
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Electrical and Electronic Engineering 

2012 

Non-Gaussian Anisotropic Diffusion Processing for Medical Non-Gaussian Anisotropic Diffusion Processing for Medical 

Imagining Using the OsiriX DICOM Viewer Imagining Using the OsiriX DICOM Viewer 

Jonathan Blackledge 
Technological University Dublin, jonathan.blackledge@tudublin.ie 

Matthew Blackledge 
Institute of Cancer Research and Royal Marsden Hospital 

Jane Courtney 
Technological University Dublin, jane.courtney@tudublin.ie 

Follow this and additional works at: https://arrow.tudublin.ie/engscheleart2 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Blackledge, J., Blackledge, M., Courtney, J.:Non-Gaussian Anisotropic Diusion Processing for Medical 
Imagining Using the OsiriX DICOM Viewer. International Society for Advanced Science and Technology 
(ISAST) - Transaction on Computing and Intelligent Systems, vol: 4, issue: 1, pages: 24 - 31, 2012. 
doi:10.21427/D74G9P 

This Article is brought to you for free and open access by the School of Electrical and Electronic Engineering at 
ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU 
Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, 
vera.kilshaw@tudublin.ie. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engscheleart2
https://arrow.tudublin.ie/engschele
https://arrow.tudublin.ie/engscheleart2?utm_source=arrow.tudublin.ie%2Fengscheleart2%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=arrow.tudublin.ie%2Fengscheleart2%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


Non-Gaussian Anisotropic Diffusion for Medical
Image Processing using the OsiriX DICOM

J. M. Blackledge, M. D. Blackledge and J. N. Courtney

Abstract— We present a method for reducing noise in CT
(Computed Tomography) and MR (Magnetic Resonance) images
that, in addition to other noise sources, is characteristic of the
numerical procedures required to construct the images, namely,
the (inverse) Radon Transform. In both cases, MR imaging in
particular, an additional noise source is due to non-stationary
diffusion thereby predicating use of the Anisotropic Diffusion
Method for noise suppression. This method is based on a diffusion
model for noise generation where the Diffusivity is taken to
be non-isotropic (inhomogeneous) or anisotropic and is, in the
absence of a priori information, computed through application of
an edge detection algorithm. We extend this approach to include
the effect of fractional diffusion (when the underlying statistical
model associated with the diffusion process is non-Gaussian)
and derive a corresponding Finite Impulse Response filter. The
algorithms developed are implemented using the OsiriX DICOM
(Digital Imaging and Communications in Medicine) viewer, a
high performance open source image data visualization system
for the development of processing and visualization tools. An
OsiriX Plugin Image Filter is provided for interested readers and
practitioners to apply.

Index Terms— Medical imaging, Digital Imaging and Com-
munications in Medicine, Computed Tomography, Magnetic
Resonance Imaging, Non-Gaussian Anisotropic Diffusion, Noise
suppression, OsiriX DICOM viewer.

I. INTRODUCTION

The aim of a noise reduction algorithm is to enhance the
fidelity of an image by eliminating features that are random
and uncorrelated while retaining resolution on those features
that are noise free. The reason for this may be to enhance the
visual clarity of an image for visual inspection and/or digital
image analysis for object segmentation and feature selection.
As a general rule of thumb, noise tends to corrupt the higher
frequency content of an image where the energy of the data
spectrum is usually lower. Thus, a way of reducing noise is
by attenuating the high frequency components of the data over
a range of frequencies which can be selected and adjusted to
provide an optimum result, subject to some predefined image
quality criterion. This can be achieved by applying a lowpass
filter. A well known and commonly used lowpass filter is the
Gaussian function which yields a ‘Gaussian Blur’ and, on a
physical basis, is related to classical diffusion processes. This
is because the Point Spread Function of an image generated
by the diffusion of light is a Gaussian function, a result that
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can be derived by considering the propagation and interaction
of light to be based on a random walk process. The underlying
equation for the intensity of light is then given by the diffusion
equation.

An important assumption associated with the application of
a Gaussian blur filter is that the noise content of the image
is additive and homogenous. This is to say that the statistical
distribution of the noise is homogeneous throughout the image
plane and does not change over the spatial extent of the image
in terms of scale, width and/or distribution type. Even if this
is the case, and, the noise associated with the generation of an
image can be quantified (in a statistical sense), application of
a Gaussian lowpass filter reduces at the expense of resolution
on correlated features, patterns and textures.

In this paper, we review the Anisotropic Diffusion Method
for noise reduction illustrating the relationship between this
method and the Characteristic Function that is used to define
an anisotropic Gaussian random walk process. This process
is then extended to include the ‘non-Gaussian’ case based on
Lévy’s (symmetric) Characteristic Function which introduces
the ‘Lévy index’. By re-working the Anisotropic Diffusion
Method for this case, we derive a new (Lévy index dependent)
Finite Impulse Response (FIR) filter which is our original con-
tribution to the field. The algorithms developed are applied to
CT (Computed Tomography) and MR (Magnetic Resonance)
and implemented in the OsiriX DICOM (Digital Imaging and
Communications in Medicine) Viewer to produce a new image
filter (an OsiriX Plugin) and an original application in the area
of medical imaging.

Since the focus of this work is on noise reduction, a brief
discussion of the sources of noise in CT and MR images is
given as detailed in [1], for example. We start by providing a
brief overview of DICOM which is given in the following
section. However, it should be noted that diffusion based
models have a range of applications that transcend image
noise reduction especially in MR imaging where the process of
diffusion is used to generate a form of image analysis known as
Diffusion Weighted and Tensor Diffusion (MR) imaging, e.g.
[2], [3], [4] and [5]. The approach considered in this paper may
have additional applications in this area of imaging, details of
which will be published elsewhere.

II. DIGITAL IMAGING AND COMMUNICATIONS IN
MEDICINE

The Digital Imaging and Communications in Medicine
(DICOM) standard is used for the exchange of medical images
and related information. DICOM is a standard with several



levels of support including an image exchange underlying
information model and information management services1 [6].

DICOM was introduced in 1993 after some ten years stan-
dards development from the early 1980s when only manufac-
turers of CT or MR imaging devices could decode the images
that the early machines generated. DICOM differs from some,
but not all, data formats in that it groups information into data
sets. Thus, a file of a chest X-Ray image, for example, actually
contains the patient ID within the file, so that the image can
never be separated from this information by mistake. This is
similar to the way that image formats such as JPEG can also
have embedded tags to identify and describe the image.

DICOM has an information model which differentiates it
from other standards used in the medical industries sector.
The model is based on ‘information objects’ which include
definitions (an information template) on the information to be
exchanged. Each image type, and therefore information object,
has specific characteristics. A CT image, for example, requires
different descriptors in the image header compared to an
ultrasound image or an ophthalmology image. These templates
are identified by unique identifiers, which are registered by the
National Electrical Manufacturers Association, the DICOM
standard facilitator. Information objects are also known as part
of the Service Object Pairs (SOP) Classes. An example of a
SOP Class is the CT Storage SOP Class, which allows CT
images to be exchanged.

DICOM includes a robust protocol where each DICOM
command is acknowledged thereby providing an implicit ver-
sion control. Strict guidelines are employed requiring each
DICOM compatible device to describe its functionality, in-
cluding supported SOP Classes and transfer syntaxes in a
document called the DICOM Conformance Statement. This
document allows a user to determine in advance whether
or not a specific device is compatible with other devices.
Conformance statements contain details about exception and
error handling and often contain complete specifications for
the information objects (e.g. images) that are exchanged.
DICOM uses information management services which include
a Modality Work List allowing scheduling information to be
retrieved by a modality. The other service in this category
is the DICOM Storage Commitment, which transfers the
responsibility for images to the receiver, so they can be safely
removed from the local disk.

Image quality is the principal issue with regard to the
DICOM standardization. DICOM achieves consistency in the
image presentation on different monitors, as well as on film,
independent of the make or type of characteristics of the
medium using the DICOM Greyscale Standard Display Func-
tion. This function specifies exactly what luminance or density
level should be produced for a certain input value, based on
the Barten curve, which maps the values into a range that is
perceptually linear. This means that input values are mapped
into a space that is perceived as linear by a human observer.

In addition to the principal objectives of the DICOM stan-
dard for image visualization, it includes structured reporting

1An edited version of the DICOM standard, overview and characteristics:
a whitepaper.

which is an object that can be exchanged, very similar to an
image, except that instead of pixel data, the message body
is a Structured Report. Finally DICOM facilitates security
mechanism including access control and authorization rules
implemented by the application level software using passwords
or biometric access controls coupled with an audit and logging
mechanism.

There are a number of DICOM viewers available which
allow medical images to be displayed, processed and analyzed.
Among the most advanced and versatile of these ‘viewers’
is the OsiriX imaging software which is limited only in its
requirement for implementation in a Unix/Linux environment,
thereby making use of the advanced graphics facilities that
accompany an Apple Mac, for example.

III. THE OSIRIX DICOM VIEWER

OsiriX is an advanced open-source DICOM viewer for visu-
alizing and processing images produced by a range of medical
imaging systems [7] including MR and CT, Position Emission
Tomography (PET), PET-CT, ultrasonic B-Scan imaging and
so on [8]. Designed for uses under a Unix/Linux operating
system, it is arguably the world’s most widely used and
versatile medical imaging processing and visualization system
and is fully compliant with the DICOM standard for image
communication and image file formats.

OsiriX has been specifically designed for navigation and
visualization of multimodality and multidimensional images.
It incorporates basic 2D viewing, a 3D viewer and 4D viewer
(a 3D series with temporal dimension such as Cardiac-CT,
for example) and a 5D viewer (3D series with temporal and
functional dimensions; for example, Cardiac-PET-CT). The 3D
viewer offers all modern rendering modes including Multi-
Planar Reconstruction (MPR), Surface Rendering, Volume
Rendering and Maximum Intensity Projection (MIP). All these
modes support 4D data and are able to produce Image Fusions
between different series of images.

The current version of OsiriX provides all aspects of DI-
COM file support and has a built-in SQL (Structured Query
Language) compatible database with an unlimited number of
files. Fully compatible network support is provided and the
system is available as a 32-bit or 64-bit version. It has an
intuitive GUI (Graphical User Interface) with customizable
Toolbars and includes multi-slice CT and MR imaging with
Regions of Interest (ROI) including Polygons, Circles, Pencil,
Rectangles and Points with undo/redo. The 3D Post-Processing
facilities of OsiriX include MIP (Maximum Intensity Pro-
jection), Volume Rendering, Surface Rendering, ROI, Tex-
ture Mapping, Image Registration and Stereo Vision (using
glasses).

OsiriX provides custom CLUT (Color Look-Up Tables),
3×3 and 5×5 FIR (convolution) filters (e.g. a ‘Bone filter’), a
4D viewer for Cardiac-CT and other temporal series and Image
Fusion for PET-CT examinations, for example, with adjustable
blending percentage. With regard to the work reported in this
paper, OsiriX provides a complete dynamic Plugin architecture
for external functions used for expansion and scientific re-
search. This includes the creation and management of OpenGL
views.



Figure 1 shows an example of the OsiriX DICOM Viewer
illustrating the visualization of a PET image for the whole
body and a CT scan of the head and upper torso. The use of
combining data from CT scans (which provide high resolution
images of both bone and soft tissues) and PET scans (which
allows images to be derived on areas of the body that have
been doped with radioactive isotopes of Oxygen, Carbon
and Nitrogen, for example, with short half-lives) requires
pixel and voxel registration using Image Fusion methods for
which OsiriX provides an ideal programming environment [9].
OsiriX also has powerful volume rendering, surface and ROI
visualization facilities. For example, Figure 2 shows a 3D
rendered image from a CT scan of the middle torso.

Fig. 1. Screen shot of PET-CT images using the OsiriX DICOM Viewer.

Fig. 2. Screen shot of a 4D volume rendered CT image using the OsiriX
DICOM Viewer.

A version of OsiriX is also available for the iPhone al-
though is functionality is currently limited to low data volume
visualization [10].

IV. NOISE SOURCES IN CT, PET AND MR IMAGING

CT, PET and MR images contain characteristic noise fields
that are derived from a combination of effects due to a

range of disturbances and interference that effect the signal
detection and/or are an inherent component of the signals
recorded. Because noise is multifaceted, it is not possible
to define it uniquely. For this reason, statistical models are
required to construct a suitable Probability Density Function
for the noise which is statistically compatible with the data.
However, as a consequence of the Central Limit Theorem,
where the addition of many independent noise fields yields
a resultant field that is Gaussian distributed, the noise fields
in CT, MR and PET images is often taken to be Gaussian.
However, there is a particular component of the noise in these
imaging modalities that is unique in that it is a consequence
of the image reconstruction method that is required. This is
concerned with the underlying model used to describe a set of
projections P (n̂, z) in the plane (where n̂ is the unit vector
pointing along the path of a projection) which is given by the
Radon transform [11]

P (n̂, z) =

∞∫
−∞

f(r)δ(z − n̂ · r)d2r

where f(r) is some 2D object function which is related to the
physical basis of the imaging modality (e.g. X-ray absorption
in the case of X-ray CT). This transform describes a set
of parallel projections (line integrals) taken over all angles
between 0 and 180o. The inverse Radon transform is given by
[11], [12]

f(r) =
1

2π2

π∫
0

dθ

∞∫
−∞

dz
1

n̂ · r− z
∂

∂z
P (n̂, z)

This transform is the theoretical basis for parallel beam
CT and PET although it should be noted that latter ‘fourth
generation’ CT and most current systems are based on fan
beam project tomography [13]. With regard to MR imaging,
image reconstruction is typically undertaken using so called
k-space (spatial frequency space) methods which are related
to the Central Slice Theorem for the Radon transform [11].

Irrespective of the method used to reconstruct a CT, PET or
MR image, numerical errors occur that are essentially a con-
sequence of the need to map data in a polar or partially polar
coordinate system into a Cartesian system. This is because
of the intrinsic geometry of the imaging systems that are used
where the recorded data has some angular dependence relative
to the object function - the body. Although various filters are
available to reduce the numerical errors that occur subject to a
given resolution (which depends on the angular step change),
for example, the fact that some form of numerical error is
inevitable yields a characteristic noise field, particularly in the
case of CT and PET. In the case of MR imaging, the noise
fields are the result of more complex processes which include
the effect of diffusion associated with the time taken to record
the data and the intensity (amplitude) of the recorded signals
which depend on the strength of the magnetic field and the RF
fields used to induce proton gyration [14]. Figure 3 provides
examples of noise fields that are characteristic of parallel beam
and fan-beam (fourth generation) CT. In these examples, the
projections are generated from a uniform image (with all pixels



values set to 1) and the reconstructions (computed using a
complete set of projections from 0-179 degrees inclusively
in steps of 1 degree) have been histogram equalized for the
purpose of vizualising the noise patterns produced.

Fig. 3. Example of the characteristic noise fields produced by a parallel beam
reconstruction (top-left) using nearest neighbour Polar-to-Cartesian coordinate
interpolation and the corresponding 256-bin histogram (top-right) after appli-
cation of histogram equalization. The equivalent fan beam reconstruction and
the corresponding histogram are given in the bottom-left and bottom-right
quadrants of the figure, respectively.

V. EVOLUTION OF RANDOM PROCESSES, DIFFUSION AND
NOISE

Anisotropic Diffusion describes diffusion processes where
the Diffusivity is not a constant but may very in space
(Isotropic Inhomogeneous Diffusion when the Diffusivity is
a scalar function of space) and whose spatial variations may
be directional (Non-isotropic Inhomogeneous Diffusion when
the Diffusivity is a Vector or Tensor function of space). In both
cases the governing equation is the Diffusion equation and in
this section we briefly look at the origins of this equation. In
particular, we investigate the origins of the classical diffusion
equation and the fractional diffusion equation. The purpose of
this is to inform the reader of the different physical processes
that are assumed in the derivation of the classical and fractional
diffusion equations in which the fractional diffusion equation
can be taken to be a generalization.

A. Einstein’s Evolution Equation

In [15], the following evolution equation is considered

u(r, t+τ) = u(r, t)⊗rp(r), r ≡| r |=
√
x2 + y2 + z2 (1)

where ⊗r denotes the convolution integral over all space
(denoted by the vector r), u(r, t) the ‘Density Field’ which
describes the distribution of a canonical ensemble of particles
undergoing elastic scattering and p denotes the Probability
Density Function (PDF). The space-time evolution of the
Density Field u(r, t) depends upon the PDF that characterizes

the statistical behaviour associated with the elastic scattering
processes in terms of each particle in the canonical ensemble
of particles undergoing a three-dimensional random walk.

Einstein’s evolution equation is, in a conventional sense,
related to the concept of particle interactions responsible for
generating Brownian motion, for example. However, the same
evolution equation can be considered in the context of light
rays, for example, interacting with a population of random
point scatterers where the density field is taken to be a measure
of the intensity of the scattered light. In imaging theory,
multiple scattering is taken to contribute to the noise term of
the fundamental imaging equation where the recorded image
is given by the convolution of the Object Function with the
Point Spread Function of the imaging system plus noise. The
convolution term models single scattering processes according
to the Born or Kirchhoff approximations (for volume and
surface scattering problems, respectively). However, in gen-
eral, any imaging system is usually taken to conform to this
model and the noise term may be generalized in terms of some
product of an effect that is interpreted on a statistical basis.
This includes the statistical model compounded in Einstein’s
evolution equation, which, in this paper, forms the basis
associated with the algorithms developed for reducing the
effects of diffusion in CT and MR images.

B. Derivation of the Classical and Fractional Diffusion Equa-
tions

The classical diffusion equation can be derived from equa-
tion (1) by using a Taylor expansion of the density field
u(r, t + τ) and the convolution integral. This is the basis
for Einstein’s derivation of the diffusion equation from which
the Diffusivity and Diffusion Tensors are constructed. Here,
we consider a different approach which serves to provide a
unifying theme for understanding the concept of Gaussian and
non-Gaussian diffusion.

Using the convolution theorem, equation (1) can be written
in Fourier space as

ũ(k, t+ τ) = ũ(k, t)p̃(k), k ≡| k |=
√
k2x + k2y + k2z (2)

where ũ and p̃ denote the Fourier transforms of u and p,
respectively (p̃ being referred to as the Characteristic Function,
a conventional term in statistics and statistical mechanics),
and kx, ky and kz are the spatial frequencies in a Cartesian
coordinate system.

Clearly, the properties of the Characteristic Function p̃
determine the statistical characteristics of the ‘system’, which,
in turn, defines the evolution of the density field u(r, t) via
equation (1). For a homogeneous Gaussian system and for
some real constant a > 0, p̃(k) = exp(−ak2). We can
generalize this result and consider the Lévy Characteristic
Function p̃(k) = exp(−akγ) where γ ∈ (0, 2] is the Lévy
index. However, this generalization does not take into account
the fact that the diffusing properties of the ‘system’ can be
inhomogeneous. We therefore generalize further and consider
the Characteristics Function

p̃(k) = exp[−ã(k)⊗k k
γ ] (3)



where ⊗k denotes the convolution integral over all k-space
which reduces to the homogeneous case when ã(k) = aδ3(k)
where δ3 denotes the 3D Dirac delta function.

Given equations (2) and (3), we can now derive the
inhomogeneous fractional diffusion equation which is based
on:

(i) Taylor expanding ũ(k, t+ τ) to first order so that

ũ(k, t+ τ) ' ũ(k, t) + τ
∂

∂t
ũ(k, t)

(ii) Considering a first order approximation to the exponential
function of the form

p̃(k) ' 1− ã(k)⊗k k
γ

(iii) Using the Reisz definition of a fractional Laplacian, i.e.

∇γ ↔ −kγ

where ↔ denotes transformation from real-space to k-space.
Using these results we derive the equation

∂

∂t
u(r, t) = D(r)∇γu(r, t) (4)

where D(r) = a(r)/τ is the (fractional) ‘Diffusivity’ and we
have used the result

[ã(k)⊗k k
γ ]ũ(k, t)↔ [a(r)δγ(r)]⊗r u(r, t)

and noted that, by Taylor expanding the function a (within the
convolution integral), then, for a unit vector n̂,

[a(r)δγ(r)]⊗r u(r, t) = a(r)[δγ(r)⊗r u(r, t)]

+∇a(r) · n̂∇γ [ru(r, t)] + ... ∼ −a(r)∇γu(r, t), r → 0

For a Gaussian distributed ‘system’ equation (4) reduces to
the classical inhomogeneous diffusion equation when γ = 2.
For γ < 2, equation (4) models a ‘system’ where the density
function is the ‘product’ of a canonical ensemble of trajectories
(particles of light-rays) that have a propensity for propagating
over longer distances in an interval of time τ . This effect is
compounded in the long tail distributions associated with the
case when γ < 2 in equation (3) subject to the inhomogeneous
nature of the system compounded in the function ã(k) which
determines the Diffusivity D (apart from scaling by 1/τ ).

VI. NOISE REDUCTION USING ANISOTROPIC DIFFUSION

We consider the application of equation (4) in two-
dimensions for the suppression of noise in an image u(x, y)
which has been sampled to form a digital image consisting of
a uniformly sampled array of pixels uij .

A. Solution for γ = 2

For γ = 2, equation (4) is

∂

∂t
u(x, y, t) = D(x, y)∇2u(x, y, t)

A numerical solution is considered that is based on solving the
above equation using a time step δ ≡ δt. Forward differencing

in time and centre differencing in space (for a uniformly
sampled grid with sampling intervals of ∆x and ∆y) we obtain

uk+1
ij − ukij

δ
=
Dij

∆2
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij)

where ∆ ≡ ∆x = ∆y. Rearranging this result, we obtain the
iterative solution

uk+1
ij = ukij + λDij × Lij ⊗i,j ukij , k = 0, 1, 2, ..., N (5)

where λ = δ/∆2 is the ‘time space-squared step ratio’, N is
the total number of iterations and

Lij =

 0 1 0
1 −4 1
0 1 0

 (6)

The matrix Lij defines the Laplacian Finite Impulse Response
(FIR) filter of this iterative system where ⊗i,j denotes the
discrete convolution sum over all i and j. The initial value
u0ij is taken to be the original (noisy) image.

B. Solution for γ ∈ (0, 2)

A solution to this problem has previously been considered
by [16] using a Fourier transform based approach and imple-
mented using a FFT (Fast Fourier Transform) based algorithm.
In this paper, we consider an approximation required to
implement the method of solution using a FIR filter. The ‘key’
to this approach is to note that ∇γ ≡ ∇2∇γ−2 so that the FIR
filter given by equation (6) can be used and applied to the
computation of ∇γ−2u(x, y, t). The computation of this term
is based on the following two-dimensional Fourier transform
relationship [17]

1

rγ
↔ Γγ

k2−γ
(7)

where

Γγ =
22−γπΓ

(
1− γ

2

)
Γ
(
γ
2

) , r =
√
x2 + y2, k =

√
k2x + k2y

Using the Reisz definition for a fractional Laplacian,

∇γ−2u(r, t)↔ kγ−2ũ(k, t) =
ũ(k, t)

k2−γ
, 0 < γ < 2

from which, given relationship (7) and using the convolution
theorem, it follows that

∇γ−2u(x, y, t) =
1

Γγ(x2 + y2)γ/2
⊗x,y u(x, y, t)

We can now approximate the convolution kernel to form a
FIR filter (of an odd order) where, for a rectangular grid, the
singularity is taken to occur at (1, 1). Under these conditions,
and, with α = γ/2, we can consider an order 3 FIR filter of
the form

M3
ij(α) =

1

Γ2α

 8−α 5−α 8−α

5−α 2−α 5−α

8−α 5−α 8−α





and an order 5 FIR filter of the form

M5
ij(α) =

1

Γ2α


18−α 13−α 10−α 13−α 18−α

13−α 8−α 5−α 8−α 13−α

10−α 5−α 2−α 5−α 10−α

13−α 8−α 5−α 8−α 13−α

18−α 13−α 10−α 13−α 18−α


where higher order filters are constructed similarly. In each
case, the forward differenced in time solution to equation (4)
is given by (where n is the order of the filter)

uk+1
ij = ukij + λDij × Lij ⊗i,j Mn

ij(α)⊗i,j ukij (8)

where u0ij is taken to be the input image.

C. Computation of the Diffusivity

In the context of processing a digital image u0ij , application
of equations (5) and (8) depend critically upon the generation
of the array Dij . In the absence of any a priori information
(which is the usual case) this array must be obtained from
the image u0ij . With regard to using equations (5) and (8)
for noise reduction, the value of Dij at any pixel location
(i, j) can be used to control the degree of diffusion, which, in
terms of a diffusion process, represents the degree of blurring
in the locality of (i, j). For correlated features in an image
that are edge dominant and are taken to be relatively noise
free (at least, in terms of their high pixel value contrast with
regard to low pixel value background noise), we require the
degree of diffusion to decrease. This can be accomplished by
reducing the value of Dij in regions of an image that are edge
dominant and increasing the value of Dij in those regions that
are background noise dominant. A method of achieving this is
to apply an edge detector to the image u0ij to obtain an output
Eij , say, and compute

Dij = 1− Eij (9)

where Eij is (intensity) normalized, i.e. 0 ≤ Eij ≤ 1 ∀(i, j)
so that Dij ∈ [0, 1] ∀(i, j).

There are a range of edge detection filters that can be applied
in this respect to compute Dij [17]. Further, binarization of
equation (9) can be applied via application of a standard
thresholding method, i.e. for a Threshold 0 < T < 1,

Dij =

{
1, 1− Eij > T

0, 1− Eij ≤ T
(10)

The issue of which edge detection filter to use and whether
or not to binarize the output based on the application of
equation (10) or to apply a variable threshold approach lies
beyond the scope of this paper. As with other image processing
applications, the filter(s) depends on a detailed appraisal of the
data. This includes image acquisition, the application focus
and user preferences. Edge detection methods are designed to
provide a balance between the fidelity of the output in terms
of edge accuracy, localization and continuity and the effects of
noise leading to spurious edges. In this application, edge de-
tection is being applied for the purpose of non-stationary noise
reduction rather than pattern recognition. Further, because the
current application is focused on clinical image analysis in

Number of Time-Space Lévy Threshold
Iterations N Step Ratio λ Index γ T

20 0.01 1.5 0.5

TABLE I
VALUES OF ‘HARD-WIRED’ PARAMETERS FOR THE OSIRIX ANISOTROPIC

DIFFUSION PROCESSING FILTER.

real time, it is not appropriate to provide the user with a range
of filters for edge detection including parameter settings etc.
Rather, we require a hardwired solution that is efficient with
minimal computational cost. In this context, second order edge
detection via the Marr-Hildreth algorithm [18], for example,
or first order edge detection requiring pre-filtering, such as the
Canny edge detector [17] is not suitable (at least in a first study
as provided in this paper. We therefore consider a well known
and simple but effective edge detector, namely, on the Sobel
filter which is based on the application of the FIR gradient
filters

Gx =
1

8

 −1 0 1
−2 0 2
−1 0 1

 , Gy =
1

8

 −1 −2 −1
0 0 0
1 2 1


For an input image u0ij , the output is given by

Gij =| Gx ⊗i,j u0ij | + | Gy ⊗i,j u0ij |

which is then normalized to yield Eij as follows:

Eij =
Gij

max(Gij)

from which the Diffusivity can be obtained via equations (9)
and (10) using a 50% threshold, i.e. T = 0.5.

VII. IMPLEMENTATION IN OSIRIX IMAGE PROCESSING
SOFTWARE

OsiriX provides the facility for programming filters using
the XCode Apple Developer C/C++ compiler [19]. Implemen-
tation of the algorithms discussed in the previous sections,
in particular equation (8), is easily converted to C-code for
implementation in an OsiriX programming environment. The
current processor, the OsiriX Anisotropic Diffusion Processor
(OADP), is available on-line at [20].

The OADP filter has been designed to be easy to implement
and integrate in OsiriX as a Plugin and to be use by a
radiologist. No parameter settings are required which comes at
the expense of the user being unable to optimize the filter and
investigate its properties in a dynamic and image dependent
sense. However, these options are not suitable for the medical
imaging practitioner who typically expects the operational
criteria of a filter to be hard-wired. The current parameters are
hard-wired according to Table I. Figure 4 shows an example
screen shot after application of the OsiriX OADP filter for a
typical CT image using the Plugin application file available
at [20]. Figure 5 shows an example of using the OsiriX 3D
volume rendering facility after applying a crop to locate a
Brain tumour using MR image data to which the OADP filter
has been applied. As a final example, Figure 6 shows the
result of applying the OsiriX surface rendering option. The



Fig. 4. Screen shot of the OsiriX imaging processing software after application of the Anisotropic Diffusion Processor (left) applied to a standard CT image
(right) of the Cerebellum (base of the Brain).

image consists of two Iso-surfaces with equal transparency
weighting, generated using CT data processed with the OADP
filter.

VIII. CONCLUSIONS

We have investigated the principles associated with the
Anisotropic Diffusion Method for noise reduction and ex-
tended the approach to include the case when the underly-
ing statistical models for random walk processes are non-
Gaussian. For the case when these processes are taken to
be described by a Lévy distribution, a new nth-order FIR
filter Mn

ij (where n = 3, 5, ...)has been derived in Section
6.2. The approach to deriving these filters (as presented in
Section 5.2) is general and can therefore, in principle, be
used to design filters for different Characteristic Functions.
However, it should be noted that the Lévy function considered
in this paper is approximated in order to undertake the analysis
that is applied and that higher order results should be further
investigated with regard to the design and implementation of
different filters.

Irrespective of whether the Anisotropic Diffusion Method is
based on a Gaussian or non-Gaussian model, the algorithms
compounded in equations (5) and (8), respectively, are pred-
icated on being able to obtain an estimate of the Diffusivity.
This is typically undertaken through application of an edge
detection method, and, in this paper, we have consider the
Sobel edge detection algorithm. However, there is considerable
scope for investigating further edge detection methods for
this purpose (which lie beyond the scope of this paper).
In particular, given the binarization condition that has been
applied via equation (10), application of the Marr-Hildreth

second order edge detection algorithm may be of value in
this context given that edge continuity tends to be preserved
in this case. However, it should be noted that the application
of second order edge detection for computing the Diffusivity
comes at the expense of greater computational overheads
and an increase in parameter optimization, in particular, the
bandwidth that is applied.

The principal focus of the algorithm developed in this
paper has been its implementation in a real time medical
image processing environment. For this purpose, the OsiriX
DICOM Viewer has been chosen because of the existing
and extensive facilities that this system provides, its universal
appeal and the programming environment that is available. In
this context, the paper has reported on the development of a
new OsiriX DICOM filter for noise reduction using a non-
Gaussian anisotropic diffusion model. Readers can investigate
this approach further by implementing the application avail-
able via [20] within the Osirix operational environment [8].
This application includes operational conditions that transcend
the results presented in this paper and provides the user with
additional options for investigating the performance of the
filters considered in this paper.
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Fig. 5. Example of the OsiriX Anisotropic Diffusion Processor applied to
MR image data using the OsiriX 3D Volume Rendering and cropping facility
to highlight a brain tumour (white region in the top-half of the image) with
CLUT: Spectrum.
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