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Abstract. This paper asks at what level of class imbalance one-class classifiers
outperform two-class classifiers in credit scoring problems in which class im-
balance, referred to as the low-default portfolio problem, is a serious issue. The
question is answered by comparing the performance of a variety of one-class
and two-class classifiers on a selection of credit scoring datasets as the class im-
balance is manipulated. We also include random oversampling as this is one of
the most common approaches to addressing class imbalance. This study analyses
the suitability and performance of recognised two-class classifiers and one-class
classifiers. Based on our study we conclude that the performance of the two-
class classifiers deteriorates proportionally to the level of class imbalance. The
two-class classifiers outperform one-class classifiers with class imbalance levels
down as far as 15% (i.e. the imbalance ratio of minority class to majority class is
15:85). The one-class classifiers, whose performance remains unvaried through-
out, are preferred when the minority class constitutes approximately 2% or less
of the data. Between an imbalance of 2% to 15% the results are not as conclu-
sive. These results show that one-class classifiers could potentially be used as a
solution to the low-default portfolio problem experienced in the credit scoring
domain.

1 Introduction

Financial institutions use quantitative credit scoring models to assist in the decision of
whether or not to grant credit to a credit applicant. The term “credit scoring” is used to
describe the process of determining the likelihood that applicants will default on their
loan repayments [1]. The outcome of this process results in assigning credit applicants
into one of two classes: accept (likely to repay or positive) and reject (likely to default or
negative). Predictive variables extracted from application forms, external data suppliers
and existing own-company records allow credit scoring models to yield an estimate of
probability of default [2]. This decision to accept or reject an applicant for credit is
taken by comparing the estimated probability of default with a suitable threshold [2].
Credit scoring models can be divided into two types: (i) Application scoring - credit
scoring which deals with new applicants and; (ii) Behavioural scoring - credit scoring
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based on managing existing accounts. This study is confined to application scoring.
Credit scoring is used inter-changeably with the term application scoring throughout.

A particular difficulty with building credit scoring models is that the data used to
build models is historical data detailing the performance of customers granted credit in
the past (i.e. did they or did they not default?). However, the vast majority of customers
do not default and so the number of defaulters represented in training sets is typically
very low. Furthermore, when defaults do occur they tend to be cyclical, for example
a recession can result in a cluster of defaults occurring. This leads to the low-default
portfolio problem and means that credit scoring datasets are usually heavily imbalanced.
[3] report that among the seven largest UK banks, 32% of retail exposures secured
by residential properties will suffer from insufficient default data to give a satistically
significant estimate. According to the Council of Mortgage Lenders (CML)3, in the UK
for the second quarter of 2009 there were 11,400 cases of possession, equivalent to
one mortgage in 1,000. Apart from the academic challenges that arise from the low-
default portfolio problem, it is also of considerable practical importance. Even a small
improvement of a fraction of a percent in the accuracy of credit scoring might translate
into significant future saving [1, 4].

Previously [5] reported that with 5% or lower minority class data, one-class clas-
sifiers outperform two-class classifiers. It should be noted that this study used support
vector-based classifiers only and the performance of the one-class classifiers on real
world datasets was optimised using training data from both classes. A similiar study
by the same authors [6] found that one-class classifiers trained on one-class only are
prefered with 1% or lower minority class data. [7] use two high dimensional real world
datasets and reported that with approximately 3% or lower minority class data, the per-
formance of one-class support vector machine (SVM) [8] surpassed that of the two-class
SVM [9].

In this paper we will compare one-class classification (OCC) methods with more
common two-class classification approaches on three credit scoring datasets over a
range of class imbalance ratios. The purpose of this study is to determine at what level
of class imbalance the performance of OCC methods outrank the performance of two-
class approaches. To the best of our knowledge, no attempt has been made to examine
one-class classifiers as a solution to the low-default portfolio problem. The remainder of
this paper is organised as follows: a short overview of credit scoring is given in Section
2, followed by a discussion of classification techniques in Section 3. Section 4 describes
the classification performance criteria of the experiments and then evaluates classifier
performance. Section 5 presents conclusions and future work.

2 Credit Scoring

The recent subprime mortgage crisis in the USA has caused some companies the loss
of billions of dollars due to customers’ defaults. Effective credit risk assessment is now

3 The Council of Mortgage Lenders is an industry body whose members are banks, building
societies and other lenders who together undertake around 98% of all residential mortgage
lending in the UK. There are 11.1 million mortgages in the UK, with loans worth over £1.2
trillion.
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recognised as a crucial factor to gaining a competitive advantage which can help finan-
cial institutions to grant credit to creditworthy customers and reject non-creditworthy
customers. According to the CML, UK gross mortgage lending for the second quarter
of 2009 was estimated to total £33,902 million. It is therefore legitimate to conclude
that a small improvement in the accuracy of credit scoring has positive financial conse-
quences. Another practical consideration is Basel II regulation [10]. Under this accord,
using the internal ratings based (IRB) approach, financial institutions calculate their
own risk parameters (e.g. probability of default) in order to calculate risk weighted as-
sets. The risk weighted assets help determine the minimum capital requirements that
the banks are required to retain, and act as a buffer against unexpected losses. Using the
IRB approach, financial institutions can create credit scoring models more customised
to certain risk sensitivities. Such legislation serves to increase the importance of credit
scoring whilst creating new challenges.

Many classification techniques have been used for credit scoring [11], some of
which include traditional statistical methods such as logistic regression; non-parametric
statistical methods, such as k-nearest neighbour; and sophisticated methods such as neu-
ral networks.

3 Classification Techniques

This section lists the classifiers used in our study. The following two-class classifiers
were assessed: (i) Logistic regression4; (ii) Naı̈ve Bayes [13]4; (iii) Artificial neural
network using a multilayer perceptron (MLP)5; and (iv) Support Vector Machines [9]
as they have been shown to perform well when applied to credit scoring problems in the
past [11]. For all of the two-class classifiers a cut-off score is applied to the classifier
output score, data instances above the cut-off are assigned to the positive class and those
with scores below to the negative class.

3.1 One Class Classification

One-class classifiers are constructed to recognise a target class from all other classes.
Other synonymous terms used in the literature also include: outlier detection [14], nov-
elty detection [15], concept learning [16] and data description [17]. One-class classi-
fiers can be categorised into three types:(i) density-based; (ii) boundary-based and; (iii)
reconstruction-based. In all three types, two distinct elements can be identified. The
first element is a measure for the distance d(z) or resemblance p(z) of an object z to the
target class. The second element is a user-defined threshold, θ, on this distance or resem-
blance. New objects are accepted when the distance to the target class is less than the
value of θ or when the resemblance is greater than the value of θ. OCC methods differ in
their definition of p(z) or d(z), and in their optimisation of thresholds with respect to the
training set [18]. A comprehensive review of OCC methods and techniques is available
in [19, 20]. In the current study we select five common OCC techniques: Gaussian and

4 See [12] for further details on the use of this technique in credit scoring
5 See [4] for further details on the use of artificial neural networks in credit scoring
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Naı̈ve Parzen (density-based types), Support Vector Data Description (SVDD) and k-
Nearest Neighbour (k-NN) (boundary-based types), and k-means (reconstruction-based
type).

Gaussian Model [18]: This method assumes that the data is distributed according to
the normal (Gaussian) distribution. The mean and covariance matrix is estimated from
the data, and instances located in the two tails are considered outliers. A user-defined
parameter r can be used to add regularisation to the estimated covariance matrix.

Naı̈ve Parzen [18]: This technique is a simplification of the Parzen density estima-
tor inspired by the Naı̈ve Bayes approach [21]. A Parzen density is estimated for each
separate feature dimension, and the probabilities are multiplied to give the final target
probability [21].

Support Vector Data Description [18, 22]: The SVDD separates the data of inter-
est from different classes by placing a hypersphere around the class of objects that are
represented by the training set from all other possible objects in the object space. The
hypersphere is defined by a centre a and a radius R. The aforementioned threshold, θ,
can be supplied to allow the hypersphere model of the SVDD to reject a fraction of
the training objects, which sufficiently decreases the volume of the hypersphere. The
boundaries of the hypersphere can be made more flexible by introducing kernel func-
tions of user-defined width.

k-NN [18]: k-NN finds the distance of a test object x to its k-th nearest neighbour
in the training set, the distance of this nearest neighbour and its k-th nearest neighbour
in the training set is also found. Based on the quotient between the first and second
distance and an appropriate threshold value, x may either be rejected as being an outlier,
or accepted as being part of the target class.

k-means [18]: k-means clustering is one of the simplest reconstruction methods. In
order to perform k-means clustering for OCC, it is assumed that the data is clustered
and can be described by a set of prototype vectors. To classify a new object, its distance
to all the prototypes is measured and averaged. This is used to score the extent to which
it is an outlier.

3.2 Evaluation Experiment

The aim of the evaluation is to compare the performance of one-class classifiers with
two-class classifiers and assess whether one-class classifiers can successfully identify
defaulters, and at what level of class imbalance their performance is superior to that of
the two-class classifiers. This section describes the datasets, and the evaluation mea-
sures and methodology. Finally, experimental results are presented and discussed.

3.3 Datasets

Three real-world datasets are used in our experiments: the Australian6, Japanese7 and
German8 credit datasets, all of which are available from the UCI Repository of Ma-
chine Learning Databases [23]. Table 1 describes the characteristics of the datasets.

6 http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)
7 http://mlr.cs.umass.edu/ml/datasets/Japanese+Credit+Screening
8 http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
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The class ratio of accept instances to reject instances is included. The Australian credit
dataset consists of 307 instances of creditworthy applicants and 383 instances of non-
creditworthy applicants. The Japanese dataset describes credit card application approval.
After deleting the data with missing attribute values, there are 653 instances, with 357
instances granted credit and 296 instances refused credit. The German credit scoring
data is imbalanced to a greater extent, consisting of 700 creditworthy applicants and
300 non-creditworthy applicants. In all cases the variables used describe important fea-
tures of a customer such as credit history, personal information and details of the credit
requested. The numeric features of all three datasets are normalised.

Table 1. Characteristics of the datasets used in the experimentation

Dataset # Classes Accept:Reject # Nominal features # Numeric features # Boolean features

Australian 2 45:55 6 8 0
Japanese 2 55:45 6 6 3
German 2 70:30 7 13 0

3.4 Assessment Measures

To assess the classification results we count the number of true positive (TP), true neg-
ative (TN), false positive (FP) (classified as positive, but actually negative) and false
negative (FN) (classified as negative, but actually positive) examples in a given test set.
We use Sensitivity, Specificity, as used by [11], and the harmonic mean of both of these
scores to measure the classification quality of all classifiers used in our study. Sensitiv-
ity is calculated as: T P

T P+FN and measures the proportion of positive (accept) examples
that are predicted to be positive. Specificity, calculated as: T N

T N+FP , measures the propor-
tion of negative (reject) examples that are predicted to be negative. As per [24], in order
to provide a suitable composite measure of sensitivity and specificity we employ the
harmonic mean, which corresponds to a particular adaptation of the F-measure [25].

Harmonic Mean =
2 ∗ Sensitivity ∗ Specificity

Sensitivity + Specificity
(1)

3.5 Experimental Procedure

Each dataset was divided into training, validation and testing data by stratified random
sampling, in which there were 55% training, 15% validation and 30% testing examples
per dataset. The process of training, validation and testing was conducted 10 times, the
average results are reported. Initially for all three datasets the two-class classifiers were
trained on the training data, the validation data was used to tune the model and even-
tually their performance was assessed on the test data. The sensitivity, specificity and
harmonic mean were recorded. Then for all three datasets, the number of negative in-
stances in the training dataset was randomly reduced by 10%. It is necessary to balance
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the datasets in order to avoid disproportionate outputs to the majority class. To achieve
this random oversampling was performed on the remaining data instances of the nega-
tive class. The validation and test sets remained unchanged throughout this process. The
classifiers were retrained and reassessed on the test dataset. This process was repeated
until the number of negative examples in the training set reached zero.

While simplistic, random oversampling has performed well in empirical studies
(e.g. [26]) even when compared to other, more complicated oversampling methods [27].
As oversampling only replicates existing data instances, it can be argued that it does not
add any actual data to the dataset [5, 27]. Figure 1 illustrates the effect of not oversam-
pling the minority class on the Australian dataset. Without balancing the training set,
the performance of the two-class classifiers (particularly the SVMs) deteriorates. The
Naı̈ve Bayes classifier trained on the Australian and Japanese dataset proved to be an
exception. Oversampling actually weakened the performance of the Naı̈ve Bayes clas-
sifier to a small degree, as illustrated in Figure 1. After training, there is a possibility
that the Naı̈ve Bayes classifier fits the data well, but performs poorly at predicting new
values. For example, it may be strongly affected by extreme attribute values and other
artifacts of the training dataset.

Fig. 1. Australian Harmonic Mean: % of available Training Instances. A comparison of oversam-
pling (OS) and no oversampling (N).

The Data Description toolbox9 is an open source Matlab library of one-class classi-
fiers and was used to implement the OCC techniques used in this study. When training
the one-class classifiers only data from one class was employed, the positive class (cred-
itworthy applicants). The validation data (consisting of two-classes) was used to tune
the models and their performance was assessed on the test data. For the one-class k-
means classifier the number of clusters was fixed at 10. For the one-class k-NN classifier
the number of neighbours was set to 10. This figure was selected in keeping with [11],

9 (http://ict.ewi.tudelft.nl/∼davidt/dd tools.html)
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who used 10-NN two-class classifier. The one-class Naı̈ve Parzen classifier required no
parameter tuning. The SVDD used the Gaussian kernel (default setting).

All the two-class classifiers were implemented using Weka [28] release 3.6.0. The
Naı̈ve Bayes classifier used a supervised discretisation algorithm to convert numeric
attributes to nominal attributes. The logistic regression classifier was optimised for
the ridge value in the log-likelihood. The neural net was implemented using a multi-
layer perceptron (MLP). The number of hidden neurons was defined as (#attributes +

classes)/2. The MLP was optimised using the rate of learning. The SVM was imple-
mented using Lib-SVM [29] using a radial basis function (RBF) kernel and adopted a
grid search mechanism to tune the width γ of the RBF kernel and the cost parameter C.
Results for a SVM using a linear kernel are also included.

4 Results and discussion

Table 2 displays the performance of the the two-class classifiers across the datasets. The
classifiers have been trained on data containing: all of the available defaulters (100%);
one-fifth of the available defaulters (20%) and so on until none of the defaulters are
used (0%). The deterioration in the two-class classifiers is largely due to their inabil-
ity to correctly identify the increasingly rare defaulters. Eventually, in almost all cases,
their sensitivity rate hits 100% because in the absence of defaulters they identify all
test set instances as non-defaulters. Of the two-class classifiers, based on the harmonic

Table 2. Sensitivity, specificity and harmonic mean (HM) using the Logistic Regression (LR),
Naı̈ve Bayes (NB), MLP, SVM RBF kernel (SVM-R), and SVM Linear kernel (SVM-L) classi-
fiers. Best performing HM for each dataset is underlined.

100% 20% 10% 5% 0%

Dataset Classifier Sens Spec HM Sens Spec HM Sens Spec HM Sens Spec HM Sens Spec HM

LR 83.88 88.21 85.93 84.05 82.70 83.12 87.25 75.76 80.91 86.57 66.48 75.02 100 0 0

NB 81.28 92.26 86.38 84.96 83.34 84.00 89.73 65.03 75.20 95.47 27.57 42.02 99.38 1.59 3.09

Aus MLP 81.10 89.61 85.05 90.41 83.43 86.62 90.71 79.15 84.25 90.18 67.64 75.97 100 0 0

SVM-R 83.27 87.13 85.04 85.84 77.99 81.45 83.47 72.92 77.44 85.58 68.22 75.33 100 0 0

SVM-L 91.27 85.18 88.04 90.28 85.66 87.78 88.48 81.47 84.62 89.06 70.94 78.07 100 0 0

LR 84.99 82.72 83.69 88.26 74.08 80.37 89.42 69.77 78.28 90.57 65.02 75.38 100 0 0

NB 89.49 79.75 84.23 91.58 71.54 80.16 95.68 44.14 60.13 99.71 6.00 10.99 100 0.70 1.37

Jap MLP 85.26 87.25 86.07 89.17 75.78 81.57 92.09 61.95 72.84 97.24 37.46 52.96 100 0 0

SVM-R 84.42 87.95 85.99 87.59 83.38 85.13 88.31 72.10 78.96 88.42 63.10 72.90 100 0 0

SVM-L 81.63 93.23 86.99 85.76 83.74 84.45 88.38 74.49 80.27 90.32 58.57 70.17 100 0 0

LR 72.98 69.18 70.93 78.39 53.99 63.59 81.54 47.07 59.31 88.39 27.59 41.29 100 0 0

NB 75.12 66.19 70.22 85.38 37.16 50.50 96.09 9.61 17.18 99.07 2.13 4.04 99.95 0.31 0.62

Ger MLP 75.73 57.75 64.22 84.77 34.52 46.62 91.10 24.12 37.58 84.70 24.40 22.79 100 0 0

SVM-R 73.32 68.11 70.43 74.21 56.65 63.83 77.89 44.94 54.36 82.27 30.85 43.02 100 0 0

SVM-L 72.62 69.46 70.89 71.84 54.17 61.28 76.20 47.01 57.30 85.21 27.54 39.43 100 0 0
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mean across the range of all class imbalances, there is very little to distinguish the per-
formance of logistic regression, SVM with RBF kernel and SVM with linear kernel, as
exemplified in Table 2. Overall, the SVM linear kernel performs fractionally better than
logistic regression followed closely by the SVM with RBF kernel. However it should be
noted that this is a generalised logistic regression model and financial institutions typ-
ically have at their disposal methods to increase and extend its accuracy and flexibility
[30]. The Naı̈ve Bayes performs worst of the two-class classifiers.

Table 3 displays the results of the selected one-class classifiers. Overall, the Gaus-
sian and Naı̈ve Parzen models appear to perform best. Both of these models are density-
based methods. This approach works very well when a good probability model is as-
sumed and the sample size is sufficiently large [18]. Excluding the Gaussian one-class

Table 3. Sensitivity, specificity and harmonic mean (HM), along with standard deviation, for the
one-class classifiers. Best performing HM for each dataset is underlined.

Australian Japanese German

Classifier Sens Spec HM Sens Spec HM Sens Spec HM

Gaussian 74.43 82.43 77.77 (2.97) 74.03 76.46 74.77 (3.03) 57.05 59.38 56.76 (3.15)

Naı̈ve Parzen 59.02 71.10 63.52 (3.81) 77.26 74.39 75.48 (1.81) 58.90 50.44 53.08 (4.24)

k-NN(10) 66.53 68.25 65.78 (3.14) 71.33 63.66 66.73 (3.35) 59.38 54.45 56.03 (2.13)

k-means(10) 67.24 66.45 64.56 (3.86) 66.13 64.88 64.23 (2.60) 61.69 53.54 56.54 (2.43)

SVDD 60.85 70.87 65.17 (3.82) 67.48 60.62 61.78 (4.75) 65.72 47.27 53.69 (3.57)

classifier, the performance of the one-class classifiers on the Australian dataset is rather
ordinary. There are a number of factors that might contribute to this. Two customers
with similar characteristics can easily belong to different classes [31]. Also, credit scor-
ing datasets are typically very noisy [11], particularly the Australian dataset [32].

Figures 2, 3 and 4 display the test set harmonic mean of all 10 classifiers for each
of the datasets. The rate of training set transformation, in terms of the number of pos-
itive and negative instances, is displayed as a percentage bar beneath each harmonic
mean graph. It is evident from Figures 2, 3 and 4 that initially the two-class classifiers
outperform the one-class classifiers. However, as the number of defaulters are gradu-
ally removed from the training sets the performance of the two-class classifiers begins
to deteriorate. As the one-class classifiers are trained using only non-defaulters their
performance remains constant throughout.

The crossover in performance between the best one-class classifier and worst two-
class classifier on the Australian test set occurs when the training set is approximately
14% minority class data. For the Japanese test set, the crossover between the best one-
class classifier and worst two-class classifier occurs when the training set is approx-
imately 11% minority class data. The crossover between the best one-class classifier
and worst two-class classifier on the German test set occurs when the training set is
approximately 20% minority class data. Based on these figures it would appear that
two-class classifiers outperform one-class classifiers with 15% or more of the minority
class data.
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With the Australian test set, the crossover in performance between the best two-
class classifier and the worst one-class classifier occurs when the training set is approx-
imately 2% minority class data. For the Japanese test set, this crossover occurs between
the best two-class classifier and the worst one-class classifier occurs when the training
set is approximately 2% of minority class data. As the German dataset begins with a
positive:negative ratio of 70:30, the harmonic mean of the two-class classifiers declines
quickest of all three datasets. The crossover in performance between the best two-class
classifier and worst one-class classifier occurs when the training set is approximately
3% of minority class data. These figures indicate that one-class classifiers outperform
two-class classifiers with 2% of minority class data. This suggests that two-class classi-
fication methods are relatively robust to imbalanced data and that OCC methods should
only be considered in the most extreme cases.

With minority class data of between 2% and 15% the distinction between OCC and
two-class classification methods is less clear cut. However, the crossover between the
best one-class classifier and best two-class classifier on the Australian test set occurs
when the training set is approximately 5% minority class data. For the Japanese test set,
the crossover between the best one-class classifier and best two-class classifier occurs
when the training set is approximately 4% minority class data. The crossover between
the best one-class classifier and best two-class classifier on the German test set occurs
when the training set is 3% minority class data. Therefore with approximately 4% or
less minority class data, one-class classifiers, under certain conditions, can be consid-
ered ahead of two-class classifiers.

5 Conclusions

This study asked at what level of class imbalance the performance of OCC techniques
outperform two-class classification techniques for credit scoring problems. Class im-
balance is a particularly important issue in credit scoring applications due to the low-
default portfolio problem. The experiments were conducted using three real-world credit
scoring datasets. It was found that, initially, the two-class classifiers outperform the
one-class classifiers. However as the the rate of class imbalance increases and the per-
formance of the two-class classifiers falls off.

With 2% or lower of minority (reject or negative) class data, one-class classifiers are
more accurate than two-class classifiers. Conversely, with 15% or higher minority class
data, two-class classifiers clearly outperform one-class classifiers. With an imbalance
between 2% and 15% of minority class data, the results are not as conclusive, how-
ever with 4% or lower of minority class data, certain one-class classifiers outperform
two-class classifiers. Therefore we can conclude that one-class classifiers offer a viable
solution to the low-default portfolio problem when the class imbalance is severe, and
so warrant further research as a solution to the low-default portfolio problem.

For the two-class classifiers, the harmonic mean of the sensitivity and specificity
was calculated assuming a default cut-off value on the classifier’s output. This may,
however, not be the most appropriate threshold to use for more skewed datasets as
some classifiers have a tendency to always predict the majority class yielding 100%
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sensitivity and 0% specificity. However, by applying random oversampling this concern
was alleviated to some degree.

In a future experiment we will use a validation set to determine the optimal cut-off

threshold for each classifier at each level of class imbalance. A two-dimensional graph
called the receiver operating characteristic (ROC) curve is commonly used, particularly
with class imbalance, to present the results of two-class classifiers. However, a debate
exists on the appropriate application of ROC curves [33]. When a large skew in the
class distribution occurs, ROC curves sometimes provide an overly optimistic view of
an algorithm’s performance [34]. Furthermore, ROC curves can be unreliable in the case
of severe class imbalance [35]. Cost curves [36] could also be used and a comparison
between the suitability of both measures should be discussed.

Despite the absence of defaulters from the training set, one-class classifiers proved
successful at identifying defaulters. Conversely, having been trained exclusively on non-
defaulters, one-class classifiers performance at identifying the creditworthy cases was
rather unremarkable. This leads to an obvious direction of future research: investigating
the performance of classifier ensembles consisting of a combination of several one-class
and two-class classifiers whose classification decisions are computed based on various
voting schemes.

Finally, there are many other factors that influence the low-default portfolio prob-
lem, such as the size of the data, data fragmentation and the complexity of the inputs
to name a few [37, 38]. The low-default portfolio problem needs to be analysed with
respect to them.
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