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Conformal and geometric properties of

the Camassa-Holm hierarchy

Rossen Ivanov1

School of Mathematics, Trinity College,
Dublin 2, Ireland

E-mail: ivanovr@maths.tcd.ie

Abstract

Integrable equations with second order Lax pair like KdV and Camassa-
Holm (CH) exhibit interesting conformal properties and can be written
in terms of the so-called conformal invariants (Schwarz form). These
properties for the CH hierarchy are discussed in this contribution.

The squared eigenfunctions of the spectral problem, associated to
the Camassa-Holm equation represent a complete basis of functions,
which helps to describe the Inverse Scattering Transform (IST) for the
Camassa-Holm hierarchy as a Generalised Fourier Transform (GFT).
Using GFT we describe explicitly some members of the CH hierarchy,
including integrable deformations for the CH equation. Also we show
that solutions of some 2+1-dimensional generalizations of CH can be
constructed via the IST for the CH hierarchy.

MSC: 37K10, 37K15, 37K30
Key Words: Schwarz derivative, conformal invariants, Lax pair,

Virasoro algebra, inverse scattering, solitons.

1 Introduction

Integrable equations exhibit many extraordinary features, like infinitely many
conservation laws, multi- Hamiltonian structures, soliton solutions etc. Many
integrable equations in 1+1 dimensions like KdV, MKdV, Harry-Dym, Boussi-
nesq equations possess interesting conformal properties as well [18, 19, 45,
42, 17, 39]. These properties originate from the associated spectral problem,
which in most of the cases is related to a second order differential operator.

The Camassa-Holm (CH) [4] equation, which became famous as a model
in water-wave theory [33, 34, 20, 21], together with its complete integrability

1Present address: School of Mathematical Sciences; Dublin Institute of Technology,
Kevin Street, Dublin 8, Ireland, E-mail: rivanov@dit.ie
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[4, 23, 6, 16, 11, 9, 10] exhibits the same type of conformal properties as well
[31].

The origin of these properties can be understood noticing that for a
second order Lax operator L = ∂2 +f(x), the Poisson structure is generated
by the operator [18]

L
3/2
+ = ∂3 +

3
4
(f∂ + ∂ ◦ f). (1)

The CH equation

mt +
c

12
uxxx + 2mux + mxu = 0, m = u− uxx (2)

can be written in Hamiltonian form

mt = {m,H1}, (3)

where

{F,G} ≡ −
∫

δF

δm

( c

12
∂3 + m∂ + ∂ ◦m

) δG

δm
dx (4)

H1 =
1
2

∫
mudx. (5)

The relation to the Virasoro algebra can be seen as follows [18]. Suppose
for simplicity that m is 2π periodic in x, i.e.

m(x) =
∞∑
−∞

Lneinx +
c

24
, (6)

(the reality of m can be achieved by L−n = L̄n) and let us modify slightly
(4) by a constant multiplier,

{F, G} ≡ −2πi

∫ 2π

0

δF

δm

( c

12
∂3 + m∂ + ∂ ◦m

) δG

δm
dx. (7)

Then the Fourier coefficients Ln close a classical Virasoro algebra of central
charge c with respect to the Poisson bracket (7):

{Ln, Lm} = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0. (8)

Further, we use the following form of the CH equation,
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mt + 2ωux + 2mux + mxu = 0, m = u− uxx, (9)

which can be obtained from (2) via u → u + c
12 , and where apparently

ω = c/8.
Let us introduce the so-called independent conformal invariants of the

function φ = φ(x, t):

p1 =
φt

φx

p2 = {φ; x} ≡ φxxx

φx
− 3

2
φ2

xx

φ2
x

(10)

Here {φ; x} denotes the Schwarz derivative. A quantity is called conformally
invariant if it is invariant under the Möbius transformation

φ → αφ + β

γφ + δ
, αδ 6= βγ. (11)

For example, the KdV equation

ut + auxxx + 3uux = 0 (12)

(a is a constant) can be written in a Schwarzian form, i.e. in terms of the
conformal invariants (10) as p1 + ap2 = 0 or

φt

φx
+ a{φ; x} = 0 (13)

where

u = a{φ; x}. (14)

The KdV and CH equations are also the geodesic flow equations for the
L2 and H1 metrics correspondingly on the Bott-Virasoro group [40, 14, 37,
15, 13, 7].

2 The Camassa-Holm equation in Schwarzian form

It is known that the Camassa-Holm equation can be written as a compati-
bility condition of the following two linear problems (Lax pair) [4]:
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Ψxx =
(1

4
+ λ(m + ω)

)
Ψ, (15)

Ψt =
( 1

2λ
− u

)
Ψx +

ux

2
Ψ. (16)

In order to find the Schwarzian form for the CH equation we proceed as
follows. Let Ψ1 and Ψ2 be two linearly independent solutions of the system
(15), (16) and let us define

φ =
Ψ2

Ψ1
(17)

Then, from (16) it follows that

φt

φx
= −u +

1
2λ

(18)

According to the Theorem 10.1.1 from [29] due to (15) we also have

{φ; x} = −2λ(m + ω)− 1
2

(19)

From (18), (19) and the link between m and u we obtain the Schwarz-
Camassa-Holm (S-CH) equation:

(1− ∂2)
φt

φx
− 1

2λ
{φ; x} = − 3

4λ
+ ω (20)

With a Galilean transformation, such that ∂t → ∂t + b∂x with a suitable
constant b, one can absorb the constant on the right hand side and then the
S-CH equation (20) acquires the form (1− ∂2)p1 + ap2 = 0 or

(1− ∂2)
φt

φx
+ a{φ; x} = 0, (21)

for some constant a. Applying the hodograph transform x → φ, t → t,
φ → x to the S-CH (21) and using the transformation properties of the
Schwarzian derivative [29]

{φ;x} = −φ2
x{x; φ}

we obtain the following integrable deformation of the Harry Dym equation
for the variable v = 1/xφ:
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vt + v2[v(v∂−1
φ (v−1)t)φ]φ = av3vφφφ

The conformal properties are preserved in some 2 + 1 dimensional gen-
eralizations. Indeed, consider the equation [5]

mt + 2ωUxy + 2Uxym + (Uy + γ)mx = 0, m = Ux − Uxxx, (22)

where γ is an arbitrary constant. This equation reduces to CH equation in
the case x = y and u = Ux + γ. The associated Lax pair is

Ψxx =
(1

4
+ λ(m + ω)

)
Ψ (23)

Ψt =
1
2λ

Ψy − (Uy + γ)Ψx +
Uxy

2
Ψ. (24)

In a similar manner this equation can be expressed in terms of conformal
invariants as

(∂ − ∂3)
(φy

φx
− 2λ

φt

φx

)
+ ∂y{φ; x} = 0. (25)

The equations (9) and (21) with u = − φt

φx
are not equivalent: as a matter

of fact (21) implies (9), cf. [45]. It is often convenient to think that the Lax
operator belongs to some Lie algebra, and the corresponding eigenfunction
- to the corresponding group. Thus the relation between u and φ (see (17))
resembles the relation between the Lie group and the corresponding Lie
algebra, as pointed out in [45]. More precisely, the following proposition
holds:

Let φ be a solution of (20). Then one can check easily that Ψ1 = φ
−1/2
x

and Ψ2 = φφ
−1/2
x are two linearly independent solutions of (15). This is

consistent with (17). Therefore, the general solution of (15) is

Ψ =
Aφ + B√

φx
(26)

where A and B are two arbitrary constants, not simultaneously zero.
Note that the expression (26) is covariant with respect to the Möbius

transformation (11), i.e. under (11), the expression (26) transforms into an
expression of the same form but with constants

A → A′ =
αA + γB√
αδ − βγ

, B → B′ =
βA + δB√
αδ − βγ

. (27)
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3 Other equations of the CH hierarchy

Let us write the second equation of the CH Lax pair in the form

Ψt = −U(x, λ)Ψx +
1
2
U(x, λ)Ψ. (28)

Taking U(x, λ) = λv(x), the compatibility condition gives v = (m + ω)−1/2

and the evolution equation

mt + (∂ − ∂3)(m + ω)−1/2 = 0. (29)

Taking U(x, λ) = − 1
2λ + u(x) + λv(x), we obtain the following integrable

deformation of the CH equation:

mt + 2ωux + 2mux + mxu + α(∂ − ∂3)(m + ω)−1/2 = 0, (30)

where m = u − uxx and α is an arbitrary constant. (The compatibility
condition gives v = 2α(m + ω)−1/2 for an arbitrary constant α.)

An ’extension’ of the CH hierarchy can be obtained if one considers a
more general Lax pair:

Ψxx = Q(x, λ)Ψ, (31)

Ψt = −U(x, λ)Ψx +
1
2
Ux(x, λ)Ψ, (32)

where

Q(x, λ) = λnqn(x) + λn−1qn−1(x) + . . . + λq1(x) +
1
4
, (33)

U(x, λ) = u0(x) +
u1(x)

λ
+ . . .

uk(x)
λk

. (34)

The compatibility condition of (31), (32) gives the equation

Qt =
1
2
Uxxx − 2UxQ− UQx, (35)

which, due to (33), (34), is equivalent to a chain of n evolution equations
with k+1 differential constraints for the n+k+1 variables q1, q2, . . ., qn, u0,
u1, . . ., uk (n and k are arbitrary natural numbers, i.e. positive integers):
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qn−r,t = −
r∑

s=max(0,r−k)

(2ur−s,xqn−s + ur−sqn−s,x), r = 0, 1, . . . , n− 1,

0 =
1
2
(ur,xxx − ur,x)−

min(n,k−r)∑

s=1

(2ur+s,xqs + ur+sqs,x),

r = 0, 1, . . . , k − 1,

0 =
1
2
(uk,xxx − uk,x).

The two-component Camassa-Holm equation (k = 1, n = 2) was derived
earlier in [43]. More details and examples on the ’extended’ CH hierarchy
can be found in [32].

4 Description of the whole CH hierarchy

For the description of the whole CH hierarchy we need to introduce the
so-called recursion operator.

CH is a bi-hamiltonian equation, i.e. it admits two compatible hamil-
tonian structures J1 = (2ω∂ + m∂ + ∂m), J2 = ∂ − ∂3 :

mt = −J2
δH2[m]

δm
= −J1

δH1[m]
δm

, (36)

H1 =
1
2

∫
mudx, (37)

H2 =
1
2

∫
(u3 + uu2

x + 2ωu2)dx. (38)

There exists an infinite sequence of conservation laws (multi-Hamiltonian
structure) Hn[m], n = 0,±1,±2, . . ., [4, 22, 10] such that

J2
δHn[m]

δm
= J1

δHn−1[m]
δm

. (39)

The recursion operator is L ∼ J−1
2 J1 = (1− ∂2)−1[2(m + ω)− ∂−1mx]·.

The eigenfunctions of the recursion operator are the squared eigenfunctions
of the CH spectral problem. More specifically, let us for simplicity consider
the case where m is a Schwartz class function, ω > 0 and m(x, 0) + ω > 0.
Then m(x, t) + ω > 0 for all t, e.g. see [6]. It is convenient to introduce the
notation: q ≡ m + ω. Let k2 = −1

4 − λω, i.e.

λ(k) = − 1
ω

(
k2 +

1
4

)
. (40)
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A basis in the space of solutions of (15) can be introduced: f+(x, k) and
f̄+(x, k̄). For all real k 6= 0 it is fixed by its asymptotic when x → ∞ [6],
see also [41, 11, 9]:

lim
x→∞ e−ikxf+(x, k) = 1, (41)

Another basis can be introduced, f−(x, k) andf̄−(x, k̄) fixed by its asymp-
totic when x → −∞ for all real k 6= 0:

lim
x→−∞ eikxf−(x, k) = 1, (42)

Since m(x) and ω are real one gets that if f+(x, k) and f−(x, k) are solutions
of (15) then

f̄+(x, k̄) = f+(x,−k), and f̄−(x, k̄) = f−(x,−k), (43)

are also solutions of (15). The squared solutions are

F±(x, k) ≡ (f±(x, k))2, F±
n (x) ≡ F (x, iκn), (44)

where F±
n (x) are apparently related to the discrete spectrum k = iκn,

0 < κ1 < . . . < κn < 1/2.

Using the asymptotics (41), (42) and the Lax equation (15) one can show
that

L±F±(x, k) =
1
λ

F±(x, k). (45)

where

L± = (∂2 − 1)−1
[
4q(x)− 2

∫ x

±∞
dy m′(y)

]
(46)

is the Recursion operator. The inverse of this operator is also well defined.
If Ω(z) = P1(z)

P2(z) is a ratio of two polynomials one can define Ω(L±) ≡
P1(L±)P−1

2 (L±) (provided P2(L±) is an invertible operator). Then we can
write the following nonlinear evolution integro-differential (in general) equa-
tion

qt + 2qũx + qxũ = 0, ũ =
1
2
Ω(L±)

(√
ω

q
− 1

)
. (47)

Example 1: With Ω(z) = z one can easily check that

ũ =
1
2
L±

(√
ω

q
− 1

)
= u (48)
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and thus the equation (47) becomes the Camassa-Holm equation (9) with
Hamiltonian H = HCH

1 = 1
2

∫
mudx.

Example 2: Ω(z) = 1/z. The equation (47) has the form

qt +
1
4
∂x(∂2

x − 1)
√

ω

q
= 0, (49)

i.e. the extended Dym equation [4, 24, 10] with Hamiltonian

H =
1
8

∫ ∞

−∞

[(
4

√
ω

q
− 4

√
q

ω

)2
+
√

ωq2
x

4q5/2

]
dx, (50)

which is, up to a constant, the (-1)-st Hamiltonian for the CH equation,
HCH
−1 .
Example 3: Ω(z) = z + ε/z, where ε is an arbitrary constant.

qt + 2qux + qxu +
ε

4
(∂ − ∂3)q−1/2 = 0, (51)

The Hamiltonian of this equation is the first CH Hamiltonian with an
integrable perturbation, given by the (-1)-st CH Hamiltonian (50):

H =
1
2

∫ ∞

−∞
mudx +

ε

8

∫ ∞

−∞

[(
4

√
ω

q
− 4

√
q

ω

)2
+
√

ωq2
x

4q5/2

]
dx

= HCH
1 + εHCH

−1 .

Let us introduce the notation ∂−1
± ≡ ∫ x

±∞ dx. The equations from the
CH Hierarchy can be written in the form

∂−1
± (

√
q)t√

q
+ Ω(L±)

(√ω

q
− 1

)
= 0. (52)

The squared solutions (44) form a complete basis in the space of the
Schwartz class functions m(x), and y, t, can be treated as some additional
parameters. Also, the Generalised Fourier Transform (GFT) for q and its
variation over this basis is [10]

√
ω

q(x)
− 1 = ± 1

2πi

∫ ∞

−∞

2kR±(k)
ωλ(k)

F±(x, k)dk +
N∑

n=1

2κn

ωλn
R±

n F±
n (x), (53)

∂−1
± δ(

√
q)√

q
=

1
2πi

∫ ∞

−∞

iR±(k)
ωλ(k)

δF±(x, k)dk

±
N∑

n=1

[δR±
n −R±

n δλn

ωλn
F±

n (x) +
R±

n

iωλn
δκnḞ±

n (x)
]
. (54)
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Here Ḟ±
n (x) ≡ ∂

∂kF±(x, k)|k=iκn . The generalized Fourier coefficientsR±(k),
R±

n , together with the set of discrete eigenvalues, are called scattering data.
The variation is with respect to any additional parameter, e.g. y, t. Due to
the completeness of squared eigenfunctions basis, from (52), (53) and (54)
we have linear differential equations for the scattering data:

R±t ∓ ikΩ(λ−1)R±(k) = 0, (55)
R±

n,t ± κnΩ(λ−1
n )R±

n = 0, (56)
λn,t = 0. (57)

The GFT for other integrable systems is derived e.g. in [35, 27, 25, 26, 28,
30].

Example 4: Consider again the two dimensional CH generalisation

qt + 2Uxyq + (Uy + γ)qx = 0, q = Ux − Uxxx + ω, (58)

with arbitrary constants ω and γ. This equation can be written as

(
√

q)t + [(Uy + γ)
√

q]x = 0. (59)

Then

∂−1
± (

√
q)t + (Uy + γ)

√
q + β = 0, (60)

where β is an integration constant. Further, with the choice β = −γ
√

ω and
due to the identity

Uy = −1
2
L±

(∂−1
± (

√
q)y√

q

)
, (61)

the equation can be written in the form

∂−1
± (

√
q)t√

q
− 1

2
L±

(∂−1
± (

√
q)y√

q

)
− γ

(√ω

q
− 1

)
= 0. (62)

Again, from (62), (53) and (54), considering variations with respect to
y and t we obtain linear equations for the scattering data:

R±t −
1
2λ
R±y ± 2ikγR± = 0, (63)

R±
n,t −

1
2λn

R±
n,y ∓ 2γκnR±

n = 0. (64)

E.g. when γ = 0 the solution is any function (with appropriate decaying
properties) of t− 2λy:

R±(y, t) = R±(t + 2λy), R±
n (y, t) = R±

n (t + 2λny). (65)

Other possible choices for Ω(z) (47) produce the other members of the
Camassa-Holm hierarchy.
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5 Inverse scattering transform

Inverse scattering method for the hierarchy (47) is the same as the one for
the CH equation [9]. The only difference is the time-dependence of the
scattering data (and/or the y-dependence, etc). For example, the inverse
scattering is simplified in the important case of the so-called reflectionless
potentials, when the scattering data is confined to the discrete spectrum.
This class of potentials corresponds to the N -soliton solutions of the CH
hierarchy. In this case the time evolution of the scattering data is R+

n is

R+
n (t) = R+

n (0) exp
(
− κnΩ(λ−1

n )t
)
. (66)

The N -soliton solution is [9]

q(x, t) =
∫ ∞

0
δ(x− g(ξ, t))p(x, t)dξ, (67)

where g(ξ, t) can be expressed through the scattering data as

g(ξ, t) ≡ ln
∫ ξ

0

(
1−

∑
n,p

R+
n (t)ξ−2κn

κn + 1/2
A−1

np [ξ, t]
)−2

dξ, (68)

with

Apn[ξ, t] ≡ δpn +
R+

n (t)ξ−2κn

κp + κn

and
p(x, t) = ωξ−2g−1

ξ (ξ, t). (69)

In particular, for the CH equation qt + uqx = −2qux, from (67) it follows

ġ(ξ, t) =
1
2

∫ ∞

0
e−|g(ξ,t)−g(ξ,t)|p(ξ, t)dξ − ω, ġ(ξ, t) = u(g(ξ, t), t),

therefore g(x, t) in (68) is the diffeomorphism (Virasoro group element) in
the purely solitonic case [12]. The situation when the condition q(x, 0) ≡
m(x, 0) + ω > 0 on the initial data does not hold is more complicated and
requires separate analysis [36] (if m(x, 0)+ω changes sign there are infinitely
many positive eigenvalues accumulating at infinity and singularities might
appear in finite time [8, 7, 6]).

The explicit construction of the peakon solutions (ω = 0) is also known
[4, 1, 2], e.g. a single peakon travelling with speed c is uc(x, t) = ce−|x−ct|.
The peakons are the only solitary waves if ω = 0, cf. [38]. They have to be
interpretted as weak solutions due to the fact that they are not continuously
differentiable - e.g. see [3]. The peakons however interact like solitons [4,
2]. Some nonintegrable generalizations of the CH equation also have been
studied recently, e.g. [44].
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