
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Articles School of Computer Science

2017

A Software Development Process for Freshman Undergraduate A Software Development Process for Freshman Undergraduate

Students Students

Catherine Higgins
Technological University Dublin, catherine.higgins@tudublin.ie

Fredrick Mtenzi
Technological University Dublin, Fredrick.Mtenzi@tudublin.ie

Ciaran O'Leary
Technological University Dublin, ciaran.oleary@tudublin.ie

See next page for additional authors

Follow this and additional works at: https://arrow.tudublin.ie/scschcomart

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Higgins, C., Mtenzi, F., O'Leary, C., Hanratty, O.& Mcavinia, C. (2017). A software development process for
freshman undergraduate students. IFIP Advances in Information and Communication Technology,
AICT-515, pp.599-608. doi:10.1007/978-3-319-74310-3_60.

This Conference Paper is brought to you for free and open access by the School of Computer Science at
ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU
Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomart
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomart?utm_source=arrow.tudublin.ie%2Fscschcomart%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fscschcomart%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Authors Authors
Catherine Higgins, Fredrick Mtenzi, Ciaran O'Leary, Orla Hanratty, and Claire McAvinia

This conference paper is available at ARROW@TU Dublin: https://arrow.tudublin.ie/scschcomart/62

https://arrow.tudublin.ie/scschcomart/62

 A Software Development Process for Freshman

Undergraduate Students

Abstract. This conceptual paper presents work which is part of an

ongoing research project into the design of a software development

process aimed at freshman, undergraduate computing students. The

process of how to plan and develop a solution is a topic that is addressed

very lightly in many freshman, undergraduate courses which can leave

novices open to developing habit-forming, maladaptive cognitive

practices. The conceptual software development process described in

this paper has a learning process at its core which centres on declarative

knowledge (in the form of threshold concepts) and procedural

knowledge (in the form of computational thinking skills) scaffolding

freshman software development from initial planning through to final

solution. The process - known as Computational Analysis and Design

Engineered Thinking (CADET) - aims to support the structured

development of both software and student self-efficacy.

Keywords. Introductory software development process ∙ computational

thinking ∙ threshold concepts

1 Introduction

A software development process is a mechanism which informs a software developer

of the steps and stages involved in developing quality software from initial analysis to

final design and implementation [1]. Even though there are many software development

processes available for experienced developers, very little work has been carried out on

developing appropriate processes for freshman, 3rd level learners [2]. This lack of

appropriate software development processes presents a vacuum for educators which

means that software analysis and design is typically taught very informally and

implicitly on introductory courses at 3rd level with an emphasis instead on teaching a

programming language [3, 4]. Unless they are guided to do otherwise, novices will

often jump straight into implementing some aspect of a solution without any planning

because they can find it difficult to separate ideas for solutions from the implementation

of those ideas [5, 6]. This can lead to novices adopting maladaptive cognitive practices

in software development, particularly surface practices (e.g. coding by rote learning)

which can be very difficult to unlearn and can ultimately prohibit student progression

in the acquisition of software development skills [7]. It has also been found that

problems in designing software solutions can persist even to graduation [8]. Therefore,

it follows that if a software development process is incorporated explicitly in an

appropriate way into introductory courses to scaffold students in software development,

this could limit the development of such maladaptive practices.

This paper describes a conceptual and dynamic software development process

which has been devised for undergraduate freshman learners. Section 2 describes

related research while section 3 gives a short overview of the framework on which the

process is based. Section 4 describes the factors that guided the operationalision of the

framework into a software development process. Section 5 describes the process and

section 6 concludes the paper with a discussion of the contribution this paper makes to

software engineering educational research.

2 Related research

There has been a wealth of research over many decades into software development

education within the context of improving retention and development proficiency at 3rd

level. Research has focused on many areas such as reviewing the choice of

programming languages and paradigms suitable for novice learners with a wide variety

of languages suggested from commercial, textual languages through to visual block-

based languages [9]; the development of visualisation tools to create a diagrammatic

overview of the notional machine as a user traces through programs and algorithms

[10]; and the use of game based learning as a basis for learning programming and game

construction [11].

Research that specifically looks at software development processes for introductory

courses at 3rd level have a tendency to focus attention on a particular stage of the

development process. Examples are the STREAM process [2] which focuses on design

in an object oriented environment; the P3F framework [12] with a focus on software

design and arming novice designers with expert strategies; a programming process by

Hu et al [13] which focuses on generating goals and plans and converting those into a

coded solution via a visual block-based programming language; POPT [14] which has

a focus on supporting software testing; and Morgado & Barbosa’s process [15] which

aims to support students from problem presentation to the development of a solution

though the use of template forms coupled with an instructor supplied prototype. The

process described in this paper is similar to Morgado & Barboso’s process in that it

aims to support all stages of developing software but the focus here is based on the

provision of a process that can grow with students’ experience. The process is not tied

to any particular programming paradigm but its use is assumed to be in the context of

imperative, commercial programming languages which are commonly taught at 3rd

level [16].

3 Computational Analysis and Design Engineered Thinking

(CADET) Framework

Prior to the development of a software development process, it was important to

formulate a framework on which the process will be based. The role of this framework

is to guide the context and content of the resulting software development process. The

first issue that required attention was in understanding the context in which the software

development process would be used. This is an environment where freshman

undergraduate students typically have little or no programming experience and are

learning how to develop software solutions in a systematic fashion. This brought up an

interesting question – should students be taught how to program first and then be

introduced to a software development process or should programming concepts and

skills be taught as part of a process? This research takes the latter view as teaching

students how to program independently of process runs the risk of students developing

poor development habits that become ingrained by the time they learn a process.

Therefore, the software development process is scaffolded so that it inherently

encompasses a learning process which can slowly fade as students gain expertise of

developmental concepts, practices and grow their self-efficacy. The relationship

between learning process and software development process is visualised in figure 1

where the 4 stages of competence model [17] is used to timeline the progression of

learning.

Fig. 1. From Learning Process to Software Development Process (Source: Author)

Initially, the learner is categorised as an unconscious incompetent who doesn’t

know what they need to know so the software development process is heavily

scaffolded as a learning process where students are guided to use the software

development process to solve a suite of problems that are appropriate to each stage of

their learning. By the time the user has gained experience of the foundational

developmental concepts and practices, the scaffolding of the learning process will be

removed to allow the learner continue to use the software development process in

solving new and more complex problems as they expand their learning and continue

their journey towards becoming unconscious competents.

Once the context of the environment was understood, a conceptual framework was

devised and developed in order to fully identify the components and activities in the

learning process. The full details of the background, rationale for - and development of

- the framework can be found in reference [18]. A diagrammatic overview of the

framework is given in figure 2.

Fig. 2. The CADET Framework (Source: Author)

In summary, the concepts represent the declarative knowledge that students need

in order to be able to understand and use programming constructs. These concepts are

categorised as four threshold concepts stages [18]. TC1 State and Sequential Flow

involves gaining an understanding of “simple” data items (e.g. characters, numbers and

strings) and how their state changes when sequential actions are carried out on them.

TC2 Non-sequential Flow Control keeps the focus on state but adds complexity to this

idea by presenting more complex actions such as iteration and how these actions affect

state and flow control. TC3 Modularity introduces modularity and how that affects state

and especially flow control. Finally, TC4 Object Behaviour - which is optional and is

only used in an object-oriented environment - examines the idea of objects and the

connection between state and behaviour and how objects interact and activate each

other’s behaviour.

The practices represent the procedural knowledge that students need in order to be

able to apply the above concepts when solving problems. These practices are

categorised as computational thinking skills and are codified as skills CT1 – CT6 in

column 2 of figure 2. Finally, the perspectives are the affective issues that impact

learning which are considered to be embodied in self-efficacy.

The framework marries current research into threshold concepts, computational

thinking and affective learning to produce a framework that supports declarative

knowledge (threshold concepts), procedural knowledge (computational thinking) and

the affective learning issues [18]. Learning these knowledge areas is facilitated by

instruction and by repeatedly solving problems using Pólya’s problem solving model

[19] which has been adapted to suit the context of this research [18]. The framework

(and subsequent process) is known as computational analysis and design engineered

thinking (CADET).

4 Operationalisation of Framework to Process

In the operationalisation of the framework into a software development process, current

best practice in both the teaching of software development and in software development

processes for professional developers is considered.

4.1 Best Practices in Teaching Software Development

There are two basic approaches to teaching software development – top-down and

bottom up. The top-down stepwise refinement approach originated in the 1970s by

Wirth [20] and involves breaking down a problem into a series of levels with tasks. One

advantage of the top-down approach is that a high-level overview of the solution can

be seen which is then slowly broken down into its constituent parts. However, critics

of top-down design state that it involves creating a monolithic design where coding

cannot begin until the design is fully complete [21]. The bottom-up approach starts

from a finely granulated specification of the problem by identifying and implementing

the smallest tasks then combining them together to form larger tasks and continuing the

process until the entire solution is implemented. A very high level view of the solution

is not available at the start of the process which can prove problematic for novices who

typically find it difficult to reassemble tasks back into a full solution [22].

In comparing expert developers to novices, experts have a breadth first, top down

approach to formulating solutions whereas novices tend to have a depth first, bottom

up approach where they focus on specific aspects of the problem [22, 23]. However,

as noted above, novices can then find it difficult to re-integrate the different parts of the

problem into a final solution and may then revert to trial and error approaches to find

something that works [22]. On the other hand, experts use strategies based on their

experience to avoid trial and error [12] which suggests that novices need to be supplied

with scaffolded strategies to help them problem solve as they gain experience.

This research suggests a hybrid approach between top down and bottom up

development as an attempt to keep novices focused on the big picture whilst allowing

them to use a depth first approach. This approach has been coined by this researcher as

a “design down, code up” approach where solutions are visually designed by students

in a scaffolded, top down fashion; code is produced for low level designs which gives

feedback to the students who are then supported in combining these tasks to effectively

code up to a final solution.

In the context of applying an appropriate learning theory, research into computer

science education has several successes using constructivist and constructionist theory

[24]. Social constructivism occurs when learning is perceived as an active process and

where individual knowledge is constructed through solving problems in a collaborative

exercise. This theory forms the basis of the development process described in this paper

as the students will carry out extensive problem solving to construct their own

individual knowledge and will engage in Vygotsky’s theory of the “more able other”

[25] by participating in paired development and in articulating solutions to the class

cohort. Therefore, the learning process for this software development process has been

designed with the aim of facilitating constructivist learning.

4.2 Best Practice in Software Development Processes

In order to ensure that the practices incorporated in the software development process

support accepted best practice for software development, it is important to align the

process with the philosophy of verifiably successful software development processes.

Most modern software development is now developed using agile processes which

appear set to replace the waterfall model as the standard approach to development [26].

Due to the experience required to utilise an agile software development process,

specific agile processes are viewed as being very complex for novices. However, the

philosophy and general characteristics of agile processes can be adapted as a guide for

best practice as has been demonstrated by Kastl et al [27]. This means that no specific

agile development process is adopted in this process but rather the fundamental

characteristics of agile will be used to guide the operation of the process. These

characteristics are the use of iterative and incremental development, adaptive modelling

and refactoring of development artefacts; and paired programming.

5 Computational Analysis and Design Engineered Thinking

(CADET) Software Development Process

The software development process operates as a 4 stage problem solving model based

on an adapted version of Pólya’s model as described in the CADET framework [18].

The four stages of the model are coined as 1. Understand the problem, 2. Break into

tasks, 3. Design and Code, 4. Evaluate solution and learning. At the scaffolded learning

process stage, learners will work in pairs and will be taught the threshold concept stages

which make up the declarative knowledge. This learning aspect of the software

development process is represented as a ladder of learning where each concept is

ordered and is a prerequisite to learning the next concept. Each concept is taught via

instruction and the computational thinking skills required to ustilise the concept are

acquired by solving a suite of problems using the 4 stage adapted problem solving

model which is supported by an Agile philosophy. Each stage of the problem solving

model will use a subset of computational thinking skills. The process is summerised in

figure 3.

Fig. 3. CADET Software Development Process (Source: Author)

Once a (threshold) concept stage is mastered, focus moves to the next concept and

the problem solving model is reactivated for another suite of problems relevant to that

concept. When all 4 threshold concept stages have been taught and practiced, students

will continue to use the 4 stage problem solving model with associated computational

thinking practices as the basis for the software development process. The software

development process is augmented by a support tool which will provide a platform to

provide learners with problems to solve for each conceptual stage as well as

diagramming tools to support their analysis, design and reflective work. While it is

expected that student’s self-efficacy will grow and wane as they attempt to solve

problems, it is hoped that the scaffolded environment based on social constructivist

learning will allow the student’s self-efficacy to generally grow in tandem with their

knowledge (identified as A1 in the vertical arrow beside the ladder of learning in figure

3). This will be measured by student reflection. Each of the 4 stages of the problem

solving model are now described in more detail.

1. Understand the problem - Using the support tool, learners will either be provided

with a problem specification (that is appropriate to the threshold concept stage if they

are using the learning process) or they can supply their own problem specification and

will be invited to articulate their understanding of the problem. This is achieved by

employing the computational thinking skills of functional abstraction to generate a

high-level summary of the problem and pattern recognition to see if it is similar to any

previous problem the learner may have solved. This high level summary is recorded in

the support tool.

2. Break into tasks - This stage employs the computational thinking skills of

decomposition to convert the high-level summary and specification from stage 1 into

an intermediate set of constituent tasks and to further refine those tasks into more basic

tasks if required. In order to make this stage visual, the tool supports students in

brainstorming tasks using a mind map with their summary of the problem being the

central task. Mind mapping has been shown to be successful in helping learners to

brainstorm and specifically in analysing software solutions [28]. The map will be

refined into ordered tasks and subtasks. The support tool will facilitate leaners to utilise

abstraction to visually trace backwards and forwards from the high-level summary from

stage 1 into this stage to ensure consistency between the stages. Pattern recognition

will be employed by learners to identify any tasks that have been utilised before in other

problems (these tasks will be marked in the map with a pattern symbol). Finally,

learners will continually evaluate their analysis of the problem and validate their

proposed mind map of tasks though tracing (as supported by the tool) and make

decisions about the status of tasks through colour coding. Tasks that can be immediately

converted into program code are colour coded green, those that require further design

are colour coded orange and those tasks of which they are unsure and which require

outside assistance are colour coded red.

3. Design and Code - This stage employs the computational thinking skill of

decomposition to take a task (coloured orange in the mind map), and generate an

algorithm represented as a flow chart (or optionally a class diagram if operating in an

object oriented paradigm) for the task. This will also involve the skills of data

representation and algorithm writing to represent the computational steps needed to

represent a task solution as a flowchart with a level of detail to make it easy for the task

to be converted into program code. Any task that has been colour coded as green in the

mindmap can be programmed immediately with patterned tasks reusing or adapting

existing designs. All tasks will be designed, coded and evaluated in an iterative manner

until correct and then reintegrated into a growing final product. The support tool will

facilitate leaners to visually utilise abstraction to oscillate between tasks identified in

the mind map and any associated designs and code to trace their understanding at each

functional and data abstraction level and ensure consistent mapping between stages.

4. Evaluate Solution and Learning - This stage allows learners to reflect on their

solution from start to finish and employ abstraction to zoom in and out of the solution

to understand it at the various functional and data abstraction levels and also be able to

reconcile transitions between those levels. The support tool will prompt learners to

employ critiquing mechanisms to see if any aspect of the solution could have benefited

from using analysis, design or coding artefacts from previous problems or if the solution

can be optimized by identifying any duplication. Learners will be required to reflect on

their learning by articulating what parts of the problem solving process they were able

to achieve, what parts they either didn’t solve or found very difficult to solve and what

they need to learn or revise before moving on to the next problem. They should also be

able to give a star knowledge rating to reflect the state of their knowledge in each of

the computational thinking skills to help them reflect on what they know and don’t

know.

When the process is being employed solely as a software development process,

learners will be able to use both the process and associated support tool by providing

their own specification for a problem and working through each of the above stages to

systematically develop their final solution.

6 Discussion

Despite the acknowledged importance of using software development processes both

in the software industry and in education, this research has identified a gap in software

engineering education in the provision of appropriate software development processes

for freshman, undergraduate computing students in a context where learners

predominately have no prior programming experience. One reason for this gap is due

to the problematic nature of teaching software processes to novices. A software

development process gives guidance to developers in the development of software

solutions from analysis through to final product but for commercial processes, it is

assumed that the developer has pre-existing programming knowledge. This makes the

use of such processes difficult for educators of introductory software development

courses and produces a conundrum in how to support students in the use of development

processes in the absence of programming knowledge. In such an environment, it is

natural that the focus of such courses will gravitate towards the teaching of

programming concepts first with the topic of development process coming later in the

course or in later years. The problem with such a strategy is that it allows students to

potentially develop maladaptive cognitive practices which can prohibit student

progression in such courses.

This paper aims to contribute to this gap by presenting a conceptual software

development process which utilities the affordances of computational thinking to create

a software development process that encompasses a learning process. The process

combines current research into computational thinking as a problem solving process

underpinned by the focus of threshold concepts and an Agile philosophy to support

students learning how to develop software solutions from problem specification

through to the final tested product. The aim of the process is to provide scaffolding to

students as they learn how to develop software in a systematic fashion. This scaffolding

will fade as students become more experienced allowing them to continue to use the

process as they grow their experience. It is the contention of this research that the

provision of such a process - while not a silver bullet to eradicate all of the problems

students experience in learning software development - would provide a structured and

scaffolded environment to directly address the maladaptive cognitive habits that

students often form and find hard to unlearn. Given the current conceptual nature of the

process, the next stage of this research will involve the development of a support tool

and the deployment and evaluation of the software development process.

References

1. Boehm, B.: A view of 20th and 21st century software engineering.

Proceedings of the 28th international conference on Software engineering. 12-

29. ACM. (2006)

2. Caspersen, M.E., Kolling, M.: STREAM: A First Programming Process.

Transactions in Computing Education., 9(1), 1-29. (2009)

3. Coffey, J.W.: Relationship between design and programming skills in an

advanced computer programming class. Journal of Computing Sciences in

Colleges. 30(5). 39-45. (2015)

4. Xiaoyuan, S.: Toward more effective strategies in teaching programming for

novice students. 2012 IEEE International Conference on Teaching,

Assessment and Learning for Engineering (TALE), p. T2A-1-T2A-3. (2012)

5. Kokotovich, V.: Problem analysis and thinking tools: an empirical study of

non-hierarchical mind mapping. Design Studies.. 29(1). 49-69. (2008)

6. Fornaro, R.J., Heil, M.R., Tharp, A.L.: What Clients Want - What Students

Do: Reflections on Ten Years of Sponsored Senior Design Projects. 19th

Conference on Software Engineering Education & Training (CSEET'06). 226-

236. (2006)

7. Huang, T. C., Shu, Y., Chen, C. C., Chen, M. Y.l.: The development of an

innovative programming teaching framework for modifying students'

maladaptive learning pattern. International Journal of Information and

Education Technology. 3(6). 591. (2013)

8. Loftus, C., Thomas, L., Zander, C.: Can graduating students design: revisited.

Proceedings of the 42nd ACM technical symposium on Computer science

education. 105-110. ACM. (2011)

9. Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J.,

Devlin, M., Paterson, J.: A survey of literature on the teaching of introductory

programming. ACM SIGCSE Bulletin. 39(2). 19. (2007)

10. Gautier, M., Wrobel‐Dautcourt, B.,: artEoz‐dynamic program visualization.
International Conference on Informatics in Schools: Situation, Evolution and

Perspectives (ISSEP 2016), Munster, Germany. 2. (2016)

11. Trevathan, M., Peters, M., Willis, J., Sansing, L.: Serious Games Classroom

Implementation: Teacher Perspectives and Student Learning Outcomes.

Society for Information Technology & Teacher Education International

Conference. Vol 2016. No 1. 624 - 631. (2016)

12. Wright, D.R.: Inoculating Novice Software Designers with Expert Design

Strategies. merican Society for Engineering Education Annual Conference &

Exposition. Volume 19. 15945-15969. (2012)

13. Hu, M., Winikoff, M., Cranefield, S.: A process for novice programming using

goals and plans. Proceedings of the Fifteenth Australasian Computing

Education Conference. Volume 136. Australian Computer Society, Inc.:

Adelaide, Australia. 3-12. (2013)

14. Neto, V.L., Coelho, R., Leite, L., Guerrero, D.S., Mendon, A.P.: POPT: a

problem-oriented programming and testing approach for novice students.

Proceedings of the 2013 International Conference on Software Engineering.

IEEE Press. 1099-1108. (2013)

15. Morgado, C., Barbosa, F.: A structured approach to problem solving in CS1/2.

International Journal of Advanced Computer Science. 3(7). 355-362. (2013)

16. Siegfried, R.M., Greco, D., Miceli, N., Siegfried, J.: Whatever happened to

Richard Reid’s list of First Programming Languages? Journal of Information

Systems Education, 10(4). p. 7. (2012)

17. Flower, J.: In the Mush. Physician Executive Journal. Jan-Feb;25(1). 64-6.

(1999)

18. Anonmyous 2017: Details omitted for double-blind reviewing.

19. Polya, G.: How To Solve It. 2nd ed.: Princeton University Press. (1957)

20. Wirth, N.: Program development by stepwise refinement. Communications

of the ACM. 14(4). 221-227. (1971)

21. Pizka, M., Bauer, A.: A brief top-down and bottom-up philosophy on software

evolution. Proceedings of 7th International Workshop on Principles of the

Software Evolution. IEEE. 131-136. (2004)

22. Liikkanen, L.A., Perttula, M.: Exploring problem decomposition in

conceptual design among novice designers. Design studies. 30(1). 38-59.

(2009)

23. Robins, A., Rountree, J., Rountree, N.: Learning and Teaching Programming:

A Review and Discussion. Computer Science Education. 13(2). 137-172.

(2003)

24. Thevathayan, C., Hamilton. M.: Supporting diverse novice programming

cohorts through flexible and incremental visual constructivist pathways. in

Proceedings of the 2015 ACM Conference on Innovation and Technology in

Computer Science Education. ACM. 296-301. (2015)

25. Vygotsky, L.: Interaction between learning and development. Readings on the

development of children, 23(3): p. 34-41. (1978)

26. Bustard, D., Wilkie, G., Greer, D.: The maturation of agile software

development principles and practice: Observations on successive industrial

studies in 2010 and 2012. Proceedings of 20th IEEE International Conference

and Workshops on the Engineering of Computer Based Systems (ECBS).

139-146. IEEE. (2013)

27. Kastl, P., Kiesmüller, U., Romeike, R.: Starting out with Projects:

Experiences with Agile Software Development in High Schools. Proceedings

of the 11th Workshop in Primary and Secondary Computing Education. 60-

65. ACM. (2016)

28. Li, C.L., Yang, L.P., Wang, W.: Application of mind mapping to improve the

teaching effect of Java program design course. in Computing, Control,

Information and Education Engineering: Proceedings of the 2015 Second

International Conference on Computer, Intelligent and Education Technology

(CICET 2015), CRC Press.. p. 451. (2015)

	A Software Development Process for Freshman Undergraduate Students
	Recommended Citation
	Authors

	tmp.1536829522.pdf.6k2nE

