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ABSTRACT 

In this work a number of techniques (electronic speckle pattern interferometry, 

holographic interferometry, strain gauge and finite element method) are brought to 

bear in order to establish consistency in the results of strain measurement. This is 

necessary if optical non-destructive testing methods, such as those used here, are to 

gain acceptance for routine industrial use. The FE model provides a useful check. 

Furthermore ESPI fringe data facilitates the extension of FE models, an approach that 

is of growing importance in component testing. 

The use of in-plane and out-of-plane sensitive electronic speckle pattern 

interferometry (ESPI) for non-destructive material characterization of thick 

unplasticised polyvinylchloride (uPVC) pipes is presented. A test rig has been 

designed for stressing pipes by internal pressure. ESPI gives a complete mapping of 

the displacement field over the area imaged by the video camera. The results for the 

strain of uPVC obtained from ESPI data and from strain gauges are in good agreement. 

The value of Young’s modulus has been obtained from the fringe data and compared 

with results obtained using holographic interferometry and from strain gauge 

measurements. The FE model also produces fringe data that is consistent with the ESPI 

results. 

 

Keywords: strain measurement, electronic speckle pattern interferometry, holographic 

interferometry 
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INTRODUCTION 

A long-standing engineering problem is the behaviour of thick pipes when 

mechanical or thermal stress is applied. In certain conditions any existing defect could 

be significant for the mechanical behaviour of the pipes. For example the working 

pressure of thick polyvinylchloride pipes used for water transfer is between 9 and 12 

bar for different classes of pipes. That is why a quick non-destructive technique for 

defect detection in such pipes is of great interest to manufacturers.  

Optical inspection techniques have three advantages over conventional 

methods: they are full-field and  non-contact in character and may detect a great 

number of defects. Еlectronic speckle pattern interferometry, along with other coherent 

optical techniques, has already been proven to be an effective technique in NDT of 

materials and components [1-19].  

In ESPI [1,2,3] a speckle pattern is formed by illuminating the surface of the 

object to be tested with laser light. This speckle pattern is imaged onto a CCD array 

and allowed to interfere with a reference wave, which may or may not  be speckled. 

The resultant speckle interference pattern is transferred to a frame grabber on board a 

computer, saved in memory, and displayed on a monitor. When the object has been 

deformed or displaced, the resultant speckle pattern changes owing to the change in 

path difference between the wave front from the surface and the reference wave. The 

second resultant speckle pattern is transferred to the computer and subtracted from the 

stored pattern and the result rectified. The resulting interferogram is displayed on the 

monitor as a pattern of dark and bright fringes, called correlation fringes. In real time it 

is possible to grab frames continuously while a deformation is occurring and then 

subtract them in succession from the first speckle pattern. This process makes it 

possible to observe the real-time formation and the progressive changes of the fringe 

pattern related to the deformation of the surface. ESPI detects the deformations in the 

sub-micrometer range, of the surface of a stressed object. Depending on the design of 

the interferometer, in-plane sensitivity or out-of–plane sensitivity can be obtained. The 

fringe pattern on a thick cylinder sample observed near the optical axis of an in-plane 

sensitive interferometer generally consists of uniform parallel fringes, which increase 

in spatial frequency as the internal pressure increases. The spacing between 

neighbouring fringes is inversely proportional to the displacement of the object’s 

surface at any point and therefore characteristic of the strain at the surface of the 
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sample. ESPI is sensitive to extremely small displacements and is therefore ideal for 

measuring microstrain. 

 

THEORY 

1. Interferogram interpretation 

The arrangement shown in Fig. 1 produces fringes which are sensitive to in-

plane displacement. The spacing between neighbouring fringes is inversely 

proportional to the displacement and the fringes are aligned perpendicular to the 

direction of the displacement. Here the object lies in the x,y plane and is illuminated by 

two plane wavefronts,  whose wave front normals lie in the x,z plane at equal and 

opposite angles, θ, to the surface normal. The centre of the viewing lens aperture lies 

on the z-axis. When an element is displaced by a distance d(dx, dy, dz) the relative 

phase change between the two beams is given by 

θ
λ
πφ sin4

xd=Δ                                                        (1) 

where λ is the wavelength of the laser. This form of interferometer therefore allows in-

plane displacement in the x-direction  to be observed independently in the presence of 

y–displacement and out-of-plane displacements. 

 

 

 

 

 

 

 

 

 

 

mirror 

mirror 

mirror 
diode laser 

lens beam  
splitter 

CCD camera 
object 

x 

z 

Direction of 
sensitivity to 
displacement

Fig. 1. In-plane sensitive electronic speckle pattern interferometer for the observation 
of displacement parallel to the x-axis. 

 
An equivalent illumination geometry in which the object is illuminated by 

beams lying in the y,x plane making equal angles with the z axis will give  

θ
λ
πφ sin4

yd=Δ                                                     (2) 
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2. Thick cylinders [20] 

For a thick cylinder of internal and external radii subjected to internal pressure 

P, thetangential stress at the outer surface is 
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=σ                                                       (3) 

where R1 and R2  are the internal and external radii 

From equation (1) 

θ
λ

sin2
ndx =                                                            (4) 

where n is the number of cycles of phase change (fringes) appearing in the field of 

view d (Fig. 2) and dx is the displacement of a point of the cylinder’s surface. 
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Fig. 2. Effect of cylinder expansion. 
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and we obtain for the tangential strain 

θ
λε

sin22

2

d
n

R
R

t =
Δ

=                                                   (7) 

 

From thick cylinder theory for a closed cylinder: 

σa = ( σr + σt ) / 2                                                     (8) 

 

where σa, σr  and σt  are axial, radial and tangential stresses.  

 

At   r  = R2, σr =  0 and, from (3)  
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Substituting (8) and (9) in (6) 
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where ν  is Poisson’s Ratio, which for uPVC is 1/3 and E Young’s modulus. 

 

Finally from (7) and (10) we obtain an expression for Young’s Modulus: 

n
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2
2

2
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−

=                                        (11) 

 

 

EXPERIMENT 

1. The ESPI system 

The illuminated object (Fig. 1) is imaged by a CCD camera, which is connected 

to the frame-grabber. A laser diode, with wavelength 785 nm and a maximum output 

power of 50 mW, is used as the light source. The beam-splitting unit produces two 

beams with the same plane of polarisation. The arrangement shown in Fig. 1 gives 

fringes which are sensitive to in-plane displacement along the x axis. The software 

[21] controls the frame capture and subtraction operations.  
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The software also controls the drive current in the laser via a D/A converter 

connected to the laser power supply.  This enables digital phase shifting to be 

implemented using a 5-bucket algorithm. Four consecutive frames, each phase shifted 

by 900 relative to the preceding one are sufficient to calculate a complete phase map of 

the speckle interferogram. After the load is applied to the object and a further frame 

captured the phase map corresponding to the object displacement can be calculated 

modulo 2π[2]. The map is then unwrapped by working through the image to locate 

discontinuities in  phase and adding or subtracting 2π as appropriate. 

 

2. The sample and test rig 

The sample was a thick uPVC cylinder of internal diameter 31.2 cm, external 

diameter  37.2 cm and length 28.3 cm. Both ends were closed with steel lids (Fig. 3). 

The cylinder was vertically supported. The pump was attached to a port in the upper 

lid. The cylinder test rig is intended for use in defect detection. The defects that occur 

in plastic pipes of this type usually consist of clusters of voids ~ 100 micron in 

diameter and several cm in length aligned parallel to the axis. One of our research 

objectives is to devise an inspection method that will detect voids as these may lead to 

failure under turbulent flow conditions. 

 

 

Fig. 3. ESPI system and test cylinder. 

 

 6



3. Experimental procedure 

The maximum value of distance d is  4 cm so the focusing error due to the 

cylinder curvature is very small. ESPI  systems involve a small aperture in order to 

ensure that speckles are resolved. This means that the depth of field is large (ref. 1 

page 196) imposing no limitation. The angle θ  = arcsin 0.63. The internal pressure 

applied was in the range 0-2 bar. 

 

 

RESULTS AND DISCUSSION 
 
1. In-plane ESPI 

Fig. 4 shows a typical  wrapped phase map produced by a pressure of 2 bar. 

The area of the cylinder seen here is 1.5 x 1.5 cm2. Fig. 5 shows the unwrapped phase 

map and fig. 6, the corresponding in-plane displacement of the cylinder mapped onto 

256 gray scale levels (z-axis). The x and y axes are scaled in pixels. 

 

 

 

 

 

 
 

Fig. 4. Wrapped phase map produced by 2 bar pressure. 
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Fig. 5. Unwrapped phase from Fig. 4. 

 

 
Fig. 6. In-plane displacement of the cylinder at 2 bar. 
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The  results for Young’s modulus obtained from ESPI data are given in Table 1  

 

Table   1 

Young’s modulus for uPVC thick pipes 

 

 
 

The ESPI derived values for Young’s modulus for uPVC material are slightly lower 

than those quoted by the manufacturer [22]  (2.8 - 3.2 GNm-2). 

The first experiments gave fringe numbers rather greater than those in the table 

for the various pressures. A simple analysis of the interferometer geometry shows that 

for diverging illuminating beams, there is some sensitivity to out-of-plane or radial 

displacement. This is because the angles of incidence of the two beams are only equal 

at the centre of the field of view. For example, if the beam cone angle is 100 then the 

angles of incidence will differ by 100 at the edge of the field. An out–of–plane 

displacement dz will cause an additional optical path change in the interferometer at the 

edge of the field of view given by  

 

dz (cosθ-cos θ’) ≈ dz (θ’- θ)sinθ 

 

where θ and θ’ are the angles of illumination at the edge of the field. 

Thus at a pressure of 1 bar we have a radial expansion of about 25 μm giving 2.5 

additional fringes. The number increases with pressure leading ultimately to reducing 

values of E at higher pressures. We cannot remove this error without knowing dz and 

the only alternative is to collimate the beams. This was done using achromats of focal 

length 37.5 cm. 
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2. Strain gauge measurements 

We compared the strain values obtained from ESPI data with measurements 

using a rosette (00, 450, 900) strain gauge attached to the cylinder and the results, given  

in Fig. 7, show very good agreement . 
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Fig. 7. Strain obtained from ESPI fringes plotted against strain gauge data. 
 

3. Finite element model 

We carried out finite element modeling of the pipe using ANSYS5.7 and shell 

elements. The result for a pressure of 0.5 bar assuming E to be 2.8x109 Nm-2, is shown 

in Fig. 8. This fringe pattern was calculated using MATLAB from the displacement 

results produced by the finite element model and agrees with the fringe pattern 

obtained using ESPI at this pressure. 
 

4. Digital Speckle pattern interferometry 

By changing the relative phases of the two interfering beams in the 

interferometer and capturing a new reference frame each time, one can calculate a 

complete phase map for the reference frame. Then when a frame subtraction is carried 

out it is possible to obtain the value of the phase difference between the interferograms 

of the cylinder in unloaded and loaded states. The technique known as digital speckle 

pattern interferometry. Its use was not required here because of the linearity of the 

fringe number versus pressure although the fringe number is subject to an error of 

about 0.5. 
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Fig. 8. ANSYS + MATLAB derived fringe pattern for pipe at 0:5 bar pressure. The 
scales refer to the cylinder dimensions. The fringes are contours of equal displacement 
in the horizontal direction. Five fringes appear in the region covered by the camera 
FOV (4 cm) in agreement with the number actually obtained. 
 

 

5. Out-of-plane sensitivity 

Figure 9 shows out-of-plane fringe patterns produced on the surface of uPVC 

thick pipe by different mechanical stresses. We would expect to observe circular 

fringes expanding from a point on the sample surface. This is clear when the cylinder 

is viewed along the horizontal axis of Fig. 8 but the number seen is obviously large 

even for the case of a very small pressure.  

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Out-of-plane displacement fringes at two different pressures. 
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That is why in-plane ESPI system is more suitable than out-of-plane ESPI system for 

material testing and defect measurements of thick PVC pipes. 

 

6. Holographic Interferometry 

Although out-of-plane ESPI is not a suitable technique for these measurements 

because of the large numbers of fringes, holographic interferometry can be used with 

continuous fringe counting. So, as final check on the results of the earlier experiment 

we recorded a hologram of the cylinder using an Argon ion laser operating at 514 nm 

and a photopolymer recording material [23,24] developed in our laboratory. The live 

fringe holographic interferometry method was used to measure the radial expansion of 

the cylinder and one hundred fringes were counted as the pressure was increased from 

zero to 1 bar. The illumination and observation directions relative to the cylinder 

normal, were 200 and zero. The radial expansion of the cylinder was found to be 26.5 

μm giving 142 μstrain, in agreement with both ESPI and strain gauge results. It was 

also noted that the fringe count was the same for equal increments in pressure.  

 
 
 
 
CONCLUSIONS 

ESPI is an effective non-contact technique for material characterization of thick 

uPVC pipes. The value of Young’s modulus has been obtained from the fringe data 

using the theory of thick cylinders and it is slightly lower than the expected value, 

which lies in the range 2.8 – 3.2 GNm-2. The results derived from ESPI data using the 

theory of thick cylinders and from standard methods agree well with each other. The 

use of ESPI in material characterization is of interest for industry as a means of 

optimizing the load bearing characteristics of materials and components. Furthermore, 

ESPI can be used to detect defects as well as identifying possible failure zones by their 

anomalous fringe density. The in-plane sensitive ESPI configuration is more suitable 

than the out-of-plane system for the study of thick pipes. We have shown good 

agreement between the results obtained using speckle and holographic interferometry 

and those obtained using conventional methods. Finite element modelling confirms the 

ESPI results. In summary the work serves to confirm the reliability of the optical 

techniques used here for material characterization. Future work is aimed at optical 

detection of voids in thick-walled uPVC pipes. 
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