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 1 

Abstract 2 
 3 

The aim of this research was to investigate whether the chemical changes induced by 4 

mechanical damage and aging of mushrooms can be (a) detected in the mid-infrared 5 

absorption region and (b) identified using chemometric data analysis.  Mushrooms 6 

grown under controlled conditions were bruise-damaged by vibration to simulate 7 

damage during normal transportation.  Damaged and non-damaged mushrooms were 8 

stored for up to 7 days post-harvest.  Principal component analysis of FTIR spectra 9 

showed evidence that physical damage had an effect on tissue structure and the aging 10 

process.  Random forest classification models were used to predict damage in 11 

mushrooms producing models with error rates of 5.9 and 9.8% with specific 12 

wavenumbers identified as important variables for identifying damage, PLS models 13 

were developed producing models with low levels of misclassification.  Modeling 14 

post-harvest age in mushrooms using random forests and PLS resulted with high error 15 

rates and misclassification; however, random forest models had the ability to correctly 16 

classify 82% of day zero samples, which may be a useful tool in discriminating 17 

between ‘fresh’ and old mushrooms.  This study highlights the usefulness of FTIR 18 

spectroscopy coupled with chemometric data analysis in particular for evaluating 19 

damage in mushrooms and with the possibility of developing a monitoring system for 20 

damaged mushrooms using the FTIR ‘fingerprint’ region. 21 

 22 

 23 

 24 
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 29 

 30 

INTRODUCTION 31 

 32 
Mushroom cultivation is a worldwide business with the global market valued at over 33 

$45 billion in 2005 (1).  In Ireland more than 60, 000 tons of button mushrooms 34 

(Agaricus bisporus) are produced annually, making them one of the most important 35 

horticultural crops grown (2).  Mushrooms are one of the most perishable food 36 

products with a maximum shelf-life of 3-4 days at ambient temperature (3) mainly 37 

because they have no cuticle to offer protection from physical damage, microbial 38 

attack or water loss (4).  They may be bruised easily by physical stress during 39 

harvesting, handling and transportation.  This mechanical damage triggers a browning 40 

process which is the major cause of loss of value in the market (5, 6).  A second 41 

significant factor determining mushroom quality is time elapsed between harvesting 42 

and delivery to the marketplace.  Post-harvest age is particularly important for any 43 

mushroom exporting country (i.e. Ireland) for which access to the food markets in 44 

larger, neighboring countries within Europe is vital.  There is a need for a method 45 

which would allow objective evaluation of mushroom quality to ensure that only high 46 

quality produce reaches the retail market and that is able to produce information on 47 

the metabolites in mushrooms affected by senescence and damage (7). 48 

 Fourier-transform infrared spectroscopy is an analytical technique that enables 49 

the rapid, reagentless and high-throughput analysis of a diverse range of samples (8).  50 

Its importance lies in its ability to allow rapid and simultaneous characterization of 51 

different functional groups such as lipids, proteins, nucleic acids and polysaccharides 52 

(9-12) in biological molecules and complex structures.  FTIR spectroscopy is an 53 

important tool used for quality control and process monitoring in the food industry 54 

because it is less expensive, has better performance and is easier to use than other 55 



 4 

methods (13).  In the same way, FTIR spectroscopy has been used as a fingerprinting 56 

tool to study response of cells to various stressing situations (14-16). 57 

 A key to the successful operation of this technique is the availability of 58 

mathematical tools for the interrogation and mining of large spectral data sets.  59 

Principal component analysis (PCA), partial least squares (PLS) regression and 60 

random forests (RF) are chemometric tools that have been successfully used to extract 61 

information from FTIR data (17, 18). 62 

The objective of this study was to investigate the damage and aging of mushrooms 63 

grown in Ireland using FTIR spectroscopy in order to (a) differentiate between 64 

damaged and undamaged mushrooms and (b) to determine mushroom post-harvest 65 

age.  The ability to develop a tool that could detect physical damage before browning 66 

becomes visible would be of importance to the mushroom industry and could reduce 67 

economic losses. 68 

MATERIALS AND METHODS 69 

 70 
Mushrooms.  Second flush mushrooms were grown at the Teagasc Research 71 

Centre Kinsealy (Dublin, Ireland), harvested damage-free.  A set of 160 closed cap, 72 

defect-free Agaricus bisporus strain Sylvan A15 (Sylvan Spawn Ltd., Peterborough, 73 

United Kingdom) mushrooms (3-5 cm cap diameter) were selected for this study and 74 

immediately transported by road to the testing laboratory.  Special trays were 75 

designed to hold mushrooms by the stem using a metal grid to avoid contact between 76 

(a) mushrooms and (b) between the top of mushroom caps and the tray lid during 77 

transportation.  Mushrooms arrived at the laboratory premises within 1 h after 78 

harvesting and where either damaged for the specified time length or remained 79 

damage free and then stored at 4ºC until required for analysis.  80 

Mushroom treatments.  Mushrooms (n=160) were harvested in the conventional 81 
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manner on a single occasion.  On the day of harvest, a subset (n=80) was subjected to 82 

physical damage using a mechanical shaker (Gyrotory G2, New Brunswick Scientific 83 

Co. USA) set at 300 rpm (rotations per minute) for 20 minutes; these samples were 84 

labeled as damaged (D).   The remaining 80 mushrooms were untreated and labeled 85 

undamaged (UD).  Ten (10) damaged and 10 undamaged mushrooms were selected at 86 

random from their respective sub-sets on the day of harvesting and prepared for 87 

spectroscopic analysis (see below); these are referred to as day 0 samples.  The 88 

remainder of the mushrooms (70 each of damaged and undamaged) were placed in 89 

plastic punnets (six mushrooms per punnet) and stored as separate batches at 4ºC in a 90 

controlled temperature facility.  On each of 7 consecutive days of such storage, a set 91 

of 10 damaged and 10 undamaged mushrooms was randomly selected, removed from 92 

storage and prepared for FTIR analysis. 93 

FTIR spectroscopy.  Sample preparation involved the manual dissection of each 94 

mushroom into its three main tissue types (cap, gills and stalk) before freezing 95 

overnight at -70ºC in a cryogenic refrigerator (Polar 340V: Angelantoni Industrie 96 

spA, Massa Martana, Italy) followed by freeze-drying (Micro-modulyo, EC 97 

Apparatus Inc, New York, USA) for 24 h.  Freeze-dried samples were manually 98 

ground into fine particles using a pestle and mortar.  Then, 9 mg (3% w/w) of each 99 

sample was mixed with 291 mg (97% w/w) KBr (Sigma Aldrich, Dublin, Ireland).  100 

KBr pellets were prepared by exerting pressure of 100 kg/cm² (1200 psi) for 101 

approximately 2 min in a pellet press (Specac, UK).  To eliminate any interference 102 

which might be caused by variation in pellet thickness different pellets were prepared 103 

from the same sample and their infrared spectra compared.  These samples were 104 

identical with their average spectra used for analysis (19). 105 
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Spectra were collected using a Nicolet Avatar 360 FTIR E.S.P (Thermo Scientific, 106 

Waltham, MA, USA) over the frequency range 4000-400 cmˉ¹.  One hundred scans of 107 

each pellet were collected at 4 cm
-1

 resolution at room temperature using OMNIC 108 

software (version ESP 5.1).  The average of the 100 scans was used for further data 109 

analysis. FTIR spectral data were discretized resulting in spectra containing 1868 110 

individual points (discretised every 2 cm
-1

) for chemometric analysis. 111 

Chemometric data analyses.  Multivariate models for damage and age prediction 112 

in mushrooms using both raw (i.e. unmodified) and pre-treated spectral data were 113 

developed; the pre-treatment used was standard normal variate [SNV] and was 114 

intended to reduce scatter-induced effects in the spectra (20).  The frequency region 115 

studied was 2000-400 cm
-1

 (fingerprint region); this spectral range encompasses 116 

absorptions from most of the chemical species present and attenuation of the dataset 117 

in this way avoids spectral regions which have low information content and may 118 

therefore interfere with effective model development. 119 

Random forest modeling achieves a classification by constructing a series of 120 

decision trees (21) and takes input variables down all trees in order to optimize 121 

classification.  Each tree is constructed using a different bootstrap sample from the 122 

original data, about one-third of the cases are left out of the bootstrap sample and are 123 

not used in the construction of the k-th tree.  These sets of unseen samples are called 124 

out-of-bag (OOB) sets.  RF makes use of these OOB sets in many ways, in particular 125 

to give an unbiased estimate of the prediction error on unseen cases (22). 126 

Random forest models were built to (a) discriminate between damaged and 127 

undamaged mushrooms and (b) to predict mushroom ages.  The number of trees fitted 128 

to build the random forest was 1000, the number of random wavenumbers tried at 129 

every node of the tree was set at 500 after optimization and the random forest model 130 
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trained was made using a stratified random sampling strategy of the sample spectra 131 

that would take the same number of samples from each of the tissues.  Principal 132 

component analysis (PCA) was used to identify patterns in data in a way which 133 

emphasizes differences and similarities.  It is used to indicate relationships among 134 

groups of variables in a data set and show relationships that might exist between 135 

objects (23). 136 

Partial least squares (PLS) regression was applied to the spectral data sets to 137 

develop a quantitative model for prediction of the age of damaged mushrooms.  A 138 

common problem in development of multivariate prediction models is selection of the 139 

optimum number of PLS loadings; often, this selection is based on an examination of 140 

the RMSECV but identification of a minimum is not always possible or unambiguous 141 

and sub-optimal models incur a significant risk of overfitting.  Experience has shown 142 

that this can be a problem when parameters which are of practical relevance, such as 143 

post-harvest age or damage, but have unclear molecular basis are being modeled. In 144 

order to avoid overfitting, model cross validation was employed as follows: 145 

1. Samples were randomly-designated from each tissue/damage status/time 146 

grouping as calibration (60%) or validation (40%) samples.  The validation 147 

subset was left completely out during the optimization of model based on the 148 

calibration set.  149 

2. The model optimization step was carried out in order to estimate the optimal 150 

dimensionality of the PLS model built on the calibration set.  The method 151 

employed for this was based on the observation that an indication of 152 

overfitting is the appearance of noise in regression vectors; this takes the form 153 

of a reduction in apparent structure and the presence of sharp peaks with a 154 

high degree of directional oscillation.  A simple method (24) for objectivity 155 
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quantifying the shape of a regression vector, combined with the root mean 156 

square error of cross-validation (RMSECV) for the calibration set was applied 157 

in this study. 158 

3. The random sample designation, model development and evaluation were 159 

performed 100 times.  At the end of this cycle, models were initially examined 160 

on the basis of the number of latent variables selected, the most common 161 

number was then chosen as the optimum. 162 

 163 

Mushroom discrimination (damaged versus undamaged) were performed using 164 

partial least squares discrimination analysis (PLS-DA).  For PLS-DA, a dummy Y-165 

variable was assigned to each mushroom tissue sample, 1 for damaged and 0 for 166 

undamaged.  PLS-DA calibration models were developed and assessed using 100 167 

randomly-populated calibration and validation sample sets. 168 

Principal component analysis (PCA) and partial least squares (PLS) regression were 169 

performed using MATLAB and The Unscrambler software (v.9.7; Camo A/S, Oslo, 170 

Norway).  The routine for selection of the optimum number of PLS loadings was also 171 

performed in MATLAB.  Random forest modeling was performed using R 2.8.0 (25). 172 

 173 

RESULTS AND DISCUSSION 174 

 175 
 Spectral data.  Average raw spectra of each of the three tissue types collected 176 

from all the damaged and undamaged samples (day 0-7 in each case) are shown in 177 

Figure 1(a, b and c).  A number of observations may be made on these spectra.  178 

Firstly, the major feature is a vertical offset from one average plot to another; this 179 

offset originates in light scatter effects and may be a complication in further data 180 

analysis.  Average spectra of the three tissue types also bear a close resemblance to 181 
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each other; there is little visible difference in peak minima locations in Figure 1.  In 182 

terms of minima locations, there are major bands at 1650, 1090, 1020, 935 cm
-1

; 183 

minor minima may be seen at 1560, 1150 and 1050 cm
-1 

(Figure 2).  Unambiguous 184 

identification of the molecular source of features in mid-infrared spectra of biological 185 

material is difficult but the peak at 1650 may be attributed to an amide I group while 186 

at 1560 cm
-1

 may be identified as resulting from amide II groups (26, 27).  Both major 187 

absorbance peaks at 1090 and 1020 cm
-1

 have been attributed as structures in chitin, a 188 

major structural polysaccharide in mushrooms; absorbance at 1090 cm
-1

 may also 189 

arise from secondary alcohols.  Smaller features at 1150 and 1050 cm
-1

 have been 190 

attributed to tertiary and primary alcohol structures (28).  Minima at 935, 890 and 874 191 

cm
-1

 bands correspond to α- or ß- anomer C1-H deformations.  The bands at 935 and 192 

890 cm
-1

 are attributed to glucan bands, while the band at 874 cm
-1

 is assigned to a 193 

mannan band (29-31).  An inability to attribute all spectral features is a common 194 

feature of spectroscopy of complex biological matrices but the presence of such 195 

spectral detail implies the detection of a significant quantity of information which 196 

may be usefully interrogated by multivariate mathematical methods. 197 

Principal component analysis (PCA).  Undamaged samples were studied 198 

separately on the basis of their tissue type i.e. caps, gills and stalks.  Initial PCA of the 199 

mushroom caps data revealed a single sample (day 7) which lay anomalously at some 200 

significant distance from the others; this was deleted and the resulting score plot is 201 

shown in Figure 3 for PC1 vs PC2; these first two principal components accounted for 202 

97 and 2% respectively of the total variance in the spectral dataset and some sample 203 

clustering on the basis of storage time is readily apparent.  As a general observation, it 204 

may be stated that the majority of the day 0 mushroom caps have a score value on 205 

PC1 greater than zero and are therefore located on the right-hand-side of Figure 3a.  206 
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While there are indications that samples of different storage time cluster together, the 207 

spread of these clusters is quite large and it is not possible to readily discern any trend 208 

relating plot position and storage time in the plots.  There is a suggestion that the 209 

dispersion of the samples decreases as the length of storage time increases.  With 210 

regard to undamaged gill tissue, observations similar to those made above in relation 211 

to undamaged caps may be made although the distribution patterns are somewhat 212 

different.   213 

In the case of damaged mushroom tissues, a different pattern was found.  It is 214 

clear from Figure 3c, d and e that day 0 samples clustered together but separately 215 

from those of day 1 to day 7 samples irrespective of tissue type.  This strongly 216 

suggested that physical damage had a significant effect on tissue structure and the 217 

subsequent aging process.  Some implications regarding the rate of change of 218 

mushroom tissue composition with aging may be garnered from the observation that 219 

separation of day 0 from all other subsequent days accounts for the most variation in 220 

the spectral collection of damaged mushroom caps, gills and stalks. 221 

Examination of PC loadings may provide information on the absorbing species 222 

which are involved in separations observed on a PC scores plot; however, meaningful 223 

interpretation of loadings arising from this dataset (data not shown) was not possible. 224 

Detection of damage (random forests).  The first random forest model 225 

developed attempted to identify which wavenumbers could be used to predict damage 226 

specifically.  The model tried to predict damage in mushrooms using the IR spectra, a 227 

variable indicating the tissue from which the spectra originated (cap, gill or stalk) and 228 

the age of the mushroom (in days from 0-7) as explanatory variables.  This resulted in 229 

good classification between damaged and undamaged samples with an out-of-bag 230 

error rate (OOB) of 5.9%, sensitivity of 93.3% and specificity of 95%. 231 
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In random forests there are two measures of importance to indicate how 232 

informative a particular variable (a wavenumber in our case) is, the mean decrease in 233 

accuracy and the Gini index.  The decrease in Gini index is not as reliable as the 234 

marginal decrease in accuracy (32, 33) and for that reason the latter was analysed.  235 

The variables containing the most importance for predicting damage in the model are 236 

shown in Figure 4a.  The most important variable for predicting damage was the age 237 

of the mushrooms followed by the wavenumbers 1868, 1870 and 1845 cm
-1

.   238 

Induced damage in mushrooms leads to an enzymic response which is followed by 239 

brown discoloration.  The enzymes involved in this response, tyrosinase, or 240 

polyphenol oxidases, catalyse the oxidation of phenols, which in turn promote the 241 

formation of melanin like compounds.  This reaction is found not only  in damaged 242 

mushrooms, but is also part of the natural aging process, with color in mushrooms 243 

becoming darker and less firm during storage (34).  The three wavenumbers identified 244 

have the ability to differentiate between the chemical changes that are induced by the 245 

mechanical damage and are independent of those that take place due solely to aging.  246 

The three wavenumbers identified above are unassigned peaks. 247 

By removing the variable age from the model a second model was built which 248 

would take IR spectra of mushrooms (independently of their age) and try to predict 249 

whether there is damage or not. This random forest could be used as a classifier of 250 

mushroom damage and gave a very good prediction model with an OOB error rate of 251 

9.8%, sensitivity of 89.2% and specificity of 91.2%.  Even receiving mushrooms 252 

whose storage time after harvest was unknown the model would still classify damaged 253 

and undamaged mushroom samples with a very good classification rate.  The 254 

variables of importance involved in this classification model are shown in Figure 4b. 255 
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The most important variable for predicting damage according to the mean decrease 256 

accuracy plot is tissue used in the analysis followed by the wavenumbers 1868, 1870 257 

and 1560 cm
-1

.  The peak at 1560 cm
-1

 is attributed to amide II vibrations of proteins 258 

(29).  Amide II bands along with amide I bands are major regions of the protein 259 

infrared spectrum.  Amide II bands are associated with an out-of-phase combination 260 

of in-plane C-N stretching and N-H bending of amide groups (35).  Absorption of this 261 

band was found to be higher in damaged samples and therefore an important variable 262 

for detecting damage in mushroom samples.  The wavenumbers 1868 and 1870 cm
-1

 263 

are unassigned. 264 

 Detection of damage (PLS).  PLS-DA models were developed to discriminate 265 

between undamaged and damaged mushrooms of all tissue types separately.  A 266 

summary of the average and dispersion of the results obtained on a percentage basis 267 

for each tissue is shown in Table 2; it is apparent that misclassification errors 268 

associated with all models were low, especially so in the case of gills and stalks.  In 269 

terms of numbers of samples misclassified, these percentages translate to 1 or 2 only 270 

in each case.  These results indicate that FTIR of freeze-dried mushroom tissues 271 

(especially gills and stalks) may be used to discriminate between damaged and 272 

undamaged mushrooms aged post-harvest from 0 to 7 days with almost complete 273 

confidence. 274 

Modeling damage in mushrooms has been reported in literature in 2008 by Gowen 275 

and colleagues and in 2009 by Esquerre et al. (36, 37).  Gowen and colleagues 276 

investigated the use of hyperspectral imaging and principal components analysis 277 

(PCA) to develop models to predict damage on mushroom caps with correct 278 

classification ranging from 79-100%.  Using near infra-red spectroscopy and partial 279 

least squares (PLS) regression, Esquerre and colleagues were able to correctly classify 280 
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undamaged mushrooms from damaged ones with an overall correct classification 281 

model with 99% accuracy.  The models for predicting damage using FTIR and 282 

random forests correctly classified 94 and 90% of samples respectively, whilst the 283 

PLS predictive models correctly classified 92-99% of undamaged samples from 284 

damaged ones.  These results highlight the usefulness of FTIR and chemometrics for 285 

detecting physical damage in mushrooms with the possibility of developing a 286 

classification system for the industry.   287 

Predicting post-harvest age (random forests).  Initial random forest models were 288 

built to try and predict the mushroom age from day zero to day seven (0-7) using the 289 

IR spectra from the tissues and knowing whether they had been subjected to damage 290 

or not with the aim to identify specific wavenumbers associated with aging.    The 291 

random forest model produced an OOB error rate of 32% i.e. 68% of samples were 292 

correctly classified.  The results of the model fit are shown in Table 3.  293 

Misclassification of samples was seen for all mushroom ages particularly days 4, 5 294 

and 7.  Classification of day zero samples performed quite well in the model with 295 

82% of samples correctly classified, which leads to the possibility of using IR 296 

spectroscopy as a tool to discriminate fresh mushrooms (D0)  from mushrooms that 297 

have been subjected to refrigeration.  This type of tool could enable packers and 298 

producers to avoid fraud and ‘recycling’ of product, supporting the evidence from 299 

visual inspection.  The variables of importance identified by the mean decrease 300 

accuracy plot were damage, tissue type and the wavenumbers 399, 952 and 1508 cm
-1

.  301 

A second model was developed to predict age using the same approach as above but 302 

removing the damage variable from the model.  The model performed much the same 303 

as above with an OOB error rate of 33%; again misclassification within all sample 304 

ages was seen.  The model correctly classified 79% of day zero models.  The 305 
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important variables identified to predict age were tissue type and the wavenumbers 306 

399, 952 and 1508 cm
-1

.  The peak at 952 cm
-1

 is a glucan band (ß-anomer C-H 307 

deformation) (29), glucans play many different roles in the physiology of fungi, some 308 

accumulate in the cytoplasm as storage, however most are present in the cell wall 309 

structure (38).  This suggests that the ability to model aging in mushrooms may 310 

depend on the affect of glucan levels changing in the cell wall due to natural 311 

senescence.  The wavenumbers at 399 and 1508 cm
-1

 are unassigned.  The OOB 312 

errors produced to model aging were quite large >33% which may be due to the low 313 

sample numbers. 314 

Predicting post-harvest age (PLS).  PLS regression was applied separately to the 315 

caps, gills and stalks datasets in an attempt to develop separate quantitative models for 316 

prediction of the age of mushrooms, both damaged and undamaged.  Selection of the 317 

appropriate number of latent variables for each model was assessed on the basis of the 318 

frequency of their occurrence.  As shown in Figure 5, this was a clear and 319 

unambiguous choice.  A summary of the results obtained using mushrooms from day 320 

0 to day 7 inclusive is shown in Table 3.  In the case of undamaged mushrooms, root 321 

mean squared error of cross validation (RMSECV) values achieved were relatively 322 

high, only permitting the prediction of post-harvest age of damaged mushrooms to 323 

within ± 2 to 3 days approximately (95% confidence limit) depending on tissue type.  324 

The practical utility of such accuracy levels may be gauged by examination of the 325 

SD/RMSECV ratio, all but one of which are below 3.0, the generally accepted 326 

minimum value for a model to be of practical utility.  With regard to damaged 327 

mushrooms, model predictive accuracies were similar for caps and stalks with 328 

RMSECV (and RER) values of 1.3 (1.9) and 1.2 (2.) respectively.  In the case of gill 329 

tissue, better predictive accuracy was achieved with RMSECV and RER values equal 330 
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to 0.8 and 3.1 respectively.  The number of latent variables associated with these 331 

models was low and similar in all cases, with a variation between 6 and 8 only.  The 332 

application of an objective indicator of the optimum number of PLS loadings to 333 

include in any model contributed to their stable performance. 334 

The results presented for modeling age in mushrooms using FTIR and 335 

chemometrics had misclassification errors of over 30% (random forests) yielding 336 

relatively unsuccessful results.  However, random forest models were able to classify 337 

day zero samples reasonably well with correct classifications of 82 and 79% which 338 

leads to the possibility of using IR spectroscopy in detecting fresh mushrooms from 339 

old mushrooms and could be used within the sector for detecting fraud and ‘recycling’ 340 

of product.  The time required for freeze-dried sample preparation is in the order of 341 

hours, thus this approach would be applicable for research and quality control 342 

purposes. 343 

 344 
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FIGURE CAPTIONS 

 
Figure 1 FTIR transmittance spectra of all mushroom tissues in (a) 400-1800 cm-1 (b) 2800-3050 

cm-1, and (c) 3050 – 4000 cm-1 wavenumber ranges 

 
Figure 2.  Average undamaged caps spectrum (raw data) 

 
Figure 3.  PC1vs PC2 score plots of undamaged mushroom tissue (a) caps; (b) gills  (c) stalks and 

damaged tissue (d) caps; (e) gills and (f) stalks 

 
Figure 4(a) Relative importance plot of variables that are important in the random forest model 

for predicting damage/undamaged samples.  The variable age being the most important followed 

by the wavenumbers 1868, 1870 and 1845 cmˉ¹. 4(b) Relative importance plot of variables that 

are important in the random forest model for predicting damaged/undamaged samples when age 

is not a variable.  The most important variables are tissue type followed by the wavenumbers 

1868, 1870 and 1560 cm¯¹ 

 
Figure 5 Frequency of generation of PLS regression models for mushroom post-harvest age on 

the basis of the number of latent variables selected. (a) undamaged caps, (b) un damaged gills, (c) 

undamaged stalks, (d) damaged caps, (e) damaged gills and (f) damaged stalks. Abscissa – no. of 

latent variables in model; ordinate – number of occurrences 

 

 

 

TABLES 

 

 
Table.1 Summary of results for mushroom discrimination on the basis of damage 

 #Samples #Loadings % 

undamaged 

misclassified 

mean (std. 

deviation) 

% damaged 

misclassified 

mean (std. 

deviation) 

Caps 160 7 4.1 (4.3) 7.6 (4.0) 

Gills 160 9 2.1 (3.0) 0.8 (1.7) 

Stalks 160 12 1.7 (2.1) 0.6 (1.5) 

 

 
Table 2 Confusion matrix and the error rate for the prediction of mushroom age.  The OOB 

error rate: 32%.  The highlighted numbers are correctly classified samples 

 0 1 2 3 4 5 6 7 Error 

rate 

0 49 3 0 3 2 0 3 2 0.18 

1 1 42 2 4 0 1 4 6 0.30 

2 4 5 43 2 3 0 0 3 0.28 

3 1 3 5 47 2 1 0 1 0.22 

4 3 0 3 3 32 2 8 9 0.47 

5 0 0 3 12 3 29 4 8 0.51 

6 1 0 6 0 2 0 48 3 0.20 

7 2 1 5 2 2 6 8 34 0.43 

0-7: Sample age in days from day zero to day seven 

Error rate: The % misclassification for each sample age 
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Table 3 Summary of PLS regression results for the prediction of post-harvest age (day 0-7 

inclusive) in undamaged and damaged mushrooms  

Treatment Tissue #Samples #Loadings RMSECV* RER** 

Undamaged Caps 80 7 1.2 2.0 

      

 Gills 80 7 1.5 1.6 

      

 Stalks 80 7 1.2 1.9 

      

Damaged Caps 80 7 1.3 1.9 

      

 Gills 80 8 0.8 3.1 

      

 Stalks 80 6 1.2 2.2 
*RMSECV= root mean square error of cross-validation (mean of 100 runs); **RER = SD/RMSECV 
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    Figure 2.  Average undamaged caps spectrum (raw data) 
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Figure 3 PC1vs PC2 score plots of undamaged mushroom tissue (a) caps; (b) gills (c) stalks and damaged tissue (d) 

caps; (e) gills and (f) stalks ;0-7: Sample ages from zero to seven 
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Figure 4(a) Relative importance plot of variables that are important in the random forest model 

for predicting damage/undamaged samples.  The variable age being the most important followed 

by the wavenumbers 1868, 1870 and 1845 cmˉ¹. 4(b) Relative importance plot of variables that 

are important in the random forest model for predicting damaged/undamaged samples when age 

is not a variable.  The most important variables are tissue type followed by the wavenumbers 

1868, 1870 and 1560 cm¯¹ 
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Figure 5. Frequency of generation of PLS regression models for mushroom post-harvest age on 

the basis of the number of latent variables selected. (a) undamaged caps, (b) un damaged gills, (c) 

undamaged stalks, (d) damaged caps, (e) damaged gills and (f) damaged stalks. Abscissa – no. of 

latent variables in model; ordinate – number of occurrences 
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