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Nomenclature

I

Incident	global	solar	radiation	on	the	vertical	surface	of	glazing	(W/m2)

Ibeam,h

Incident	beam	solar	radiation	on	the	horizontal	surface	(W/m2)

Idif,h

Incident	diffuse	solar	radiation	on	the	horizontal	surface	(W/m2)

Iglobal,h

Incident	global	solar	radiation	on	the	horizontal	surface	of	glazing	(W/m2)

I0

Extraterrestrial	solar	radiation	(W/m2)

Isc

Solar	constant	(W/m2)
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Abstract

Glazing	transmittance	variation	with	clearness	index	has	higher	influence	than	incident	angle	for	soar	energy	application.	This	work	presents	variation	of	vacuum	glazing	transmittance	with	clearness

index.	Clearness	index	and	transmittance	was	calculated	from	measured	one	year	(2014)	solar	radiation	and	glazing	transmittance	data	in	Dublin,	Ireland.	Clearness	index	below	0.5	offer	single	value	of

transmittance	whereas	above	0.5	clearness	index	glazing	transmittance	varies	with	clearness	index.	For	different	azimuthal	orientation,	clearness	index	associated	with	vertical	plane	glazing	transmittance

has	been	proposed.	In	Dublin	for	south	facing	vertical	plane,	vacuum	glazing	has	35%	transmittance	below	0.5	clearness	index.	Yearly	usable	single	transmitted	solar	energy	and	solar	heat	gain	coefficient	for

vertical	plane	south	facing	vacuum	glazing	are	87	W/m2	and	0.22	respectively.

Keywords:	Glazing;	Clearness	index;	Vacuum	glazing;	Transmission;	Solar	heat	gain	coefficient;	Adaptive



Anisotropy	index

kd

Diffuse	fraction

kT

Clearness	index

Ng

Number	of	glass	pane

n

Refractive	index

nd

Number	of	day

SHGC

Solar	heat	gain	coefficient

TSEvacuum

Transmitted	solar	energy	through	vacuum	glazing	(W/m2)

Greek	symbols
δ

Declination	angle

ω

Hour	angle

Latitude

θ

Incidence	angle

1	Introduction
Reduction	of	building	energy	consumption	can	be	possible	by	using	advanced	adaptive	glazing	technologies	[1–4].	Solar	heat	gain	control	and	low	heat	loss	are	the	two	major	types	of	advanced	glazings,	which

are	 gaining	more	 importance	 in	 research	 due	 to	 their	 potential	 application	 in	 building	 cooling	 and	 heating	 energy	 demand	 reduction	 respectively.	 Solar	 heat	 gain	 control	 glazing	 such	 as	 electrochromic	 [5–7],

suspended	particle	device	[8–14],	liquid	crystal	[15,16],	thermochromic	[17,18],	gasochromic	[19,20]	and	thermotropic	[21,22]	control	the	entering	solar	heat	by	changing	their	states	from	“transparent”	to	“opaque”.

Thus,	these	types	of	glazing	reduce	the	cooling	load	demand	of	building.	These	glazing	are	more	suitable	for	hot	climatic	area	and	summer	time	in	cold	climatic	area.	Low	heat	loss	glazing	such	as	vacuum	glazing

[23,24],	aerogel	 [25–27],	and	multiple	pane	glazing	 [28]	 reduce	 the	heat	passing	 from	the	room	to	outside	 thus	reduce	 the	heating	 load	demand	of	building.	These	glazing	are	suitable	 for	cold	climatic	area	and

wintertime	in	composite	climate	to	reduce	a	building's	heating	energy	demand	[24].



Low	heat	loss	vacuum	glazing	is	advantageous	compared	to	aerogel	glazing	due	to	its	high	transparency.	Vacuum	glazing	is	also	advantageous	compared	to	other	multiple	panes	glazing	due	to	its	low	weight

and	elimination	of	convective	heat	transfer	between	two	panes	[24].	 In	vacuum	glazing,	two	glass	panes	are	separated	by	a	vacuum.	Small	pillars	between	the	two	glass	panes	withstand	the	outside	atmospheric

pressure	[29–33]	as	shown	in	Fig.	1.	The	overall	heat	transfer	coefficient	of	vacuum	glazing	is	low	compared	to	double-glazing	[24].	The	idea	of	vacuum	glazing	was	first	introduced	by	Zoller	in	1913	and	was	granted

with	a	patent	in	1914	[34].	A	vacuum	tight	thermally	insulating	edge	sealing	process	makes	the	fabrication	of	a	vacuum	glazing	complicated	compared	to	other	glazing	technologies.	To	avoid	deformation	from	the

high	temperature,	the	sealing	should	be	performed	below	the	softening	temperature	of	the	glass,	which	is	generally	low	(for	example,	the	softening	temperature	of	common	soda-lime	glass	is	lower	than	600	°C	[35].

Vacuum	glazing	was	first	fabricated	successfully	in	the	early	1980s	[36].	Thermal	performance	of	this	glazing	was	poor	as	a	vacuum	pressure	below	0.1	N/m2	is	required	to	eliminate	the	gaseous	conduction

[37].	A	laser	was	used	to	fuse	two	sheets	of	glass	together	successfully	within	a	vacuum	chamber	to	form	a	periphery	edge	seal	for	the	vacuum	gap	[36–38].

To	manufacture	successful	vacuum	glazing,	a	fabrication	technique	was	developed	by	Robinson	and	Collins,	which	was	commercialized	in	2000	by	Nippon	Sheet	Glass	(NSG)	under	brand	name	of	SPACIA	[23].

High	temperature	solder	glass	(melting	point	450	°C)	edge	sealing	was	employed	to	produce	this	product,	which	restricts	the	choice	of	inner	pane	low-e	coating.	Low	temperature	indium	alloy	edge	sealing	(melting

point	200	°C)	enable	low-e	coating	[35]	to	be	used.	Details	of	vacuum	glazing	edge	sealing	process	can	be	found	elsewhere	[39,40].	A	finite	volume	model	to	calculate	the	thermal	performance	of	vacuum	glazing	with

various	frames	[41],	low-e	coatings	[42,43],	glazing	size,	glass	thickness	[44],	and	vacuum	pressure	inside	glazing	[45]	were	predicted	and	validated	experimentally	[46,47].	To	obtain	low	heat	loss	switchable	glazing,

investigation	was	performed	using	vacuum	electrochromic	[42,48,49]	and	vacuum	suspended	particle	device	combinations	have	been	employed	[50].

Thermal	characterisation	of	vacuum	glazing	has	been	conducted	under	outdoor	weather	conditions	in	Sydney,	Australia	[51]	and	in	Dublin,	Ireland	[24]	has	also	been	performed.	Building	energy	performance

due	to	glazing	is	dependent	on	glazing	transmittance.	Available	glazing	transmittance	value	is	only	suitable	for	normal	solar	incidence.	Due	to	diurnal	variation	of	solar	radiation,	incident	angle	also	changes.	Thus,

glazing	transmission	is	not	a	constant	parameter;	it	changes	with	incident	angle	[52–54].	For	building	energy	calculation,	clearness	index	is	more	influential	than	incident	angle	as	clearness	index	directly	related	with

incident	solar	radiation.	Glazing	transmission	changes	for	clearness	index	has	been	theoretically	calculated	by	Waide	and	Norton	[55].	They	observed	that	below	a	critical	clearness	index	for	particular	locations	the

transmission	was	largely	invariant	as	the	diffuse	component.

The	clearness	index	(kT)	is	defined	as	the	ratio	between	total	solar	radiation	and	the	corresponding	extraterrestrial	radiation	(H0)	[56,57].	Clearness	index	is	an	effective	parameter	for	solar	energy	application,

as	it	requires	only	measured	global	solar	radiation	[58].	Knowledge	of	glazing	parameter	such	as	transmission,	transmitted	solar	energy	(TSE),	and	solar	heat	gain	coefficients	(SHGC)	is	essential	for	building	designer

and	 architecture.	 First	 time	 the	 correlation	 between	 vacuum	 glazing	 transmission,	 TSE	 through	 vacuum	 glazing,	 and	 SHGC	 of	 vacuum	 glazing	 has	 been	 investigated	 with	 clearness	 index.	 Results	 from	 this

Fig.	1	Schematic	details	of	vacuum	glazing.

alt-text:	Fig.	1



investigation	are	suitable	for	calculation	of	building	energy	using	vacuum	glazing	with	less	error	in	northern	latitude	area.

2	Methodology
Fig.	2	indicates	the	vertical	plane	vacuum	glazing	and	different	solar	radiation	incident	on	it.	Glazing	transmission	throughout	a	day	is	not	constant	but	changes.	Transmission	through	vertical	plane	vacuum

glazing	can	be	written	as	Equation	(1)	[24].

where	Clearness	index	 ,	diffuse	factor	 ,	 ,	and

when	 ,

when	 [59]

and	 when	 [59]

Transmitted	solar	energy	(TSE)	for	a	vertical	plane	vacuum	glazing	can	be	written	as	Equation	(2)	[55].

(1)

		 	 		 	 		 	

Fig.	2	Schematic	diagram	of	a	south	facing	vertical	plane	vacuum	glazing	with	incident	angle	and	solar	elevation	angle.

alt-text:	Fig.	2

		 	 		 	

		 	 		 	

		 	 		 	

(2)



Dynamic	SHGC	can	be	written	as	Equation	(3)	[14,50]

3	Experiments
One	SPACIA	vacuum	glazing	as	shown	in	Fig.	3	was	provided	by	Nippon	Sheet	Glass.	The	dimension	of	this	glazing	was	0.35	m	×	0.2	m	with	a	0.002	m	vacuum	space	between	two	0.003	m	thick	glass	panes.

Support	pillars	were	set	0.02	m	apart	each	other	and	one	of	the	panes	has	low-e	coating	facing	onto	the	vacuum	space.	Details	of	experiment	procedures	are	described	in	Ghosh	et	al.	[24]	and	was	performed	in	the

year	 of	 2014.	 A	 transmission	 spectrum	 of	 the	 vacuum	 glazing	 was	 performed	 using	 AvaSpec-ULS2048L	 Star	 Line	 Versatile	 Fiber-optic	 spectrometer	 under	 indoor	 condition.	 A	 Kipp	 and	 Zonen	 model	 SMP11

pyranometer	was	used	to	measure	global	solar	radiation	incident	on	the	vertical	surface.

4	Results
Fig.	4	represents	the	vacuum	glazing	transmission	spectra.

(3)

Fig.	3	Photograph	of	vacuum	glazing.

alt-text:	Fig.	3

Fig.	4	Transmission	spectra	of	vacuum	glazing.

alt-text:	Fig.	4



Using	Fresnel	Equations	(4)	and	(5)	absorption	reflection	of	the	vacuum	glazing	can	be	found.	Table	1	represents	the	properties	of	vacuum	glazing.

Table	1	Vacuum	glazing	properties.

alt-text:	Table	1

Vacuum	glazing	spectral	properties Solar	transmission	(278–1100	nm) 64%

Solar	absorption 32%

Visible	transmission	(380–700	nm) 72%

Visible	absorption 24%

NIR	spectrum	absorption	(700–1100	nm) 8%

South	facing	vertical	plane	vacuum	glazing	transmission	was	measured	on	the	1st	of	January	and	on	the	1st	of	July	as	shown	in	Fig.	5.	During	wintertime,	transmission	through	vacuum	glazing	is	higher	due	to

lower	elevation	angle.

The	variation	of	vacuum	glazing	transmittance	with	clearness	 index	 is	represented	 in	Fig.	6.	Below	a	clearness	 index	of	0.5,	 isotropic	diffuse	transmission	was	dominant.	Above	0.5	clearness	 index,	direct

incident	solar	radiation	was	dominant	and	glazing	transmittance	was	linearly	correlated	with	clearness	index.	In	western	European	location,	it	is	possible	to	use	only	one	single	transmittance	value	for	vertical	plane

glazing	which	is	associated	with	isotropic	diffuse	solar	component.	This	single	value	will	reduce	large	computational	time	and/or	resources	for	building	design	studies	[55].	In	Dublin,	for	below	0.5	clearness	index,

south	facing	vertical	plane	vacuum	glazing	transmission	of	35%	was	found	which	could	be	used	for	building	performance	using	vacuum	glazing	over	the	year	with	negligible	error.	For	different	azimuthal	direction	and

below	particular	clearness	index,	one	single	glazing	transmittance	can	be	used	with	less	than	1%	error,	which	is	listed	in	Table	2.

(4)

(5)

Fig.	5	Variation	of	vacuum	glazing	(62%	transparent)	transmission	for	different	incident	angle	on	1st	of	July	and	on	1st	of	January.

alt-text:	Fig.	5



Table	2	The	clearness	index	limits	for	the	use	of	a	yearly	usable	single	transmittance,	transmitted	energy	and	SHGC	value	for	vertical	plane	vacuum	glazing.

alt-text:	Table	2

Inclination Azimuthal	orientation Transmittance Transmitted	solar	energy	(W/m2) SHGC Clearness	index

Vertical North 35 87 0.22 0.7

South 35 87 0.22 0.5

East 35 87 0.22 0.6

West 35 87 0.22 0.6

North	east 35 87 0.22 0.6

North	west 35 87 0.22 0.6

Correlation	between	calculated	clearness	index	and	calculated	transmitted	solar	energy	(TSE)	through	vacuum	glazing	has	been	presented	in	Fig.	7.	TSE	was	calculated	using	Equation	(2).	TSE	is	dependent

on	glazing	transmission.	Thus,	below	0.5	clearness	index,	vertical	plane	south	facing	vacuum	glazing	offer	single	yearly	useable	transmitted	solar	energy	of	87	W/m2,	which	can	be	used	for	building	energy	calculation

with	less	than	1%	error.	For	other	azimuthal	direction	different	threshold	clearness	index	is	possible	and	below	this	clearness	index	solar	energy	of	87	W/m2	can	be	used	with	less	than	1%	error.	Vertical	plane	vacuum

glazing	single	solar	energy	for	different	azimuthal	direction	and	threshold	clearness	index	for	that	particular	azimuthal	direction	are	listed	in	Table	2.

Fig.	6	Variation	of	vacuum	glazing	transmittance	with	clearness	index.

alt-text:	Fig.	6



Fig.	8	shows	the	correlation	between	clearness	 index	and	vacuum	glazing	SHGC.	As	glazing	transmittance	 is	an	 influential	parameter	 for	TSE	and	SGHC	a	 linear	correlation	has	been	found	for	above	0.5

clearness	index.	Below	0.5	clearness	index,	SHGC	for	south	facing	vertical	plane	vacuum	glazing	was	0.22.	Vertical	plane	vacuum	single	SHGC	for	different	azimuthal	direction	and	threshold	clearness	index	for	that

particular	azimuthal	direction	are	listed	in	Table	2.

5	Conclusions
Clearness	index	is	an	influential	parameter,	which	need	only	one	single	measured	data	to	evaluate.	Correlation	between	clearness	index	and	glazing	transmittance,	transmitted	solar	energy	(TSE)	and	solar

heat	gain	coefficients	(SHGC)	has	been	evaluated	for	vacuum	glazing.	Vertical	plane	vacuum	glazing	transmission	changes	with	clearness	index.	Below	clearness	index	0.5	majority	of	transmission	is	isotropic	diffuse

and	above	0.5,	glazing	transmission	is	isotropic	direct	type.	However,	one	single	value	of	transmission,	SHGC,	and	TSE	is	possible	to	use	for	calculation	while	clearness	index	is	below	0.5.	In	Dublin,	a	south	facing

vertical	plane	vacuum	glazing	below	0.5	clearness	index	offer	35%	glazing	transmittance,	87	W/m2	TSE	and	0.24	SGHC	and	this	can	be	used	all	over	the	year	with	less	than	1%	calculation	error.	Building	engineer	and

designer	based	on	their	own	requirement	can	use	these	values	without	complicated	calculation.
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• The	variation	of	vacuum	glazing	transmittance	with	clearness	index	is	reported.

• Transmittance	dependent	TSE	and	SHGC	were	evaluated	for	varying	clearness	index.

• Below	0.5	clearness	index,	one	single	glazing	transmittance	was	found.
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