 8 

Principal component regression (PCR) models (each with 3 PCs) built on  raw reflectance and 9 

multiple scatter corrected (MSC) reflectance data were found to be the best modeling 10 

approach. Prediction maps showed that the MSC model allowed for compensation of 11 

spectral differences due to sample curvature and surface irregularities. Results reveal the 12 

possibility of developing a sensor which could rapidly identify mushrooms with higher 13 

likelihood to develop enzymatic browning and hence aid produce management decision 14 

makers in the industry. 15 

 16 

KEYWORDS: polyphenol oxidase, tyrosinase, mushrooms, Agaricus bisporus, vis-NIR 17 

hyperspectral imaging. 18 

  19 
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INTRODUCTION 20 

Button mushrooms (Agaricus bisporus) production is a fermentation industry that is able to 21 

produce quality protein from cellulose based agricultural by-products (1). White button 22 

mushrooms are one of the most important horticultural crops grown in Ireland with more 23 

than 60,000 tons produced annually (2). This produce is very sensitive to inappropriate 24 

handling and transportation practices, which cause irreversible injuries on the mushrooms 25 

and enhance cap discoloration (3).  26 

Browning of mushrooms is the major cause of quality loss that accounts for reduction in 27 

their market value. Development of browning is the consequence of a series of biochemical 28 

reactions in which polyphenol oxidase (PPO) enzymes, naturally present in mushrooms, play 29 

an important oxidative role (4, 5). The PPO family includes catechol oxidase and laccase, 30 

both of which oxidise diphenols into corresponding quinones (6). Quinones are slightly 31 

colored products that undergo further reactions leading to high molecular mass dark 32 

pigments called melanins. Brown discoloration is largely confined to the skin tissue of the 33 

mushroom, where levels of phenols and polyphenol oxidase are higher than in other parts 34 

of the fungi (7). PPO inactivation has been the target of several postharvest treatments 35 

including thermal or microwave heating (8), irradiation (9) and addition of inhibitors (10). 36 

However, consumer preference for fresh produce makes the management of PPO activity a 37 

problem in the production, distribution and retail of fresh mushrooms. 38 

Hyperspectral imaging (HSI) is a rapid and non-destructive technology that has recently 39 

emerged as a powerful process analytical tool for food analysis (11). Hyperspectral images 40 

are composed of hundreds of contiguous wavebands for each spatial position of an object. 41 

Consequently, each pixel in a hyperspectral image contains the spectrum of that specific 42 
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position. Hyperspectral images, known as hypercubes, are three-dimensional blocks of data, 43 

comprising two spatial and one wavelength dimension. Hypercube classification enables the 44 

identification of regions with similar spectral characteristics. Since regions of a sample with 45 

similar spectral properties have similar chemical composition, hypercube classification 46 

allows for the visualisation of biochemical constituents of an object, as well as their 47 

concentration and distribution over the sample. Due to the large size of hypercubes, 48 

multivariate analytical tools, such as stepwise multiple linear regression (MLR), principal 49 

component regression (PCR) and partial least squares regression (PLSR) are usually 50 

employed for hyperspectral data mining and identification of key wavelengths for the 51 

development of automated multispectral sensors. 52 

Rapid spectroscopic techniques show potential for replacement of slow and/or expensive 53 

analytical measurements while retaining sufficient accuracy (12). Recent studies have 54 

demonstrated HSI to be a useful technology for the investigation of various mushroom 55 

quality related issues, such as deterioration (13), freeze damage detection (14) and blemish 56 

characterization (15). Recent advances in the application of HSI to the assessment of safety 57 

and quality of other foodstuffs also include contaminant detection (16, 17), defect 58 

identification (18-20), constituent analysis (21) and quality evaluation (22-24).  59 

So far, hyperspectral imaging has not been employed to study the activity of enzymes in 60 

mushrooms. Short wavelength infrared hyperspectral imaging was recently used to predict 61 

α-amylase activity at early germination stages in two classes of wheat kernels and R2 values 62 

of 0.54 and 0.73, respectively, were achieved (25). Given that polyphenol oxidases play a 63 

key role in the mushroom browning process and that extraction and current activity 64 

measurement techniques, such as radiometric, electrometric, chronometric and especially 65 
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spectrophometric (26), are time consuming (as an example, in this study, 1.5-2 hours were 66 

needed to obtain an extract and measure its activity), it would be desirable to have a fast 67 

and non-destructive system that could estimate enzyme activity on mushroom caps. The 68 

development of a hyperspectral imaging system with the ability to make simultaneous 69 

predictions on multiple mushroom caps could enable faster detection of produce likely to 70 

lose market value and hence reduce economical losses in the industry.  71 

The aim of the present study was to investigate the potential of vis-NIR (445-945 nm) 72 

hyperspectral imaging for the prediction of PPO enzyme activity on mushroom caps. 73 

 74 

MATERIAL AND METHODS 75 

Mushroom supply and damage 76 

Agaricus bisporus mushrooms (strain Sylvan A15, Sylvan Spawn Ltd., Peterbourough, UK) 77 

were grown in plastic bags and tunnels in Kinsealy Teagasc Research Centre (Kinsealy, Co. 78 

Dublin, Ireland) following common practice in the mushroom industry. Only uniform 79 

undamaged closed cap mushrooms from the 1st and 2nd flush with a diameter of 3-5 cm 80 

were hand-picked, placed in a metal grid and carefully delivered to the laboratory in 81 

purpose-built containers, to minimize mechanical damage during transport. Mushrooms 82 

arrived at the laboratory premises within 1 hour after harvesting and were stored overnight 83 

at 4°C. 84 

Some samples were subjected to vibrational bruising to simulate crop handling and 85 

transport. Mushrooms were damaged in batches of 600g (approx) units inside polystyrene 86 

plastic boxes. Mechanical damage was induced by using a Gyratory Shaker Model G2 87 
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shaking table (New Brunswick scientific Co., Edison, N.J., USA) at 300 rpm amplitude for 88 

controlled periods of time. A shaking period of 10 min led to loss of 6 units of lightness (L*) 89 

and color difference (ΔE) of 7.79 in C.I.E. L*a*b* color space. A shaking period of 20 min led 90 

to loss of 12 units of L* and ΔE of 15.57. ΔE defines the magnitude of the total color 91 

difference and is expressed by the following equation: 92 

2 2 2
* * * * * *

0 0 0E L L a a b b  93 

where the 0 subscript refers to color measurements before shaking and no subscript refers 94 

to color measurements after shaking. 95 

 Mushrooms were placed on polystyrene trays in groups of approx. 10 and over-wrapped 96 

with PVC film following common practice in the mushroom industry. The trays were stored 97 

under refrigeration (GRAM K400LU, Denmark) for the duration of the experiment. 98 

Mushrooms of three damage levels [undamaged (D0), 10 min shaking damage (D10) and 20 99 

min shaking damage (D20)] were monitored throughout five time points (days 0, 1, 2, 3 and 100 

6 of storage).  101 

At each sampling time point during refrigerated storage, one tray of each damage level was 102 

randomly selected and removed from storage 15 min prior to testing. Wrapping was 103 

removed and all the mushrooms in the packet were scanned with the hyperspectral imaging 104 

equipment, then subsequently divided into two groups of five mushrooms for enzyme 105 

extraction. This procedure was repeated for each tray. A total number of 549 mushrooms 106 

were scanned and 114 extracts were obtained. 107 

  108 
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Image acquisition system 109 

Hyperspectral images were obtained using a pushbroom line-scanning HSI instrument (DV 110 

Optics Ltd, Padua, Italy). The instrument comprised a moving table, illumination source (150 111 

W halogen lamp source attached to a fiber optic line light positioned parallel to the moving 112 

table), mirror, objective lens (16 mm focal length), Specim V10E spectrograph (Spectral 113 

Imaging Ltd, Oulu, Finland) operating in the wavelength range of 400-1000 nm 114 

(spectroscopic resolution of 5 nm), CCD camera (Basler A312f, effective resolution of 580 × 115 

580 pixels by 12 bits), acquisition software (SpectralScanner, DV Optics, Padua, Italy) and PC. 116 

A cylindrical diffuser was placed in front of the fiber optic line light to produce a diffuse light 117 

source. In this study, only spectral data within the wavelength range of 445-945 nm were 118 

used, as beyond this range the noise level of the camera is high and the signal efficiency of 119 

the light source is low. 120 

Reflectance calibration 121 

Reflectance calibration was carried out prior to mushroom image acquisition in order to 122 

account for the background spectral response of the instrument and the “dark” camera 123 

response. The bright response (‘W’) was obtained by collecting a hypercube from a uniform 124 

white ceramic tile; the dark response (‘dark’) was acquired by turning off the light source, 125 

completely covering the lens with its cap and recording the camera response. The corrected 126 

reflectance value (‘R’) was calculated from the measured signal (’I’) on a pixel-by-pixel basis 127 

as shown by: 128 

( )

( )i

i i

i i

I dark
R

W dark
 129 
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where i is the pixel index, i.e. i=1,2,3,…,n and n is the total number of pixels. 130 

Enzyme Extraction 131 

Mushroom homogenates were prepared in duplicate from each sample tray, as follows:  132 

5g of the outer skin of mushroom caps were extracted using a sharp knife, chopped and 133 

placed in a Turrax homogenizer (ULTRA-TURRAX T25, Janke & Kunkel IKA Labortechnik, 134 

Germany)  in a 1:4 (w: v) ratio with 0.5 M phosphate buffer, pH 6.5, containing 50g/L 135 

polyvinylpirrolidone (Sigma-Aldrich, Dublin, Ireland). Homogenization was carried out for 1 136 

min at 4°C and 8000 rpm. The homogenate was centrifuged (2K15 Laborzentrifugen, SIGMA, 137 

Germany) at 12,000g for 35 min at 4°C. The supernatant was collected by filtration through 138 

no. 1 Whatman paper and used as crude enzyme extract. Extracts were kept at 4°C in the 139 

dark until spectrophotometric assay (within 2 h).  140 

PPO activity was measured spectrophotometrically by a modified method based on those of 141 

Galeazzi et al. (27) and Tan and Harris (28). The reaction mixture contained 0.1 mL crude 142 

enzyme extract and 2.9 mL substrate solution [0.011 mol/L catechol (Sigma-Aldrich, Dublin, 143 

Ireland) as substrate in 0.05 mol/L phosphate buffer, pH 6.5]. The rate of catechol oxidation 144 

was followed at 410 nm (UV2 UV/vis Spectrometer, UNICAM, UK) and 25°C and represented 145 

against time. The maximum slope of the straight-line section of the activity curve was used 146 

to express the enzyme activity (EAU/g of fresh mushroom). A unit of enzyme activity was 147 

defined as an increase of 0.001 absorbance units per minute.  148 

Enzyme activity was measured in triplicate for each mushroom extract and the average 149 

value was computed. The standard error (SE) of this method was 350.50 EAU/g of fresh 150 

mushroom. 151 



9 
 

Image processing and data analysis 152 

Data were recorded in reflectance, saved in ENVI header format using the acquisition 153 

software and then exported to MATLAB R2007b (The Math Works, Inc. USA).  154 

Masking 155 

A masking step was carried out to separate the mushroom pixels from the background. The 156 

mask was created by thresholding the mushroom image at 940 nm, where a pixel threshold 157 

value of 0.2 was used to segment the mushroom from the background. All background 158 

regions were set to zero and the non-zero elements of the image were used to extract one 159 

mean spectrum for each mushroom.  160 

False RGB images 161 

False RGB images were obtained by extracting mushroom images at 460 nm (blue), 545 nm 162 

(green) and 645 nm (red) and stacking them. 163 

Model building 164 

One of the main challenges involved in building predictive models with hyperspectral image 165 

data is that such images contain a vast amount of spectral data, whilst only one or a few 166 

measurements of the variable of interest can be taken for each sample studied. In this 167 

particular study, the reference method for enzyme extraction involved using the skin of 168 

three to five mushrooms to obtain one single enzyme extract. Consequently, three to five 169 

hyperspectral images were to be matched with one single enzyme activity value in 170 

regression modeling.  171 
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When developing regression models with hyperspectral data, it is common practice to 172 

extract the mean spectrum of each sample and use it to build a prediction model to 173 

estimate an attribute (29). With that approach in mind, two different modeling strategies 174 

were used: 175 

a) Strategy 1: The first strategy extracted the mean spectrum of each mushroom and 176 

assigned the same enzyme activity value to all the mushrooms used in obtaining one 177 

particular extract. A training set of nTRAIN_1=280 and a test set of nTEST_1=269 were 178 

used for this strategy. 179 

b) Strategy 2: The second strategy computed the mean spectra of all the mushrooms 180 

used to obtain one enzyme extract and assigned the enzyme activity value of that 181 

extract to the resulting spectrum.  A training set of nTRAIN_2=60 and a test set of 182 

nTEST_2=54 were used for this strategy. 183 

The following spectral preprocessing methods were used in order to remove non-chemical 184 

biases, such as scattering effects and variations arising from mushroom surface curvature, 185 

from the spectral information: standard normal variate (SNV) (30) and multiplicative scatter 186 

correction (MSC) (31). MSC aims to reduce the effects of scattering in a set of spectra by 187 

performing linear regression on a “target” spectrum. Two different target spectra led to two 188 

different MSC methods: a) “set MSC”, where the mean spectrum of each mushroom was 189 

corrected using the mean spectrum of the data set as the target spectrum and b) “sample 190 

MSC”, where the spectrum of each pixel in a mushroom was corrected using the mean 191 

spectrum of that mushroom as the target spectrum. The mean sample MSC corrected 192 

spectrum for each mushroom was obtained and used for the model. 193 
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To improve normality of the distribution of the reference variable, enzyme activity values 194 

were transformed into natural logarithmic units and mean centered. 195 

Three regression methods were used to build models for enzyme activity prediction: 196 

a) Multiple linear regression (MLR): optimal wavelengths for enzyme activity prediction 197 

were selected by the “forward” method in best subsets stepwise linear regression 198 

using the “leaps” package in R (32). Multicolinearity of predictor variables is 199 

problematic for MLR models based directly on spectroscopic values, tending to 200 

results in unstable model predictions (33). The variance inflation factor (VIF) is an 201 

index commonly used to measure the colinearity between variables in regression 202 

models: typically, predictor variables with VIF>10 are considered to be highly 203 

correlated. In order to test the predictor wavelengths for multicolinearity, the VIF of 204 

each predictor was calculated using the “DAAG” package in R (32). 205 

b) Principal component regression (PCR): principal component analysis (PCA) reduces 206 

the dimensionality of spectral data by transforming them into principal component 207 

scores in order of decreasing variance. The autoscaled matrix of spectral values was 208 

transformed into PC space by representing the original data in the directions defined 209 

by orthogonal eigenvectors using R (32). PCR models were developed using PC space 210 

scores instead of wavelength space values. Analysis of variance (ANOVA) was 211 

employed using R (32) to compare models with increasing number of PCs. The 212 

decision on the number of PCs to be taken for each model was made based upon 213 

ANOVA test results. Only significant components (p<0.05) were included in the 214 

model. 215 
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c) Partial least squares regression (PLSR): this technique is commonly used when 216 

predicting a response from many measured variables which may be collinear. PLSR 217 

was applied using the “pls” package in R (32). Leave-one-out cross-validation was 218 

used on the training set.  Performance of the prediction models was evaluated using 219 

the root of the mean of the sum of squared differences between predicted and 220 

measured enzyme activity values of the training set (RMSECV) and the number of 221 

latent variables required (# LV). The optimal number of latent variables for inclusion 222 

in the PLSR models was estimated using the method described by Martens et al. (34) 223 

The experiment was carried out two times, making two independent mushroom sets: a 224 

training set (nTRAIN_1=280 mushrooms and nTRAIN_2=60 extracts) and a test set (nTEST_1=269 225 

mushrooms and nTEST_2=54 extract). Overall, 549 mushrooms were used to obtain 114 226 

extracts in total. All of the models were built on training sets and then applied to 227 

independent test sets of samples.  The ratio of percentage deviation (RPD), which is the 228 

ratio of the standard deviation of the laboratory measured (reference) data to the root-229 

mean-square of cross-validation (RPDTRAIN) or root-mean-square error of prediction (RPDTEST)  230 

(35), was used to assess model performance. Twenty four models were classified in terms of 231 

their ability to generalize following criteria outlined by Viscarra Rossel et al. (36), based on 232 

which RPDTEST<1.0 indicates very poor model/predictions and their use is not recommended; 233 

1.0<RPDTEST<1.4 indicates poor model/predictions where only high and low values are 234 

distinguishable; 1.4<RPDTEST<1.8 indicates fair model/predictions that may be used for 235 

assessment and correlation; 1.8<RPDTEST<2.0 indicates good models/predictions where 236 

quantitative predictions are possible; 2.00<RPDTEST<2.5 indicates very good, quantitative 237 

model/predictions and RPDTEST>2.5 indicates excellent model/predictions. 238 
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Prediction maps 239 

The two models whose performance was found to be best were selected and applied to 240 

each pixel in the hypercube data of individual mushrooms. This enabled the generation of 241 

virtual prediction images for enzyme activity.  242 

 243 

RESULTS AND DISCUSSION 244 

Spectra 245 

 Average reflectance spectra obtained from the hyperspectral imaging data of undamaged 246 

(D0), damaged 10 (D10) and damaged 20 (D20) mushrooms are shown in Figure 1a. The 247 

average reflectance of damaged samples was lower than the average reflectance of non-248 

damaged mushrooms over the entire spectral region. Bruising due to mechanical damage 249 

was expected to have led to loss of whiteness and lightness (L*) and therefore lower 250 

reflectance values. A remarkable difference in intensity was observed between D0 and D20 251 

mushrooms, whereas the intensity of D10 spectra was intermediate between D0 and D20. 252 

Broad spectra in the visible-near infrared wavelength range are characteristic of undamaged 253 

mushrooms, corresponding to their white appearance (13). The greatest differences in 254 

shape between bruised and non-bruised samples arose in the 600-800 nm region, where 255 

undamaged mushrooms exhibited broader spectral features than the damaged mushrooms. 256 

The spectral differences mentioned above could be related to the formation of brown 257 

pigments (14) mainly melanins, which derive from enzyme-catalyzed oxidation products 258 

called quinones.   259 
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Enzyme activity  260 

The average polyphenol oxidase enzyme activity of each mushroom group is shown in 261 

Figure 1b. The higher activity values observed in bruised mushrooms suggest that 262 

mechanical damage has an effect on enzyme expression. Considering that physical injuries 263 

are one of the factors that lead to mushroom browning (3) and that this phenomenon is 264 

mediated by PPO enzymes (37), this result was not unexpected. The difference in PPO 265 

activity between D10 and D20 was not significant (p>0.05), which could mean that the stress 266 

caused by D10 damage level was sufficiently high to bring enzyme expression to its 267 

maximum, and further damage did not contribute to further activation of tyrosinase. 268 

Modeling 269 

VIF was greater than 10 for every MLR model built with more than two wavelengths. 270 

Therefore, MLR models that used only two wavelengths were considered for further 271 

analysis. In the case of PCR models, the inclusion of the third PC was not always significant 272 

(p<0.05) so 2 and 3 PC models were considered for further sections. For all PLSR models, 2 273 

was the optimal number of latent variables to include in the model. Previous studies in the 274 

field employed models that performed well using low numbers of wavelengths (13), 275 

principal components (14, 38) or PLS latent variables (39). 276 

Model performance in terms of RPD is shown in Table 1. RPDTRAIN is a measure of model 277 

performance within the model training data set and RPDTEST indicates how the model 278 

performed when applied to an independent model testing data set. RPDTEST was considered 279 

to be more adequate to assess model performance and further sections of this paper will 280 

focus only on RPDTEST values. 281 
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Models were classified in terms of RPDTEST as follows: RPDTEST<1.0 = “very poor”, 282 

1.0<RPDTEST<1.4 = “poor”; 1.4<RPDTEST<1.8 = “fair”; 1.8<RPDTEST<2.0 = “good”; 283 

2.00<RPDTEST<2.5 = “very good” and RPDTEST>2.5 = “excellent”. 284 

Strategy 285 

Overall, models with a better generalization ability to predict the independent data set were 286 

obtained when strategy 1 was employed. As it can be seen in Table 1,  for any preprocessing 287 

and chemometric technique combination, the RPD obtained under model strategy 1 (i.e. 288 

when the mean spectrum of each mushroom was extracted and the same enzyme activity 289 

value was assigned to all the mushrooms used for one extract)  was higher than the RPD 290 

obtained under model strategy 2 (i.e. when the mean spectra of all the mushrooms used to 291 

obtain one enzyme extract was computed and the enzyme activity value of that extract was 292 

assigned to the resulting spectrum). In fact, strategy 2 only gave “poor” or “very poor” 293 

predictive models, whose RPDTEST ranged from 0.81 to 1.3. This could be because when the 294 

mean spectrum was computed for an extract under strategy 2, some features arising from 295 

the original spectral variability of the mushrooms within that extract might have been lost. 296 

This would result in partial loss of their ability to generalize and decrease in RPDTEST values.   297 

Pre-treatment 298 

For MLR, raw reflectance spectral data and sample MSC corrected reflectance spectra led to 299 

better performance models than SNV or set MSC spectra. The better models were “fair” and 300 

the worse ones were “poor” (according to the previously mentioned RPD classification) and 301 

therefore discarded. Similar trends were observed in PCR models, where “very good” 302 

models were obtained with raw reflectance and sample MSC corrected reflectance spectra 303 
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(RPDTEST=2.13 with 3 PCs), a “good” model with SNV pre-treated reflectance data 304 

(RPDTEST=1.84 with 2 PCs) and a “fair” model with set MSC corrected reflectance spectra 305 

(RPDTEST=1.77 with 2 PCs). The number of PCs was lower in the case of SNV and set MSC but 306 

adding a third one did not significantly improve model performance or RPDTEST. For PLSR 307 

models, all pre-treatments resulted in “poor” models, whose highest RPDTEST was 1.22. 308 

Regression method 309 

Under strategy 1, PCR models performed better than MLR or PLSR models for all of the pre-310 

treatments. This happened for both training and test sets. The performance of MLR and 311 

PLSR models for the test set was not as good as it was for the training set, but that did not 312 

happen for PCR models, where RPDTEST values were higher than RPDTRAIN values.  313 

Under model strategy 2, all chemometric methods performed similarly for the training set. 314 

For the test set, PCR models performed better than MLR or PLSR but still “poor” predictions 315 

(RPDTEST<1.3) were obtained. 316 

PCR models developed on raw reflectance and sample MSC corrected reflectance data 317 

under model strategy 1 were selected as best models and used in further analysis. The 318 

coefficient of determination and root mean-squared error of cross-validation/prediction for 319 

these models were: R2
TRAIN_1=0.75, RMSECV=0.38 [ln(EAU/g)], R2

TEST_1=0.78 and RMSEP=0.30 320 

[ln(EAU/g)]. Root mean-squared errors of cross-validation/prediction are frequently used to 321 

assess the performance of the regression and low values indicate good models.  322 

In Figure 2, enzyme activity values predicted by one of the selected models (model strategy 323 

1, PCR, raw reflectance data) are plotted against experimental enzyme activity values, for (a) 324 

training and (b) test sets, respectively. The range of measured reference values was wider in 325 
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the training set than in the test set, where PPO activity levels were, in general terms, lower 326 

and confined to a narrower range of values. This scenario is not optimal for model testing 327 

but it is common when dealing with horticultural products, whose postharvest behavior is 328 

known to be affected by biological variation. Burton (3) reported that mushroom bruisability 329 

can vary from crop to crop. A study by Mohapatra et al. (40) observed 30% to 41% variability 330 

in enzyme activity measurements and attributed it to batch-to-batch variability. Some 331 

vertical scattering can be seen in this figure too, indicating variability in predicted values for 332 

mushrooms with similar reference enzymes activities. This would explain the relatively low 333 

values of the coefficients of determination obtained (R2
TRAIN_1 =0.75 and R2

TEST_1 =0.78). The 334 

horizontal scattering is mainly attributable to mushroom to mushroom variability.  335 

Prediction maps 336 

Hyperspectral imaging has the ability to map the spatial distribution of components on a 337 

sample. The two selected models (model strategy 1, PCR, non-treated reflectance and 338 

sample MSC corrected reflectance) were applied to each pixel in the hypercube data of 339 

individual mushrooms and that enabled the generation of virtual prediction images for 340 

enzyme activity. In such images, the grayscale intensity is related to the value of the 341 

predicted enzyme activity at different regions of the mushroom cap: the lighter the color, 342 

the higher the predicted activity value. 343 

Figure 3 and Figure 4 show the predicted distribution of enzyme activity over the cap of 344 

undamaged (D0) and damaged (D20) mushroom samples, respectively. Each figure shows 345 

(a) false RGB images, (b) prediction maps based on the raw reflectance model and (c) 346 

prediction maps based on the sample MSC pre-treated reflectance model of four mushroom 347 

caps whose skin was processed together to obtain one single enzyme extract. The mean and 348 
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standard deviation (SD) of the predictions, both in [ln(EAU/g)], are displayed below each 349 

map in (b) and (c). The values below false RGB images correspond to the activity 350 

measurement obtained experimentally for each extract, which is the same for all of the 351 

mushrooms within each figure. 352 

The main difference between the prediction images of D0 and D20 is the grayscale intensity. 353 

The dark gray tonality in Figures 3(b) and 3(c) indicates that the models predicted low 354 

activity values on D0 mushroom caps. D20 predictions, on the contrary, show much lighter 355 

colours in Figures 4(b) and 4(c), which reveal higher predicted values for enzyme activity. At 356 

scanning time, damaged mushrooms looked different from undamaged ones and the 357 

corresponding extracts exhibited much higher enzyme activity, for which it was expected 358 

that the models would generate very different prediction images according to damage level. 359 

For all of the mushrooms in Figures 3 and 4, the mean predicted values by raw reflectance 360 

and sample MSC corrected reflectance models (displayed under each image in columns (b) 361 

and (c)) were very similar. This indicates that both raw reflectance and sample MSC 362 

corrected reflectance models performed very similarly in terms of quantitative prediction. 363 

This is in agreement with the similarities observed previously in the coefficient of 364 

determination and the root-mean-square error of both models. However, the very different 365 

appearance of predictions maps in (b) and (c) point out these two models have some 366 

dissimilarities too. 367 

 In raw reflectance predicted images (Figures 3(b) and 4(b)), the distribution of 368 

enzyme activity prediction is uneven throughout the cap. The relatively high 369 

standard deviation values under each map reveal this heterogeneity too. As clearly 370 

seen in Figure 3(b), the highest predicted values concentrate around the mushroom 371 
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edges, (i.e the region showing higher level of bruising on false RGB images (Figure 372 

3(a)). This could be partly due to increased presence of brown coloured pigments at 373 

edge regions, which are derived from PPO-mediated reaction products, but spectral 374 

differences related to mushroom curvature might have also affected the 375 

performance of the model differently in different regions of the cap. It is difficult to 376 

estimate the extent of such phenomena and at this point.  The lack of shading effects 377 

in Figure 4(b), where predicted values do not show any clear morphological trend, 378 

suggest that the effect of sample curvature on the reflectance model may not be 379 

observable when the levels of damage and browning are high.  380 

 However, it is interesting to note that all of 3(b) and 4(b) figures reveal the ability of 381 

this model to  point out the regions that look “different” in false RGB images. The 382 

model captures the spectral variability arising from surface bruises/marks (e.g. 383 

confined regions which show browner colour in false RGB images) and reflects it 384 

onto the prediction maps. For undamaged mushrooms, Figure 3(b) exhibits lighter 385 

grayscale tonality (indicating higher predicted value) on the small regions that show 386 

signs of brusing in Figure 3(a). Similarly, for damaged mushrooms,  Figure 4(b) 387 

presents darker color (indicating lower predicted value) on those regions where 388 

browning had yet not developed in Figure 4(a).  389 

 Sample MSC corrected reflectance predicted images, on the other hand, appear 390 

smoother than raw reflectance predictions. All the pixels within one sample MSC 391 

corrected reflectance prediction image have similar predicted values and therefore 392 

the grayscale intensity is very uniform and the SD values are low. The MSC correction 393 

estimates the relation of the scatter of each pixel with respect to the target 394 

spectrum (in this case, the mean spectrum of all  the pixels) (31). Thus, a similar level 395 
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of scatter is obtained for all spectra and the effect that the morphology of the 396 

sample (i.e. mushroom curvature) could have on the model is diminished too.  397 

Figure 5 shows the enzyme activity prediction of imaginary lines drawn through the centre 398 

of each mushroom cap, shown in red in Figure 5(a). Figure 5(b) shows how the raw 399 

reflectance model predicted the pixel values on those lines; the pixels that form the line are 400 

represented in the X axes, while the predicted enzyme activity values are shown in the Y 401 

axes. The line in Figure 5(c) corresponds to the prediction of the sample MSC corrected 402 

reflectance model. For an undamaged mushroom (see top row), the curved shape of the 403 

prediction line in (b) indicates that pixels from the centre and edge regions of the cap were 404 

predicted differently; the activity was low in the central region of the mushroom and 405 

increased gradually towards the edges. This is in agreement what was observed in Figure 406 

3(b) and could be because the enzyme activity distribution was not uniform along the 407 

mushroom cap surface or because this model is not able to deal with spectral differences 408 

arising from mushroom cap surface curvature. The line in (c), predicted by the sample MSC 409 

corrected reflectance model, is much flatter than the one in (b), which indicates that 410 

predictions along the imaginary line were more homogeneous and suggests enzyme activity 411 

was equally distributed over the mushroom cap. Despite the fact that both models 412 

predicted similar mean activity values (9.91 [ln(EAU/g)] and 9.94 [ln(EAU/g)], respectively), 413 

differences in pixel distribution suggest that the ability of each model to overcome spectral 414 

variability due to sample morphology is different. For damaged mushrooms (see bottom 415 

row), the line predicted by the reflectance model (b) was uneven but, as opposed to what 416 

was observed in the undamaged mushroom, it did not have a clear curved shape. In this 417 

case, the variation of predicted enzyme activity values across the imaginary line could be 418 
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related to the level of damage/browning, whereas the relationship between predicted 419 

values and pixel position/surface curvature was not as clear as for undamaged mushrooms. 420 

The line in (c) was flatter than in (b), as observed for undamaged mushrooms.  Raw 421 

reflectance and and sample MSC corrected reflectance models predicted almost identical 422 

mean enzyme activity values (10.36 [ln(EAU/g)] and 10.37 [ln(EAU/g)], respectively) and 423 

their distributions across pixel line was more similar than in the case of undamaged 424 

mushrooms.  425 

The ability of a HSI system to predict PPO activity on mushroom caps was assessed in this 426 

study. PPO activity prediction maps of were generated to gain understanding of (a) the 427 

distribution of the enzyme activity over the mushroom cap and (b) the effect of sample MSC 428 

pre-treatment on the predictive ability of the model. Results reveal some potential of vis-429 

NIR hyperspectral imaging as a tool to estimate the activity of enzymes responsible for 430 

mushroom browning. The mushroom industry could benefit from such a tool for rapid 431 

identification of mushrooms of reduced marketability.  432 
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FIGURES 

 

Figure 1 (a) Average raw reflectance spectra for mushroom at different damage levels. (b) Average 

±standard deviation of polyphenol oxidase activity as a function of damage level. 

 

Figure 2 Predicted PPO activity as a function of actual PPO activity for 3 PC PCR model applied to training 

(left) and test (right) raw data sets under model strategy 1.  
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Figure 3 Undamaged mushroom caps, where (a) false RGB image, (b)  

prediction maps by raw reflectance model and (c) prediction maps by sample 

MSC corrected reflectance model. 

 

Figure 4 Damaged mushroom caps, where (a) false RGB images, (b) prediction 

maps by raw reflectance model and (c) prediction maps by sample MSC 

corrected reflectance model. 
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Figure 5 (a) Imaginary line drawn through the centre of false RGB images of undamaged (top row) and 

damaged (bottom row) mushroom caps and their corresponding predictions by (b) raw reflectance model 

and (c) sample MSC corrected reflectance model. 
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TABLES 

 

Table 1 Ratio percentage deviation (RPD) for different model strategies, spectral pre-treatments and chemometric methods. MLR: multiple linear regression; PCR: 

principal component regression; PLSR: partial least squares regression; SNV: standard normal variate; MSC: multiple scatter correction; # PCs: number of principal 

components; # LVs: number of latent variables. 

  
MLR PCR PLSR 

Strategy 
Pre-

treatment 
λ (nm) RPDTRAIN RPDTEST # PCs RPDTRAIN RPDTEST # LVs RPDTRAIN RPDTEST 

1* 

None 450, 945 1.87 1.47 3 2.01 2.13 2 1.95 1.16 

SNV 835, 560 1.02 1.06 2 1.71 1.84 2 1.63 1.22 

Set MSC 835, 545 1.52 1.14 2 1.65 1.77 2 1.62 1.20 

Sample MSC 465, 945 1.91 1.43 3 2.01 2.13 2 1.95 1.14 

2* 

None 470, 945 1.28 1.16 2 1.27 1.30 2 1.25 0.97 

SNV 450, 465 1.22 1.07 1 1.17 1.20 2 1.17 0.85 

Set MSC 450, 575 1.15 0.89 1 1.17 1.16 2 1.17 0.81 

Sample MSC 495, 945 1.35 1.22 2 1.35 1.27 2 1.33 1.22 

*as described in Model building subsection of Materials and Methods section.
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