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Abstract Amodel is solved based on the Nernst Planck equa-
tion to calculate the diffusion and migration currents for a
species in a thin layer (about 200 nm) confined between two
electrodes. This is proposed to account for the current voltage
behaviour of a memristor constructed in a similar fashion. At
the working electrode, an electroactive species is oxidised and
at the counter electrode, the same species is reduced. Upon
application of a simple voltammetric waveform, the migration
current exhibits a resistance profile at slow scan rates and
hysteresis at faster scan rates, indicative of memristor
behaviour.

Keywords Nernst Planck equation .Memristor . Digital
simulation . Titanium dioxide

Introduction

A memristor is a passive device that has a resistance whose
magnitude depends on the amount of charge which has passed
through it. Typically, it takes the form of a very thin (tens of
nm) layer of TiO2 sandwiched between two electrodes which
can be Pt, Al or Au. While there have been many examples of
memristors [1], based on a variety of systems [2], there has not
been a great deal of work understanding how the charge is

passed through the device. In the paper by Strukov et al. [3],
there is a diagram of a TiO2 layer which shows an image of a
memristor which is converted from an undoped (high-
resistance) form to a doped (low-resistance) form by means
of a passage of charge. This is a two-state system where the
high-resistance region is gradually taken over by a low-
resistance region as the Ti4+ is gradually reduced, yielding
oxygen vacancies that are the charge carriers. This model
does yield the Lissajous current–voltage profile observed
experimentally [3].

The doping takes the form of reduction of TiO2 and the
movement of oxygen vacancies, taken to be positive species
[3]. However, there is an issue with this transformation. If the
TiO2 is getting reduced at one side of the component, then
there should be an equal amount of oxidation on the opposite
electrode of the component. This issue has not been taken into
account in many publications. For example, the following
equation could represent the reduction process [4, 5].

2TiO2 þ H2Oþ 2 e−→Ti2O3 þ 2OH− ð1Þ

The presence of the reduced Ti may be seen spectroscopi-
cally as it is blue in colour [6, 7]. The question remains wheth-
er this can readily occur in the solid state, and furthermore, if it
depends on the levels of humidity, the charge passed may be
limited by the availability of H2O.

The following reduction process could equally occur:

H2Oþ e− → 1=2 H2 þ OH− ð2Þ

The reduced form of the device has a number of defects
which are termed oxygen vacancies, taken as dications. Thus,
the material is nominally p doped in nature according to
Strukov et al. [3] who state ‘oxygen vacancies act a mobile
+2 dopants which drift in the applied field’. However, in a
separate paper, Ganduglia et al. [8] indicate that ‘reduced
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TiO2 crystals exhibit n type doping’. Thus, there is a discrep-
ancy in the literature regarding the charge-carrying species
responsible for the conductivity in the reduced TiO2. It is
reasonable to believe that the mobility of an electron (or hole)
would be far greater than any ionic defect mobility.

According to Strunck et al. [6], the reduction of Ti4+ can
occur with the oxidation of the O2− to form oxygen.

Ti4þ−O−Ti4þ→Ti3þ−□−Ti3þ þ 1=2 O2 ð3Þ

However, if this is happening, then there is no overall pas-
sage of charge; this is merely a redox reaction where the Ti4+

is reduced and the oxygen is oxidised. Also, it would not
explain how the conductivity of the material changes by a
factor of 160–380 [3] since both the reagents and products
are neutral.

Thus, it would be safe to assume that there is some trans-
formation in the device that does produce defects that act as
carriers. However, as mentioned, this reduction at one elec-
trode must come with a concomitant oxidation at the other
electrode. There have not been many publications that address
this issue. A possible oxidation reaction may involve the pres-
ence of water, in the same way water is a component in reac-
tion (1).

H2O→2Hþ þ 1=2 O2 þ 2e− ð4Þ

Oxidation of O2− to form molecular oxygen has indeed
been reported experimentally for SrTiO2 [9]. These results
support the notion that the memristor behaves like an electro-
chemical cell, with oxidation on one side and reduction on the
other.

When used as a photocatalyst, the charge carriers in TiO2

are clearly identified as holes or electrons. There are well-
defined models involving the elevation of electrons from the
conduction band to the valence band allowing simultaneous
oxidation and reduction of different species at TiO2 nanopar-
ticles’ surfaces. This photocatalysis has widely been used to
degrade organics in water [9–13]. The charge carriers in
memristors have not been so easy to identify.

The aim of this work is to develop a simple electrochemical
model based on a species in a thin layer, which can be oxidised
at one electrode and reduced at the other. Diffusion and mi-
gration will be examined as the primary modes of transport to
evaluate whether the current potential profiles are similar to
those seen experimentally in classical memristors [2].

Model

The model consists of two electrodes; a working electrode
(WE) at x=0 and a counter electrode (CE) at x=d. The mate-
rial between these electrodes comprises a species A, which is
neutral. A voltage sweep is then applied to the WE to cause A

to be oxidised. While this is happening, there will be an iden-
tical quantity of A reduced at the opposite (counter) electrode
as follows:

A ⇌Bþ þ e− atx ¼ 0at theWE ð5Þ
Aþ e−⇌C− atx ¼ d at theCE ð6Þ

This mirrors the process happening at a TiO2-based
memristor, where the TiO2 is reduced at the working electrode
and oxidation occurs at the counter electrode. Here, there is no
deliberately added electrolyte, which means that migration
will occur.

Under this regime, the initial conditions are as follows:

CA x; 0ð Þ ¼ C0 ð7Þ
CB x; 0ð Þ ¼ CC x; 0ð Þ ¼ 0 ð8Þ

A potential sweep starts at a potential more negative than
the E⦵ for the A/B couple so that no electrochemical reaction
happens. Next, the potential is swept at a certain scan rate past
E⦵ for the couple and then is swept back.

At x=0, the following is true:

Also at x=0

dCA

dx

����
x¼0

¼ −
dCB

dx

����
x¼0

ð10Þ

At the counter electrode x=1, as A is being oxidised at the
working electrode, it is also being reduced at the counter elec-
trode.

dCC

dx

����
x¼1

¼ dCA

dx

����
x¼0

ð11Þ

dCC

dx

����
x¼1

¼ −
dCA

dx

����
x¼1

ð12Þ

The equations to be solved are as follows where i=A, B, C.
E is the potential applied to the WE, and the diffusion coeffi-
cients for A, B and C are taken as D.

∂Ci

∂t
¼ D

∂2Ci

∂x2
þ zF

RT

∂Ci

∂x
∂E
∂x

� �� �
ð13Þ

In addition, the following term is taken to be negligible, the
so-called electroneutrality approximation.

Ci
∂2E
∂x2

� �
¼ 0 ð14Þ

Following the solution of these equations using the Crank
Nicolson technique, currents were calculated [14–16].

1230 J Solid State Electrochem (2016) 20:1229–1234

(9)

Author's personal copy



The current resulting from diffusion is found as

i ¼ zFAD
dCA

dx

����
x¼0

ð15Þ

The current due to migration is given by the following
expression evaluated at the working electrode surface:

i ¼ FAD
F

RT

∂E
∂x

X
i
z2i Ci

� �
ð16Þ

Equation (13), the Nernst Planck equation, has been con-
sidered by a number of groups, in electrolyte solutions, under
conditions where the concentration of background electrolyte
is quite small. In some cases, migration current is calculated
[17, 18], using Eq. (16). A thin-layer dual-electrode configu-
ration has previously been considered [18], where it was
found that the migration current was hugely affected by the
magnitude of the diffusion coefficient, D. Bieniasz [19, 20]
solved the Nernst Planck equation for a rotating disk experi-
ment. Also, a thin-layer cell was examined [21] and the cur-
rent was calculated as the sum of Eqs. (15) and (16).

A second approach has also been taken [22–25]. This takes
the view that Eq. (14) is not zero but is governed by the
Poisson equation:

∂2E
∂x2

¼ −
F

εεo

X
i
ziCi ð17Þ

In this case, Eq. (17) is incorporated into Eq. (13) and
solved. However, rather than calculating the mass transport
controlled current and the migration current, the migration
current was deemed to be zero as the zero-field approxima-
tion. The argument was that the double-layer thickness was
insignificant in comparison with the diffusion layer thickness
and

dE

dx

����
x¼0

¼ 0 ð18Þ

More recently, the Nernst Planck-Poisson equation was
used for nanometre-thick layers for a model ferrocene com-
pound under steady-state conditions [26] and water electroly-
sis [27] in the absence of a deliberately added electrolyte. In
each of these cases, migration and mass transport current were
calculated. None of the systems mentioned above predict a
behaviour which is characteristic of memristors [2, 3], namely
that the current on the reverse sweep of the voltammogram is
greater than that on the forward sweep. All the modelling
mentioned above was carried out for solution-based systems.

For the purpose of the simulation, dimensionless parame-
ters are introduced where h is the distance increment and k is
the time increment. C0 is the initial concentration of A, Dm is

the dimensionless diffusion coefficient used in the simulation
and Zi is the charge on the species.

X ¼ x=h ð19Þ
T ¼ t=k ð20Þ
C*

A ¼ CA=C
0 ð21Þ

ϕ ¼ FE=RT ð22Þ
Dm ¼ DK= hð Þ2 ð23Þ

Equations (7) and (8) become

C*
A x; 0ð Þ ¼ 1 ð24Þ

C*
B x; 0ð Þ ¼ C*

C x; 0ð Þ ¼ 0 ð25Þ

Equation (9) becomes

Also at X=0

dC*
A

dX

����
X¼0

¼ −
dC*

B

dX

����
X¼0

ð27Þ

Equations (11) and (12) become

dC*
C

dX

����
X¼1

¼ dC*
A

dX

����
X¼0

ð28Þ

dC*
C

dX

����
X¼1

¼ −
dC*

A

dX

����
X¼1

ð29Þ

Equation (13) becomes

∂C*
i

∂T
¼ Dm

∂2C*
i

∂X 2 þ ∂C*
i

∂X
∂∅
∂X

� �� �
ð30Þ

Equation (14) becomes

∂2∅
∂X 2

� �
¼ 0 ð31Þ

The currents (15) and (16) become

i ¼ ZFADmhC
0

k

dC*
A

dX

����
X¼0

ð32Þ

i ¼ zFAhDmC
0

k

∂∅
∂X

X
i

Z2
i C

*
i

 !
ð33Þ

The code was written in FORTRAN and the program run
on a desktop PC. Typically, the number of distance increments
was 200 and the number of time increments was 300. Currents
were calculated as diffusion current (Eq. 32) or migration
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current (Eq. 33) separately. In this work, the electroneutrality
approximation is invoked (Eq. 31) and the assumption is that
the field at the working electrode surface is constant.

Results and discussion

Figure 1 shows the current/potential profile (cyclic voltammo-
gram, termed CV) for a situation where there is no migration.
The charges on A, B and C are taken to be zero. The timescale
is short enough that the diffusion layer of A is rather thick and
so the CV looks like a bulk CV. In fact, if the peak current was
plotted against the square root of the sweep rate, then a linear
relationship results with a correlation coefficient of one and a
zero intercept [28]. This is a confirmation that diffusion is the
rate-determining step and that the kinetics are fast. The diffu-
sion coefficient, D (5×10−11 cm2/s), is typical of solid-state
devices [16] and also for polymer-confined redox species
[29], and the layer thickness is 200 nm.

If the layer thickness was decreased or the timescale in-
creased, then the CV would appear to be closer to a thin-
layer CV with symmetric forward and reverse peaks.
Figure 2 shows this situation at a lower scan rate than that in
Fig. 1. It does have the appearance of an ideal thin-layer CVas
the species A is completely consumed on the forward sweep.
However, A is also being consumed at the counter electrode,
which introduces a distortion on the reverse sweep as can be
seen on the negative-going sweep in Fig. 2.

Migration is introduced by changing the charges for ZA, ZB
and ZC to be 0, +1 and −1, respectively. This affects the dif-
fusion component of the current as seen in Fig. 3, which oc-
curs under the same conditions as in Fig. 1.

Figure 3 shows the diffusion-limited current found from
Eq. (32), and it can be seen that the current increases with
scan rate as in Fig. 1. However, because of the charges on B
and C, following their formation from A, B+ migrates to the
counter electrode and C− migrates to the working electrode.
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Fig. 3 Diffusion-controlled current calculated under the following
conditions. Layer thickness, d = 2 × 10−5 cm, effective diffusion
coefficient, D= 5× 10−11 cm2/s, scan rates (a) 0.3, (b) 0.5, (c) 0.7 and
(d) 0.9 V/s in order of increasing current. Bulk concentration of A is
1 × 10−6 moles cm−3. E⦵ = 0.0 V. ZA = 0, ZB = +1, ZC = −1. NOTE:
“The arrows indicate the direction in which the potential is swept from
-0.4V to +0.4V”
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Fig. 2 Diffusion-controlled current calculated under the following
conditions. Layer thickness, d = 2 × 10−5 cm, effective diffusion
coefficient, D=5×10−11 cm2/s, scan rate is 0.01 V/s. Bulk concentration
of A is 1×10−6 moles cm−3. E⦵=0.0 V
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Fig. 1 Diffusion-controlled current calculated under the following
conditions. Layer thickness, d = 2 × 10−5 cm, effective diffusion
coefficient, D= 5 × 10−11 cm2/s, scan rates 0.3, 0.5, 0.7 and 0.9 V/s in
order of increasing current. Bulk concentration of 1 × 10−6 moles cm−3.
E⦵= 0.0 V
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Fig. 4 Migration current calculated under the following conditions. Layer
thickness, d=2×10−5 cm, effective diffusion coefficient,D=5×10−11 cm2/
s, scan rates (a) 0.3, (b) 0.5, (c) 0.07 and (d) 0.9 V/s. The currents increase
with scan rate. Bulk concentration of A is 1×10−6 moles cm−3. E⦵=0.0 V.
ZA= 0, ZB =+1, ZC =−1. NOTE: “The arrows indicate the direction in
which the potential is swept from -0.4V to +0.4V”
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Consequently, on the reverse sweep, it takes time for them to
diffuse back to their respective electrodes for reaction. Thus, at
faster scan rates, the potential at which B+ is reduced is more
negative as it cannot reach the working electrode in sufficient
time. It can be seen in Fig. 3 that the current profile on the
forward sweep is that of a bulk diffusion process; however,
migration influences the mass transport of B yielding a peak
typical of a thin layer. Once the potential is negative, B mi-
grates to the working electrode.

Figure 4 shows the migration current under these condi-
tions. One notable characteristic is that the reverse current is
greater than the forward current and that the current has a
resistive behaviour. On the reverse sweep, once the potential
is swept past 0 V, the migration current becomes very small as
the concentration of C+ and B− decreases rapidly. It can be
seen that themigration current dominates the response as it is a
factor of ten greater than the diffusion current.

Figure 5 is an overlay of the diffusion current at different
scan rates under conditions when the diffusion coefficient, D,
is much larger. It can be seen that there is a greater effect due to
the presence of the potential field, in that the current does not
change at all with scan rate. It has been cited elsewhere that the
magnitude of the diffusion coefficient influences migration to
a large extent. The forward current is affected, even though A
is neutral. In Fig. 6, once again, there are a number of overlaid
voltammograms with no hysteresis, on account of the larger
diffusion coefficient. There is also a coincidence in the peak
potential for the reduction of B in the diffusion-limited current
(Fig. 5) and the negative peak of the migration current in
Fig. 6 that falls to zero since the remaining B and C are con-
verted back to A. The currents in Figs. 5 and 6 are much
greater than those in Figs. 3 and 4 due to the greater magnitude
of the diffusion coefficient, D.

Conclusion

With the caveat of the assumptions made in this model, name-
ly that the electroneutrality approximation applies and that the
field at the working electrode surface is constant, the current
voltage behaviour of the migration component of the current
mirrors that often exhibited by memristors. There is a hyster-
esis under conditions of low diffusion coefficient, with a
resistive-like behaviour. Also, there is zero current when the
potential is zero, which is an attribute of memristors [2, 3].
From the CVs in Figs. 4 and 6, it can be seen that the model is
a phenomenological alternative to others used to explain the
behaviour of memristors.
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