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Abstract 

 

Salmon calcitonin (sCT) was conjugated via cysteine-1 to novel combed-shaped end-

functionalised poly(PEG) methyl ether methacrylate) (sCT-P) comb-shaped polymers, to 

yield conjugates of total molecular weights (MW) inclusive of sCT:  6.5, 9.5, 23 and 40 

kDa. The conjugates were characterised by HPLC and their in vitro and in vivo 

bioactivity was measured by cAMP assay on human T47D cells and following 

intravenous (i.v.) injection to rats, respectively. Stability against endopeptidases, rat 

serum and liver homogenates was assessed.  There were linear and exponential 

relationships between conjugate MW with potency and efficacy respectively, however the 

largest MW conjugate still retained 70% of Emax and and an EC50 of 3.7 nM.  In vivo, 

while free sCT and the conjugates reduced serum [calcium] to a maximum of 20-30 % in 

240 min, the half life (T½) was increased and area under the curve (AUC) was extended 

in proportion to conjugate MW.  Likewise, the polymer conferred protection on sCT 

against attack by trypsin, chymotrypsin, elastase, rat serum and liver homogenates, with 

the best protection afforded by sCT-P (40 kDa). Mathematical modelling accurately 

predicted the MW relationships to in vitro efficacy, potency, in vivo PK and enzymatic 

stability.  With a T½ of 8 hr, the 40 kDa MW comb-shaped PEG conjugate of sCT may 

have potential as a long-acting injectable formulation.  

 

 

Keywords: salmon calcitonin, PEGylation, conjugated peptides, osteoporosis, 

pharmacokinetic modelling, comb-shaped polymers 
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1. Introduction 

Inadequate delivery is a barrier to the effective administration of many promising 

biotech molecules [1]. Parenterally-administered proteins and peptides tend to be either 

rapidly cleared from circulation by the reticuloendothelial system or metabolised by 

serum and liver peptidases leading to loss of biological activity. Oral delivery is even 

more problematic than the parenteral route, as peptide and protein-based molecules are 

metabolised by serine proteases, degraded at varying intestinal pH values, and have poor 

small intestinal epithelial permeability (i.e. typical Class III agents in the 

Biopharmaceutical Classification System)  [2]. A number of strategies have been devised 

to improve the pharmacokinetics (PK) for parenterally-administered proteins and some 

small molecules. Otherwise multiple injections are needed, which reduce compliance and 

efficacy. One of the most successful commercial approaches has been the covalent 

attachment of poly (ethylene glycol), i.e. PEGylation [3, 4]. The improved PK is largely 

attributed to the increased molecular size conferred by PEG on the conjugate, thereby 

masking the protein surface from proteolytic attack, decreasing recognition by 

phagocytes of the RES, and reducing renal glomerular filtration [5]. Examples of 

marketed long-acting injected PEGylated biopharmaceuticals are the anti-VEGF aptamer, 

Pegaptanib (Macugen®, OSI Pharmaceuticals, USA), for treatment of wet macular 

degeneration, and also Pegfilgrastim  (Neulasta®, Amgen Ltd, USA), granulocyte-

stimulating colony factor (G-CSF) for treatment of  chemotherapy-induced neutropenia.  

In this study, sCT was used to further examine a novel type of comb-shaped 

PEGylation. sCT (molecular weight (MW) 3432 Da) is a 50 times more potent analogue 

of human CT, a small 32 amino acid peptide secreted by the C cells of thyroid gland [6]. 
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The primary structure of sCT is characterised by a disulfide bridge between two cysteine 

residues at positions 1 and 7 and a proline amide moiety at the C terminus; it also 

displays an α-helix and β-sheet, but has no tertiary structure. The main physiological role 

of CT is control of serum calcium levels in conjunction with parathyroid hormone 

through actions on the intestine, kidneys and bone. In bone, sCT acts primarily by 

inhibiting osteoclast cell-mediated bone resorption, although recent studies suggest that it 

may have an independent anabolic effect on chrondrocytes [7]. It is licenced to treat 

hypercalcaemia, Paget’s disease and as a second-line treatment for post-menopausal 

osteoporosis. Although its analgesic effects are well known, there is renewed commercial 

interest in the peptide due to its potential anti-inflammatory actions in osteoarthritis [8].   

It is administered by subcutaneous or intra-muscular injections, or more commonly via 

the nasal route [9]. Due to its short terminal half-life of approximately 60 min following 

parenteral administration, injections up to twice a day can be required and patient 

compliance tends to be low. Nasal delivery of calcitonin however, can lead to irritation of 

the nasal mucosa, blocked sinuses and rhinitis in some subjects [10]. Although preferable 

to nasal, successful oral formulations of sCT have been elusive and none have yet been 

marketed [11].  Similarly, longer-acting injections of sCT would have an obvious 

advantage over the current injected systemic formulations for osteoporosis and may have 

additional application in local intra-articular delivery for osteoarthritis.  

We recently demonstrated specific cysteine-1 conjugation of sCT to a combed-

shaped end-functionalised poly(PEG- methyl ether methacrylate) comb-shaped polymer, 

(sCT-P) [12]. The 6.5 kDa MW conjugate had increased proteolytic stability compared to 

both free sCT and a linear PEG version of similar total MW. In addition to lengthening 
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the half-life of sCT following injection to rats, in vitro and in vivo efficacy and potency 

was retained by the conjugate compared to free sCT and the linear PEGylated conjugate 

[12]. The aim of the present study was to evaluate the effects of increasing the MW of the 

comb-shaped polymer conjugated onto sCT on both in vitro bioactivity and in vivo PK 

following i.v. injection to rats. Whilst increased polymer MW generally improves peptide 

stability and PK parameters, it may interfere with biological functions at the receptor 

level due to steric hindrance [13]. Therefore, an appropriate polymer size should be 

selected so as to balance pharmacodynamics (PD) and PK. We therefore synthesized a 

range of sCT-P conjugates of different molecular weights attached to the methacrylate 

group via cysteine-1 and investigated in vitro biological activity, stability and 

cytotoxicity.  Since PK/PD modelling is an important tool in the design of optimally 

PEGylated biomolecules, we also assessed PK and PD in rats following i.v. delivery.  A 

two compartment PK model was used to model free sCT kinetics and a first order process 

was able to model the release of free sCT from the conjugates. We then compared the 

release rate constants (krel) between polymers and ascertained the effects of MW. The 

data show clear relationships between overall conjugate MW, in vitro efficacy and the 

capacity for protection against enzymatic metabolism. 
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2. Materials and Methods 

 

2.1. Materials 

sCT was purchased from PolyPeptide Laboratories (Denmark). The Parameter
TM

 

cAMP (EIA) kit was obtained from R&D systems, UK, and the sCT (EIA) kit was 

purchased from Bachem (UK).  mPEG aldehyde (Mn = 5.0 kDa) was purchased from 

Nektar Therapeutics (CA, USA) and Na(CN)BH3 was from Sigma Aldrich, UK.  Tissue 

culture reagents were obtained from BioSciences, Ireland.  All other chemicals used were 

of reagent grade. 

 

2.2. Synthesis of sCT- poly(poly(ethylene glycol) methyl ether methacrylate) (sCT-P) 

conjugates 

Poly(poly(ethylene glycol) methyl ether methacrylate) of different molecular 

weights were prepared by Transition Metal-Mediated Living Radical Polymerization 

(TMM-LRP) [14, 15]. Each polymer was conjugated to the N-terminal cys-1 at of sCT by 

reductive amination [16]. To make sCT-P (6.5 kDa), a solution of sCT (100 mg, 0.029 

mmol) in 100mM acetate buffer pH 5.0 (30 mL) was added to a solution of 6.5 kDa 

aldehyde-functionalised poly(poly(ethylene glycol) methyl ether methacrylate) (1.91 g, 

0.29mmol), previously dissolved in 30 mL of the same buffer. Aqueous 25 mM 

NaCNBH3 (3.0 mL, 0.075mmol) was then added and the resulting solution was left 

stirring at ambient temperature and monitored by RP-HPLC, taking 150 μL aliquots of 

the reaction mixture and dilute them in 1.35 mL of mobile phase A (90 % HPLC grade 

water, 10 % MeCN and 0.05 % TFA) prior to analysis.  The final conjugates were then 

purified by cationic ion-exchange fast protein liquid chromatography (IE-FPLC) using a 
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gradient of NaCl in 20 mM aqueous sodium acetate (pH 4.0). The MW of the sCT-P 

conjugates were:  6.5, 9.5, 23 and 40 kDa, each inclusive of the sCT (3.4 kDa) 

component.  

 

2.3. Reverse Phase HPLC analysis  

Characterization of sCT-P conjugates of differing MW was monitored by reverse 

phase (RP) HPLC. Samples were analyzed with a Varian 920 HPLC using a Luna 5µ 

C18(2) column 250 × 4.6 mm (Phenomenex, UK). Gradient elution was carried out at a 

flow rate of 1.0 mL/min, with a mobile phase A containing: 99.9% H20 and 0.1% tri-

fluoroacetic acid (TFA), and a mobile phase B, containing: 99.9% acetonitrile and 0.1% 

TFA. The gradient sequence was: 20-35% B from 0-10 min, 35-37% B from 10-20 min 

and 37-20% B from 20-25 min.  Samples were monitored at a UV absorbance of 215 nm 

and 280 nm. 

 

2.4. MW analysis of sCT-P conjugates 

The sCT-P (6.5 kDa) conjugate were  analyzed  by matrix assisted laser 

desorption ionization-time of flight mass spectrometry (MALDI-TOF MS, Bruker 

UltraFlex III MALDI-TOF mass spectrometer) and size-exclusion chromatography 

(SEC)-HPLC.  SEC-HPLC was carried out on the other conjugates (9.5, 23, 40 kDa) 

using a BioSep-SEC-S-2000 and S-3000 columns 300 × 7.8 mm (Phenomenex, UK). 

Samples were eluted with 50 mM PO4 pH 6.8 at a flow rate of 1 mL/min, and monitored 

at a UV absorbance of 215 nm and 280 nm. MALDI-TOF MS was not suitable for these 
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larger MW samples.  The integrity and purity of the derivatives were monitored using 

RP-HPLC (Section 2.3).  

 

2.5. Identification of the PEGylation site of sCT on PolyPEG® derivatives     

Identification of the attachment site of poly(poly(ethylene glycol) methyl ether 

methacrylate)  to cys-1 of sCT was confirmed by selective tryptic digestion [17]. Briefly, 

50-200 µM of sCT-P was digested using trypsin (0.5 µM) in ammonium bicarbonate 

buffer (0.05 M) incubated at 37°C for a minimum of 12 hr. The reaction was stopped by 

addition of 5 % acetic acid.  The trypsin-digested samples were analyzed using RP-HPLC 

and MALDI-TOF MS.  

 

2.6. In vitro bioactivity: intracellular cAMP stimulation in human T47D cells 

The capacity of sCT-P conjugates to increase intracellular cAMP was assessed in 

by an established method [18]. Briefly, T47D human breast cancer cells expressing 

calcitonin receptors were maintained in RPMI-1640 culture medium containing 1 % 

penicillin–streptomycin, 10 % fetal bovine serum, and insulin (0.2 IU/mL). Cells were 

seeded on 24 well plates at an initial density of 1.0 × 10
6
 cells/well and incubated in 95% 

air and 5% CO2 at 37 °C for 24 hr. Media was replaced with serum-free media and 

incubated for a further 24 hr.  After washing with HBSS, cells were pre-incubated with 

the serum free medium supplemented with the phosphodiesterase inhibitor 3-isobutyl-1-

methyl-xanthine (IBMX, 0.2mM) at 37 °C for 30 min. The cells were then incubated with 

sCT-P conjugates for 15 min. The adenylate cyclase activator, forskolin (10 µM), was 

used as a positive control. After removing the media, the intracellular cAMP was 
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extracted from the cells by cell lysis and measured by ELISA. Results were analyzed 

using the R Statistical Language [19] and represented as an E-max model. 

 

2.7. Stability studies: intestinal enzyme metabolism 

sCT-P conjugates were incubated with intestinal enzymes in sodium acetate (50 

mM) transport buffer at a pH 4.5. It also contained TPCK (N-p-tosyl-Lphenylalanine 

chloromethyl ketone)-treated trypsin (0.5 μM), TLCK (1-chloro-3-tosylamido-7-amino-

2-heptanone)-treated chymotrypsin (0.1 μM) and elastase (0.48 μM). Enzymes and 

substrates were incubated separately at 37 °C for 15 min, before co-incubation. Samples 

were withdrawn at 0, 1, 5, 10, 15, 20, 30 and 60 min. All samples were analyzed both for 

the capacity to induce cAMP in T47D cells and for structural stability by RP-HPLC [12]. 

Rate constants and half lives for sCT-P conjugates were calculated by assuming first 

order kinetics. 

 

2.8. Stability studies: rat liver homogenates and serum 

A fresh liver (7.5 g), harvested from a euthanized Wistar female rat (240 g) was 

soaked in ice cold saline and homogenized in 10mM PBS at pH 7.4. The mixture was 

centrifuged at 2000 rpm at 4°C for 2 min, and the supernatant was collected. Rat serum 

was collected by centrifugation (8500 rpm, 15 min) at 4°C. Protein concentrations were 

measured and adjusted to the final bovine serum albumen (BSA) equivalent concentration 

of 20mg in 10mM PBS (pH 7.4).  After 15 min equilibration at 37°C, liver homogenates 

or serum were then co-incubated with sCT-P conjugates.  Samples were taken at 0, 1, 5, 
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10, 15, 20, 30 and 60 min when the reaction was stopped.  All samples were analyzed for 

bioactivity on T47D cells. 

 

2.9. Lactate dehydrogenase (LDH) release and transepithelial electrical resistance 

(TEER) measurements in Caco-2  monolayers 

Caco-2 cells were cultured as filter-grown monolayers according to previous 

methods [20].  At confluence, Caco-2 cells were seeded at a density 5 × 10
5
 cells/well on 

polycarbonate Transwell® inserts (Costar catalogue # 3401) and grown in a humidified 

37°C incubator with 5 % CO2 in air.  Adequate barrier formation of monolayers was 

tested by measuring the TEER of monolayers before experiments using an EndOhm® 

electrode system (World Precision Instruments, UK) with background correction made 

for unseeded filters. Monolayers were rinsed with phenol-red-free HEPES-buffered-

DMEM medium and allowed to equilibrate at 37°C for 60 min. sCT and sCT-P 

conjugates were added to the apical side of monolayers at a concentration of 1 μM.  

Medium and SDS (0.1 %) were used negative and positive controls respectively. Samples 

were taken from the apical side at different time points for 120 min and assayed for LDH 

release using an ELISA microplate reader (Tecan SpectraFlour Plus®). The absorbance 

was measured at 450 nm, with the reference absorbance at 620 nm. Cell viability was 

expressed as the percentage of absorbance of test compounds compared with that of cells 

incubated with media alone. TEER across confluent monolayers was assessed as an 

additional surrogate of cytotoxicity in the presence and absence of polymers [20]. 
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2.10. Hypocalcaemia and PK of sCT-P conjugates in rats  

7-8 week-old male Wistar rats (200-300g) were anesthetized using intra-

peritoneal injections of ketamine (75 mg/kg) and xylazine (10mg/kg). Rats were injected 

via the tail vein at a dose of 40μg/kg (i.e. 200 IU/mL/kg) sCT for each formulation in 

triplicate unless stated.  0.2mL blood samples were obtained via cardiac puncture using a 

26G needle fitted with a 1mL heparinised syringe before administration and then 

typically at 15, 30, 60, 120, 180, 240, 360 and 480 min after injection.  Serum samples 

were analyzed for calcium using a Randox Laboratory clinical chemistry colorimetric 

analyzer at a wavelength of 612 nm [12]. sCT concentrations in serum were detected by 

using an EIA kit (Bachem, UK), with a limit of detection of 0.02-25ng/mg.   PK 

parameters including AUC and terminal T½ were calculated using WinNonLin® 5.2 

software (Pharsight Corp., USA). All animal experimental procedures in the study 

adhered to the Principles of the Laboratory Animal Care (NIH Publication# 85–23, 

revised in 1985) and were performed in compliance with the Irish Department of Health 

and Children animal licence number, B100/3709, following approval by the University 

College Dublin Animal Research Ethics Sub-committee.  

 

2.11. Two compartmental model analysis of sCT in vivo data 

A two compartmental model considering serum (central) and peripheral pools 

(Fig. 1A) was used to describe the PK of serum sCT following i.v. injection to rats [21, 

22]. Considering first order for sCT movement, the resulting system of ordinary 

differential equations (ODE) defining the Model I were:  

 

 dy1/dt =  -k12 y1  +  k 21 y 2  –  k deg y 1       (Eq.1) 
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 dy2/dt =  k12 y1  + k 21 y 2         (Eq. 2) 

 

 

Where k12 and k21 are the first rate transfer constants between compartment 1 and 2 and 

vice versa, and kdeg is the first order degradation constant of sCT in serum [21]. To these 

three unknown parameters, the sCT0, the initial concentration resulting from the i.v 

injection in the serum compartment (y1 @ t=0) was added to accommodate for intra-

subject variation. The initial concentration of sCT in the inner compartment was assumed 

to be zero. Non-linear least squares regression was used to calculate the parameters k12, 

k21, kdeg and sCT0 (sCT in central compartment at time of i.v. injection). 

 

2.12. Two compartmental model analysis of sCT-polymer derivatives in vivo data 

To further model the PK of the sCT-P conjugates, a first order release process of 

sCT from the conjugates to release free sCT to the central compartment was added to 

Model I to yield Model II (Fig. 1B). Assuming first order for all transfers, the system of 

ODE defining Model II is: 

 

 dy1/dt =  -k12 y1  +  k 21 y 2  –  k deg y 1  +  k rel y3  (Eq.3) 

 dy2/dt =   k12 y1  -  k 21 y 2      (Eq.4) 

 dy3/dt =  -krel y3      (Eq. 5) 

 

Where k12 and k21 are the first rate transfer constants between compartment 1 and 2 and 

vice versa, kdeg is the first order degradation constant of free sCT in serum as described in 

Model I, and krel is the first order release constant of sCT from the polymer. To those 4 
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unknown parameters, y3,0 the concentration of conjugated sCT after i.v. injection in the 

polymer compartment 3 (y3 @ t=0) needs to be estimated with possibly a random effect 

to allow for variations in dose levels between subjects. While krel may vary between 

different polymers it could be assumed that the rest of the parameters (y3,0, k12, k21 and 

kdeg) in the model are shared by free salmon calcitonin and any conjugated polymer of 

salmon calcitonin. The estimated parameters from Model I were used in  Model II to 

describe the pharmacokinetics of those conjugates while krel and y3 was estimated for 

each conjugated polymer in order to compare the release constants (krel) between the 

polymers.  

 

2.13. Statistical analysis 

Non-linear regression and nonlinear mixed effect modeling of the ODE models, t-

tests, Tukey-HSD post hoc ANOVA comparison and generation of confidence intervals 

was performed using R Statistical Language [19]. P < 0.05 was the required level to 

denote statistical significance. When using non-linear regression or non-linear mixed-

effects modeling, the natural logarithm transformation of the parameters was estimated 

[21]. 

 

 

 

 

 

3. Results 
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3.1. Characterization of sCT-P conjugates 

Chemical structure, preparation, purification and characterisation of the sCT-

conjugated polymers has been previously published extensively by our group, including 

ion-exchange (IE), reverse-phase HPLC and MALDI-TOF [22, 23]. SEC-HPLC analysis 

confirmed high purity and predicted the molecular weights of all sCT-P comb-shaped 

conjugates (Table 1). Conjugation reactions were monitored over time by RP-HPLC 

where the profile showed a reciprocal relationship between the sCT peak gradually 

disappearing at an approximate elution volume of 17.0 mL and the conjugate peak 

gradually appearing over the same period at an approximate elution volume of 20 mL.  

Fig.2 shows the data for sCT-P (9.5 kDa). sCT-P conjugates were further purified by IE-

FPLC, an example shown for the 6.5 kDa conjugate (Fig.3).  Fractions obtained from 

(IE)-FPLC were then analyzed by SEC-HPLC to evaluate purity (Fig.4, 6.5 kDa 

conjugate). Identification of the attachment site was achieved by analogy as previously 

described [12].  The conjugation site of the purified conjugates was determined and 

confirmed by tryptic digestion followed by RP-HPLC and MALDI-TOF MS analysis of 

the digested fragments (data not shown, but see [12] for data on the sCT-P (6.5 kDa) 

conjugate).  

The intracellular cAMP-generating capacity of the sCT-P conjugates in T47D 

cells were compared to that free sCT. Free sCT and sCT-P conjugates elevated 

intracellular cAMP in a concentration-dependent manner (Fig. 5a). The EC50 and Emax 

values (Table 2) determined for each conjugate were inserted into a global fit model.  

From it, an exponential relationship was obtained for the former (Fig. 5b) and a linear 

relationship was obtained for the latter with respect to MW (Fig. 5c). In sum, the higher 
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the MW of polymer attached to sCT, the higher the potency and the lower the efficacy. 

However, even for the largest MW (sCT-P (40 kDa) conjugate, 72 % of Emax was still 

retained compared to free sCT and the potency was within 1-2 log concentrations.   

 

3.3. Stability of sCT-P conjugates: intestinal enzymes, liver homogenates and serum. 

The stability of sCT conjugates against exposure to specific intestinal enzymes 

was analysed by cAMP responses generated in T47D cells. sCT was rapidly degraded 

within minutes by trypsin, chymotrypsin, elastase and in combination. sCT-P conjugates 

displayed significantly increased resistance to the individual intestinal enzymes and in 

combination, and the higher the MW, the greater the protection (Fig. 6). The largest 

conjugate sCT-P (40 kDa) gave excellent protection to sCT when incubated for 60 min 

with the three individual enzymes alone and in combination. The degradation half life of 

sCT-P (40 kDa) was 11 times longer than that of sCT-P (6.5 kDa) (p<0.005), when all 

three proteolytic enzymes were present. An almost identical pattern was also observed for 

the conjugates in rat liver homogenates and serum (Fig.7). sCT and its conjugates were a 

little more susceptible to enzymes present in the liver compared to the combination of 

serine proteases from the small intestine. A comparison of the apparent first order 

reaction rate constants of each conjugate in the presence of serine proteases, rat blood 

serum and rat liver homogenate as determined by cAMP measurements on T47D cells 

revealed that there was a dependence of reaction rate constant (k) of sCT with different 

MW values of polymer (Fig. 7), and it was confirmed that as the MW of the conjugate 

increased, the degradation rate of sCT decreased.  
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3.4. Cytotoxicity evaluations 

 

Cytotoxicity of sCT-P conjugates was assessed on Caco-2 monolayers by LDH 

assay. sCT conjugates at a concentration of 10 µM showed relatively low levels of 

cytotoxicity following 120 min exposure (Fig.8). Cytotoxicity increased as the MW of 

conjugate was increased.  For sCT-P (6.5 kDa), just 10% of cells were unviable, whereas 

for sCT-P (40 kDa), 28% were unviable. The integrity of monolayers exposed to 

conjugates was also measured by TEER. Similar to the pattern observed for LDH release, 

the TEER decreased as the MW of the conjugates increased. A maximum TEER decrease 

of 28% was also observed for sCT-P (40 kDa) compared to Caco-2 exposed to media 

alone after 120 min. This decrease was reversible upon replacement with drug-free media 

(data not shown).  

 

 

3.5. In vivo hypocalcaemia and PK of sCT-P conjugates in rats 

 

sCT and sCT-P conjugates were assessed for their capacity to induce a 

hypocalcaemic response in rats following i.v. injection. At sCT equivalent doses of 200 

IU/kg, all sCT–P conjugates reduced plasma [calcium] at 240 min. Compared to free 

sCT, the calcium profiles after i.v. injections of all sCT conjugates did not show any 

differences between each other (Table 2). All values were compared to the saline-treated 

controls over the same period, where no changes in serum [calcium] were detected. 

Within the first 4 hours, all sCT-P conjugates were equally bioactive.  The range of serum 

[calcium] reduction was 15-30%, and 30% is typically the maximum reduction we detect 

[12].   

 



17 

 

Using the same blood samples, [sCT] in plasma were also determined by ELISA 

following i.v. administration of sCT and sCT-P conjugates. Free [sCT] was rapidly 

eliminated from the circulation with a T1/2 of 41.8  12.4 min (Table 2). In contrast, the 

sCT-P conjugates demonstrated a much slower elimination rate with a T1/2 values of 632, 

668 and 1426 min for conjugates 6.5, 23 and 40 kDa respectively. The T1/2 values for the 

sCT-P (6.5 kDa) and sCT-P (23 kDa) were not statistically different due to high inter-

animal variations, but their AUC0-480 min values were significantly higher than that of free 

sCT (P < 0.0001, P < 0.05, respectively). Following the administration of sCT-P (40 

kDa), plasma [sCT] was relatively constant, suggesting a sustained release of sCT into 

the blood (Fig. 9). There was therefore a significantly longer T1/2 (1425.6  257.0 min) 

and larger AUC (16703  9491 ng.min/mL) at 8 hours for the sCT-P (40 kDa) conjugate 

compared to sCT and the other conjugates.  

 

 

3.6. PK modelling of sCT following i.v. administration to rats 

The plasma concentration of sCT and sCT-P conjugates after i.v. administration 

was fitted using Model I (free sCT) and Model II (different sCT-P conjugates).  

Model I (Fig.1A) predicted the distribution of [sCT] adequately (Fig.10). There was no 

major variation between subjects that might have affected the process and no introduction 

of a random effect was necessary.  Non-linear regression was used to calculate the kinetic 

parameters, k12, k21 and kdeg (Fig.10). The estimated model parameters had an associated 

error of the order of 10%, which was considered a reasonable precision to predict the fate 

of free sCT in plasma.  



18 

 

The PK parameters estimated using Model I and free sCT were then used in 

Model II (Fig.1A) to predict the PK of sCT-P after i.v. injection. In order to complete the 

model, estimates of the release constant (krel) and the equivalent initial [sCT] in plasma 

after injection (y3,0)  of each individual sCT-P conjugate were built using non-linear 

mixed effect modelling. On top of those two fixed parameters, and in order to account for 

the high inter-subject variability observed in the study, a random effect allowing for inter-

subject variation in the initial concentration of sCT-P was made. While (y3,0) and its 

corresponding random effect are nuisance parameters that depend on the particular study, 

krel provides the generation rate of sCT from sCT-P conjugates, the parameter of interest 

assuming a controlled release of sCT in serum after i.v. injection is desired.  A plot of the 

natural logarithm of the release rate constant of sCT from the polymer is presented.  As 

the conjugated polymer increased in MW, krel decreased (Fig.11), providing a longer 

release period for sCT, which was in agreement with the actual data obtained (Fig 5) 

CHECK right fig . By fitting the data of all polymers to a single model containing a 

dependence of the  ln(krel) with  the polymer MW, an intercept of -5.4±0.3 ln(min
-1

) and a 

slope of -0.053±0.016 ln(min
-1

) / kD were estimated, confirming a significant effect of 

MW on the release constant. This suggests that sCT-P (40 kDa) might potentially be a 

good candidate for a long-lasting depot injection. 
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4. Discussion 

Many technologies and strategies have been developed focusing on improvement 

of characteristics of protein and peptide drugs to gain the desired PK properties used to 

extend the half-life of therapeutics, thus enabling much less frequent administration. 

Some of the technologies include amino acid manipulation to reduce immunogenicity and 

proteolytic instability, genetic fusion to immunoglobulins domains or serum proteins 

(albumin) and post-production modifications and conjugation with natural or synthetic 

polymers. PEGylation, is a well-established, widely used, fast growing technology that 

has an excellent track record in the formulation of safe and efficacious drug products [3]. 

It is considered one of the most successful techniques in that injected PEGylated 

therapeutics are currently used for the treatment of many diseases [25, 26].  Polymer 

conjugation can also confer targeting properties to reach disease sites including tumors 

[27- 29]. Several efficacious and safe PEGylated products have been on the market for 

over 15 years, and ten PEGylated products have been approved to date [30].  

Although PEG is an approved biocompatible polymer, individual components of 

the methacrylate-based PEG, (poly(poly(ethylene glycol) methyl ether methacrylate) are 

neither.  Important components include the methacrylic backbone and the terminal 

aldehyde, and they have previously shown to induce low cytotoxicity to Caco-2 and 

mucous-covered HT29-MTX-E12 intestinal monolayers [12]. While increasing MW of 

the polymer seemed to increase cytotoxicity in Caco- 2 using the LDH and TEER read-

outs, levels were still low. Studies will need to be carried out to examine the fate of 

poly(poly(ethylene glycol) methyl ether methacrylate) and its metabolites in body 

compartments and tissues once the MW is increased, as there is potential for 
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accumulation. This is especially relevant in the current example where the polymer is the 

major component of the conjugate compared to the peptide, and where repeated dosing 

will be necessary. The kidney clearance threshold of protein is estimated at 60 kDa [4].  

Assuming that polymer hydrodynamic volume will almost double the effective molecular 

diameter, similar to branched PEGs [31], sCT-P (40 kDa) will therefore be too large for 

kidney filtration if it is not ultimately metabolized into smaller components.  In theory, 

the PEG teeth should break away from the methacrylate backbone due to esterase action, 

thereby permitting renal filtration and this is the basis of ongoing study.  It is notable that 

while PEG itself has Generally Regarded As Safe (GRAS) status as a “non-active” 

excipient, there are historical reports that it can induce epithelial vacuolisation in rat renal 

cortical tubules following chronic repeated parenteral administration of high doses of 

large MW PEGs [32].   Bolon et al. [33] also showed that increasing the length of a 

20kDa PEG chain, converting it to a branched format or adding extra PEG molecules 

reduced renal vacuolization in mice.  Most evidence however would support the view that 

PEG has such a history of safe use that its conjugation to peptides should not pose any 

particular concern [34], aside perhaps from the relatively unexamined potential for 

immunotoxicology induction following administration in high doses.  An initial 

toxicology study carried out in rats using a commercially available form of the comb-

shaped polymer (PolyPEG®, Warwick Effect Polymers, UK), did not find any evidence 

of vacuolisation in renal epithelia following repeated dosing of up to 200mg to rats [35]. 

While clearly undesirable, there is little evidence to date however that vacuolisation has 

any deleterious effects on renal function. 
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The main drawback associated with peptide and protein PEGylation is the 

potential for reduced biological activity, however, this can be compensated by a longer 

elimination T½ and reduced clearance. A well-cited example is PEGylated interferon α-

2a (Pegasys®, Roche, USA).  The 40 kDa branched PEG conjugate retained only 7% of 

the antiviral activity of the native protein, still displayed improved PK following weekly 

injections in vivo in hepatitis C patients [36, 37].  In contrast, bioactivity analysis from 

the T47D cAMP assay indicated that the potency and efficacy of sCT-P of increasing 

MW compared well to native sCT, with sCT-P (40 kDa) retaining 72% of the maximum 

bioactivity. From the global fit model, a linear and indirect relationship was established 

between efficacy and conjugate MW and there was an exponential and direct dependence 

on EC50 with conjugate MW. It appears therefore that access to the CT receptor has not 

been impeded by conjugation to cysteine-1 and there is no evidence that sCT simply 

dissociates from the polymer in solution [12]. This bioassay is a useful tool to estimate 

efficacy and potency of any polymer conjugated to cAMP-inducing peptides.  

sCT has multiple peptidase cleavage sites and is therefore susceptible to 

proteolytic degradation  in the small intestine. To reduce metabolism, a linear lys-18-

PEG2K-sCT displayed enzymatic stability, reduced systemic clearance and enhanced 

hypocalcaemia following intra-duodenal administration to rats [38]. Another sCT-mPEG 

conjugate with mono- and di- mixtures also had reduced clearance and an extended T1/2 

compared to unmodified sCT [39]. For the sCT-Lys18-PEG conjugates, increased 

proteolytic stability and an extended T1/2 are clearly associated with increased PEG MW 

[40]. sCT-P (6.5 kDa) conjugated to cys-1 was more stable than native sCT and, more 

importantly, than sCT conjugated to linear sCT-PEG (5 kDa) [12].  All sCT comb-shaped 
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conjugates showed substantial resistance to the individual serine proteases, trypsin, 

chymotrypsin and elastase alone and in combination, as well as following exposure to rat 

serum and liver homogenates. Improved stability was observed as the MW of the 

conjugate increased, with sCT-P (40 kDa) providing almost total protection. In our 

assessment of stability, we used in vitro bioactivity analysis as a PD surrogate, since we 

previously showed a very close correlation between the cAMP assay and HPLC analysis, 

with the functional read-out being more sensitive [12].   

Serum [calcium] and [sCT] following i.v. administration of sCT were measured. 

Free sCT and the sCT conjugates induced similar hypocalcaemia and the reductions 

obtained were typical of the maximum achieved following either i.v. administration to 

rats [41] or s.c. administration to mice [42]. The non-linear relationship between calcium 

reduction and sCT concentration indicates a highly complex relationship [22, 43], and 

there is obvious difficulty in screening formulation efficacy when the window of the 

reduction is so narrow. Thus, sCT-induced hypocalcaemia may not be as sensitive as 

measurements of plasma [sCT] and its associated PK. Still, all sCT conjugates were 

bioactive in vivo, thus confirming data the in vitro bioassay. Serum [sCT] decreased 

rapidly following i.v. administration of free sCT and levels were below the detection limit 

after 120 min. The conjugates were, however, detectable up to 8 hr following 

administration and sCT-P (40 kDa) yielded a T½ over 30 times longer than sCT. For 

interferon-α 2a,   plasma concentrations did not peak until 23-26 hr following i.v. 

administration of a PEGylated conjugate of similar MW (43 kDa) as the sCT-P (40 kDa) 

conjugate [44]. It seems that the peak concentration of sCT may occur later than 8 hr 
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following administration of sCT-P (40 kDa), and it may therefore be a good candidate as 

a long lasting depot injection.  

Recently, models of the PK/PD relationship for sCT have described the 

interactions between osteoclasts and osteoblasts [45, 46]. One model was related to 

changes in cellular activities, while other models investigated the mechanism of the 

effects of sCT and parathyroid hormone. Compartmental models have been previously 

used to describe the kinetics of sCT [22], and the present work confirms that the PK of 

free sCT can be well characterized with a two-compartmental model after i.v. injection. 

Free sCT quickly disappears from serum and the kinetics allow simple predictive 

modelling of its removal by degradation. From this, we further modelled release of sCT 

from conjugates, assuming a first order release mechanism. Simple equations allowed 

estimation of the parameter of physiological relevance in releasing sCT from sCT-P,(i.e. 

krel), and allowed comparison between the different MW conjugates. The decrease in krel 

in the presence of comb-shaped polymers of increasing MW was statistically significant 

and the data indicated that manipulation of MW within ranges that are acceptable from 

manufacturing, efficacy and toxicological standpoints will permit formulations that can 

extend the T½. A sensitivity of the release rate constant krel to differences in MW of the 

conjugated polymer of 0.053±0.016 ln(min
-1

) reduction per kD was calculated. This 

parameter quantifies the effect of the conjugated polymer chain length on PK and 

provides indications on how to design appropriate conjugates for specific applications. 

One drawback in this strategy is the increased variability in PK between subjects with 

sCT-P compared to free sCT, and this is especially evident in the case of sCT-P (40kD).  
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5. Conclusions 

A PEG-based combed-shaped methacrylate polymer was conjugated to a specific 

amino acid of sCT to yield a pure bioactive conjugate, which retained receptor binding 

capacity. The conjugate was made using and economical and simple process of living 

radical polymerisation and has been characterised using a range of HPLC techniques, 

denoting purity and entrapment of most free sCT.  By increasing the polymer chain 

length, a series of conjugates of increasing MW were produced, for which relationships 

with in vitro potency and efficacy were established.  The largest MW conjugate (40 kDa) 

had an extended T½ upon i.v. injection to rats and this more than compensated for the 

slight losses in potency and efficacy detected in vitro. Formulations of such conjugates 

may have potential for either long-acting systemic injection for osteoporosis or for local 

intra-articular delivery for treatment of osteoarthritis. 
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Figure Legends 

Fig. 1.  A. Two compartment model of free sCT in rat serum following i.v. administration. 

B. Two compartmental model describing i.v. PK of sCT-P conjugates.  

 

Fig. 2. RP-HPLC of the conjugation reaction of sCT with P to yield the 9.5 kDa conjugate. 

 

Fig. 3. 6.5 kDa aldehyde functionalised polyPEG conjugated to sCT at a 1:1 ratio, purified using 

ion-exchange FPLC with online UV detection at 280 nm. 

 

Fig. 4. SEC-HPLC chromatogram of fractions of sCT-P6.5kDa  purified by IE-FPLC. The 

corresponding IE-FPLC chromatogram is also shown for reference (inset). 

 

Fig. 5. Modelling of bioactivity relationship to conjugate MW, determined by cAMP 

induction in T47D cells. A. Concentration-response curves. Continuous lines show 

prediction of the three parameter dose-response curve fit with hill slope=1. sCT , sCT-

P (6.5 kDa)  , sCT-P (9.5 kDa) , sCT-P (23 kDa) , sCT-P (40 kDa) . B.  

Relationship of EC50 to MW. C. Relationship of Emax to MW.  Discontinuous lines show 

95% confidence limits of the prediction.  

 

Fig.6. Degradation profiles of sCT-P conjugates incubated with serine proteases, liver 

and serum, as determined by cAMP measurement in T47D cells. Curve fitting was based 

on first order kinetics.  

 

Fig.7. Comparison of degradation rates of the four sCT-P conjugates in the presence of 

serum, liver homogenates and serine protease enzyme, as determined from cyclic AMP 

measurements in T47D cells. Mean ± SD of 3 determinations. 

 

Fig.8. LDH release following exposure of Caco-2 monolayers to sCT and sCT-P 

conjugates (10μM) for 120 min. Mean ± SD of 3 determinations. 

 

Fig.9. sCT levels in rat serum after i.v. administration of sCT (O) and sCT-P (40 kDa) 

(Δ). Serum samples at time zero in which no sCT was detected were used as the 

background reading for each animal.  Mean ± SD of 3-15 determinations. 

 

Fig.10. Analysis of free sCT data following i.v administration to rats using a two 

compartmental model to estimate parameters, k12,k21, kdeg and sCT0 .  

 
Fig.11. Influence of polymer MW on release rate constant of sCT. 
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Fig. 1. A. Two compartmental model describing the PK of free sCT in rat serum. B. Two 

compartmental model describing PK of sCT-P conjugates (i.v.).
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Fig. 2. RP-HPLC spectra following the conjugation reaction of sCT with P to  

yield a 9.5kDa conjugate.
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Fig. 3. 6.5 kDa aldehyde functionalised polyPEG conjugated to sCT at a 1:1 ratio, 

purified using ion-exchange FPLC with online UV detection at 280 nm.
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Fig. 4. SEC-HPLC chromatogram of fractions of sCT-P6.5kDa  purified by IE-FPLC. 

The corresponding IE-FPLC chromatogram is also shown for reference (inset).
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Fig. 5. Modelling of bioactivity relationship to conjugate MW, as determined by cAMP induction in T47D 

cells. A. Concentration-response curves. Continuous lines show prediction of the three parameter 

concentration-response curve fit with hill slope=1. sCT , sCT-PEG (5 kDa)  , sCT-P (9.5 kDa) , sCT-P 

(23 kDa) , sCT-P (40 kDa) . B.  Relationship of EC50  to MW. C. Relationship of E max to MW.  

Discontinuous lines show 95% confidence limits of the prediction. 
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Fig.6. Comparison of degradation rates of  sCT-P molecular weight derivatives in 

the presence of serum and liver and proteases, as determined from cyclic AMP 

measurements in T47D cells.

 

Fig.7. LDH release following exposure of Caco-2 monolayers to sCT and sCT-P 

conjugates (10 μM) for 120 min.  Values were compared to those seen in 

untreated controls.
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Fig.8. sCT levels in rat serum after i.v. administration of sCT (O), sCT-P (6.5

kDa) ( ), sCT-P (20 kDa) ( ), and sCT-P (40 kDa) ( ). Serum samples at time

zero in which no sCT was detected were used as background. Mean SD of 3-

15 determinations.

 

Parameter Estimate SEM

k12 0.028 min
-1

0.008

k21 0.008 min
-1

0.005

kdeg 0.026 min
-1

0.007

sCT0 10.44 ng/mL 0.10

0.2  ng/mL

Fig.9. Analysis of free sCT data following i.v administration to rats using a two 

compartmental model to estimate parameters, k12,k21, kdeg and sCT0 . 
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Fig.10. Influence of polymer MW on release rate constant of sCT.
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