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Nomenclature

Ai

Anisotropy	index

Ibeam,h

Horizontal	plane	beam	solar	radiation	(W/m2)

Idif,h

Horizontal	plane	beam	solar	radiation	(W/m2)

Iglobal,h

Horizontal	plane	global	solar	radiation	(W/m2)

Iglobal,v

Vertical	plane	global	solar	radiation	(W/m2)

Iextra

Extra-terrestrial	solar	radiation	(W/m2)
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Abstract

Combined	suspended	particle	device	(SPD)-vacuum	glazing	is	a	potential	adaptive	glazing	for	low	energy	building	application.	Glazing	transmission	is	an	essential	parameter	to	determine	indoor	comfort	level	of	building	due	to	glazing.

In	this	work,	above	0.5	clearness	index,	a	strong	correlation	between	glazing	transmission	and	clearness	index	(Atmospheric	transmission)	has	been	evaluated	for	south	facing	vertical	plane	glazing.	Below	0.5	clearness	index,	isotropic

diffuse	transmittance	was	dominant	and	one	single	value	of	glazing	transmission	was	found	which	is	suitable	for	building	energy	calculation	throughout	the	year.	Below	0.5	clearness	index,	for	south	facing	vertical	plane	SPD-vacuum	glazing

transmission	was	17%	and	1.1%	for	transparent	and	opaque	states	respectively.

Keywords:	Adaptive;	glazingGlazing;	clearnessClearness	index;	vacuumVacuum;	SPD;	transmissionTransmission;	solarSolar	heat	gain	coefficient



Solar	constant	(W/m2)

kd

Diffuse	factor

kT

Clearness	index

ng

Refractive	index	of	SPD	glazing

Ng

Number	of	glass	pane

SHGC

Solar	heat	gain	coefficient

SE

Transmitted	solar	energy	(W/m2)(W/m2)

Greek	symbols
αg

Absorptance

τ

Transmittance

τv

Vertical	global	transmittance

τdir

Direct	transmittance

τdiff

Diffuse	transmittance

Incident	angle

β

Slope	angle

1	Introduction
To	achieve	90%	less	CO2	emission	from	building	in	2050	compared	to	1990	new	innovative	building	technologies	are	required	[1]	which	will	 lower	CO2	emission,	reduce	energy	demand,	and	maintain	indoor	environment	quality	based	on

occupant	choice	[2].	Thus,	building	envelopes	are	key	contributor	to	regulate	the	heat	and	mass	transfer	between	the	outdoor	and	indoor	environment.	In	a	building,	glazing	is	the	weakest	part	as	solar	heat	gain	admitted	through	it	and	heat	loss



occurs	mostly	through	it.	To	follow	the	building	directives,	new	adaptive	glazing	technologies	are	required	which	will	enhance	to	achieve	the	targets.	The	development	of	adaptive	building	envelope	technologies,	and	particularly	of	switchable	glazing,

can	make	significant	contributions	to	decarbonisation	targets	[3,4].

Available	 adaptive	 glazing	 technologies	 [5–8]	 are	 electrochromic	 (EC)	 [9–11],	 suspended	 particle	 device	 (SPD)	 [12–15],	 liquid	 crystal	 (LC)	 [16,17],	 thermochromic	 [18,19],	 thermotropic	 [20,21],	 phase	 change	 material	 (PCM)	 [22–25],

gasochromic	[26,27],	aerogel	[28,29],	and	vacuum	[30].	These	glazing	are	classified	in	two	groups-

• solar	heat	gain	control	glazing	which	change	its	transparency	by	electrical	(EC,SPD,LC),	heat	(thermotorpic,	PCM)	or	chemical	(gasochromic,	thermochromic)	actuation;

• low	heat	loss	glazing	(aerogel,	vacuum,	low	e	coating)	which	has	constant	transparency	and	due	to	presence	of	vacuum	or	insulating	material,	heat	loss	through	glazing	is	low.

Electrically	actuated	solar	heat	gain	control	glazings	are	advantageous	over	non	electrically	actuated	glazing	as	they	are	controlled	by	occupant	choice.	SPD	glazing	as	shown	in	Fig.	1	is	advantageous	over	EC	as	it	is	powered	by	alternating

current	(AC)	power	supply	which	enable	 it	 to	connect	directly	with	main	household	power	supply,	no	power	 is	required	to	achieve	opaque	states	and	 it	 is	clear	compared	to	LC	[31].	SPD	glazing	 is	an	AC	powered	glazing	changes	 its	state	 from

“opaque”	to	transparent	for	the	applied	voltages	change	from	0	to	110	V,	0.007	W	[32].	Outdoor	characterisation	of	SPD	glazing	using	test	cell	investigation	showed	that	SPD	glazing	has	overall	heat	transfer	coefficient	(U-value)	nearly	5.9	W/m2K	[15].

Solar	heat	gain	coefficient	of	SPD	glazing	varied	between	0.5	and	0.55	[33].	SPD	glazing	is	a	potential	device	to	control	glare	[34].	However,	SPD	single	glazing	is	suitable	for	hot	climatic	and	summertime.	It	has	less	potential	to	control	the	heat	loss

from	room	to	ambient	due	to	its	high	U-value	[33].

Due	to	variation	of	weather	throughout	the	year,	heat	loss	and	heat	control	both	are	essential	in	a	glazing	to	achieve	low	energy	building.	During	winter,	low	heat	loss	glazings	are	advantageous	as	they	limit	the	losses	through	glazing	from

inside	a	room	to	outside.	Vacuum	glazing	shown	in	Fig.	2	is	a	potential	low	heat	loss	glazing	due	to	its	nearly	clear	transparency	similar	to	double-glazing	though	53%	less	heat	transmit	through	it	[35].	Vacuum	glazing	possesses	nearly	1.14	W/m2K

overall	heat	losses,	which	is	80%	lower	than	a	SPD	glazing	[35].	However,	vacuum	glazing	has	no	potential	to	control	glare	as	it	allows	equal	amount	of	illuminance	compared	to	double	glazing	[35].	Addition	of	vacuum	and	SPD	glazing	will	act	as	a

switchable	vacuum	glazing	or	low	heat	loss	SPD	glazing	as	shown	in	Fig.	3.	This	glazing	has	solar	heat	gain	control	and	heat	loss	control	potential	as	reported	by	Ghosh	et.al.	[36].

Fig.	1	Schematic	details	of	suspended	particle	device	switchable	glazing	“opaque”	and	“transparent”	state.

alt-text:	Fig.	1:



Fig.	2	(a)	photographPhotograph	of	a	NSG	SPAICA	vacuum	glazing,	(b)	schematic	top	view	of	vacuum	glazing.

alt-text:	Fig.	2



Low	heat	loss	switchable	SPD	glazing	is	a	potential	device	for	future	adaptive	glazing	for	building	application.	Transmission	of	glazing	varies	with	incident	angle.	Thus,	accurate	glazing	transmission	determination	is	a	crucial	factor	as	glazing

transmission	available	 from	commercial	provider	 is	only	suitable	 for	normal	 incidence.	 In	solar	energy	calculation,	solar	 radiation	data	get	higher	priority	 than	 incident	angle.	Solar	 radiation	measurement	 in	a	particular	 location	needs	global	solar

radiation	and	direct	or	diffuse	solar	radiation.	Clearness	index	replace	the	necessity	of	different	measured	solar	radiation	data,	as	it	only	requires	global	horizontal	solar	radiation	data.	Dependency	of	clearness	index	and	glazing	transmission	will	be

path	breaking	for	future	building	application	where	only	one	measured	data	can	predict	the	glazing	transmission,	transmitted	solar	energy,	and	solar	heat	gain	coefficient.	Theoretically,	relation	between	glazing	transmission	and	clearness	index	was

investigated	by	Waide	and	Norton	 [37].	 In	 this	work	 first	 time	dependency	of	clearness	 index	and	SPD-vacuum	glazing	performance	has	been	experimentally	evaluated.	These	 results	will	 reduce	 the	 tedious	calculation	 for	building	engineer	and

architecture.

2	Methodology
For	vertical	plane	SPD-vacuum	glazing,	angular	transmittance	 (global	solar	transmittance	through	glazing)	can	be	written	as	[33,35,36]	Eq.	(1).

where

Fig.	3	Detail	of	a	combined	SPD–vacuum	glazing	in	its	opaque	and	transparent	states.

alt-text:	Fig.	3:
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	andand

when	

when	 [38]

when	 [38]

and	diffuse	factor	(kd)	and	clearness	index	(kT)	can	be	written	as	Eqs.	(3)	and	(4)	respectively.

Solar	energy	(SE)	transmitted	through	SPD-vacuum	glazing	can	be	written	as	Eq.	(5)[36]

Wherewhere	anisotropic	index	Ai	can	be	written	by	Eq.	(6)

is	the	solar	constant,	n	is	the	day	of	year, latitude	angle, declination	angle	 hour	angleangle.

Dynamic	solar	heat	gain	coefficients	(SHGC)	can	be	evaluated	by	Eq.	(8)[36]

3	Experiment
One	SPACIA	vacuum	glazing	from	Nippon	Sheet	Glass	and	SPD	glazing	from	smart	glass	international	were	employed	in	this	experiment.	These	two	glasses	were	attached	together	to	obtain	low	heat	loss	switchable	SPD	glazing.	Edges	of

the	combined	glazing	were	sealed	by	silicon.	Details	of	glazing	are	listed	in	Table	1.	Details	of	experiment	procedures	are	described	in	[33,35,36].	Hemispherical	 transmission	spectrum	of	 the	SPD-vacuum	glazing	was	performed	using	AvaSpec-

ULS2048L	Star	Line	Versatile	Fiber-optic	spectrometer	under	 indoor	condition.	A	Kipp	and	Zonen	model	SMP11	pyranometer	was	used	to	measure	global	solar	radiation	incident	on	the	vertical	surface.	Fig.	4	represents	 the	SPD-vacuum	glazing

normal	hemispherical	transmission	spectra	for	transparent	and	opaque	state.	After	800	nm	the	transmitted	infra	radiation	is	higher	compare	to	visible	wavelength.

Table	1	Details	of	glazings.

alt-text:	Table	1:

Solar	transmission	(278–1100	nm) Visible	transmission	(380–780	nm) Power Supplier

SPD	transparent	(switch	on)+vacuum 39 38 110	V,	0.007	W Smart	glass	international	(Dublin,	Ireland),	NSG	SPACIA	(UK)

SPD	opaque	(switch	off)+vacuum 10 2 0	V

(2)
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(4)

(5)

(6)

(7)

		 	 		 	 		 	 		 	

(8)



4	Results	&	discussion
Diurnal	variation	of	calculated	clearness	index,	diffuse	factor	and	anisotropy	index,	transmitted	solar	energy	through	SPD-vacuum	glazing	for	its	“transparent”	and	“opaque”	state	and	measured	vertical	surface	solar	radiation	for	clear	sunny,

intermittent	cloudy	and	overcast	cloudy	day	are	shown	in	Fig.	5.	Transmitted	solar	energy	was	calculated	using	Eq.	(5).	Clearness	index,	which	represent	global	solar	radiation	transmission,	was	achieved	maximum	0.8	at	mid-day	period	for	a	clear

sunny	day.	Anisotropy	index	(Ai)	was	0.7,	which	represents	atmosphere	transmittance	for	the	direct	solar	radiation.	Higher	values	of	Ai	and	kT	and	lower	kd	indicate	that	the	global	radiation	is	mostly	direct	solar	radiation	for	a	clear	sunny	day.	At	mid-

day	time	during	0.8	clearness	index,	diffuse	fraction	values	were	low	nearly	0.3	which	represents	that	the	diffuse	radiation	at	this	time	was	lower	compare	to	direct	solar	radiation.	For	intermittent	and	overcast	day	lower	clearness	index	and	lower

anisotropic	index	was	achieved	where	as	higher	values	of	diffuse	factor	was	obtained.	76%	higher	Maximum	transmitted	solar	energy	was	possible	for	SPD-vacuum	glazing	transparent	state	compared	to	opaque	state	under	955	W/m2	solar	radiation

in	a	typical	clear	sunny	day.

Fig.	4	Transmission	spectra	of	SPD	glazing	“opaque”	and	“transparent”	states.

alt-text:	Fig.	4

Fig.	5	Diurnal	variation	of	calculated	clear	ness	index,	diffuse	fraction,	anisotropy	index,	and	transmitted	solar	energy	through	SPD-vacuum	glazing	and	measured	vertical	surface	solar	radiation	for	clear	sunny,	intermittent	cloudy	and	overcast	cloudy	day.

alt-text:	Fig.	5:



Fig.	6	represents	the	variation	of	glazing	transmission	for	varying	incident	angle.	Two	different	days	were	considered	11st	st	of	July	and	11st	st	of	January	to	measure	the	SPD-vacuum	glazing	transmission	for	its	transparent	and	opaque	state.

In	Dublin	location,	for	south	facing	vertical	plane	glazing	it	is	evident	that	the	incident	angle	varies	between	13°	to	82and	82°.	0	In	January,	glazing	transmission	is	higher	compared	to	transmission	in	July.

Correlation	between	measured	south	facing	glazing	transmission	and	clearness	index	is	represented	in	Fig.	7.	Below	0.5	clearness	index,	glazing	transmission	was	low	and	domination	of	isotropic	diffuse	transmittance	was	observed	for	south

facing	glazing.	Above	0.5	clearness	index,	angular	direct	transmission	was	dominant	and	a	strong	linear	correlation	between	glazing	transmission	and	clearness	index	was	found.	For	south	facing	glazing,	one	single	glazing	transmission	value	can	be

used	below	0.5	clearness	 index	 [37],	 to	 reduce	 the	building	simulation	 time	and	complexity.	For	vertical	plane	south	 facing	 transparent	SPD-vacuum	glazing,	below	0.5	clearness	 index	17%	glazing	 transmission	 is	acceptable	 for	designing	and

calculation	purpose.	For	opaque	SPD-vacuum	glazing,	under	same	conditions,	acceptable	transmittance	value	is	1.1%.	Below	0.5	clearness	index,	these	values	can	be	used	for	building	design	calculation	throughout	the	year,	which	will	offer	only	less

than	1%	error.	This	glazing	transmission	is	applicable	for	other	azimuthal	directions	though	the	threshold	values	of	clearness	index	changes.	Table	2	listed	the	different	clearness	index	for	different	azimuthal	directions.

Fig.	6	Variation	of	transparent	SPD-vacuum	glazing	transmission	(38%)	for	different	incident	angle	on	11st	st	of	July	while	the	sun	ray	strike	the	ground	on	at	an	angle	59.78°	and	opaque	SPD-vacuum	glazing	transmission	(2%)	for	different	incident	angle	on	11st	st	of	January	while	the	sun	ray

strike	the	ground	on	at	an	angle	13.65°	in	Dublin.

alt-text:	Fig.	6



Table	2	Yearly	usable	single	glazing	transmission	value	for	SPD-vacuum	transparent	and	opaque	state.

alt-text:	Table	2:

Azimuthal	direction SPD	on/transparent+vacuum	(38%	transparent)	transmission SPD	off/opaque+vacuum	(2%	transparent)	transmission Mean	monthly	clearness	index

North 17 1.1 0.7

South 17 1.1 0.5

Vertical	plane	SPD-vacuum	glazing East 17 1.1 0.6

West 17 1.1 0.6

North	east 17 1.1 0.6

North	west 17 1.1 0.6

Fig.	8	shows	the	correlation	between	clearness	index	and	solar	heat	gain	coefficient	(SHGC).	Strong	linear	correlation	above	0.5	clearness	index	was	observed.	Below	0.5	clearness	index,	SHGC	of	south	facing	vertical	plane	SPD	vacuum

glazing	were	0.08	and	0.03	for	its	transparent	and	opaque	states	respectively.	From	Eq.	(8),	it	is	evident	that	SHGC	is	directly	related	to	the	glazing	transmittance.	Thus,	these	single	values	can	be	considered	yearly	usable	for	south	facing	vertical

plane	glazing.	Mean	monthly	clearness	index	values	changes	with	different	azimuthal	orientation.	To	eliminate	complex	calculation	a	particular	threshold	clearness	index	and	SHGC	for	that	clearness	index	for	different	orientation	has	been	listed	in

Table	3.

Fig.	7	Variation	of	south	facing	combined	SPD-vacuum	glazing	transmission	for	its	opaque	and	transparent	state	with	clearness	index.

alt-text:	Fig.	7



Table	3	Yearly	usable	single	SHGC	value	for	SPD-vacuum	transparent	and	opaque	state.

alt-text:	Table	3

Azimuthal	direction SPD	on	(38%	transparent)+vacuum	SHGC SPD	off	(2%	transparent)+vacuum	SHGC Mean	monthly	clearness	index

North 0.08 0.03 0.7

South 0.08 0.03 0.5

Vertical	plane	SPD-vacuum	glazing East 0.08 0.03 0.6

West 0.08 0.03 0.6

North	east 0.08 0.03 0.6

North	west 0.08 0.03 0.6

Fig.	9	represents	the	correlation	between	clearness	index	and	transmitted	solar	energy	through	the	glazing	for	its	two	different	states.	Below	clearness	index	0.5,	transmitted	solar	energy	for	south	facing	vertical	plane	SPD-vacuum	glazing	for

its	opaque	and	transparent	states	were	11	W/m2	and	21	W/m2.	Table	4	shows	the	threshold	clearness	index	for	different	azimuthal	direction.	Below	this	threshold	clearness	index,	yearly	usable	single	transmitted	values	can	be	applicable	for	building

design	calculation,	which	will	offer	less	than	1%	calculation	error.	5ConclusionsCombined	SPD-vacuum	is	a	potential	device	for	adaptive	glazing	application.	Transparency	of	adaptive	switchable	glazing	is	an	important	factor	as	it	decides	the	solar	heat	gain	and

indoor	comfort	of	a	building.	Correlation	between	clearness	index	and	glazing	transmission,	transmitted	solar	energy	and	solar	heat	gain	coefficients	has	been	evaluated	for	adaptive	low	heat	 loss	switchable	SPD	glazing	in	 its	“transparent”	and	“opaque”	state.	From

results,	 it	 is	 confirmed	 that	 glazing	 transmittance	 is	 directly	 influenced	 by	 sky	 condition.	 As	 clearness	 index	 needs	 only	 one	measured	 parameter,	 correlation	 between	 clearness	 index	 and	 glazing	 transmittance	will	 easier	 the	 calculation	 process.	 Isotropic	 diffuse

transmittance	 is	dominant	while	clearness	 index	 is	below	0.5.	Below	0.5	clearness	 index,	 for	 south	 facing	vertical	plane	SPD-vacuum	glazing's	 transmissions	were	1.1%	and	17%	 for	 its	opaque	and	 transparent	state	 respectively.	Above	0.5	clearness	 index,	direct

insolation	was	dominant	and	a	linear	correlation	was	found	between	clearness	index	and	glazing	transmission.	This	study	offers	a	yearly	usable	single	glazing	transmittance,	transmitted	solar	energy,	solar	heat	gain	coefficient	for	SPD-vacuum	glazing	in	transparent	and

opaque	state,	which	is	advantageous	for	the	building	designers	in	northern	latitude	areas.AcknowledgementsThe	work	described	in	this	paper	was	supported	by	the	Graduate	Research	Education	Programme	of	the	Higher	Education	Authority,	Ireland.The	authors	would
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Fig.	8	Variation	of	solar	heat	gain	coefficient	with	clearness	index.

alt-text:	Fig.	8:



Table	4	Yearly	usable	single	transmitted	energy	value	for	SPD-vacuum	transparent	and	opaque	state.

alt-text:	Table	4:

Azimuthal	direction SPD	on	(38%	transparent)+vacuum	transmitted	solar	energy	(W/m2) SPD	off	(2%	transparent)+vacuum	transmitted	solar	energy	(W/m2) Clearness	index

North 21 11 0.7

South 21 11 0.5

Vertical	plane	SPD-vacuum	glazing East 21 11 0.6

West 21 11 0.6

North	east 21 11 0.6

North	west 21 11 0.6
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• Transmitted	solar	energy	and	SHGC	was	evaluated	for	different	clearness	index.

• Single	glazing	transmittance	value	was	recommended	below	0.5	clearness	index.

• Maximum	transmitted	SE	was	76%	higher	in	SPD-vacuum	transparent	state	than	opaque.
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