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Abstract 

Packet aggregation algorithms are used to improve the throughput performance by 

combining a number of packets into a single transmission unit in order to reduce the 

overhead associated with each transmission within a packet-based communications 

network. However, the throughput improvement is also accompanied by a delay 

increase. The biggest drawback of a significant number of the proposed packet 

aggregation algorithms is that they tend to only optimize a single metric, i.e. either to 

maximize throughput or to minimize delay. They do not permit an optimal trade-off 

between maximizing throughput and minimizing delay. Therefore, these algorithms 

cannot achieve the optimal network performance for mixed traffic loads containing a 

number of different types of applications which may have very different network 

performance requirements. In this thesis an adaptive packet aggregation algorithm 

called the Adaptive Aggregation Mechanism (AAM) is proposed which achieves an 

aggregation trade-off in terms of realizing the largest average throughput with the 

smallest average delay compared to a number of other popular aggregation algorithms 

under saturation conditions in wireless networks. The AAM algorithm is the first packet 

aggregation algorithm that employs an adaptive selection window mechanism where the 

selection window size is adaptively adjusted in order to respond to the varying nature of 

both the packet size and packet rate. This algorithm is essentially a feedback control 

system incorporating a hybrid selection strategy for selecting the packets. Simulation 

results demonstrate that the proposed algorithm can (a) achieve a large number of sub-

packets per aggregate packet for a given delay and (b) significantly improve the 

performance in terms of the aggregation trade-off for different traffic loads. 

Furthermore, the AAM algorithm is a robust algorithm as it can significantly improve 

the performance in terms of the average throughput in error-prone wireless networks.  
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Chapter 1 
Introduction 

In 1997 the IEEE LAN/MAN Standards Committee approved the first version of the 

IEEE 802.11 standard [IEE97]. Since then, there have been numerous amendments to 

the standard to achieve the goal of realizing ever higher throughputs. Increasing the 

transmission rate and the use of ever more complex modulation schemes have allowed 

for a further improvement in the throughput performance in wireless local area 

networks (WLANs). However, as a consequence of the protocol headers, there exists an 

upper limit on the achievable throughput which has been demonstrated by the authors in 

[XiR02] where a lower limit on the delay has also been demonstrated. The existence of 

such limits indicate that simply increasing the data rate without reducing the PHY 

(Physical Layer) and MAC (Medium Access Control) overheads is bounded even if the 

data rate is increased indefinitely. This has lead to the use of packet aggregation where 

the throughput is increased as the protocol headers are reduced by combining a number 

of small size packets into a single large size (or aggregate) packet.  

Packet aggregation is the process of combining multiple packets together into a single 

transmission unit in order to reduce the overhead associated with each transmission 

within a packet-based communications network. In 2009 the IEEE 802.11n standard 

defined two packet aggregation algorithms that are also employed in the IEEE 802.11ac 

standard draft: Aggregate MAC Service Data Unit (A-MSDU) and Aggregate MAC 

Protocol Data Unit (A-MPDU). However, the throughput improvement is also 

associated with a delay increase as the packet aggregation algorithm may have to wait 

for packets to arrive in order to be assembled into an aggregate packet.  
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1.1 Problem Statement 

As most of the proposed packet aggregation algorithms don’t take account of the 

varying nature of the traffic loads particularly the random nature of the packet size and 

packet rate, these algorithms tend to optimize a single metric, i.e. either to maximize 

throughput or to minimize delay. In general, they do not permit an optimal trade-off 

between the two metrics which would allow for greater flexibility in operating under a 

wide range of mixed traffic loads.   

Generally, in modern networks the traffic load is a mix of different types of application 

(e.g. VoIP and E-mail) which often have very different network performance 

requirements. Consequently, optimal network performance cannot be achieved 

simultaneously for mixed traffic loads by employing a packet aggregation algorithm 

that only optimizes a single metric. 

So there is a need for an adaptive packet aggregation algorithm that is better suited to 

the mixed traffic loads found in modern data networks. This adaptive algorithm not only 

achieves an optimal trade-off between maximizing throughput and minimizing delay in 

a data network but also provides a good performance over a wide range of mixed traffic 

loads.  

1.2 Objectives and Contributions 

In this thesis an adaptive packet aggregation algorithm called the Adaptive Aggregation 

Mechanism (AAM) is proposed which can operate over a wide range of different traffic 

loads in order to achieve the best aggregation trade-off in terms of realizing the largest 

average throughput with the smallest average delay compared to a number of other 

popular aggregation algorithms under saturation conditions in wireless networks. The 

AAM algorithm is a robust adaptive packet aggregation algorithm where a feedback 

control scheme incorporating a hybrid selection strategy and a tunable selection window 
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mechanism is employed in order to respond to the varying nature of the packet size and 

packet rate. The operation of the AAM algorithm is based upon the use of a selection 

window whose size is adaptively adjusted. In general, increasing the selection window 

size will increase the probability of achieving the target aggregate packet size 

(accompanied by a larger delay), while reducing the selection window size will reduce 

the delay but will also reduce the probability of attaining the target aggregate packet 

size. There are three elements configured in a feedback control system in order to 

achieve the robustness for the AAM algorithm: Adjustable Aggregation Algorithm (A
3
), 

Aggregate Packet Analyzer (APA) and Aggregate Tuning Algorithm (ATA). The AAM 

algorithm generates an aggregate packet whose size approaches the target aggregate 

packet size as closely as possible within a given delay. 

In this thesis, the results will demonstrate that: 

 The AAM algorithm is an adaptive algorithm that can aggregate the largest 

number of sub-packets per aggregate packet with a given average packet delay 

compared to the FIFO (First-In First-Out) and SSFS (Smallest-Size First-Served) 

algorithms. 

 The AAM algorithm has the best performance in terms of the aggregation trade-

off in achieving the largest average throughput with the smallest average delay 

for all three algorithms considered (i.e. AAM, FIFO, and SSFS) under 

saturation conditions in wireless networks.  

 The AAM algorithm is a robust algorithm as it can significantly improve the 

throughput by up to 28% in error-prone wireless networks. 

 The AAM algorithm can operate over a wide range of different traffic loads in 

wireless networks with and without transmission errors present.  
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1.3 Organization  

This thesis is organized as follows. 

Chapter 2 describes the main technologies that are used throughout the course of this 

research by introducing the general technical background regarding wireless networks 

before concentrating on the operation of packet aggregation. Chapter 2 overviews parts 

of the IEEE 802.11 standards, the architecture of the WLANs, the MAC mechanism of 

the IEEE 802.11 standards and the structure of the IEEE 802.11 frames which are 

relevant to the thesis. The transmission errors in WLANs, the PHY rate adaption 

mechanism, network simulator and packet sniffer are also discussed in the final sections 

of this chapter. 

Chapter 3 provides a literature review of packet aggregation algorithms in WLANs that 

have been proposed by other researchers. This chapter also highlights the recent 

advances in the area of packet aggregation research. 

Chapter 4 describes the design and the development of the AAM algorithm. A 

fundamental analysis of the AAM algorithm is presented after a detailed description of 

each stage of the proposed algorithm. A description of the simulation process for the 

AAM algorithm implemented in two different test scenarios is given that includes all 

the modeling assumptions adopted in the simulation. 

Chapter 5 presents the results for the two performance validation test scenarios. The 

first section analyses the performance of the AAM algorithm aggregation process only. 

The next section presents the results of the AAM algorithm when it is implemented in 

wireless networks with and without transmission errors present. A comparison between 

the performances is provided in order to further highlight the advantages of the AAM 
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algorithm compared to two other aggregation algorithms (i.e. FIFO and SSFS) based on 

16 captured traffic trace files.  

Chapter 6 provides a summary of the main findings and conclusions from this research 

carried out. This chapter also gives some suggestions for the future research in this area. 
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Chapter 2 
Technical Background 

In this chapter, relevant background knowledge about IEEE 802.11 wireless local area 

networks (WLANs), the IEEE 802.11 MAC mechanism, transmission errors and PHY 

rate adaption mechanism in WLANs, network simulators and packet sniffers will be 

introduced. In the first section, an introduction to the main standards of IEEE 802.11 

WLANs and the architecture of wireless networks are presented. The second section 

focuses on the MAC mechanism of the IEEE 802.11 WLAN standards and then the 

formats of some of the IEEE 802.11 frames are presented. The detrimental impact of 

transmission errors in WLANs are described in the fourth section and some PHY rate 

adaption mechanisms are introduced in the following section. A discussion of the 

network simulator ns-3 is given in the sixth section and the packet sniffer application 

Wireshark is described in the last section. 

2.1 IEEE 802.11 Wireless Local Area Networks 

In the last decade, Wireless Local Area Networks (WLANs) based on the IEEE 802.11 

standards have been widely employed in the home and enterprise networks across the 

world. The IEEE 802.11 standard was approved by the IEEE LAN/MAN Standards 

Committee in 1997 [IEE97]. The original version of the IEEE 802.11 standard defined a 

single Medium Access Control (MAC) accessed by the Carrier Sense Multiple Access 

with Collision Avoidance (CSMA/CA) mechanism and a Physical Layer (PHY) which 

defined PHY rates of 1 Mbps and 2 Mbps. The PHY defined three types of modulation 

technique: Infrared (IR), Frequency Hopping Spread Spectrum (FHSS) and Direct 

Sequence Spread Spectrum (DSSS). 

 Further enhancements to the original standard, namely the IEEE 802.11b [IEEb99] and 

IEEE 802.11a [IEa99] standards were both published in 1999. The IEEE 802.11b 
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standard supports 1, 2, 5.5 and 11 Mbps PHY rates in the license-free 2.4 GHz ISM 

(Industrial, Scientific and Medical) band, while the IEEE 802.11a standard by using the 

Orthogonal Frequency Division Multiplexing (OFDM) provides 8 PHY rates (i.e. 6, 9, 

12, 18, 24, 36, 48 Mbps and 54 Mbps) in the license-free 5 GHz ISM band. In June of 

2003, the IEEE 802.11g [IEE03] standard was approved which provides a maximum 54 

Mbps PHY rate in the 2.4 GHz ISM band. The IEEE 802.11n standard [IEn09] was 

published in September of 2009 which allows for a maximum of 100 Mbps PHY rate in 

both the 2.4 GHz and 5 GHz ISM bands by using channel bonding with up to 72 Mbps 

without channel bonding. The new multiple antenna technology MIMO (Multiple-Input 

Multiple-Output) and the packet aggregation are employed in the IEEE 802.11n 

standard. The standard for the next generation of wireless networks is the IEEE 

802.11ac which is still under development. The draft 5.0 was published at the beginning 

of 2013 [IEE13]. It provides higher throughput for WLANs on the 5 GHz ISM bands 

[R&S11]. Theoretically, this specification will enable multi-station WLAN throughput 

of at least 1 Gbps and a maximum single link throughput of at least 500 Mbps by using 

some new technologies, such as extended channel bonding, Multi-user MIMO (MU-

MIMO) and packet aggregation [Any12]. The IEEE 802.11ac will provide backwards 

compatibility with the IEEE 802.11a and IEEE 802.11n devices operating in the 5 GHz 

ISM band [War12]. The IEEE 802.11ac standard is expected to be ratified in the early 

2014 and the maximum PHY rate will be in excess of 5 Gbps.  

Some members of the IEEE 802.11 family of standards are shown in Table 2-1 where 

there are 5 main versions: IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n 

which are now widely used to provide wireless connectivity in homes and businesses, 

and the latest standard IEEE 802.11 ac is still under development. 
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Table 2-1: Some members of the IEEE 802.11 family of WLAN standard 

2.1.1 IEEE 802.11a standard 

The IEEE 802.11a standard was ratified in 1999 and uses Orthogonal Frequency 

Division Multiplexing (OFDM) in the unlicensed 5 GHz ISM band to extend the PHY 

rate maximum of 54 Mbps but it also supports lower PHY rates at 6, 9, 12, 18, 24, 36 

and 48 Mbps. The OFDM is a mechanism for encoding digital data on multiple 

Standard Comments 

802.11a Extends the PHY rate to up to 54 Mbps in the 5 GHz ISM band 

802.11b Extends the PHY rate  to 11 Mbps in the 2.4 GHz ISM band 

802.11c Incorporates bridging in Wireless Bridges or AP (Access Point) 

802.11d Supports operation in additional regulatory domains 

802.11e Defines the QoS (Quality of Service) enhancement mechanisms 

802.11f Provides AP communications among multivendor systems 

802.11g Extends the PHY rate  to up to 54 Mbps in 2.4 GHz ISM band 

802.11h Supports the power control mechanisms in 5 GHz ISM band 

802.11i Specifies the security mechanisms 

802.11n 
Extends the PHY rate to up to 600 Mbps and supports Frame 

Aggregation  

802.11p Supports access in vehicular environment 

802.11s Supports the creation of mesh networks 

802.11ac 
Extends the PHY rate  to up to 5 Gbps and is still under 

development 

802.11ad 
Extends the PHY rate  to up to 7 Gbps and is still under 

development 
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orthogonal subcarriers [IEa99]. Actually, the OFDM is a digital modulation method in 

which a signal is split into several narrowband channels at different frequencies. This 

technology is also used in the IEEE802.11g and IEEE 802.11n standards. In this thesis, 

all the PHY rates in the IEEE 802.11a standard are used to demonstrate the performance 

of the proposed AAM algorithm. 

2.1.2 IEEE 802.11n Standard 

The IEEE 802.11n standard was introduced to increase the PHY rate from 54 Mbps to 

600 Mbps by adding the Multiple-Input Multiple-Output (MIMO) mechanism and 40 

MHz channels to the Physical Layer (PHY) and also by employing a packet aggregation 

algorithm at the MAC layer.  

MIMO is a technology that allows multiple antennas to send and receive multiple 

spatial streams at the same time in order to coherently resolve more information than 

that of using a single antenna. Using multiple antennas the data can be sent and received 

through multiple signals and more antennas usually equates to higher speeds [IEE09]. 

The IEEE 802.11n standard specified that the devices can use up to 4 antennas to 

transmit data at the same time.  

Packet aggregation is a method used to improve throughput by sending a large 

aggregate packet which contains more than one smaller size data packet. Two packet 

aggregation algorithms are defined in the IEEE 802.11n standard: Aggregate MAC 

Service Data Unit (A-MSDU) and Aggregate MAC Protocol Data Unit (A-MPDU). 

Both algorithms combine several data packets into a single large packet to improve the 

throughput. More accurately, packet aggregation is used to reduce the impact of header 

overhead on throughput. The ratio of the payload to the transmitted frame size is higher 

as the frame header information needs to be specified only once per aggregate packet 

[IEE09]. In this thesis, the basic algorithm A-MSDU is employed as the typical 

http://searchcio-midmarket.techtarget.com/definition/digital
http://searchnetworking.techtarget.com/definition/modulation
http://searchnetworking.techtarget.com/definition/signal
http://searchmobilecomputing.techtarget.com/definition/narrowband
http://searchdatacenter.techtarget.com/definition/channel
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benchmark packet aggregation algorithm to study the performance of the AAM 

algorithm. 

2.1.3 IEEE 802.11ac standard 

The goal of the IEEE 802.11ac standard is to provide new PHY rates from 500 Mbps to 

5 Gbps by employing some new technologies [IEE13]. It extends the air interface 

concepts embraced by the IEEE 802.11n standard to accomplish even higher 

throughputs. It extends the channel band from the 40 MHz in the IEEE 802.11n 

standard to 80 MHz or even to 160 MHz and increases the number of MIMO spatial 

streams to twice that of the IEEE 802.11n standard. The IEEE 802.11ac standard uses 

the MU-MIMO technology which exploits the availability of multiple independent radio 

terminals in order to enhance the communication capabilities of each individual 

terminal and improves the modulation to 256-QAM (Quadrature Amplitude Modulation) 

[War12]. It also uses the packet aggregation algorithms specified in the IEEE 802.11n 

standard, i.e. A-MSDU and A-MPDU. The standard was finalized in early 2012 with 

final IEEE 802.11 Working Group approval expected in early 2014 [Wik13]. According 

to a study, devices with the IEEE 802.11ac specification are expected to be widely used 

by 2015 with an estimated one billion devices globally [Tim13]. In the future work, the 

proposed AAM algorithm will be implemented based on the IEEE 802.11 ac standard.  

2.1.4 Architecture of WLANs 

A WLAN implements a flexible data communication system frequently augmenting 

rather than replacing a wired LAN within a building or campus. WLANs use radio 

frequency communication to transmit and receive data over the air, minimizing the need 

for wired connections [CIS13]. WLANs have become popular in the home due to easy 

installation and in commercial complexes offering wireless access to their customers. A 

WLAN is one type of wireless network and other types defined by their coverage range 

http://en.wikipedia.org/wiki/IEEE_802.11ac#cite_note-timelines-1
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include the following: Wireless Personal Area Network (WPAN), Wireless Mesh 

Network (WMN), Wireless Metropolitan Area Network (WMAN), Wireless Wide Area 

Network (WWAN) and the Mobile Network.   

A WLAN links two or more devices using some wireless distribution method, Spread-

Spectrum, Orthogonal Frequency Division Multiplexing (OFDM), or MIMO radio, and 

usually provides a connection through an access point (AP) to the wired network. This 

gives user the mobility to move around within a local coverage area and still remain 

connected to the network and most of the modern WLANs are based on the IEEE 

802.11 standards. All components that can connect into a wireless medium in a network 

are referred to as station. All the stations are equipped with wireless network interface 

controllers (WNICs). Wireless stations fall into one of two categories: access points 

(APs) and client stations [Fra03]. Access points (APs), or routers, essentially act as base 

stations for wireless networks that connect wireless enabled client devices to a 

backbone network. Wireless client stations can be mobile devices such as laptops, 

personal digital assistants, IP phones and other smart phones, or fixed devices such as 

desktops and workstations that are equipped with a wireless network interface. In this 

thesis, the simulation is based on a single hop WLAN in which a single AP and a single 

client are implemented to investigate the performance of the AAM algorithm.  

2.2 IEEE 802.11 MAC Mechanism  

There are three ways to access the wireless medium that are defined in MAC 

specification of the IEEE 802.11 standard: Point Coordination Function (PCF) and 

Hybrid Coordination Function (HCF) and Distributed Coordination Function (DCF). 

The PCF provides contention-free services in infrastructure networks but it has not been 

widely implemented. The HCF supports the high Quality of Service (QOS) through the 

hybrid DCF and PCF and also allows stations to utilize multiple service queues when 

http://en.wikipedia.org/wiki/Spread_spectrum
http://en.wikipedia.org/wiki/Spread_spectrum
http://en.wikipedia.org/wiki/OFDM
http://en.wikipedia.org/wiki/IEEE_802.11
http://en.wikipedia.org/wiki/IEEE_802.11
http://en.wikipedia.org/wiki/Computer_networking
http://en.wikipedia.org/wiki/Wireless_network_interface_controller
http://en.wikipedia.org/wiki/Wireless_network_interface_controller
http://en.wikipedia.org/wiki/Wireless_access_point
http://en.wikipedia.org/wiki/Router_%28computing%29
http://en.wikipedia.org/wiki/Personal_digital_assistant
http://en.wikipedia.org/wiki/Voice_over_IP
http://en.wikipedia.org/wiki/Smartphone
http://en.wikipedia.org/wiki/Home_computer
http://en.wikipedia.org/wiki/Workstation
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accessing the medium. Although specified in the IEEE 802.11e standard, the HCF has 

not been widely implemented. The DCF is the basic mechanism to access the wireless 

medium and is based upon a random back-off scheme. 

There are four types of inter-frame spaces defined in the MAC specification: DCF Inter-

Frame Space (DIFS), Short Inter-Frame Space (SIFS), PCF Inter-Frame Space (PIFS) 

and Extended Inter-Frame Space (EIFS) as shown in Figure 2-1. The first three of them 

are employed to control access the medium while the EIFS is used when there is a 

transmission error present in packet transmission and it does not have a fixed duration. 

Time

Busy Medium

DIFS

SIFS

PIFS

DIFS

                            Back-off Window 

Contention Window

Next Frame transmission

Defer Access

Slot 

time

Figure 2-1: The use of Inter-Frame Spaces in accessing the medium. 

The DIFS is the minimum medium idle time for contention based services in general. 

The PIFS is shorter than DIFS and employed by PCF in contention-free operation. The 

SIFS is shorter than PIFS but is only used for the highest priority transmission of 

control frames (e.g. ACK). In the IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 

802.11n and IEEE 802.11ac standards, the durations of SIFS, DIFS and the Slot Time 

are shown in Table 2-2. 

When packets are awaiting transmission in a buffer, the client station has to determine 

whether the channel is busy or not by using a carrier-sensing function. There are two 

types of carrier-sensing mechanism supported in the IEEE 802.11 standard: Physical 

carrier sensing supported by the physical layer and the virtual carrier sensing provided 
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by the network allocation vector (NAV). The NAV is a timer used to indicate the 

amount of the time that the medium will be reserved [IEa99].   

Table 2-2: The values of slot time, SIFS, DIFS and CW for the different IEEE 802.11 

standards 

Standard Slot Time (µs) SIFS (µs) DIFS (µs) Min. CW Max. CW 

IEEE 802.11a 9 16 34 15 1023 

IEEE 802.11b 20 10 50 31 1023 

IEEE 802.11g 9 or 20 10 28 or 50 31 or 15 1023 

IEEE 802.11n 9 16 34 15 1023 

IEEE 802.11ac 9 16 34 15 1023 

If the channel is busy, all the stations have to wait for a duration of DIFS until the 

channel is idle and then employ the random back-off scheme to initialize a Back-off 

Counter (BC) which starts to decrease at every slot time in which the medium remains 

idle. The BC is frozen whenever the channel becomes busy. The BC is initialized by 

randomly picking an integer from a Contention Window (CW) which is divided into 

slots whose duration depends on the modulation format and frequency band used. The 

values of the slot time for the different IEEE 802.11 standards are shown in Table 2-2. 

When a BC has decremented to zero, the station gains the authorization to use the 

channel and transmit its packet. If there is more than one station trying to access 

medium, the station whose BC first reaches zero gains the authorization to transmit its 

packet. A collision occurs when two or more BCs reach zero at the same time [IEa99]. 

In this case, they continue to transmit their frames; however the collision causes the 

frames to be received incorrectly by the receiver which does not respond with an ACK 
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frame. This in turn triggers a re-transmission of the frames by the stations involved. 

Therefore, they have to restart the random access process again to reset the BC but the 

size of the CW has been doubled. The size of CW is calculated by the Binary 

Exponential Back-off Algorithm which is 1 less than an integer power of 2 (i.e. 1, 3, 

7…. 511 and 1023). The CW moves to the next greater power of two [IEa09] every time 

when the BC is reset as a failed transmission. The CW is reset to the minimum size 

when a packet is transmitted successfully, or the associated re-try counter limit is 

reached and the packet is discarded. The maximum and minimum sizes allowed for CW 

are presented in Table 2-2. This scheme ensures a low delay when only a few station 

nodes collide but also ensures that the collision is resolved within an acceptable time 

interval when large numbers of station nodes collide.   

Figure 2-2 illustrates an example of the operation of the DCF in accessing wireless 

medium. There are two station nodes, A and B. After the station node B receives an 

ACK and waits a time of DIFS, the channel is idle. Both nodes try to transmit their 

packets, so they have to set their back-off counter (BC) values: A is set to 4 and B is set 

to 9. The BC of A decreases to zero after 4 time slots have elapsed and can transmit its 

packet while B has to freeze its BC at 5 and waits until A completes its transmission. 

After a successful transmission A waits for a DIFS time and resets the BC (this time it 

has chosen 8) and B just restarts the BC (which is 5). The station node B can transmit its 

packet when its BC reaches zero after 5 time slots.  
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Figure 2-2: An example of the DCF operation used to access the medium. 

If the channel is idle, the station node has to wait for a time of DIFS and when its back-

off counter (BC) has reached zero before it may transmit its packet. When a packet is 

received by the destination node, the destination node has to wait a time of SIFS and 

then sends an Acknowledgement (ACK) packet back to the source node to indicate a 

successful reception of the data packet. In this thesis, there is a single client station used 

in the wireless network of the simulation for the AAM algorithm and the station can 

always gain the authorization to use the medium as collisions do not occur as there is no 

contention for access. The AAM algorithm is intended for use on a single hop link. 

Therefore, it is sufficient to investigate the performance in a single station. 

2.3 IEEE 802.11 Frames  

In the IEEE 802.11 standards, there are three types of frame defined: Data frame, 

Management frame and Control frame.  

2.3.1 IEEE 802.11 Data Frame Format 

In the IEEE 802.11 standard there are a number of data frame types defined. One way to 

classify these data frames are as contention-based service data frames and contention-

free service data frames. The data frame of the contention-free service can only be used 
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in the contention-free period and cannot be used in IBSS (Independent Basic Service 

Set). The generic IEEE 802.11 MAC data frame is shown in Figure 2-3. The standard 

MAC frame of the IEEE 802.11 standards includes two fields: the header information 

and frame body data. Both of them are defined in the IEEE 802.11 standards but the 

data frame doesn’t include the type/length files and the preamble.    

bytes 2 2 6 6 6 2 6 0 -- 2312 4

FCS
Frame 

Body

Address 

4
Seq-Ctl

Address 

3

Address 

2

Address 

1

Duration  

/ID

Frame 

Control

Figure 2-3: The generic IEEE 802.11 MAC data frame format. 

As shown in Figure 2-3, the header information in the data frame format includes 6 

fields: Frame Control, Duration/ID, Address, Sequence Control and Frame Check 

Sequence (FCS) fields. The length of header is defined in the standard as 34 bytes but in 

practice only 28 bytes are used. The reason for this is that for most of the applications, 

only the first 3 address fields are used and the fourth address file is just employed by 

bridging services (i.e. the Wireless Distribution System (WDS)). The frame control 

field is 2 bytes and contains most of the frame information which includes the protocol 

version, subtype file, re-try bit and protected frame bit and so on. The Duration/ID field 

follows the frame control field. There are 4 address fields in the IEEE 802.11 frame to 

set the receiver’s address, transmitter’s address and filtering address of receiver. The 

16-bit sequence control field is employed for both defragmentation and discarding 

duplicate frames.  

In the IEEE 802.11 standard, the maximum payload is 2312 bytes which includes the 8 

bytes of the Logical Link Control (LLC) header. In the IEEE 802.11 frame format, there 

is no padding to ensure a minimum frame length. 
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The FCS field uses the Cyclic Redundancy Check (CRC) as in the Ethernet frame to 

check whether a transmission error has occurred or not in the reception of the frame. If a 

transmission error occurs at the receiver, the receiver will not return an ACK frame to 

the sender. The frame will then be re-transmitted by the sender.  

2.3.2 IEEE 802.11 Control Frame Format 

The format of the control frame is shown in Figure 2-4 and it supports the transmission 

of data frames by helping the station nodes to manage the MAC access. One type of the 

control frame is the ACK frame which is employed in the positive acknowledgement of 

received data. Other frames are used to provide for more reliable communication by 

helping to avoid collisions, such as Request-to-Send (RTS), Clear-to-Send (CTS) and 

Power-Saver Poll (PS-Poll). In this thesis, only the ACK frame is employed to 

determine whether the transmission is successful or not.   

bits 2 2 4 1 1 1 1 1 1

More 

data

Pwr 

Mgmt
Retry

More 

Frag
FromDsToDsSub-typeTypeProtocol

1 1

Protected 

Frame
Order

Figure 2-4: The frame control field in the IEEE 802.11 control frame. 

ACK Frame 

The ACK frame as shown in Figure 2-5 is 14 bytes in length and is used to indicate a 

positive acknowledgment of the frame transmission as required by the MAC and with 

data frame transmissions frames preceded by the RTS/CTS handshake and fragmented 

frames. In the IEEE 802.11n and IEEE 802.11ac standards, the Block ACK (BA) 

scheme is employed to improve the MAC efficiency. The BA is a special ACK frame 

which can be used to acknowledge multiple MPDUs. The BA is helpful in improving 

the MAC efficiency when all the frames in a burst are successfully transmitted. 

However, the whole BA must be re-transmitted if any frame in the burst is missing or 

the acknowledgment itself is corrupted.  
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bytes 2 2 6 4

FCS
Destination 

Address
Duration

Frame 

Control

 

Figure 2-5: The format of the IEEE 802.11 ACK frame. 

2.3.3 IEEE 802.11 Management Frame Format 

The management frames are used to determine the timing, authentication and 

synchronization of stations in IEEE 802.11 WLANs [IEEb99]. The format of the 

management frame is shown in Figure 2-6. There are two types of management frames 

based on the frame body size: fixed-length where the body size is fixed and variable-

length where the body size can be varied. A station node uses the Beacon frames to 

determine which BSS (Basic Service Set) and AP are available and uses the 

authentication frame to gain the authorization to access the network, then it sends an 

association frame to join the AP’s BSS.  

bytes 2 2 6 6 6 6 0 -- 2312 4

FCS
Frame 

Body
Seq-CtlBSS ID

Source 

Address
Destination 

Address
Duration

Frame 

Control

Figure 2-6: The format of the IEEE 802.11 management frame. 

2.4 Transmission Errors in WLANs 

In WLANs, path loss, thermal noise, fading, and interference can cause significant 

packet errors which will have a detrimental impact on the system performance 

[SHW10]. These transmission errors are often characterized by the bit error rate (BER). 

The transmission errors can also have a detrimental impact on the performance of a 

packet aggregation algorithm as they increase the probability of a frame re-transmission 

[HLL08]. Although packet aggregation can increase the throughput under ideal channel 

conditions, a larger size aggregate packet may cause each station to wait longer before 

its next transmission opportunity. However, in error-prone channels, corrupting a large 
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size aggregate packet may waste a long period of channel time and leads to a lower 

MAC efficiency. So some packet aggregation algorithms [Lin06] [KSP12] have been 

proposed to improve the performance in error-prone wireless networks. We will discuss 

this in more detail in the next chapter. 

2.5 PHY Rate Adaption Mechanisms in WLANs 

In the IEEE 802.11 standards, the PHY allows for a set of different transmission modes 

to adapt to the channel variations. Each PHY mode uses a specific modulation and 

channel coding scheme to offer different performance in terms of throughput. Table 2-3 

shows the IEEE 802.11b/g/n PHY rates giving the modulation/coding/MIMO details 

where only the IEEE 802.11n mandatory PHY rates are shown and the other IEEE 

802.11n PHY rates can be calculated based on the diagram shown in Figure 2-7.  

Table 2-3: The details of the PHY rate for IEEE standards 802.11b/g/n. 

Standard PHY Rate (Mbps) Modulation Coding Rate MIMO 

802.11b 1 DBPSK ---- No 

2 DQPSK ---- No 

5.5 CCK ---- No 

11 CCK ---- No 

802.11g 6 BPSK 1/2 No 

9 BPSK 3/4 No 

12 QPSK 1/2 No 

18 QPSK 3/4 No 

24 16-QAM 1/2 No 

36 16-QAM 3/4 No 

48 64-QAM 2/3 No 

54 64-QAM 3/4 No 

802.11n 

(mandatory PHY rate) 

6.5 BPSK 1/2 1 

13 QPSK 1/2 1 

19.5 QPSK 3/4 1 

26 16-QAM 1/2 1 

39 16-QAM 3/4 1 

52 64-QAM 2/3 1 

58.5 64-QAM 3/4 1 

65 64-QAM 5/6 1 

Where, DBPSK: Differential Binary phase-shift keying; DQPSK: Differential 

Quadrature phase-shift keying; CCK: Complementary Code Keying; QAM: Quadrature 
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amplitude modulation; 16-QAM: 16-state quadrature amplitude modulation; 64-QAM: 

64-state quadrature amplitude modulation. 

New 11n PHY 

Rate

Choose one 

11n Mandatory 

PHY Rate

Optionally 

multiply the 

number of 

additional 

spatial streams

(2,3,or 4)

Optionally 

multiply 2.077 

to bond two 

20MHz 

channels

Optionally 

multiply by 1.1 

for shorter 

Guard Interval 

to increase 

symbol rate 
 

Figure 2-7: Calculating the new IEEE 802.11n PHY rate. 

The PHY rate adaption is the process of dynamically switching the PHY mode to match 

the channel conditions. The goal is to select the most effective rate that will achieve the 

maximum throughput for a given channel condition [HVB01]. The effect of 

transmission errors also impacts on the selection of PHY rate for transmission. There 

are many PHY rate adaption mechanisms that have been proposed, such as [HVB01] 

[KaM97] [WYL06] [MLT08], to achieve the goal of realizing a maximum throughput 

in error-prone wireless network channels.  

The PHY rate adaption mechanism can reduce the number of re-transmissions caused 

by the transmission errors. The ARF (Auto Rate Fallback) [KaM97] mechanism is a 

simple and widely adopted scheme which is based on the number of consecutive 

successful or unsuccessful transmission attempts to determine whether to increase or 

decrease the transmission rate. The disadvantage of the ARF mechanism is that it tries a 

higher transmission rate every time after it successfully transmits a fixed number of 

packets even if the current rate is the most effective rate to achieve the maximum 

throughput. The AARF (Adaptive ARF) mechanism is proposed to alleviate this 

problem [WYL06]. The AARF mechanism behaves like the ARF mechanism except 

that the number of consecutive successfully transmission attempts is exponentially 

incremented when the higher transmission rate has failed. In the Receiver Based Auto 



21 
 

Rate (RBAR) mechanism the RTS/CTS handshake is mandatory and the RTS, CTS 

frames structure has been modified [HVB01]. The Robust Rate Adaption Algorithm 

[MLT08] mechanism is composed of the rate selector mechanism and the adaptive RTS 

mechanism which does not always make the best choice for the rate [YWA04] as the 

rate selected depended on the used rate. In this thesis, we use the popular AARF 

mechanism to select the PHY rate in an error-prone wireless network. 

2.6 Network Simulators 

A network simulator is an important research tool in which a computer program 

simulates the behavior of a network either by calculating the interaction between the 

different network entities using mathematical formulas or by actually capturing and 

playing back observations from a live network. It models the behaviors of the network 

and the various applications and services which can be observed in a test laboratory. 

Various attributes of the environment can also be modified in a controlled manner to 

assess how the network would behave under different conditions.  

There are a number of network simulators available such as OPNET, GloMoSim, ns-2 

and ns-3 etc. OPNET is a commercial software package for analyzing the performance 

of computer networks and applications. GloMoSim is another popular network 

simulator tool that is employed for network research and laboratory experimentation 

and covers many technologies. The network simulator (ns) has a long history and is 

derived from REAL (Real and Large). It (i.e. ns) is a name for a series of discrete event 

network simulators particularly ns-1, ns-2 and ns-3. They are free open source discrete-

event network simulators primarily used in research and teaching [TNS12]. The ns-1, 

the first version of ns, was developed at Lawrence Berkeley National Laboratory 

(LBNL) between 1995 and 1997. The second version of ns, called ns-2, was based on a 

refactoring by Steve McCanne in 1996-1997 [BBE99].  

http://en.wikipedia.org/wiki/Discrete_event_simulation
http://en.wikipedia.org/wiki/Network_simulation
http://en.wikipedia.org/wiki/Lawrence_Berkeley_National_Laboratory
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The network simulator ns-3 [BEF00] is the third generation of this family of network 

simulators. The project started in 2006 and is still being actively developed today. It is 

not an extension of ns-2 and does not support the APIs (Application Program Interface) 

from ns-2, but some modules of ns-2 have been ported to ns-3 [NS312]. The ns-3 is a 

new simulator and built on C++ and Python. It is essentially a C++ library where many 

network simulation modules are implemented as C++ objects and are wrapped by 

Python. Normally, the C++ or Python applications can instantiate a set of simulation 

modules to set up the simulation scenario of interest, enter the simulation main loop, 

and exit when the simulation is completed. It provides support for TCP/UDP, routing, 

and most of the IEEE 802 standards for wired and wireless networks.  

The advantages of ns-3 over other discrete-event network simulators are as follows 

[NS313]: (i) It uses the object oriented language C++ and Python which allow the user 

to take advantages of the full support from each language. (ii) The callback-driven 

events scheme is used to make it easy to turn any function into an event and be 

scheduled. In fact, the simulation events in ns-3 are simply function calls that are 

scheduled to execute at a prescribed simulation time. (iii) Different levels of user 

flexibility. It allows the expert user to configure the core from the low-level APIs which 

are powerful and the normal users to configure it from invoking the high-level easier-to-

use APIs. (iv) An emphasis on simulation that allows the simulator to interact with the 

real world. Several different simulation-in-the-loop and virtual machine integration 

frameworks have been developed. (v) Alignment with real-world interfaces where 

objects (e.g. sockets, net devices) are aligned with those in a Linux computer which 

facilitates code reuse and improves the realism of the models and makes the simulator 

control flow easier compared to real system. (vi) Configuration management is 

developed which uses an integrated attribute-based system to manage default and per-
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instance values for simulation parameters. In this thesis the ns-3 network simulator is 

employed to simulate the proposed AAM algorithm. 

One of the disadvantages of the ns-3 simulator is that it does not maintain an Integrated 

Development Environment (IDE) to configure, debug, execute, and visualize 

simulations in a single application window, such as found in other simulators.  

 

Figure 2-8: The software organization of the ns-3 simulator [NsP12]. 

The software of ns-3 is currently at version 3.18 and the organizational structure is 

shown in Figure 2-8 [NS312]. It can be organized into six layers. The bottom layer is 

the core layer which defines the fundamental modules which include all protocols, 

hardware and environmental modules, such as tracing system and logging system. The 

second layer includes two elements: the common module which defines the traffic 

object packet including how to generate and trace and the simulator module is 

concerned with the events, schedulers and the time arithmetic. The upper layer also has 

two elements: the node module in which a lot of classes are defined to abstract the basic 
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computing device and the mobility module that provides the library to support node 

mobility. The fourth layer is concerned with routing, device and application modules. 

The fifth is the helper module which provides a set of APIs to help to interact with all 

other modules. The top layer is the test module which contains test cases to allow the 

user to test the system or modules.  

In this thesis, the wifi module in the core layer has been modified to include the 

proposed AAM algorithm and the basic simulation setup for packet aggregation in ns-3 

is shown in Figure 2-9. It shows the basic processes required in sending and receiving 

an aggregate packet to and from another node in a wireless node. For example, to send 

an aggregate packet from the source node to another node requires the following steps. 

At first, the packet generator is used to generate the packets. In our simulation, the 

module OnOffApplication is used to generate the required packets which have the same 

key characteristics (e.g. length, destination IP address) as real world packets. Then the 

WifiNetDevice pushes these packets into the WifiMacqueue in the MAC. After gaining 

the authorization to transmit a packet, the EdcaTxopN module invokes the 

MsduStandardAggregator/MsduAggregator to combine packets from the queue. If 

required, the PHY rate is selected by the PHY rate adaption modules (e.g. 

AarfWifiManager) to send the aggregate packet. Transmission errors can also be 

included by employing some modules (e.g. NistErrorRateModel). Then the aggregate 

packet is sent through the WifiChannel module which is set by the WifiPhy module. 

Having finished the transmission, it waits for the ACK frame. If it does not receive the 

ACK frame, the frame is re-transmitted by the MacRxMiddle module if required. If it 

receives the ACK, the transmission is successful. This is the basic transmission 

aggregate packet process. We just selected the most suitable modules (e.g. 

AarfWifiManager, NistErrorRateModel) to implement the algorithm in our simulations. 
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We also modified some of these modules to implement some new functions which will 

be described further in chapter 4.  

Packet Generator

（OnOffApplication）

WifiNetDevice 

StaWifiMAC 

(WifiMAcQueue)

EdcaTxopN

(MsduStandardAggregator)

MacLow

(AarfWifiManager)
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(NistErrorRateModel)

WifiChannel

DcfManager

Listener

Listener

Packet Receiver

（PacketSink）

MAcRxMiddle

MacLow

WifiPhy

StaWifiMAC 

Send Packet Receive Packet

WifiNetDevice 

 

Figure 2-9: Basic simulation of packet aggregation in ns-3. 

2.7 Packet Sniffers 

A packet sniffer is a program running on a network attached device that passively 

receives frames passing through the device’s network adapter [ARC02]. A packet 

sniffer is also known as a Network Analyzer or Protocol Analyzer or Wireless Sniffer. 

The packet sniffer can monitor all data transmitted on the network and save it for 

analysis later. The packet sniffer can be used as an administrative tool to monitor and 

troubleshoot network traffic [AGS03]. Figure 2-10 shows a typical packet sniffer 

program running in a wireless network.  
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Figure 2-10: The operation of a packet sniffer application in a wireless network 

environment. 

There are four devices (A, B, C, and D) in the wireless network and the device running 

a packet sniffer programmer listens to the data which arrives at the Network Interface 

Card (NIC). Usually, the NIC works in two modes: Non promiscuous mode (normal 

mode) and promiscuous (or monitor) mode. In a normal device, when a packet is 

received by a NIC, it first compares the MAC address of the packet to its own. If it 

matches, the NIC accepts the packet otherwise it ignores the packet. So in order to 

capture packets, the NIC has to be set in the promiscuous mode to receive all packets 

even those are not intended for it. There are a number of packet sniffer software 

applications available such as Wireshark, tcpdump, snoop etc.  

The Wireshark packet sniffer application is one of the most widely used. Wireshark is a 

free and open-source packet analyzer and the latest stable version is Wireshark 1.8.6 

[Wir13]. It is used for network troubleshooting, analysis, software and communications 

protocol development and education. Wireshark is a cross-platform application using a 

file format (i.e. pcap) to save the captured packets and it runs on various Unix-like 

operating systems including Linux, MacOS, BSD, Solaris, and Microsoft 

http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Packet_analyzer
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Pcap
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/BSD
http://en.wikipedia.org/wiki/Solaris_%28operating_system%29
http://en.wikipedia.org/wiki/Microsoft_Windows
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Windows[ThW12]. The Wireshark not only captures network packets but also displays 

the captured packet data in a detailed format where an example is shown in Figure 2-11.  

In this thesis, the simulation is based on 16 traffic trace files which were captured by the 

wireshark from a number of different live Wi-Fi hotspot networks at different times and 

locations and whose details will be described in chapter 4. 

 

Figure 2-11: An example of how Wireshark captures packets and parses their contents. 

2.8 Chapter Summary 

In this chapter, we have introduced the development and general concepts of the IEEE 

802.11 WLANs including the structure of MAC frames, transmission errors and PHY 

rate adaption mechanisms in WLANs, network simulators and packet sniffer 

applications. The architecture of the wireless network was presented which is the main 

network topology used to implement the proposed AAM algorithm. A number of the 

IEEE 802.11 standards and the main components of WLANs were discussed and the 

typical network topology was shown. In particular, the IEEE 802.11n and IEEE 

802.11ac standards were introduced which support the packet aggregation algorithm 
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and proposed two packet aggregation algorithms (i.e. A-MSDU and A-MPDU) whose 

details will be described in the next chapter. The MAC mechanism of the IEEE 802.11 

standard was presented and the details of how to access the medium, inter-frame times 

and the back-off contention scheme were also introduced. The impact of transmission 

errors and various PHY rate adaption mechanisms were discussed. 

Network simulation tools are important tools to research the performance of network 

algorithms, protocols and environments. There are currently a number of free open 

source simulation tools available for researchers. One of the network simulation tools is 

the ns-3 which is still under developing and has a number of advantages. The ns-3 is 

employed in this thesis to implement and simulate the operation of the proposed AAM 

algorithm. The packet sniffer was presented in this chapter and the Wireshark software 

application was also introduced.  
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Chapter 3 
Review of Packet Aggregation 

Algorithms 

In this chapter a number of packet aggregation algorithms proposed for wireless 

networks will be presented. In particular we will attempt to describe what research is 

being carried out in the development of packet aggregation algorithms targeted at 

wireless networks. As will be shown, current approaches failed to achieve the goal of 

realizing an optimal trade-off between maximizing throughput and minimizing delay 

which is concerned with improving maximum throughput at the cost of the least delay 

increase. The majority of current researchers are only concerned with optimizing a 

single metric algorithm which attempts to achieve the goal of either maximizing 

throughput or minimizing delay. For these algorithms, they don’t take account of the 

varying nature of mixed traffic loads. Some algorithms can achieve large throughputs at 

the expense of large delays while others achieve the goal of minimizing delay 

associated with small throughputs. Throughput and delay are the two most important 

performance metrics used to analyze a packet aggregation algorithm. 

3.1 Throughput and Delay 

3.1.1 Throughput 

In modern communication networks such as WLANs or Ethernet networks, the 

throughput or network throughput is the average rate at which data is successfully 

transmitted through a communications channel [Rap02]. In general, throughput is 

measured in bits per second (bps) or it can sometimes be measured in packets per 

second (pps). In this thesis the throughput is defined as the average payload in bits 

successfully transmitted in unit time from the source node to the destination node in a 

wireless network. 
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The maximum throughput of a network is important for both user and system designer 

as it is essentially synonymous with the capacity of the network. The maximum 

throughput can be defined in a number of different ways such as the maximum 

achievable throughput, the peak measured throughput or the maximum sustained 

throughput. In this thesis, we define the maximum average throughput as the average 

throughput under saturation conditions in wireless networks.  

For the IEEE 802.11 wireless networks, Xiao and Rosdahl [XiR02] [XiR03] showed 

that a throughput upper limit (TUL) exists. The TUL of wireless network is defined in 

[XiR02] and the authors assumed a wireless network where one sender and one receiver 

operate in the DCF mode. The sender always has packets to be transmitted and each 

packet has the same size. This throughput is determined at the Link Layer Control. It is 

assumed that there are no transmission errors present in order to emphasize the impact 

of the overheads which includes the PLCP (Physical Layer Convergence Protocol) 

preamble and the PLCP header. The TUL is given by the following equation: 

    
       

                                 
           

 

…… (3.1) 

Where        denotes the payload of the packet in bytes,    denotes the transmission 

time of the PLCP preamble,     denotes the transmission time of the PLCP header, 

      is the time of DIFS,       is the time of SIFS,       is the minimum size of 

contention window in unit of a slot time,       is the time duration of a slot time and   is 

the propagation delay that is the propagation time between the nodes by the radio signal 

which usually can be ignored as its value is negligible compared to that of other times. 

The distance between wireless nodes is less than 50 meters, so the time of propagation 

is less than 0.2 μs. The values of the parameters are shown in Table 3-1 for the IEEE 

802.11a, IEEE 802.11b, IEEE 802.11n and IEEE 802.11ac standards. 
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Table 3-1: The PHY parameter values for some of the IEEE 802.11 standards 

Parameter 
IEEE 

802.11 a 

IEEE 

802.11 b 

IEEE 

802.11 n 

IEEE 

802.11 ac 
Comment 

Tslot 9 μs 20 μs 9 μs 9 μs slot time 

TDIFS 34 μs 50 μs 34 μs 34 μs DIFS duration time 

CWmin 

15 31 15 15 

Minimum contention 

window size in unit of 

slot time 

Tp 
16 μs 144 μs 

16 μs 16 μs PLCP preamble 

duration 

TPHY 4 μs 48 μs 4 μs 4 μs PLCP header duration 

TSIFS 16 μs 10 μs 16 μs 16 μs SIFS duration time 

τ 1 μs 1 μs 1 μs 1 μs Propagation delay 

 

Figure 3-1: The throughput against data rate without packet aggregation [Hud09]. 

The TUL is defined as the maximum throughput when the PHY rate increases 

indefinitely. As shown in Figure 3-1, for a certain PHY rate, the throughput is almost 

independent of data rate when packets have a fixed size [Hud09]. This is due to the 

large amount of overhead added to every packet. This suggests that there are two 
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methods to improve the throughput by increasing the average size of payload or 

specifically by reducing the ratio of header size to payload size in a frame. Both 

methods can be achieved by using a packet aggregation algorithm which is why packet 

aggregation algorithms have become so popular. For example, the latest IEEE 802.11n 

standard and the IEEE 802.11ac standard (which is still under development) support the 

use of packet aggregation. There are two packet aggregation algorithms proposed in the 

IEEE 802.11n standard namely Aggregate MAC Service Data Unit (A-MSDU) and 

Aggregate MAC Protocol Data Unit (A-MPDU) which will be described in section 3.3. 

3.1.2 Delay 

Network delay in wireless networks specifies how long it takes for a data packet to 

travel across the wireless network from one node to another. It is an important 

performance characteristic of an IEEE 802.11 wireless network. The network delay is 

usually divided into several parts depending on the location of the specific pair of 

communicating nodes: processing delay, queuing delay, transmission delay and 

propagation delay. In this thesis, the delay is defined as the average time to successfully 

transmit a packet from the MAC layer of the source node to the MAC layer of the 

destination node in wireless networks and the minimum average delay is defined as the 

average delay under saturation conditions in wireless networks. 

There is a certain minimum level of delay which will be experienced due to the time it 

takes to transmit a packet serially through a link [ZNN10]. The delay lower limit (DLL) 

of the DCF model in the IEEE 802.11 wireless network is derived in [XiR02] [QCS02]. 

To derive the DLL, the system needs to be operated under a best-case scenario: (i) The 

channel is an ideal channel without transmission errors present; (ii) At any transmission 

cycle, there is one and only one active station which always has packets to send and 

http://en.wikipedia.org/wiki/Data_transmission
http://en.wikipedia.org/wiki/Data_link
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other stations can only receive packets and provide acknowledgements (ACKs). The 

DLL is given by equation (3.2) [XiR02]. 

                                    
 

 ……… (3.2) 

Where all of the parameters have been defined as in equation (3.1) and their values are 

given in Table 3-1. This DLL does not consider the queuing time and waiting time at 

the MAC.  

3.1.3 Discussion of Throughput and Delay 

 So far, we have introduced the concepts of the throughput and the delay, and also 

defined how they are used in the analysis of the proposed AAM algorithm. In WLANs, 

an upper limit on the throughput exists and is given by [XiR02] [XiR03] [QCS02]. Due 

to the protocol overhead associated with the transmission packet, the throughput cannot 

be further increased without reducing the protocol overheads even though the data rate 

increases indefinitely. A packet aggregation algorithm is used to reduce the average 

protocol overhead and can significantly improve the throughput. Also a lower limit on 

the delay in wireless networks exists and is defined by [XiR02] [QCS02] where the 

delay of both the queuing time and waiting time in the MAC are not considered. 

However, the time spent waiting for more packets to arrive is the main delay for the 

packet aggregation algorithm [TYH10]. Therefore, there is a trade-off in terms of an 

increased throughput and an increased delay when employing a packet aggregation 

algorithm. This trade-off will be discussed in the next section. 

3.2 Trade-off between Throughput and Delay 

As discussed in the last section, throughput is the key metric that packet aggregation 

algorithms try to improve. Reducing the protocol overheads is an important approach to 

improving the throughput as an upper limit on throughput exists. Studies have shown 
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that the packet aggregation can significantly improve the throughput. For example, 

adopting a packet aggregation algorithm in [KGL06] increases by a factor of 7 the 

number of calls that can be supported for VoIP applications; [JDB10] improves the 

throughput by a factor of 2.5 times; and [MaA12] achieves a 200% improvement in the 

throughput. 

However, the delay can also be increased as the throughput increases when packet 

aggregation algorithms are employed. The existence of a delay lower limit has been 

defined and demonstrated in wireless networks by [XiR02]. But the delay lower limit 

does not consider the queuing delay and waiting delay both of which are the dominant 

delay components that are increased when using a packet aggregation algorithm. We 

will describe the delay associated with a packet aggregation algorithm. 

3.2.1 Delay Associated with a Packet Aggregation 

Delay is the key cost associated with the use of a packet aggregation algorithm to 

improve the throughput. There have been many studies conducting regarding the delay 

associated with packet aggregation in wireless networks.  

In [Lin06], a model was proposed to calculate the packet aggregation delay. This model 

studies error-prone channels using A-MPDU and A-MSDU packet aggregation 

algorithms both of which are popular packet aggregation algorithms defined in the IEEE 

802.11n standard and will be described in the next sections. In this model, the network 

saturation throughput is defined based on a wireless network where M station nodes use 

the RTS/CTS scheme to access the same channel. The network saturation throughput (S) 

is given by equation (3.3). 

  
  

  
………………………………………….. (3.3) 
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Where,    is the successfully transmitted payload size (in bits) in unit time,    is the 

expected length of the time slot, which is defined as the time when a station starts to 

check the channel state (i.e. idle or busy) for transmitting a packet until it receives an 

ACK of the packet. As there are M station nodes competing for transmission, the 

average access delay is given by equation (3.4) 

    
  

 
………………………..……………. (3.4) 

Where    is the aggregate packet size (in bits). The simulation results show that the 

delay increases as the BER increases for the packet aggregation algorithm. This delay 

only considers the transmission delay and does not include other components such as 

queuing time. 

In [TYH10], a delay calculation is proposed which calculates the delay of a packet’s life 

time and is the first work focusing on packet delay of packet aggregation algorithm. The 

average delay (  ) of a packet includes two parts: the queuing delay (  ) and the 

transmission delay (  ) which equals the value of delay ( ) in the equation (3.4). 

          ………….……………………..… (3.5) 

      ………………..………..……………….… (3.6) 

If the length of MAC queue is    in bytes where it assumes that the queue is always full,   

and the aggregate packet size is     bytes which are transmitted at each period, the 

queuing delay is shown in (3.7) 

       
  

  
  ……………….………..…………. (3.7) 

From the equations (3.4), (3.5), (3.6) and (3.7), the average delay (    is given by (3.8) 
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…………….…..…………... (3.8) 

This results show that the average delay is affected by the BER, the aggregate packet 

size and the number of competing nodes. As the BER and the number of competing 

nodes cannot be controlled, one way that the delay can be changed is to adjust the 

aggregate packet size.   

The packet aggregation algorithm proposed in [ZIF08] is based on the Packet 

Reservation Multiple Access (PRMA) protocol. In this model, the PRMA data 

transmission is based on the Markov chain model and it assumes that the aggregation 

process starts after the arrival of a certain number of packets into the buffer.  In [ZIF08], 

the packet aggregation delay is the delay experienced by the first arrival packet (i.e. the 

time from when it arrives at a terminal’s buffer until the time it can start to be 

transmitted). The delay consists of two parts: packet aggregation delay and channel 

access delay. The packet aggregation delay is the queuing time of the first arrival packet 

waiting in the buffer, so the mean aggregation delay is given based on the Markov chain: 

      
                          

  
   

  
               

 ………….……....… (3.9) 

Where α denotes the average packet transmission period,   denotes the packet arrival 

rate. As discussed in [ZIF08], a number of conclusions have been drawn: (i) The 

aggregate packet has a long packet aggregation delay when the packet arrival rate is low, 

this means that the first arrival packet could wait a longer time in the buffer for the size 

of packets in the buffer to exceed the specified target aggregate packet size; (ii) With a 

fixed arrival rate, the aggregate packet has a higher aggregation delay with a bigger 

target aggregate packet size; (iii) The proposed algorithm cannot achieve throughput 

gains by packet aggregation algorithm at the expense of high delay when the packet 
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arrival rate is low; (iv) There is a trade-off between throughput and delay when using 

packet aggregation. As the packet arrival rate is unpredictable, the packet aggregation 

delay is controlled by the target packet aggregation size.  

3.2.2 Trade-Off between Throughput and Delay 

It is clear that packet aggregation algorithms can significantly improve the throughput 

but any improvement will also have an associated cost in terms of a delay increase. As a 

delay lower limit and a throughput upper limit exist in the IEEE 802.11 wireless 

networks, most of the proposed packet aggregation algorithms try to asymptotically 

approach these limits.  

Most of the proposed packet aggregation algorithms attempt to optimize a single metric, 

i.e. either to maximize throughput or to minimize delay. For example, for time sensitive 

applications (e.g. VoIP, video streams), the packet aggregation algorithms focus on the 

delay, such as in [TYH10] [KuD06]. For some other applications, such as E-mail, they 

can tolerate a relatively longer delay than time sensitive applications. They focus on the 

improvement in throughput by using packet aggregation algorithms. However, for a 

significant number of wireless networks, the traffic load is mixed containing many 

different types of applications that can have very different network performance 

requirements. It requires that the packet aggregation algorithm should be adaptive to 

achieve an optimal trade-off between throughput and delay. The adaptive algorithm 

should be capable in improving the maximum throughput with the least cost in terms of 

a delay increase.  

An aggregation algorithm has a superior performance over other algorithms in terms of 

the trade-off between maximizing throughput and minimizing delay if it can deliver a 

throughput greater than that of other algorithms for a given delay increase. This is 

illustrated in Figure 3-2 where there are two packet aggregation algorithms A and B 
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operating under the same conditions. The algorithm A has the better performance in 

terms of the trade-off between maximizing throughput and minimizing delay than that 

of the algorithm B as the algorithm A has a throughput greater than that of the algorithm 

B for a given delay increase.  

 

Figure 3-2: An example of trade-off between throughput and delay for different 

aggregation algorithms. 

In [GuL12], a study of the effect of packet aggregation on video streaming performance 

on an experimental IEEE 802.11n test-bed was performed. They found that the video 

application naturally takes advantage of packet aggregation in both single- and multi-

stream environments. The packet aggregation algorithm can severely impact on the 

average delay and quality of a video stream through limiting the aggregation packet size 

in the IEEE 802.11n wireless networks. This algorithm tries to minimize the delay by 

reducing the throughput increase caused by limiting the target aggregate packet size but 

it does not consider how to increase the throughput.  
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In [Wla12], the authors proposed a new model to obtain the optimal packet aggregation 

size with regard to the delay constraints of nodes. This model specifies a parameter for 

the time limit of a node to access the channel which means that the node cannot wait a 

longer time than this to access the channel. The simulation results show that the delay 

increases with an increase in the number of nodes attempting to access the channel for 

the normal IEEE 802.11n scheme and the delay is less than the value of the specified 

parameter. The idea of this scheme is different to that of the previous schemes. This 

scheme attempts to fix the upper limit of delay to control the average packet delay, 

while the previous scheme (i.e. [GuL12]) attempts to limit the packet aggregation size 

to achieve the goal. In other words, the proposed algorithm in [Wla12] bounds the delay 

increase at the cost of limiting the throughput increase. In particular, if there are a large 

number of nodes attempting to transmit in a wireless network, the throughput is not 

increased and may even be decreased under the proposed scheme compared to that of 

non-aggregation.  

In [ZIF08], the authors found that the packet arrival rate is an important factor that 

affects the delay: the higher the packet arrival rate the shorter the waiting time in the 

buffer and the smaller the delay. However, in practice the packet arrival rate is 

essentially random and uncontrollable. So there is a need to develop adaptive packet 

aggregation algorithms that are better suited to the variations in the packet arrival rate. 

 In this thesis, we investigate the performance of the proposed AAM algorithm in terms 

of the aggregation trade-off where the aggregation trade-off is defined as the maximum 

average throughput with the minimum average delay in wireless networks.  

3.2.3 Discussion of Trade-off between Throughput and Delay 

In this section, we discuss the trade-off between the throughput and the delay when 

employing a packet aggregation algorithm in wireless networks. Generally, the 
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throughput is improved at the expense of a delay increase. In modern networks the 

traffic load is a mix of different types of applications which can have very different 

requirements in terms of network performances. Therefore there is a requirement to 

realize some form of an optimal trade-off between maximizing throughput and 

minimizing delay. 

There are a number of factors that impact the throughput and the delay, such as target 

aggregate packet size, channel noise, contention for access etc. But there is one factor 

that is the target aggregate packet size which can be controlled to manage both 

throughout and delay. The others are essentially unpredictable and uncontrollable, such 

as the packet arrival rate and transmission errors. Generally, the larger the size of the 

aggregate packet, the higher the throughput but also the larger the delay as it may wait 

longer for packets to arrive. Therefore many researchers have attempted to achieve the 

goal of finding the optimal packet aggregation size that minimizes the delay and 

maximizes the throughput.  

As it is difficult to achieve the optimal trade-off for mixed traffic loads by using packet 

aggregation algorithm, some studies are only focused on some special applications, such 

as VoIP or video streaming. In this thesis, the proposed AAM algorithm is used to 

achieve the best aggregation trade-off in terms of achieving the maximum average 

throughput with the minimum average delay for different traffic loads in wireless 

networks.  

3.3 Packet Aggregation Algorithms 

It is clear that increasing the data rate or changing the modulation scheme can improve 

the performance in terms of throughput in IEEE 802.11 WLANs. However, due to the 

IEEE 802.11 protocol overheads (e.g. MAC header), a throughput upper limit (TUL) 

exists which was shown by Xiao and Rosdahl [XiR02] [XiR03]. The MAC is inefficient 
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due to the MAC protocol headers, back-off time, inter-frame spacing and ACKs, and 

this inefficiency is the most pronounced when the data rate is high or the payload is 

small. To achieve higher throughputs it is necessary to reduce protocol overheads 

particularly for small size packets. The protocol overhead is the key factor for small 

sized packet to lower the MAC efficiency which is clearly demonstrated by Dionysius 

et al. [SNC08]. The idea of packet aggregation algorithm was proposed by Shaffer 

[SWC99] in 1999 and Gopalakrishna [Gop03] proposed their packet aggregation 

method in 2003. A lot of research has been conducted to show how packet aggregation 

can improve the throughput in wireless networks. D. Skordoulis [SNC08] has 

demonstrated the influence of aggregation, block acknowledgement on the throughput 

of the IEEE 802.11 WLANs. In [BMS09], the study shows that the packet aggregation 

algorithm has significantly improved the throughput for the various application data 

traffic in an IEEE 802.11 experiment test-bed.  

Packet aggregation is shown in Figure 3-3 where there are three packets aggregated into 

a single packet at the sender. This reduces the number of MAC headers required from 

three to just one header. The two MAC headers do not need to be transmitted which 

represents a saving of two MAC overheads.  

Figure 3-3: The aggregation process for packet aggregation algorithm in wireless 

networks. 
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Packet aggregation algorithms can be divided into different classes based on the 

different strategies employed. For example, in [HeC04], the packet aggregation may be 

performed at different granularities: aggregating all the packets (full aggregation), 

aggregating packets from the same traffic class (per-class aggregation) and aggregating 

packets from the same flow (per-flow aggregation). While, there are eight ways to 

classify them as proposed in [Xia05]: (i) distributed vs. centrally controlled; (ii) ad-hoc 

vs. infrastructure; (iii) uplink vs. downlink; (iv) single-destination vs. multi-destination; 

(v) PHY-level vs. MAC-level; (vi) single-rate vs. multi-rate; (vii) immediate ACK vs. 

delay ACK; (viii) no spacing vs. SIFS spacing.  

In this thesis, the different aggregation algorithms will be divided into 4 categories 

based upon the aggregation discipline and selection strategy employed. The aggregation 

packet selection strategy describes the way in which the packets are selected for 

assembling. The two categories here are first-in first-out (FIFO) and Non-FIFO. The 

FIFO discipline selects the packets based on the time of arrival into the buffer which is 

also the benchmark algorithm used here to compare with the proposed AAM algorithm. 

Non-FIFO uses other methods to select the packets.  

The aggregation discipline can either be fixed or adaptive depending on whether the 

algorithm parameters are fixed or are dynamically adjusted in response to variations in 

the network conditions. Combining these two approaches results in 4 categories for 

aggregation algorithms: (1) Fixed with FIFO selection strategy (FF); (2) Fixed with 

Non-FIFO selection strategy (FNF); (3) Adaptive with FIFO selection strategy (AF); (4) 

Adaptive with Non-FIFO selection strategy (ANF). 

3.3.1 Fixed with FIFO Packet Aggregation Algorithms (FF) 

The FF packet aggregation algorithm does not automatically adjust the parameters of 

the algorithm to adapt to the variations in network conditions and uses the FIFO 
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selection strategy to select packets for aggregation. These algorithms were proposed at 

the early stages of the packet aggregation development.  

In [KoG03], an algorithm is presented that has been developed for multi VoIP streams 

and it shows the relationship between the number of VoIP calls and output link rate, and 

the network performance is measured in terms of teletraffic parameters.  

                               …

(a)   Concatenation                      Time

     
                  

(b)   Packing                      Time

BUSY DIFS PH L 1 Payload 1 L 2
Payload 

2
…... FCS SIFS ACK

BUSY DIFS CH Frame 1 Frame 2 Frame K SIFS ACK

A Super Frame

A frame

(CH: Concatenation Header; PH: Packing Header; L1~L2: Length of the following payload.) 

Figure 3-4: The format of concatenation and packing. 

Concatenation and packing [Xia04] shown in Figure 3-4, as well as aggregation 

schemes [YCJ04] are early aggregation attempts. Concatenation shown in Figure 3-4 (a) 

is the process of concatenating multiple frames into a large frame. Packing shown in 

Figure 3-4 (b) is the process of combining multiple data units from a higher layer into a 

single MAC protocol data unit. For the packing scheme, it involves combining all 

concatenated frames into a larger frame with one header instead of many concatenated 

frames and it is more efficient than the concatenation scheme at the expense of 

complexity and delay of combining and decomposing frames. However, the 

disadvantage of the algorithm is that the aggregation headers are considered too large 

for small payloads and the behavior in noisy channels has not been addressed [SOS11]. 
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In [YCJ04], the performance of frame aggregation is evaluated by both numerical 

analysis and experimental measurements obtained from a test-bed. According to the 

measurement results, the frame aggregation can improve the throughput performance of 

the IEEE 802.11b WLAN by 2 to 3 Mbps, when multiple frames are aggregated. 

However, it does not consider the delay. 

There has been renewed interested in their applications for wireless networks [KGL06] 

[RLI06], where fairness and inefficiency issues in the IEEE 802.11-based wireless 

systems are examined. In [KGL06], a distributed packet aggregation algorithm is 

proposed for Voice over IP (VoIP) used in multi-hop wireless networks. The 

experimental results demonstrate that the number of calls supported increases to 8 for 

the proposed aggregation algorithm compared to 1 in the case of no aggregation. The 

disadvantage of the proposed algorithm is that it only operates for a single application, 

i.e. VoIP. VoIP is one of the most important applications to be researched in the 

development of packet aggregation algorithms as the average size of a VoIP packet is 

small. However it imposes a constraint on the maximum delay allowed, typically less 

than 150 ms [ITU03]. Normally, the packet aggregation algorithms for the time 

sensitive applications (e.g. VoIP or video streaming) are focused on the increased delay 

resulting from an improvement the throughput. 

In [Hud09], a scheme called the frame aggregation and block acknowledge (FABA) is 

proposed which is shown to be capable of providing a throughput that is sufficient for 

multimedia applications, even at rates of over 100 Mbps. FABA combines the packet 

aggregation mechanism and the block acknowledgement mechanism to improve the 

throughput. In this scheme, a number of aggregate packets will be transmitted from the 

sender in a single back-off period and a special ACK frame will be sent to the sender 
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from the receiver. However, it is based on a new MAC scheme designed by the author 

and not easily implemented. 

In [LNM09] [MaE07], the authors proposed a scheme called Aggregation and Fragment 

Retransmission (AFR) scheme to aggregate as many packets as possible into a large 

frame. This large frame is, in turn, fragmented into smaller fragments before being 

transmitted. If transmission errors occur during the transmission, only the corrupted 

fragments of the large frame are re-transmitted. The simulation results show that AFR 

achieves between 2.5 and 3 times the throughput of DCF over a range of network 

conditions for TCP traffic. However, a new data format is developed and an ACK frame 

which has a new format is proposed by the author and it should be received for every 

fragment transmitted by the source node which significantly affects the throughput even 

if some packets are divided into fragments. And the new format ACK is larger than the 

typical ACK frame. This algorithm has some disadvantages as it can only improve the 

throughput in the high packet rate wireless networks and cannot be easily implemented 

as a new format data and ACK are required. 

In [JDB10], the authors have proposed three packet aggregation algorithms to improve 

the throughput for VoIP applications. Here, the simulation results show that these 

algorithms have better performances than those without packet aggregation. For the 

proposed scheme, the supported VoIP calls increased to 80 from 33. However, it just 

considers improving the system efficiency of uplink VoIP packet transmission and 

assumes the AP is equipped with a special smart antenna with a beam width of 90
0
 with 

gain. Furthermore, this scheme produces the aggregation packets at a fixed rate.   

3.3.2 Fixed with Non-FIFO Packet Aggregation Algorithms (FNF) 
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The FNF packet aggregation algorithm is the algorithm that does not automatically 

adjust the parameters of the algorithm to adapt to variations in the network conditions 

but employs a Non-FIFO selection strategy to select packets for aggregation. 

 In [EEV06], the authors describe a packet aggregation algorithm that can increase the 

throughput of WLAN for voice communication by decreasing the overhead of the back-

off process at the beginning of each packet transmission. It also implements the packet 

aggregation on the IEEE 802.11 WLANs and an analysis of the results shows that it can 

considerably improve the performance of VoIP. The algorithm picks the VoIP packet 

from the buffer (based on the packet size) assuming that the VoIP packet size is smaller 

than others. So it is easy to miss the VoIP packet and also easy to pick the wrong packet 

which is not a VoIP packet but has a similar size. 

3.3.3 Adaptive with FIFO Packet Aggregation Algorithms (AF) 

The AF aggregation algorithm has parameters that can be automatically adjusted to 

follow the variations in the network conditions and employs the FIFO selection strategy. 

These algorithms have been proposed to satisfy the variations in the application’s 

demands and under changing network conditions. 

An adaptive algorithm proposed by Yuxia and Vincent [Lin06], defines an optimal 

packet size based on the A-MSDU aggregation scheme. The algorithm operates in three 

steps as follows: (i) the source station evaluates the channel BER before transmitting an 

aggregate packet; (ii) it calculates the optimal packet size for unidirectional and bi-

directional transmissions respectively; (iii) it assembles the aggregate packet with a size 

as close as possible to the optimal packet size. The research demonstrated that the 

adaptive packet aggregation has a better performance in terms of throughput than that 

for both the fixed packet aggregation and randomized packet aggregation where the 

aggregate packet sizes are randomly distributed in a range.  
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In [ZIF08], the authors proposed a packet aggregation algorithm called PRMA (Packet 

Reservation Multiple Access) to improve throughput for data traffic. According to the 

proposed scheme, a generic Markov chain model is developed. It shows that the 

throughput increases as the packet arrival rate increases. When the arrival rate is low, 

the achievable throughput has no difference with or without packet aggregation. In 

[HLF09], a scheme based upon automatic repeat request (ARQ) is employed called 

aggregated selective repeat ARQ (ASR-ARQ) to improve the throughput based on the 

Markov chain. It confirms that the aggregate packet successful transmission probability 

increases as the BER decreases. The authors in [WeL11] proposed an adaptive scheme 

also based on the Markov chain to constrain the delay by adjusting the times of re-

transmission due to collisions and transmission errors respectively. The proposed 

algorithm achieves a better performance in terms of average delay by limiting the re-

transmission time than the normal fixed packet aggregation. However, the packet loss 

rate is high if a large number of stations try to transmit packets at the same time using 

the proposed algorithm. 

The algorithm described in [KCK11] is a joint rate and fragment size adaption packet 

aggregation algorithm which is implemented within the context of the proposed 

algorithm AFR (Aggregation and Fragment Retransmission) in [LNM09] to improve 

the throughput. This scheme is based on the current estimated fragment error probability 

which can characterize channel quality without using explicit feedback information. But 

this estimation sometimes may not accurately characterize the channel quality as the 

channel quality can change rapidly. It also has the same disadvantage with [MaE07] as 

it needs a large buffer and an extra ACK. Generally, the feedback control scheme is a 

good approach to determine the channel quality. In this thesis, a feedback control 

scheme is also employed by the proposed AAM algorithm. 
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3.3.4 Adaptive with Non-FIFO Packet Aggregation Algorithms (ANF)  

The ANF algorithm has parameters that are automatically adjusted to adapt to variations 

in the network conditions and uses a Non-FIFO selection strategy. These algorithms are 

adaptive and employ different selection strategies based on different characteristics to 

select the packets for aggregation, such as based on packet size, packet life time, 

priority etc. 

In [LeP07], a scheme is proposed to manage the delay budget and control the packet 

aggregation which is based upon a rotating priority queue (RPQ) scheme [LWM96] at 

the cost of large number of queues as it requires queues for every traffic types. The 

proposed scheme uses a priority strategy to select the packets for assembling that is 

similar to [RMP08]. In [WaH08], the authors also find that the scheduling of packet 

aggregation is a knapsack problem which is a NP-hard problem and an algorithm is 

proposed called Largest Unit Urgency First (LUUF) to approximate the optimal 

solution. The largest unit urgency packet is selected at first to be aggregated. The 

analysis result shows that the total LUUF complexity can be reduced to O(n) from 

O(nlog n) in each cycle. But it requires that all users have the same QoS (Quality of 

Service) requirements.  

An adaptive aggregation and differentiation scheme, in which a priority mechanism and 

scheduling is implemented at the top of the MAC, was proposed by Riggio [RMP08]. 

The priority selection strategy is employed in the proposed algorithm where the packets 

are pushed into 4 different aggregating buffer based on the different priorities. The test 

results on a Wi-Fi test-bed show that the proposed scheme can attain a large gain in the 

voice call capacity. The proposed algorithm can effectively differentiate services and 

improve the network scalability. The disadvantage of the scheme is that it needs a large 

memory for the pool of queues and only works for the packets which use tagging.  
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Another aggregation scheduler presented by Selvam and Srikanth [SeS10] adaptively 

estimates the deadline of packet transmission and selects the aggregation type based on 

the size of the aggregation buffer which has the smallest size packet. The results show 

that the different packet aggregation algorithms (e.g. A-MSDU, A-MPDU) have 

different advantages in different network environments to improve the throughput. For 

example, the A-MSDU algorithm is very effective under ideal channel conditions due to 

the reduced protocol overhead. However, in error-prone wireless networks it yields poor 

performance due to the lack of an individual FCS (Frame Check Sequence) for each 

sub-packet. On the other hand, A-MPDU is robust against transmission errors as the 

presence of individual CRC (Cycle Redundancy Check) per MPDU and the aggregated 

packet size can be up to 64 KB. But the receiver nodes have a large delay to reorder the 

large size packet. The proposed aggregation scheduler employs the selection strategy 

based on the packet size where the frames are saved in ascending order to wait for 

aggregation which is used as the comparison algorithm with the AAM algorithm. 

In [MaA12], an aggregation scheme is proposed to improve the throughput. It first 

formulates the problem of optimal aggregation as being NP-Hard and then proposes two 

heuristics to solve the aggregation problem for multi-rate WLANs. The first heuristic is 

called Data Rate based Aggregation protocol (DRA) that divides packets in the MAC 

queue into different groups based on the data rate with which they are to be transmitted. 

DRA also achieves up to a 200% increase in the number of VoIP calls supported by a 

single IEEE 802.11g AP compared to using the Destination based Aggregation (DA), a 

state-of-the-art aggregation protocol. DA combines these packets that have the same 

destination address and then sends them in a single aggregate packet to the destination 

node [CDK07]. The second heuristic is called Data Rate based Aggregation with 

Selective Demotion (DRASD) which enables cross data rate aggregation and allows 

limited cross data rate aggregation, and it shows that selective packet demotion could be 
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used to reduce WLAN delays in certain cases. In [MaA12], the algorithm selects the 

packets based on the life time and the priority. The first packet selected is the packet 

which has the smallest life time, or has the highest priority if two of more packets have 

the same life time. It is shown that selectively demoting packets can further improve 

performance. However, this algorithm may not accurately characterize the data rate as 

the channel conditions can change rapidly. 

3.3.5 Transmission Errors and Packet Aggregation Algorithms 

As discussed in chapter 2, transmission errors can have a detrimental impact on the 

performance of packet aggregation in wireless networks as corrupting a large size 

aggregated packet may waste a long period of channel time and leads to a lower MAC 

efficiency. Therefore some packet aggregation algorithms were proposed to reduce the 

detrimental impact on the performance of wireless networks. 

[YWA04] experimentally studied the effect of packet size in an error-prone channel for 

the IEEE 802.11 DCF and concluded that there is an optimal packet size under a certain 

BER to achieve the maximum throughput with the saturated traffic. A model based on 

an optimal frame size adaptation algorithm was proposed to study the saturation 

throughput and delay performance in [Lin06] which was introduced previously. This 

performance for the proposed model was investigated under error-prone channels by 

using the A-MPDU and A-MSDU packet aggregation algorithms. However, it cannot 

always accurately characterize the channel BERs as the channel conditions can change 

rapidly. In [KSP12], the authors proposed the adaptive frame size estimation (FSE) 

depending on the channel condition which can improve the throughput for A-MSDU in 

the error-prone WLAN environments. In this thesis, the proposed AAM algorithm will 

be implemented in an error-prone WLAN.  

3.3.6 Discussion of Packet Aggregation Algorithms 
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This survey provides a good insight into the different packet aggregation algorithms that 

have been developed for wireless networks. We have divided these proposed packet 

aggregation algorithm into 4 categories, FF, FNF, AF and ANF based on the 

aggregation discipline and the selection strategy. Some proposed packet aggregation 

algorithms whose goal is to ameliorate the detrimental impact on the performance of 

wireless networks are introduced. 

It is shown that the adaptive packet aggregation algorithm has a better performance than 

the fixed packet aggregation, [Lin06] [WeL11], as the adaptive packet aggregation 

algorithm can adaptively adjust the parameters to suit different types of traffic loads. 

FIFO selection strategy is the most popular selection strategy [RLI06] [MaE07] [SOS11] 

[KCK11] [KSP12]. Some other Non-FIFO selection strategies, such as based on packet 

size, life time, priority, are used in some proposed packet aggregation algorithms. 

However, if the packet sizes are all similar, the selection strategy cannot significantly 

impact on the performance of packet aggregation [LYY09]. The different selection 

strategies have different advantages and disadvantages. For example, the biggest 

advantage of the FIFO selection strategy is a short waiting time in the queue and the 

disadvantage of the FIFO selection strategy is that it cannot always achieve the 

maximum throughput. The performance of the selection strategy of Smallest-Size First-

Served (SSFS) is the opposite to that of the FIFO selection strategy. This means that the 

SSFS can aggregate a larger number of sub-packets in an aggregate packet but it needs 

longer waiting time in the queue. Table 3-2 highlights the contributions and 

disadvantages of some of the reported packet aggregation algorithms sorted by the 

aggregation discipline and the selection strategy. In this thesis, the A-MSDU [IEn09] is 

a typical FIFO algorithm used to compare with the AAM algorithm which will be 

described in the next section and the other comparison algorithm in [SeS10] used the 
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typical SSFS algorithm will also be introduced in the next section as the Non-FIFO 

selection strategy algorithm. 

Table 3-2: A comparison between some packet aggregation algorithms 

Reference Approach Main Contribution Main Disadvantage 

[IEn09] FF 

Proposes two aggregation algorithms, A-MSDU and 
A-MPDU, which are widely used and employed by the 

IEEE 802.11ac standard. It defines the new format of 

the two packet aggregation algorithms. 

Whole A-MSDU aggregation packets 

need to be re-transmitted when a bit is 
corrupted [KML12]. 

[LNM09] FF 

Aggregates as many packets as possible into a large 
packet and only the corrupted sub-packet needs to be 

re-transmitted. It is can significantly improve the 

throughput. 

It is not easily implemented as a new 

format ACK and a new data format 
are used [KCK11]. 

[Hud09] FF 
Supports the multimedia applications and improves the 
throughput even up to 100Mbps 

Based on a new MAC mechanism 

proposed by author and is not easily 

implemented [ZKH13]. 

[SOS10] FF 

Adjusts the header size so that it has a more significant 
impact for the small size packet than that of larger size 

packet and proposes algorithm on the small size 

packets. 

Only works well for the small size 

application packets. [ArS12] 

[EEV06] FNF 
Can considerably improve the performance of VoIP 

operating on IEEE 802.11 WLANs. 

Easy to miss VoIP packets as 

assumption the VoIP packets sizes are 

smaller than other type packets sizes 
[LCB10]. 

[KCK11] AF 

Proposes a joint rate and fragment size adaption packet 

aggregation algorithm based on the current estimated 

fragment error probability to improve the throughput. 

The estimation sometimes may not 

accurately characterize the channel 
quality and it needs a large buffer and 

an extra ACK [SaA12]. 

[Lin06] AF 
Defines the saturation throughput and delay on the A-

MSDU aggregation scheme. 

Cannot always accurately characterize 

the channel BERs as the channel 
conditions can change rapidly 

[LFH13].  

[ZIF08] AF 

(i) long aggregation delay if the packet arrival rate is 

low or if a large target aggregate packet size with fixed 

arrival rate; (ii) cannot achieve throughput gain by 
packet aggregation at the expense of high delay when 

the packet arrival rate is low; (iii) there is a trade-off 

between throughput and delay by using packet 
aggregation. 

Operation of the proposed model is 
based on the PRMA protocol. 

[MaS11] 

[HLL08] AF 

Proposes an adaptive target aggregate packet size 

algorithm for A-MPDU in the IEEE 802.11n networks 
to maximize the throughput by selecting the optimal 

frame length under different channel conditions. 

Cannot accurately determine the 

optimal target packet size by selecting 

the optimal packet size that is 
calculated off-line under typical 

BERs. [ZaL13] 

[WeL11] AF 
Has better performance in delay by limiting the packet 

re-transmission times. 

Has a high loss rate if large numbers 

of stations try to transmit. 

[KSP12] AF 
Determines the optimal packet size for the next 

transmission by using the current channel conditions. 

May not accurately characterize the 

channel quality as the channel rapidly 

changes. 

[MBR12] AF 
Supports time sensitive applications and satisfies the 

QoS requirement. 

May produce high loss as the packet 

waits too long. 

[LeP07] ANF 
Supports the management of the delay budget and 
controls the packet aggregate by using the priority 

strategy. 

Needs a large numbers of queues. 
[MBR12] 

[WaH08] ANF 
The scheduling of packet aggregation is a knapsack 
problem and the proposed algorithm can reduce the 

complexity to O(n) from O(n log n). 

Assumes that the users have the same 

QoS requirements.  

[MaA12] ANF 

Formulates the optimal aggregation is the NP-hard 

problem and proposes 2 algorithms to resolve and the 
selection strategy is based on the data rate and priority. 

May not accurately characterize the 

data rate as the channel rapid change. 
[KJL13] 

[RMP08] ANF 
Attains a large gain in the voice call capacity by the 

priority selection strategy. 

Needs large memory for the pool of 

queue and only works for the tagging 
packets [SOS10]. 

[SeS10] ANF 

Proves that the A-MSDU and A-MPDU have different 

advantages based on the packet size in which the 

smallest size packet is first service. 

Needs the packet to be ordered in the 

queue and the determinable optimal 

waiting time is not accurate [MAH12]. 



53 
 

3.4 A-MSDU and A-MPDU Schemes 

In the IEEE 802.11n [IEn09] standard there are two aggregation algorithms defined, 

namely Aggregate MAC Service Data Unit (A-MSDU) and Aggregate MAC Protocol 

Data Unit (A-MPDU). The IEEE 802.11n MAC sub-layers can be divided into two 

entities, upper and lower MACs, based on its time sensitivity [KML11]. The A-MSDU 

operates at the upper MAC while the A-MPDU is performed at the lower MAC. 

For the A-MSDU algorithm, multiple MSDUs are aggregated into a single A-MSDU 

with a single MAC header and then it is transmitted within a single MPDU [KML11] 

[LYY09]. The A-MSDU increases the maximum frame transmission size from 2304 

bytes to 7935 bytes. The frame format of A-MSDU is shown in Figure 3-5. All the sub-

frames in a single A-MSDU should have the same transmitter address and receiver 

address, which means that all the sub-frames are intended to be received by a single 

receiver and necessarily they are all transmitted by the same transmitter. However, the 

sub-frames (i.e. MSDUs) are allowed to have different source and destination addresses 

which are indicated in the sub-frame header. There is a distinction between the source 

address and the transmitter address and a parallel distinction between the destination 

address and the receiver address. The transmitter address is the address of the 

transmitter which sends a frame onto the wireless medium but does not necessarily to 

create the frame, while source creates a frame and sends it. A similar distinction holds 

for destination address and receiver address. A receiver may be an intermediate 

destination, but frames are processed by higher protocol levels only when they reach the 

destination. 
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Sub-frame 1 Sub-frame 2 Sub-frame 3 ... Sub-frame n

Destination 

Address
Source 

Address
Length MSDU Padding

bytes 6 6 2 0 -- 2304 0 -- 3

A-MSDU

FCSPHY Header MAC Header

 

Figure 3-5: The format of A-MSDU frame. 

Sub-frame 1 Sub-frame 2 Sub-frame 3 ... Sub-frame n

Reserved
MPDU 

Length
CRC

Delimiter 

Signature
MPDU

bits 4 12 8 8

Pad

MPDU Delimiter

A-MPDU

bytes 4 variable 0 -- 3

PHY Header FCS

 

Figure 3-6: The format of A-MPDU frame. 

As the unit for an ACK is an MPDU, if any bit within an A-MSDU is corrupted at the 

receiver, the whole A-MSDU has to be re-transmitted. In the A-MPDU algorithm, 

multiple MPDUs are aggregated into a single A-MPDU which is delivered to the PHY 

layer as a single Physical Layer Service Data Unit (PSDU). It is then processed as a 

single Physical Layer Protocol Unit (PPDU) to be sent to the channel. Figure 3-6 shows 

the frame format of an A-MPDU. Like the A-MSDU, all the sub-frames have the same 

sender and receiver addresses in a single A-MPDU. If one or more frames are received 

with errors, the structure of the A-MPDU can usually be recovered [KML11] as each 

sub-frame is preceded by an MPDU delimiter signature as shown in Table 3-6. As 

already mentioned in the IEEE 802.11n MAC, the ACK unit is an MPDU, each sub-
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frame in a single A-MPDU should be individually ACKed. As multiple MPDUs are 

transmitted within a single PPDU, the Block ACK (BA) is used for the A-MPDU 

scheme. The relationship between the A-MSDU and A-MPDU is shown in Figure 3-7. 

Sub-frame 

Header
MSDU Padding

MAC Header
MSDU     

sub-frame 1

MSDU      

sub-frame 2
...

MSDU     

sub-frame n
FCS

MPDU 

Delimiter
MPDU Padding

PHY Header
MPDU 

sub-frame 1

MPDU

Sub-frame 2
...

MPDU

Sub-frame m

A-MSDU

A-MPDU

FCS

Figure 3-7: The relationship between A-MSDU and A-MPDU frames. 

Ginzburg and Kesselman [GiK07] were the first to study the A-MPDU and A-MSDU 

algorithms to estimate the maximum throughput of the IEEE802.11n standard and they 

concluded that the performance of A-MSDU aggregation significantly degrades for high 

packet error rates and high PHY rates.  

In [SNC08], the authors present a simulation based performance comparison of the 

maximum throughput for the aggregation algorithms. In [Lin06], an analytical study of 

the performance for the A-MSDU and A-MPDU algorithms is performed under uni-

directional and bi-directional data transfers. In [KuD06], a transmission queue model of 

an IEEE 802.11n station is proposed to estimate the impact of packet aggregation size 

on the delay and channel utilization. They studied the impact of the packet aggregation 

size over a wide range of operating conditions and the results showed that the aggregate 
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packet size is impacted by the packet arrival rate and data frame size. The authors in 

[KHS08] propose an analytical model to evaluate the throughput performance based on 

an enhanced discrete time Markov chain (DTMC). The results have shown that the 

target aggregate packet size has little impact on the throughput in an unsaturated 

network, while the throughput varies according to the target packet size in a saturated 

network and the larger target aggregate packet size do not always yield better 

throughput performance.  

In [HLL08], an adaptive target aggregate packet size algorithm for A-MPDU in the 

IEEE 802.11n networks is proposed to maximize the throughput by selecting the 

optimal frame length under different channel conditions. The network throughput can 

be further improved if it is employed together with the PHY rate adaption mechanism. 

The performance of the algorithm with adaptive target aggregate packet size is better 

than that of the algorithm with fixed target aggregate packet size. The idea of combining 

fragmentation with A-MPDU aggregation is also presented in [SYC06] while the 

authors in [SeS10] proposed a simple scheduling algorithm to determine which 

aggregation option is used based on the packet size where the smallest size packet is 

served first and this is referred to SSFS. However, in [SYC06], the authors ignore the 

delay and just consider the reliability and throughput. It has the disadvantage that it 

needs to change the format of MSDU which is not easy to implement. 

In [SWS10], the authors compare the throughput performance of A-MSDU, A-MPDU 

and PHY super-frames on different aggregation types and fragmentation types under 

delay limits in an ultrahigh-speed WLAN. The authors in [SOS10] show that the header 

size has a larger significant impact for the small sized MSDUs than that of large sized 

MSDUs by using the packet aggregation algorithm. They present a packet aggregation 

algorithm (mA-MSDU) which is described in [SOS11] to reduce the protocol overheads 
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and implement a re-transmission control over the individual sub-packets at the MSDU 

level. The simulations results and analysis show a significant performance improvement 

in terms of throughput for the proposed scheme particularly for applications that have a 

small packet size such as VoIP. 

[AbA11] shows the impact of the multi-rate operation on the A-MSDU and A-MPDU 

based on the experiments using certified IEEE 802.11n equipment. Within A-MSDU 

operation, an A-MSDU enabled station that operates at low data rate affects the 

performance of A-MSDU disabled stations transmitting at higher rates. However, 

within A-MPDU operation, the effect of not enabling A-MPDU for all stations is even 

worse than the effect of multi-rate operation.  

In [KML11], an adaptive aggregation scheme is proposed in order to resolve the 

potential problem in A-MPDU where the sender transmits A-MSDUs within A-MPDUs 

in an adaptive manner. A new analytical model to evaluate the performance of A-

MSDU and A-MPDU aggregation schemes is defined in [DAM11] where the model is 

defined for a reliable multicast transport and allows the estimation of the MAC layer 

efficiency. The proposed algorithm can improve the throughput over A-MSDU by up to 

19% in the single hop network topology but it has poor performance in a multiple hop 

network.  

There are also some researchers who have studied some special applications (e.g. video) 

for the A-MSDU and A-MPDU algorithms. The authors in [BaA12] study the 

performance of packet aggregation to improve the efficiency and quality of the video 

transmissions over the IEEE 802.11n wireless networks. In [ZCY10], they study the 

impact of the video transmission for the packet aggregation, especially for the A-MPDU 

algorithm in IEEE 802.11n wireless networks. It was found that when the optimal 
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packet aggregation size was changed following the channel conditions the throughput 

was improved but this had little effect on the video quality.  

For the technique described in [SeS10] may drop the packets in the queue as the packet 

waits too long. This disadvantage is similar to [MBR12] where a real time scheduler 

scheme is proposed which relies on traffic priority in order to support time sensitive 

applications and satisfy the QoS requirements by employing A-MSDU. A scheme is 

proposed in [KSP12] to determine the optimal frame size for the next transmission 

using current channel information. In [KSP12], the authors employ frame size 

estimation (FSE) with extended Kalman Filter (EKF) which uses a tight frame error rate 

(FER) bound for OFDM system to obtain the instantaneous link quality. The 

researchers found that the number of video streams that can be supported on the IEEE 

802.11n networks depends on the implementation of the packet aggregation in [LYK08].  

3.4.1 Discussion of A-MSDU and A-MPDU Schemes 

A-MSDU and A-MPDU are the most popular packet aggregation algorithms which are 

defined in the IEEE 802.11n standard and employed by the IEEE 802.11ac standard 

draft to achieve the goal of high-throughput. The algorithm of A-MSDU combines 

several MSDU packets into a large packet with a single MAC header and the A-MPDU 

algorithm aggregates multiple MPDU packets into a large frame with a single PHY 

header. Research studies on these two methods can be divided into two categories: 

comparison of the performance for the two algorithms and determining the optimal 

packet aggregation size and selection schemes to aggregate the packets.  

Generally speaking, under a high BER environment, the A-MPDU algorithm is more 

efficient in terms of throughput than that of the A-MSDU algorithm as only the 

corrupted sub-packet needs to be re-transmitted in the A-MPDU algorithm while the 

whole aggregate packet has to be re-transmitted in the A-MSDU algorithm if an error 
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occurs. Until now, a significant number of the proposed packet aggregation algorithms 

based on the A-MSDU and A-MPDU algorithms try to determine the optimal target 

aggregate packet size in different environments. Some proposed algorithms have good 

performance in terms of throughput [KML11] [MBR12], however, they are not based 

on the real live traffic loads. In this thesis, the A-MSDU algorithm is the typical FIFO 

algorithm that is employed as the benchmark algorithm to be compared with the 

proposed AAM algorithm. The other comparison algorithm used is the SSFS algorithm 

[SeS10].  

3.5 Chapter Summary  

In this chapter, we have reviewed a number of different packet aggregation algorithms 

which have been proposed by other researchers. As an upper limit on throughput and a 

lower limit on delay exist in wireless networks, packet aggregation needs to be used to 

improve the throughput. There exists a trade-off between the maximizing throughout 

and minimizing delay. However, most of these researches were focused either on the 

improvement in throughput or the reduction in delay. A number of different categories 

of packet aggregation algorithms have been presented and the effect of the packet 

aggregation algorithm on throughput and delay performances was studied in IEEE 

802.11 WLANs. Some algorithms were presented that attempt to reduce the delay 

increase to asymptotically approach the lower limit delay. The proposed packet 

aggregation algorithms were divided into 4 categories: FF, FNF, AF and ANF. Two 

most important packet aggregation algorithms, A-MSDU and A-MPDU, were 

introduced which are defined in the IEEE 802.11n and IEEE 802.11ac standards. Many 

studies of the two algorithms have been carried out.  
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Chapter 4 
Proposed Packet Aggregation Algorithm 

In chapter 2 and chapter 3, we discussed the background and the performance of the 

packet aggregation algorithms proposed by other researchers. The most important 

performance metrics for the packet aggregation algorithms are the throughput and the 

delay. As described in the chapter 3, most of the proposed packet aggregation 

algorithms attempt to optimize a single metric, i.e. either to maximize throughput or 

minimize delay. These packet aggregation algorithms don’t take account of the varying 

nature of the traffic load particularly the random nature of the packet size and packet 

rate. For example, in [ZhN08] [SWC99], [BMS09], the authors focus on the optimal 

aggregate packet size to achieve the maximum throughput but they don’t consider the 

delay, while in [WeL11] and [LeP07] they just consider how to achieve the minimum 

delay. 

In this chapter we will outline the proposed packet aggregation algorithm called 

Adaptive Aggregation Mechanism (AAM) which has been designed to achieve the goal 

of the best aggregation trade-off in terms of realizing the maximum average throughput 

with the minimum average delay compared to a number of popular aggregation 

algorithms for different traffic loads in wireless network environments. The AAM 

algorithm is an adaptive algorithm in that it responds to the varying nature of the packet 

size and packet rate and attempts to assemble the target size aggregate packet with the 

minimum delay.  

In Figure 4-1, the structure of the AAM algorithm is shown. As can be seen, the AAM 

algorithm is essentially a feedback control system which comprises three elements. The 

first of these is the Adjustable Aggregation Algorithm (A
3
) which aggregates the 

packets that are selected from a selection window in the input buffer. The selection 
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window whose size N is adjustable contains the front N packets in the input buffer. The 

second element is the Aggregate Packet Analyzer (APA) which analyzes the number of 

sub-packets in the aggregate packet and the aggregate packet delay of the assembled 

aggregate packet. The sub-packet is the MAC service data unit (MSDU) that is received 

from the logical link control (LLC) sub-layer. The aggregate packet delay includes two 

elements: the waiting delay which is defined as the duration from the first sub-packet 

from its arrival in the input buffer to being aggregated in the output buffer, and the 

transmission delay which is defined as the time from when the selected packets are 

aggregated to when the ACK of the aggregate packet is received. The waiting time 

starts from the arrival of the first sub-packet of an aggregate packet into the input buffer. 

The last element is the Aggregate Tuning Algorithm (ATA) which uses the analysis 

results from the APA to dynamically adjust the size of the selection window in A3. The 

ATA also has two user input parameters which are specified per-queue: the target 

aggregate packet size and the maximum acceptable delay. 

Adjustable Aggregation Algorithm (A3)

Aggregate Packet Analyze 
(APA)

Aggregate Tuning Algorithm 
(ATA)

Packets 

Input

Aggregated Packet

Output

User Parameters

Input

Output BufferInput Buffer

Selection Window Selection

 Figure 4-1: The structure of the AAM algorithm. 

4.1 Adjustable Aggregation Algorithm (A3) 

The Adjustable Aggregation Algorithm (A
3
) is employed to select packets from the 

selection window in the input buffer used for assembling the aggregate packet. The 

sizes of the packet and the inter-arrival times between packets in the input buffer are 

http://en.wikipedia.org/wiki/Logical_link_control
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considered to be random. For example, the size of a data packet can be up to 7935 bytes 

(i.e. A-MPDU) and the inter-arrival times between packets arriving into the input buffer 

can be short in busy wireless networks (e.g. microseconds) or long in idle wireless 

networks (e.g. milliseconds).  

There are two buffers used in the A
3
 algorithm: one is the input buffer which is a buffer 

for receiving the incoming packets from the network or upper layers and all sub-packets 

are selected from it; the other one is the output buffer which is the buffer used for 

assembling the selected packets into an aggregate frame. Figure 4-2 shows how packets 

are selected from the input buffer and moved into the output buffer. There are more than 

7 packets in the input buffer and 4 packets are selected by the A
3
 and moved into the 

output buffer. After completing the selection process, all the selected packets in the 

output buffer are aggregated together and transmitted as a single frame.  

Packet 1Packet 2Packet 3Packet 4Packet 5...Packet 6Packet 7...

Packet 1Packet 4Packet 6

(a) Input Buffer

(b)  Output Buffer

Packet 7

 

Figure 4-2: How packets are selected from the input buffer and moved into the output 

buffer. 
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Figure 4-3: The flowchart of the A
3
. 
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The flowchart of A
3
 is shown in Figure 4-3. The size, N, is first initialised. Next, the 

front packet in the input buffer is selected as the first sub-packet and its size is 

compared with the target aggregate packet size.  

(1) The packet is moved into the output buffer and transmitted if its size is greater 

than or equal to the target aggregate packet size. 

(2) If the packet size is smaller than the target aggregate packet size, the packet 

waiting time in the input buffer is compared with the maximum acceptable 

delay.  

(3) If the waiting time is greater than or equal to the maximum acceptable delay, 

the packet is moved into the output buffer and transmitted as soon as possible 

without waiting for other packets to arrive.  

(4) If the waiting time is less than the maximum acceptable delay, the packet is 

moved into the output buffer and the algorithm selects the next sub-packet.  

Assuming that the number of packets in the input buffer is K and the selection window 

size is N, there are two outcomes that result from a comparison of K and N.  

When K ≥  N, there are sufficient packets available for selection in the selection 

window. At first, the first smallest size packet in the selection window is identified 

where the first smallest size packet is the minimum length packet or the first one to have 

arrived if more than one packet has the same minimum length in the selection window. 

A
3
 compares the sum of this packet size and the selected packets sizes (i.e. the summed 

size) with the target aggregate packet size.  
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(i) If the summed size is greater than the target aggregate packet size, the first 

smallest size packet is not selected and all the selected packets in the output 

buffer are aggregated together and transmitted as soon as possible.  

(ii) If the summed size equals the target aggregate packet size, the first smallest size 

packet is selected and moved into the output buffer to be aggregated with other 

selected packets. Then the aggregate packet is transmitted as soon as possible. 

(iii) If the summed size is less than the target aggregate packet size, the first smallest 

size packet is selected and moved into the output buffer. Then the algorithm 

checks the waiting time of the first sub-packet in the output buffer. 

(iv)  If it exceeds the maximum acceptable delay, all the selected packets in the 

output buffer are aggregated into a single packet to be transmitted.  

(v) Otherwise, the A
3
 resumes the process of selecting another sub-packet. 

When K < N, there are insufficient packets to be selected from the selection window in 

the input buffer and the algorithm must wait for packets to arrive. The maximum time to 

wait is determined by the waiting time of the first sub-packet and the specified 

maximum acceptable delay. During this time, if there are further packet arrivals into the 

input buffer, the algorithm checks whether the inequality K < N applies or not.  

(a) The case where K ≥ N has been described above.  

(b) If K < N applies, then the A
3
 waits until the waiting time of first sub-packet 

exceeds the maximum acceptable delay or K ≥ N applies.  

(c) If the waiting time of first sub-packet exceeds the maximum acceptable delay 

and K < N still applies, the first smallest size packet is selected from the K 

packets. Then the algorithm processes the packet according to steps (i), (ii) and 

(iii) described above until the summed size reaches the target aggregate packet 

size or all K packets are selected. However, in step (iii) the algorithm does not 
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wait for more sub-packets and all the selected packets are aggregated and 

transmitted as soon as possible.  

The first sub-packet in every aggregate packet is always the front packet in the input 

buffer. This rule ensures that the waiting time of the first sub-packet does not increase 

indefinitely which can happen if the front packet were to be the biggest size packet in 

the selection window.  

In this scheme, the sub-packets may need to be reordered in the receiver. Based on the 

IEEE 802.11n standard, the receiver contains a reordering buffer which is responsible 

for reordering packets, so that the packets are eventually passed up to the next MAC 

process in the order of received sequence number [IEn09]. The reordering process may 

increase the delay as a packet may need to wait for other packets to arrive. 

4.2 Aggregate Packet Analyzer (APA) 

The aggregate packet analyzer (APA) is used to analyze the number of sub-packets and 

the aggregate packet delay of the aggregate packet in order to determine the selection 

window size for the next aggregate packet.  

The APA analyses the current aggregate packet and the previous aggregate packet in 

order to determine the value of N for the next aggregate packet where two registers are 

used. Each register has two members, one is a counter used to record the number of sub-

packets and the other one is a timer used to record the aggregate packet delay. The value 

of the counter of the number of sub-packets is incremented by 1 when a packet is 

moved into the output buffer. When the first sub-packet is moved into the output buffer, 

the waiting time of this packet in the input buffer is set as the value of the aggregate 

packet delay timer and then it is incremented until the ACK for the aggregate packet is 

received or the life time of the aggregate packet has been exceeded. The selection 
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process is stopped when the waiting time of the first sub-packet exceeds the maximum 

acceptable delay or the summed size is greater than or equal to the target aggregate 

packet size. The timer of the aggregate packet delay is frozen when an ACK for the 

aggregate packet is received which also means the aggregate packet delay can be 

determined. Each register counter and timer will be reset when the ACK for the 

aggregate packet is received. 

After an ACK frame is received, the APA algorithm calculates the differences in the 

number of sub-packets and the aggregate packet delay between the current aggregate 

packet and the previous aggregate packet. The outcomes are used to determine the 

selection window size N in the ATA algorithm.  

4.3 Aggregate Tuning Algorithm (ATA) 

The third element of the AAM algorithm is the aggregate tuning algorithm (ATA) 

which uses the analysis results from the APA to dynamically adjust the selection 

window size N. The basic idea in developing the tuning rules is that the selection 

window size is increased in order to improve the throughput when the network 

performance is improved, while the selection window size is decreased in order to 

reduce the delay when the network performance deteriorates. The analysis results from 

the APA are used in ATA to determine the performance of network. The analysis results 

are the change in the number of sub-packets and the change in the aggregate packet 

delay, both of which are calculated between the current and the previous aggregate 

packets. There are three outcomes for the change in the number of sub-packets: increase, 

decrease and unchanged, and two outcomes for the change in the aggregate packet delay: 

decrease and no decrease. Generally, a decrease in the aggregate packet delay means 

that the performance of network is improving while an increase in the aggregate packet 

delay means that the performance of network is getting worse.  
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 Therefore, the ATA makes appropriate adjustments to N as shown in Table 4-1 where 

N-- means that the value of N is decremented by 1 and N++ means that the value of N is 

incremented by 1. When N is greater than 1, the change is based on the rule in column 

(A) and when N equals 1 it is based on the rule in column (B) where the value N cannot 

be reduced any more. Generally, the range of the value of N is between 1 and the input 

buffer size. 

Table 4-1: The rules for tuning the size N of the selection window 

The rules in Table 4-1 are explained as follows:  

A. If the number of sub-packets has increased and the aggregate packet delay has 

not decreased, the value of N is maintained.  

B. If the number of sub-packets has increased and the aggregate packet delay has 

decreased, the value of N is incremented by 1.  

C. When the number of sub-packets has decreased and the aggregate packet 

delay has not decreased: (a) if N is greater than 1, N is decremented by 1; (b) 

if N equals 1, N is maintained at 1.  

D. If both the number of sub-packets and the aggregate packet delay have 

decreased, N is incremented by 1.  

                

Change in the Aggregate Packet Delay 

No 

Decrease 
Decrease 

No 

Decrease 
Decrease 

Change in the 

Number of Sub-

packets 

Increase N N++ N N++ 

Decrease N-- N++ N N++ 

Unchanged N-- N N N 

 N > 1 (A) N = 1 (B) 
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E. When the number of sub-packets is maintained and the aggregate packet delay 

has not decreased: (a) if N is greater than 1, N is decremented by 1; (b) if N 

equals 1, N is maintained at 1.  

F. If the number of sub-packets is maintained and the aggregate packet delay has 

decreased, N is maintained.  

Increasing N increases the probability of achieving the target size of the aggregate 

packet, but at the expense of a delay increase. Conversely, decreasing N reduces the 

delay, but also may reduce the probability of achieving the target size of the aggregate 

packet. 

4.4 User Specified Input Parameters 

In the AAM algorithm, the target aggregate packet size and the maximum acceptable 

delay are specified by the user. The target aggregate packet size is the maximum size of 

the aggregate packet and the maximum acceptable delay is the maximum time that the 

A
3
 is allowed to wait in order to achieve the target aggregate packet size. The values of 

these parameters are determined by the application being used. For example, if the user 

wants to use a VoIP application (e.g. skype), the value of maximum acceptable delay is 

set to 150 ms or less and the maximum acceptable delay could be set to 1 second when 

the user wishes to use an email application. If the user wants to use both of them at the 

same time, the maximum acceptable delay could be set to some appropriate value by the 

user. Both of these user specified parameters, the target aggregate packet size and the 

maximum acceptable delay, are the threshold values used to control the aggregation 

process. The two parameters are set in the ATA and the values are sent to the A
3
 with 

the selection window size N.  
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4.5 Analysis of All Three Aggregation Algorithms 

In this thesis, the AAM algorithm is compared to two other packet aggregation 

algorithms, FIFO and SSFS. The FIFO algorithm is used as the benchmark algorithm 

which employs the most basic and popular packet selection strategy where all packets 

are aggregated based on the packet arrival time and a selection window scheme is not 

employed. The flow chart of the FIFO is shown in Figure 4-4. The A-MSDU algorithm 

[IEn09] is employed as the typical FIFO algorithm to compare with the AAM algorithm. 

The other algorithm is the SSFS algorithm (Smallest-Size First-Served) where all 

packets are aggregated based on their size and a selection window scheme is also not 

employed. The goal of the SSFS algorithm is to achieve the maximum number of sub-

packets in an aggregate packet [SeS10] associated with a large delay as it always tries to 

wait for the smallest size packet to arrive. The flow chart of the SSFS is shown in 

Figure 4-5. The AAM algorithm employs a selection window scheme and a hybrid 

selection strategy which combines the FIFO and SSFS selection strategies where the 

first sub-packet uses the FIFO selection strategy and the other sub-packets use the SSFS 

selection strategy. The FIFO selection strategy ensures that the delay does not increase 

indefinitely, while the SSFS selection strategy ensures that the maximum number of 

sub-packets in an aggregate packet is achieved. The net result of this hybrid approach is 

that the AAM algorithm can achieve the largest average aggregate packet size for all 

three algorithms considered. 

The throughput improvement is dependent upon the number of packets combined into 

an aggregate packet in unit time compared to the non-aggregation case. In general, the 

larger the number of packets that are assembled in unit time, the greater the throughput 

improvement. As discussed in section 4.2, the aggregate packet delay includes two 

elements, the waiting delay and the transmission delay. When the packet rate is high (i.e. 
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the inter-arrival time is small), the packet aggregation does not require extra time for 

packets to arrive compared to non-aggregation [ZIF08]. Therefore, the aggregate packet 

delay is dependent upon the transmission delay which is dependent on the PHY rate and 

the aggregate packet size based on the equation (3.2) [XiR02]. With a fixed PHY rate, 

the aggregate packet delay is dependent on the aggregate packet size for small values of 

the inter-arrival time. The reason is that generally a larger average size of the aggregate 

packet corresponds to a larger average number of sub-packets per aggregate packet 

which can reduce some of the delays associated with each transmission such as the 

access medium time (e.g. DIFS) for the sub-packet and the transmission time of the 

MAC header and ACK.  
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Figure 4-4: The flow chart of FIFO. 
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Figure 4-5: The flow chart of SSFS. 

In this section, we will discuss the interactions between the different parameters for the 

three packet aggregation algorithms. Figure 4-6 shows the interaction between the 

different parameters of the FIFO algorithm which is an example of an open control 

system. The positive sign is used to indicate that if the inter-arrival time increases this 

causes an increase in waiting delay because the FIFO algorithm aggregates the packets 

based on the packet arrival time. The negative sign is used to indicate that if the arrival 

packet size decreases this causes an increase in the number of sub-packets per aggregate 

packet because it requires a combining of more packets into an aggregate packet in 

order to reach the target aggregate packet size. This can be explained as follows: if the 
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arrival packet size is small, an aggregate packet needs to combine more sub-packets in 

order to achieve the target aggregate packet size that is specified (e.g. 1500 bytes). The 

positive sign is used to indicate that if the number of sub-packets per aggregate packet 

increases this causes an increase in the aggregate packet size as the packets are selected 

based on the arrival time. The positive sign is used to indicate that if the aggregate 

packet size increases this causes an increase in the transmission delay. 

Inter-Arrival Time +

Arrival Packet Size

- Number of 

Sub-packets per 

Aggregate Packet

Aggregate Packet Size

+

+

Waiting Delay

Transmission Delay

Aggregate Packet Delay

 

Figure 4-6: The interaction between the different parameters of the FIFO algorithm. 

Figure 4-7 shows the interaction between the different parameters of the SSFS 

algorithm which is also an example of an open control system in its operation.  The 

negative sign is used to indicate that if the inter-arrival time decreases this causes an 

increase in the number of sub-packets per aggregate packet because there are more 

packets available for selection in order to assemble a larger number of small sized 

packets as this is the basis of the SSFS algorithm. The negative sign is used to indicate 

that if the arrival packet size decreases this causes an increase in the number of sub-
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packets per aggregate packet as it requires assembling more packets to reach the target 

aggregate packet size.  

 Number

 of Sub-packets per

 Aggregate Packet

-
Inter-Arrival Time

Arrival Packet Size

-

 

Figure 4-7: The interaction between the different parameters of the SSFS algorithm. 
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Figure 4-8: The interaction between the different parameters of the AAM algorithm. 

 

Figure 4-8 presents the interaction between the different parameters of the AAM 

algorithm which is an example of a feedback control system. The negative sign is used 

to indicate that if the inter-arrival time decreases this causes an increase in the number 

of sub-packets per aggregate packet where the explanation is the same as that for the 

SSFS algorithm. The positive sign is used to indicate that if the inter-arrival time 

increases this causes an increase in waiting delay because the first sub-packet is selected 

based on the arrival time. The negative sign is used to indicate that if the arrival packet 
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size decreases this causes an increase in the number of sub-packets per aggregate packet 

where the explanation is the same as that for the SSFS algorithm. The positive sign is 

used to indicate that if the number of sub-packets per aggregate packet increases this 

causes an increase in the aggregate packet size where the explanation is the same as that 

for the FIFO algorithm. The positive sign is used to indicate that if the aggregate packet 

size increases this causes an increase in the transmission delay. The negative sign is 

used to indicate that if the aggregate packet delay decreases this causes an increase in 

the selection window size according to the tuning rules shown in Table 4-1. The 

positive sign is used to indicate that if the selection window size increases this causes an 

increase in the probability of achieving a larger number of sub-packets per aggregate 

packet.  

In Figure 4-8, there is a negative feedback loop formed between the number of sub-

packets per aggregate packet, aggregate packet size, aggregate packet delay and 

selection window size when raw packets can be aggregated (i.e. when packet 

aggregation can occur). Increasing the number of sub-packets per aggregate packet 

leads to an increase in the aggregate packet size and an increase in the aggregate packet 

size increases the aggregate packet delay as the transmission delay increases. An 

increase in the aggregate packet delay decreases the selection window size according to 

the tuning rules shown in Table 4-1 and a decrease in the selection window size 

decreases the probability of achieving a larger number of sub-packets per aggregate 

packet.  

Based on the previous discussion, the AAM algorithm is a feedback control system and 

can operate with random packet size and packet rate. The AAM algorithm has a better 

performance compared to the other two algorithms (i.e. FIFO and SSFS) as will be 

demonstrated by the results presented in chapter 5. 
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4.6 Simulation 

In this thesis, the AAM algorithm is implemented in two scenarios. In the first scenario, 

the aggregation process of the AAM algorithm is implemented as a standalone C++ 

computer program. In this test scenario, there are two objectives: (i) To demonstrate that 

the AAM algorithm is an adaptive algorithm that can operate over a wide range of 

different traffic loads; (ii) To demonstrate that the AAM algorithm has a superior 

performance compared to that of the FIFO and SSFS algorithms in terms of the number 

of sub-packets per aggregate packet for a given delay (i.e. waiting delay) by employing 

a selection window scheme associated with the hybrid selection strategy. In the second 

test scenario, the AAM algorithm is implemented in a wireless network containing an 

AP and a client station. This test scenario has been implemented in the ns-3 simulator. 

The objectives of the second scenario is to demonstrate that the AAM algorithm (i) has 

a superior performance compared to the other two algorithms in terms of the 

aggregation trade-off in achieving the maximum average throughput with the minimum 

average delay in wireless networks; and (ii) can significantly improve the performance 

in terms of the average throughput in error-prone wireless networks.  

In the two test scenarios, 16 captured traffic trace files are used as the input. All of these 

traffic trace files were captured from live Wi-Fi hotspot networks by using the network 

sniffer tool wireshark. These traffic trace files were captured at different locations, such 

as in a library, university campus, coffee shop, train station and airport, and were also 

captured at different times from 29
th

 May 2012 to 17
th

 July 2012. The details of the 16 

captured traffic trace files are shown in Table 4-2. 

There are two parameters selected as input to the simulation namely the packet size and 

the packet arrival time. The advantages of using this approach to generate the network 

test traffic profiles are the following: Firstly, these captured traffic trace files better 
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represent the typical traffic patterns found on data networks. Secondly, these captured 

traffic trace files represent the characteristics of a traffic load containing different types 

of application. These captured traffic trace files differ from each other in terms of the 

packet size and the inter-arrival time between packets.  

Table 4-2: The details of the 16 captured traffic trace files 

ID Capture Date 
Capture 

Time 

Number of 

captured 

Packets 

Average 

Packet Size 

(bytes) 

Average 

Packet 

Rate (pps) 

Capture Location 

1 29th May 2012 10:30—11:30 331649 552 92.1 JAVA City, DIT, Dublin 

2 29th May 2012 12:00—13:00 410444 576 114.0 JAVA City, DIT, Dublin 

3 29th May 2012 14:00—15:00 272349 550 75.7 JAVA City, DIT, Dublin 

4 29th May 2012 16:00—17:00 400514 588 111.3 JAVA City, DIT, Dublin 

5 29th May 2012 17:30—19:30 393944 590 109.4 JAVA City, DIT, Dublin 

6 19th June 2012 09:30—10:30 33958 442 9.4 Costa Coffee, Dawson St, Dublin 

7 19th June 2012 11:00—12:00 20255 235 5.6 Parliament Square, TCD, Dublin 

8 19th June 2012 12:30—13:30 33156 440 9.2 Costa Coffee, Dawson St, Dublin 

9 19th June 2012 16:00—17:00 12998 223 3.6 Parliament Square, TCD, Dublin 

10 19th June 2012 17:00—18:00 23933 571 6.6 Costa Coffee, Dawson St, Dublin 

11 24th June 2012 12:00-13:00 24747 317 6.9 Hueston train station, Dublin 

12 24th June 2012 13:30-14:30 15242 94 4.2 Hueston train station, Dublin 

13 24th June 2012 15:00—16:00 22358 137 6.2 Hueston train station, Dublin 

14 26th June 2012 10:30—11:30 69299 399 19.2 Library, Kevin Str., DIT, Dublin 

15 26th June 2012 12:00—13:00 13785 155 3.8 Library, Kevin Str., DIT, Dublin 

16 17th July 2012 19:00—19:50 24962 694 8.3 

Shuangliu Airport, Chengdu, 

China 

Where JAVA City is a name of a popular student coffee shop on the campus of Dublin 

Institute of Technology and TCD is Trinity College Dublin. As a lot of RTS/CTS 
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packets were captured, the average packet size of the captured traffic trace file 12 is 

small.   

4.6.1 The Aggregation Process Only Scenario 

In this test scenario, the packet size and the packet arrival time for these captured traffic 

trace files are used as the input to a standalone C++ computer program employed to 

implement the aggregation process of the AAM algorithm.  

Table 4-3: Explanation of the key parameters used in the C++ simulation 

Key Parameters Mathematical Symbol 

Packet size S_pkt 

Packet arrival time T_arriv 

Selection window size N 

Maximum acceptable delay Max_accedelay 

Target aggregate packet size S_target 

Waiting time of the first sub-packet T_waitfirstpkt 

Number of packets in the input buffer K 

Number of sub-packets of current aggregate packet N_curre_pkt 

Number of sub-packets of previous aggregate packet N_previ_pkt 

Aggregate packet delay of current aggregate packet Max_curre_aggdelay 

Aggregate packet delay of previous aggregate packet Max_previ_aggdelay 

Summed size with the selected packets sizes in output 

buffer and the selecting packet size in input buffer 

S_summed 
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In this implementation, it is assumed that the packets arrive into the input buffer and 

start to be processed by the AAM algorithm. The packet size S_pkt is used as the input 

to generate the traffic load and the packet arrival time T_arriv is set as the time that the 

packet arrived into the input buffer. The description of the key parameters of this 

scenario is given in Table 4-3. 

Table 4-4: An example of the calculation of the aggregate packet delay 

Parameters Value 

Number of sub-packets in aggregate packet (N_spkt) 11 

Arrival time of the first sub-packet (T_arriv) 11.2374 s 

Selection window size (N) 5 

Arrival time of the last packet in the selection window 

for selection the 11
th
 sub-packet (T_arriv) 

11.6874 s 

Aggregate packet delay (Max_aggdelay) 0.4500 s (i.e. = 11.9874 – 11.2374) 

In this test scenario, the waiting delay is based on the inter-arrival time between the 

captured packets. The inter-arrival time corresponds the waiting time which equals the 

interval between the arrival times of the captured packets. For example, the first 

packet’s arrival time is 16.3394 s and the second packet’s arrival time is 16.6678 s, so 

the waiting time of the first sub-packet T_waitfirstpkt is 0.3278 s (i.e. = 16.6678 - 

16.3394). In this test scenario, we use an assumption that the transmission delay is zero, 

so the aggregate packet delay Max_aggdelay equals the waiting time of the first sub-

packet which equals the inter-arrival time between the first sub-packet and the last 

arriving packet in the selection window. For example, as shown in Table 4-4, an 

aggregate packet contains 11 sub-packets, the arrival time of the first sub-packet is 

11.2374 s and the selection window size N is 5. When selecting the 11
th

 sub-packet, the 
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arrival time of the packet which is the last one arriving into the selection window is 

11.6874 s, so the Max_aggdelay is 0.4500 s (i.e. = 11.9874 – 11.2374).  
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Figure 4-9: Flowchart showing the operation of the AAM algorithm. 
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The operation of the AAM algorithm in this test scenario is shown in Figure 4-9. First 

the parameters are initialized; the selection window size N is set to 3, the target 

aggregate packet size S_target is fixed at 1500 bytes, the maximum acceptable delay 

Max_accedelay is 0.5 s where the sizes of the input buffer and the output buffer are both 

100 packets and the other parameters are set to zero (i.e. the two groups of registers in 

the APA).  

Initialize N =3, N_curre_pkt = 0, N_previ_pkt = 0, 

Max_curre_aggdelay = 0,
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     Figure 4-10: Flowchart showing the operation of the APA and ATA algorithms. 



83 
 

The input traffic loads S_pkt and T_arriv are generated based upon the captured traffic 

trace files. The sub-packets are selected from the selection window in the input buffer 

based on the A
3
 until the selection process is stopped. If the condition where 

((Max_aggdelay ≥ Max_accedelay) OR (S_summed ≥  S_target)) is satisfied, the 

selection process is stopped and then the selected packets in the output buffer are 

aggregated. The operations of the APA and ATA are shown in Figure 4-10. The APA 

starts to analyze the N_curre_pkt and the Max_curre_aggdelay for the current aggregate 

packet which are compared to that for the previous aggregate packet N_previ_pkt and 

Max_previ_aggdelay, and the outcomes are sent to the ATA. After receiving the 

analysis results from the APA, the ATA adjusts the value of N for the next aggregate 

packet based on the rules shown in Table 4-1.  

Table 4-5: The definitions of the performance metrics for the AAM algorithm in the 

scenario of aggregation process only 

Performance Metrics Comment 

Number of sub-packets 

The number of packets contained in an aggregate packet which 

provides a measure of the number of packets combined per 

aggregate packet. 

Selection window size The size of the selection window. 

Sub-packet delay 

The waiting time of every sub-packet in an aggregate packet 

which provides a measure of the average delay of each sub-packet 

in an aggregate packet. 

Aggregate packet delay 

The waiting delay which equals the waiting time of the first sub-

packet. It provides a measure of the delay for an aggregate packet 

in the buffer. 

Average packet delay 

Calculated from the average aggregate packet delay based on per 

sub-packet count which provides a measure of the average 

waiting delay of the aggregate packets that contains the same 

number of sub-packets. 

In this scenario, the performances for all 16 captured traffic trace files in terms of the 

selection window size, the CCDF (Complementary Cumulative Distribution Function) 

of the number of sub-packets and the CDF (Cumulative Distribution Function) of the 
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sub-packet delay, the number of sub-packets against the average aggregate packet delay 

for the AAM algorithm will be presented in chapter 5. The average packet delay is the 

mean aggregate packet delay based on the per sub-packet count. This means that all 

aggregate packets which have the same number of sub-packets are used to calculate the 

average packet delay. For example, an average packet delay is calculated for all 

aggregate packets containing 7 sub-packets aggregate packets and similarly for all 

aggregate packets containing 8 sub-packets and so on. The parameters used to analyze 

the performance of the AAM algorithm in this scenario are shown in Table 4-5. 

4.6.2 Deployment Scenario in Wireless Networks  

The second test scenario is implemented on the ns-3.14 simulation tool where the AAM 

algorithm has been deployed in a wireless network. The AAM algorithm is 

implemented in an IEEE 802.11 WLAN with and without transmission errors present, 

and the payloads of the packets are based on the packet sizes found in the captured 

traffic trace files.  

 

Figure 4-11: The topology of the wireless network in the ns-3 simulation. 

The topology used is shown in Figure 4-11. The wireless network contains two stations, 

one station is the receiver station (i.e. with IP address 196.168.1.2) which is also the 

access point (AP), and the other one is operated as the source station (i.e. with IP 

address 196.168.1.1) which is also the client station. The distance between the stations 

is 50 meters.  
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In this test scenario, the source station employs the AAM algorithm to aggregate the 

packets at the MAC layer. The basic simulation details of packet aggregation in ns-3 are 

presented in chapter 2 and the operation of the AAM algorithm in ns-3 is shown in 

Figure 4-12.  
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   Figure 4-12: The operation of the AAM algorithm in the ns-3 simulation. 

There are several modules that have been modified in ns-3 in order to implement the 

AAM algorithm. The modified module OnOffApplication is used to generate the 

packets whose sizes are based on the captured traffic trace files as the original 

OnOffApplication generates packets at a fixed size. The original WifiMacQueue module 

selects the packets based on the FIFO selection strategy, so it has been modified to 

select the packets based on the A
3
. The module of EdcaTxopN is used to aggregate the 

packets and has been modified to implement the APA and ATA to adjust the size of the 

selection window which is sent to the WifiMacQueue module. With transmission errors 

present, the module NistErrorRateModule is employed which has also been modified in 

order to change the value of BER. The parameter of SetRemoteStationManager is used 
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to determine whether the PHY rate adaption mechanism is employed or not. These 

modified modes are list in Table 4-6. 

Table 4-6: The list of the modified ns-3 module files 

Module Name Modification 

OnOffApplication  Modified to accept an input from the captured traffic trace files. 

WifiMacQueue Modified to achieve the operation of the packet selection based on 

the A
3
 algorithm from the selection window whose size N is passed 

from the modified EdcaTxopN module. 

EdcaTxopN -Modified to implement the APA algorithm to analyze the 

aggregate packets. 

- Modified to implement the ATA algorithm to calculate the 

selection window size N of the next aggregate packet 

DataRate of 

OnOffApplication 

- modified in order to change the data rate based on the varying 

interval between the raw packets of the traffic trace files. 

NistErrorRateModule Modified to allow the value of BER to be changed.  

The simulation parameters used for the implementation of the AAM algorithm in ns-3 

are shown in Table 4-7. After these parameters are initialized, the packets are generated 

by the modified module OnOffApplication and sent to the queue in MAC layer (i.e. 

WifiMacQueue). The parameter DataRate in OnOffApplication is the generated packet 

rate which will be called the data rate in this thesis. At the start when a packet arrives 

into the input buffer, the arrival time is recorded by using the time stamp (tstamp) and 

the size is also recorded by the class of GetSize. Then EdcaTxopN invokes the module 

of WifiMacQueue to select the packets and packets are aggregated by the module of 

MsduStandardAggregator after the selection process is completed and then the 

aggregate packet is transmitted. After an ACK is received for the aggregate packet, the 

results of the number of sub-packets and the aggregate packet delay between the current 

and previous aggregate packets are calculated in EdcaTxopN. Next the module of 

EdcaTxopN adjusts the selection window size for the next aggregate packet based on the 
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rules shown in Table 4-1 and then it sends the updated value of N to the module of 

WifiMacQueue.  

Table 4-7: The simulation parameters used to implement the AAM algorithm in ns-3 

Parameter Value 

Number of stations 2 

Initial size of the selection window 3 

Distance between stations (m) 50 

Maxpacketnumber in WifiMacQueu 400 

Max. acceptable delay in EdcaTxopN (second) 0.05 

MaxSlrc in AarfWifiManager 10 

MaxSuccessThreshold in AarfWifiManager 100 

MaxAmsduSize in MsduStandardAggregator 1500 

PHY rate adaption module AarfWifiManager 

Transmission errors module NistErrorRateModule 

PHY rate (Mbps) 6, 9, 12, 18, 24, 36, 48, 54 

DataRate in OnOffApplication 
2, 4, 6, 8, 10, 12, 14, 16,18, 20, 22, 24, 26, 

28,30 

BER in NistErrorRateModule 

10
-5

, 10
-4

, 5×10
-4

, 10
-3

, 1.5×10
-3

, 1.6×10
-3

, 

1.7×10
-3

, 1.8×10
-3

, 1.9×10
-3

, 2×10
-3

, 

2.1×10
-3

, 2.2×10
-3

, 2.3×10
-3

, 2.5×10
-3

, 

3×10
-3

, 4×10
-3

, 6×10
-3

, 8×10
-3

, 10
-2

, 2×10
-2

 

When the AAM algorithm is implemented in a wireless network without transmission 

errors present and also without employing the PHY rate adaption mechanism, the PHY 

rate can be set to 6 Mbps, 9 Mbps, 12 Mbps, 18 Mbps, 24 Mbps, 36 Mbps, 48 Mbps and 

54 Mbps, which is implemented by the parameter SetRemoteStationManager set to 

ConstantRateWifiManager, and the data rate is changed by controlling the parameter 

DataRate in the OnOffApplication module. The transmission errors module 
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NistErrorRateModule and PHY rate adaption mechanism module AarfWifiManager are 

not employed. 

Table 4-8: The performance metrics for analysis the AAM algorithm in the deployment 

scenario in wireless networks 

Performance Metric Definition 

Throughput 
The average payload in bits per second successfully 

transmitted from the source node to the destination node. 

Maximum average throughput 
The average throughput when the wireless network is 

saturated.  

Average delay 

The average time required to successfully transmit packets 

from the MAC layer of the source node to the MAC layer of 

the destination node. 

Minimum average delay The average delay when the wireless network is saturated. 

Aggregation trade-off 
The maximum average throughput with the minimum average 

delay in wireless networks. 

Deviation 
Defined as the difference between the target aggregate 

packet size and the aggregate packet size. 

Mean square deviation The average value of the square of the deviation. 

Data rate 

The data rate (in bits per second) arriving into the buffer which 

equals the generated data rate of the generator (i.e. DataRate in 

OnOffApplication)  

BER The Bit Error Rate used to characterize the transmission errors 

In this test scenario, different values of BER are used (as shown in Table 4-7) in order 

to demonstrate that the AAM algorithm is a robust algorithm. When the AAM 

algorithm is implemented in the error-prone wireless networks the 

NistErrorRateModule is modified to set the different values of the BER. The PHY rate 

adaption module AarfWifiManager which is based on the adaptive auto rate fallback 

(AARF) [LMT04] is employed to select the PHY rate, where the module 

AarfWifiManager is invoked by the parameter SetRemoteStationManager. 
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The performance metrics used to analyze these performances for the AAM algorithm in 

this scenario are shown in Table 4-8 and the results will be presented in chapter 5. 

4.7 Chapter Summary  

This chapter has presented the proposed packet aggregation algorithm AAM that is an 

adaptive algorithm and is essentially a feedback control system which tries to achieve 

the best aggregation trade-off in terms of realizing the maximum average throughput 

with the minimum average delay for the different traffic loads typically found in real 

wireless networks. To the best of our knowledge the AAM algorithm is the first packet 

aggregation algorithm to employ a tunable selection window scheme for the selection of 

sub-packets. 

The AAM algorithm comprises three elements: Adjustable Aggregation Algorithm (A
3
), 

Aggregate Packet Analyzer (APA) and Aggregate Tuning Algorithm (ATA). The 

adjustable aggregation algorithm (A
3
) assembles the aggregate packet by selecting 

packets from a selection window. The size of this selection window is adaptive. 

Increasing the size of the selection window increases the probability of achieving the 

target aggregate packet size of the aggregate packet at the expense of a delay increase. 

Conversely, decreasing the size of the selection window reduces the delay, but also 

reduces the probability of achieving the target aggregate packet size. The aggregate 

packet analyzer (APA) analyzes the number of sub-packets in the aggregate packet and 

the aggregate packet delay associated with assembling the aggregate packet. The 

aggregate tuning algorithm (ATA) uses the analysis results from the APA to adaptively 

adjust the size of the selection window. The ATA has two input parameters specified by 

the user: the target aggregate packet size and the maximum acceptable delay which are 

the threshold values used to control the aggregation process of the AAM algorithm. The 
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interaction between the different parameters for all three algorithms considered (i.e. 

FIFO, SSFS and AAM) is discussed. 

After an introduction and an analysis of the proposed AAM algorithm, the two test 

scenarios which are employed to implement the AAM algorithm were described. The 

first test scenario was used to demonstrate that the AAM algorithm is an adaptive 

algorithm that has a superior performance in terms of the number of sub-packets per 

aggregate packet for a given average packet delay. In this test scenario, a standalone 

computer program was developed using C++ and 16 captured traffic trace files which 

were captured from live Wi-Fi hotspot networks and were used to provide an input 

traffic profile. In the second test scenario, the AAM algorithm was deployed in a 

wireless network by using the ns-3 simulator. The AAM algorithm was implemented in 

the source node to analyze the performances in terms of throughput, delay and 

aggregation trade-off in achieving the maximum average throughput with the minimum 

average delay in wireless networks with and without transmission errors present.  
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Chapter 5   
Results and Analysis 

In this chapter, we will present the performance results for the AAM algorithm 

described in chapter 4 and provide an analysis of them. There were 16 traffic trace files 

captured from live Wi-Fi hotspot networks whose details were described in chapter 4. 

The performance analysis is based on an analysis of all 16 captured traffic trace files, 

however for convenience the results for the captured traffic trace files 2 and 14 only will 

be discussed here. The details are presented in Table 5-1.  

Table 5-1: Some details of the captured traffic trace files 2 and 14 

ID 
Capture 

Time 
Capture Date 

Number of 

captured 

Packets 

Average 

Packet 

Rate (pps) 

Capture Location 

2 12:00 – 13:00 29
th

 May 2012 410444 114 JAVA City, DIT, Dublin 

14 10:30 –11:30 26
th

 June 2012 69299 19.2 
Library, Kevin street,  

DIT, Dublin 

5.1 Performance in the Scenario of Aggregation Process Only 

The objective of this scenario is to demonstrate that the AAM algorithm is an adaptive 

algorithm which can operate over a wide range of input traffic loads. Also, it serves to 

demonstrate that the AAM algorithm has a superior performance over the FIFO and 

SSFS algorithms in terms of the number of sub-packets that can be aggregated within a 

given average packet delay. 

The results of the performance in terms of the selection window size for these captured 

traffic trace files are presented in appendix A. The results of the CCDF 

(Complementary Cumulative Distribution Function) of the number of sub-packets and 

the CDF (Cumulative Distribution Function) of the sub-packet delay are presented in 

appendices B and C, and the results of the performance in terms of the number of sub-
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packets against the average packet delay are presented in appendix D. The CCDF of the 

number of sub-packets and the CDF of the sub-packet delay are used to analyze the 

performance of the AAM algorithm. The CCDF and CDF allow us to make a 

meaningful comparison of the performances for the different algorithms. The CCDF of 

the number of sub-packets is the probability that the number of sub-packets takes on a 

value greater than or equal to a certain value which allows us to compare the 

performance in terms of the average number of sub-packets per aggregate packet for the 

different algorithms. The CDF of the sub-packet delay is the probability that the sub-

packet delay has a value less than or equal to a certain value which allows us to 

compare the performance in terms of the average sub-packet delay for the different 

algorithms. 

In this scenario, the target aggregate packet size is set at 1500 bytes with a maximum 

acceptable delay of 0.5 seconds and the sizes of input buffer and output buffer are both 

100 packets and the selection window size is initialized to 3.  

5.1.1 Impact of the Selection Window Size on Performance 

As the captured traffic trace file 2 contains over 410,000 raw packets in a 3600 second 

period, we present the average packet rate based on a 10-second interval. The average 

packet rate for the captured traffic trace file 2 is shown in Figure 5-1. The 

corresponding performance in terms of the selection window size is presented in Figure 

5-2 where the selection window sizes are sampled every ten aggregated packets. 

Figure 5-3 and Figure 5-4 show the average packet rate and the selection window size 

for the captured traffic trace file 14. 

From Figure 5-1 and Figure 5-2, it can be seen that the selection window size follows 

the variation in the average packet rate. When the average packet rate is high the 

selection window size is large and when the average packet rate is low the selection 
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window size is small. The same conclusion also can be drawn by observing Figure 5-3 

and Figure 5-4. A similar result is shown for all captured traffic trace files in appendix 

A. These results clearly demonstrate that the selection window size can successfully 

track the changes in the traffic load as the AAM algorithm is an adaptive feedback 

control system.  

 

Figure 5-1: The average packet rate for the captured traffic trace file 2.  
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Figure 5-2: The selection window size of the one in ten aggregate packets generated for 

the captured traffic trace file 2. 

 

Figure 5-3: The average packet rate for the captured traffic trace file 14.   
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 Figure 5-4: The selection window size for the aggregate packets generated for all raw 

packets input for the captured traffic trace file 14. 

5.1.2 CCDF of the Number of Sub-packets 

The CCDF of the number of sub-packets is the probability that the number of sub-

packets has a value greater than or equal to a certain value. The CCDF allows us to 

compare the performances in terms of the average number of sub-packets per aggregate 

packet for the different algorithms. The CCDF of the number of sub-packets for the 

captured traffic trace file 2 is shown in Figure 5-5 and that for the captured traffic trace 

file 14 is shown in Figure 5-6. 

As shown in Figure 5-5, Figure 5-6 and in appendix B, the captured traffic trace files 

are tested in a number of different cases: 

(1) The FIFO algorithm;  

(2) The SSFS algorithm; 

(3) The AAM algorithm; 

(4) The AAM algorithm with a fixed selection window size at 3, 8 and 10. 
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Figure 5-5: The CCDF of the number of sub-packets for the captured traffic trace file 2. 

From the result for the FIFO algorithm in Figure 5-5, over 50% of the aggregate packets 

contain just 1 sub-packet and the probability is less than 0.1 that the number of sub-

packets is greater than 2. While for the AAM algorithm, the probability is over 0.6 that 

the number of sub-packets is greater than 2. This indicates that the average number of 

sub-packets per aggregate packet produced by the AAM algorithm is greater than that 

generated by the FIFO algorithm. The performance in terms of the CCDF of the number 

of sub-packets for the SSFS algorithm is the best for all three algorithms considered. 

This means that the SSFS algorithm produces the largest average number of sub-packets 

per aggregate packet and the FIFO algorithm produces the smallest average number of 

sub-packets per aggregate packet.  
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Figure 5-6: The CCDF of the number of sub-packets for the captured traffic trace file 14. 

The AAM algorithm with a fixed selection window size (i.e. 3, 8 and 10) is employed in 

order to demonstrate that the different sizes of the selection window result in different 

performances in terms of the CCDF of the number of sub-packets. It can be seen that 

these performances are better than those for the FIFO algorithm. In particular, the larger 

the selection window size, the better the performance in terms of the CCDF of the 

number of sub-packets. This demonstrates that the selection window size has an impact 

on the average number of sub-packets in an aggregate packet.  

From the graphs in appendix B, we can infer that the performance in terms of the CCDF 

of the number of sub-packets for the AAM algorithm is similar to that for the 

benchmark FIFO algorithm when the packet rate is low. However, it has a better 

performance than that for the FIFO algorithm when the packet rate is high. The 

explanation for this is that for low values of packet rate, the average number of sub-

packets per aggregate packet for the AAM algorithm is similar to that of the FIFO 

algorithm as there are insufficient packets available for selection in the selection 
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window. While for large values of packet rate, the average number of sub-packets per 

aggregate packet for the AAM algorithm is larger than that for the FIFO algorithm as 

there are sufficient packets available for selection in the selection window. 

The performance in terms of the CCDF of the number of sub-packets for the AAM 

algorithm is always poorer than that for the SSFS algorithm as the SSFS algorithm tries 

to aggregate as many sub-packets as possible associated with a large delay.  

5.1.3 CDF of the Sub-packet Delay 

The CDF of the sub-packet delay represents the probability that the sub-packet delay 

takes on a value less than or equal to a certain value which allows us to compare the 

performance in terms of the average sub-packet delay for the different algorithms. The 

CDF of the sub-packet delay for all three algorithms considered SSFS, FIFO and AAM 

are shown in Figure 5-7 and Figure 5-8 for the captured traffic trace files 2 and 14 

respectively.  

From the two graphs, it can be seen that the benchmark FIFO algorithm has the best 

performance in terms of the CDF of the sub-packet delay and the performance for the 

AAM algorithm is poorer than that of the FIFO algorithm, but it is better than that of the 

SSFS algorithm. This means that the average sub-packet delay for the FIFO algorithm is 

the lowest and for the SSFS algorithm is the largest. As shown in Figure 5-7, the sub-

packet delays are less than 0.05 seconds for over 90% of the sub-packets for the FIFO 

algorithm and 80% of the sub-packets for the AAM algorithm, while only 20% of the 

sub-packets for the SSFS algorithm. However, in Figure 5-8, the number of sub-packets 

whose delay is less than 0.05 seconds is reduced to 60% for the FIFO algorithm, 50% 

for the AAM algorithm and 10% for the SSFS algorithm.  
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Figure 5-7: The CDF of the sub-packet delay for the captured traffic trace file 2. 

Figure 5-8: The CDF of the sub-packet delay for the captured traffic trace file 14. 

By observing the results in appendix C, it can be seen that when the packet rate is low, 

the performances in terms of the CDF of the sub-packet delay for the AAM and FIFO 

algorithms are similar. However, they still have a superior performance over the SSFS 

algorithm in terms of the CDF of the sub-packet delay. This means that the average sub-

packet delay for the AAM algorithm is similar to that for the FIFO algorithms but it is 

smaller than that for the SSFS algorithm when the packet rate is low as the AAM 

algorithm may need a longer time to wait for the packets to arrive. It also shows that the 
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average sub-packet delay increases as the packet rate decreases for each algorithm as all 

algorithms may have to wait longer for packets to arrive when the average packet rate is 

low. Also, it can be seen that the sub-packet delays does not exceed the specified 

maximum acceptable delay of 0.5 seconds.  

5.1.4 Number of Sub-packets against Average Packet Delay 

Figure 5-9 and Figure 5-10 show the performance in terms of the number of sub-packets 

against the average packet delay for the captured traffic trace files 2 and 14 respectively 

where it can be seen that the performance for the AAM algorithm is superior to that for 

the FIFO and SSFS algorithms. The reason for this is that the AAM algorithm combines 

a larger number of sub-packets for a given average packet delay than that of the FIFO 

and SSFS algorithms. For low values of the number of sub-packets, the AAM algorithm 

results presented in Figure 5-9 and Figure 5-10 show that the average packet delay 

decreases as the number of sub-packets increases. However, for large values of the 

number of sub-packets, the average packet delay does not significantly increase as the 

number of sub-packets increases. This can be explained as follows: The aggregation 

process of the AAM algorithm is controlled by the maximum acceptable delay and the 

target aggregate packet size thresholds. When the number of sub-packets is small, this 

indicates that the aggregation process is dominated by the maximum acceptable delay 

threshold which means that a significant number of aggregate packet delays achieved 

the maximum acceptable delay. When the number of sub-packets is large, this indicates 

that the AAM algorithm aggregation process is dominated by the target aggregate 

packet size requirement which means that a significant number of aggregate packet 

sizes reached the target aggregate packet size. The main reason why the average packet 

delay is so small when the number of sub-packets is 1 is that the size of the first sub-

packet achieves the target aggregated packet size and therefore it is immediately 

transmitted.  
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Figure 5-9: The number of sub-packets against the average packet delay for the captured 

traffic trace file 2. 

Figure 5-10: The number of sub-packets against the average packet delay for the 

captured traffic trace file 14. 

The two figures have quite different shapes as the two captured traffic trace files have 

different packet rates which are shown in Table 4-2. The packet rate of the captured 

traffic trace file 2 is 114 pps while it is 19.2 pps for the captured traffic trace file 14. 

From all the graphs for the 16 captured traffic trace files presented in appendix D, when 
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the packet rate is large, the performance in terms of the number of sub-packets against 

the average packet delay for the AAM algorithm is the best for all three algorithms 

considered. For low values of the packet rate, the performance for the AAM algorithm 

is similar to that for the FIFO algorithm as the number of sub-packets that can be 

combined into an aggregate packet by the AAM algorithm is similar to that for the 

FIFO algorithm because there are insufficient packets available for selection from the 

selection window. 

5.1.5 Conclusion  

The performances in terms of the selection window size, the CCDF of the number of 

sub-packets, the CDF of the sub-packet delay and the number of sub-packets against the 

average packet delay for all three algorithms considered have been presented. The 

following conclusions can be drawn: 

 The AAM algorithm is an adaptive algorithm which can operate over a wide 

range of different traffic loads. The selection window size is adaptively adjusted 

to follow the variations in the packet rate of the traffic load. The size of the 

selection window has an impact on the performance in terms of the CCDF of 

the number of sub-packets. In particular, the larger the size of the selection 

window, the better the performance in terms of the CCDF of the number of sub-

packets. 

 The AAM algorithm has a better performance in terms of the CCDF of the 

number of sub-packets than that for the benchmark FIFO algorithm but is 

poorer than that for the SSFS algorithm. This means that the average number of 

sub-packets per aggregate packet generated by the AAM algorithm is larger 

than that for the FIFO algorithm but is smaller than that for the SSFS algorithm. 
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 The AAM algorithm has a better performance in terms of the CDF of the sub-

packet delay than that for the SSFS algorithm but is poorer than that for the 

FIFO algorithm. This means that the AAM algorithm has a shorter average sub-

packet delay than that for the SSFS algorithm but is longer than that for the 

FIFO algorithm. 

 The performance in terms of the number of sub-packet against the average 

packet delay for the AAM algorithm is the best for all three algorithms 

considered. This means that the AAM algorithm can aggregate a larger number 

of sub-packets for a given average packet delay than the other two algorithms 

considered due to its adaptive nature. However, when the packet rate is low, the 

performance for the AAM algorithm is similar to that for the FIFO algorithm as 

there are insufficient packets available for selection in the selection window. 

5.2 Performance in Wireless Networks 

In this section, we will present the results for the AAM algorithm implemented in a 

wireless network test scenario which was described in chapter 4. The performance of 

the FIFO and SSFS algorithms will also be shown. In this test scenario, the AAM 

algorithm is implemented in a wireless network under two different operating 

environments. The first one is an ideal environment where transmission errors are 

absent and the PHY rate adaption mechanism is also disabled and the other one is the 

same wireless network but with transmission errors present where the PHY rate 

adaption mechanism is employed. The objective of this test scenario is to demonstrate 

that the AAM algorithm has a superior performance over the other two algorithms in 

terms of the aggregation trade-off. It is also to demonstrate that the AAM algorithm is a 

robust algorithm which has a superior performance over the other two algorithms in 

terms of the throughput in error-prone wireless networks.  
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5.2.1 Performance in an Ideal Wireless Network  

The AAM, FIFO and SSFS algorithms were implemented in an ns-3 simulation wireless 

network where transmission errors are absent and the PHY rate adaption mechanism is 

disabled. In this scenario, as described in section 4.6.2, the DataRate parameter of 

OnOffApplication is modified in order to change the data rate by changing the interval 

between the raw packets of the captured traffic trace files. The interval can be changed 

by using the OffTime parameter of OnOffApplication module.  Figure 5-11 and Figure 

5-12 show the performances in terms of the throughput against the data rate for the 

different IEEE 802.11 PHY rates for the captured traffic trace files 2 and 14 

respectively. It can be seen that the AAM algorithm has the best performance in terms 

of the throughput for the 8 different PHY rates for all three algorithms considered. The 

FIFO algorithm has the poorest performance in terms of the throughput. The 

improvement in the throughput increases as the PHY rate increases. When the PHY rate 

is 6 Mbps, the throughput improvement is 6% compared with 30% when the PHY rate 

is 54 Mbps for the AAM compared to the FIFO algorithm. For example, as shown in 

Figure 5-11, when the PHY rate is fixed at 54 Mbps, the maximum throughput for the 

FIFO algorithm is 20 Mbps and for the SSFS algorithm it is 23 Mbps, while the 

maximum throughput for the AAM algorithm is as large as 26 Mbps. This is because 

the AAM algorithm can combine a larger number of packets per aggregate packet for a 

given delay in wireless networks where the delay is defined as the maximum acceptable 

delay. 

From Figure 5-11 and Figure 5-12, it can be seen that when the PHY rate is fixed and 

the data rate is low, the AAM, FIFO and SSFS algorithms have similar performances in 

terms of their throughput. However, if the data rate is large, the AAM algorithm has a 

superior performance compared to the other two algorithms in terms of the throughput. 

For example, when the data rate is below 19 Mbps with a PHY rate fixed at 54 Mbps, 
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the performances in terms of the throughput are similar for all three algorithms 

considered; while if the data rate is greater than 23 Mbps, the throughput for the AAM 

algorithm is greater than that of both the FIFO and SSFS algorithms. The reason is that 

when the data rate is low, the performance of the AAM algorithm degrades to that for 

the FIFO algorithm as there are insufficient packets to be selected from the selection 

window. When the data rate is large, there are sufficient packets for selection in the 

selection window to generate a larger size aggregate packet for a given delay by the 

AAM algorithm. 

 

Figure 5-11: The throughput against data rate for the different PHY rates for the 

captured traffic trace file 2. 
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Figure 5-12: The throughput against data rate for the different PHY rates for the 

captured traffic trace file 14. 

Figure 5-13 and Figure 5-14 present the average delay against the data rate for the 

different PHY rates for the captured traffic trace files 2 and 14 respectively. It can be 

seen here that the performance in terms of the average delay for the AAM algorithm is 

the best for all three algorithms considered and the performance for the FIFO algorithm 

is the poorest. When the PHY rate is fixed at 6 Mbps, the reduction in the average delay 
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is 5% compared with 15% when the PHY rate is fixed at 54 Mbps for the AAM 

algorithm compared to the FIFO algorithms. This is because the AAM algorithm takes 

the least time to transmit a packet from the source to the destination. Moreover, the 

average delay decreases as the PHY rate increases. For example, the average delay is 

1.15 milliseconds for the AAM algorithm when the PHY rate is fixed at 6 Mbps and the 

data rate is 4 Mbps. When the PHY rate is fixed at 54 Mbps and the data rate is 26 

Mbps, the average delay is 0.153 milliseconds. The AAM algorithm has the best 

performance in terms of the average delay compared to the FIFO and SSFS algorithms. 

The reason is that when the data rate is large with a fixed PHY rate, there are sufficient 

packets available for selection from the selection window, so the AAM algorithm can 

on average produce larger size aggregate packets to reduce the average delay which will 

be explained in the next section. However, there is not a significant decrease in the 

average delay as the data rate increases for a fixed PHY rate for all three algorithms 

considered. This is because the size of the aggregate packet cannot increase indefinitely 

as a target aggregate packet size exists. So the average transmission delay of each 

aggregate packet has a lower limit. This is why the average delay level-offs at high data 

rates. 
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Figure 5-13: The average delay against the data rate for the different PHY rates for the 

captured traffic trace file 2.   
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Figure 5-14: The average delay against the data rate for the different PHY rates for the 

captured traffic trace file 14. 

Figure 5-15 and Figure 5-16 present the performance in terms of the average aggregate 

packet size for the different PHY rates under saturation for all three algorithms 

considered. It can be seen that the AAM algorithm has the largest average aggregate 

packet size for the different PHY rates in saturated wireless networks, while the FIFO 

algorithm has the smallest average aggregate packet size. It can be seen that the AAM 

algorithm can improve the average aggregate packet size by as much as 50% compared 

to the FIFO algorithm for the captured trace file 2 as the average size of an AAM 
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aggregate packet is over 1200 bytes while that of a FIFO aggregate packet is 800 bytes. 

As discussed in chapter 4, the minimum average delay is determined by the average size 

of the aggregate packet with a fixed PHY rate under saturation. The minimum average 

delay for the AAM algorithm is the smallest for the different PHY rates for all three 

algorithms considered which was shown in Figure 5-13 and Figure 5-14. In general, the 

larger the aggregate packet size, the larger the number of sub-packets per aggregate 

packet. 

 

Figure 5-15: The average aggregate packet size for the different PHY rates under 

saturation for the captured traffic trace file 2. 
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Figure 5-16: The average aggregate packet size for the different PHY rates under 

saturation for the captured traffic trace file 14. 

Here, the mean square deviation is employed to analyze the extent to which the 

aggregate packet size is spread out from the target aggregate packet size. The mean 

square deviation is defined as the mean value of the square of the difference between 

the target aggregate packet size and the aggregate packet size.  

The performances in terms of the mean square deviation for the different PHY rates 

under saturation for the captured traffic trace files 2 and 14 are shown in Figure 5-17 

and Figure 5-18 respectively. The two figures show that the AAM algorithm has the 

smallest value of mean square deviation which means that the aggregate packet sizes 

tend to be the closest to the target aggregate packet size and the average aggregate 

packet size is the largest. However, the mean square deviation for the FIFO algorithm is 

the largest which means that the aggregate packet sizes is the farthest from the target 

aggregate packet size on average and the average aggregate packet size is the smallest. 

The SSFS algorithm has a superior performance over the FIFO algorithm in terms of the 

mean square deviation for the different PHY rates under saturation.  
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Figure 5-17: The mean square deviation for the different PHY rates under saturation for 

the captured traffic file 2. 

Figure 5-18: The mean square deviation for the different PHY rates under saturation for 

the captured traffic file 14. 
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Figure 5-19: The aggregation trade-off in terms of achieving the maximum average 

throughput with the minimum average delay for the capture traffic trace file 2. 

 

Figure 5-20: The aggregation trade-off in terms of achieving the maximum average 

throughput with the minimum average delay for the capture traffic trace file 14. 
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Figure 5-19 and Figure 5-20 show the performance in terms of the aggregation trade-off 

in achieving the maximum average throughput with the minimum average delay for the 

captured traffic trace files 2 and 14 respectively. It can be seen here that the AAM 

algorithm has the best performance in terms of the aggregation trade-off due to the 

adaptive nature of the AAM algorithm. As the minimum average delay is dependent 

upon the PHY rate, a low value of the minimum average delay corresponds to a large 

PHY rate. From these two figures, it can be seen that the improvement in the 

aggregation trade-off increases as the PHY rate increases. When the PHY rate is large 

(i.e. for a low value of minimum average delay), the aggregation trade-off improvement 

is the best for the AAM algorithm compared to the other two algorithms as the AAM 

algorithm can successfully transmit more data for a given minimum average delay. 

When the PHY rate is low (i.e. for a large value of minimum average delay), the 

performance in terms of aggregation trade-off for the AAM algorithm is similar to that 

for the other two algorithms. This shows that when the PHY rate is low, the AAM 

algorithm still can improve the performance in terms of aggregation trade-off compared 

to the FIFO algorithm but cannot significantly improve it.  

Conclusion 

Based on the previous discussions for the AAM algorithm implemented in a wireless 

network without transmission errors present and with the PHY rate adaption mechanism 

disabled, a number of conclusions can be draw: 

 The AAM algorithm has the best performance in terms of the throughput for all 

three algorithms considered and the improvement in the throughput increases as 

the PHY rate increases. It improves the throughout from 6% with a PHY rate 

fixed at 6 Mbps up to 30% with a PHY rate fixed at 54 Mbps compared to the 

FIFO algorithm. 
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 The AAM algorithm has a similar performance to the other algorithms in terms 

of the throughput when the data rate is low with a fixed PHY rate. The reason is 

that the wireless network is unsaturated which can be determined by checking 

the AAM algorithm to see if it needs to wait for further packet arrival or not. If it 

needs to do it, the network is unsaturated. When the data rate is large, the AAM 

algorithm has a superior performance over the other algorithms in terms of the 

throughput as there are sufficient packets for selection from the selection 

window to generate a larger size aggregate packet for a given delay. 

 The AAM algorithm has the best performance in terms of the average delay. The 

AAM algorithm has the best performance in terms of the average delay for all 

three algorithms considered and it reduces the average delay by up to 15% 

compared to the FIFO algorithm with a PHY rate at 54 Mbps. The average delay 

decreases as the PHY rate increases for all three algorithms considered. 

 The AAM algorithm has the best performances in terms of the average 

aggregate packet size and the mean square deviation under saturation for all 

three algorithms considered. The average size of an AAM aggregate packet is 

1.5 times that for a FIFO aggregate packet. This demonstrates that the AAM 

algorithm produces the largest average size of the aggregate packet. The AAM 

algorithm has the smallest value of the mean square deviation which 

demonstrates that it has the largest number of aggregate packets whose sizes are 

closest to the target aggregate packet size. 

 The AAM algorithm has the best performance in terms of the aggregation trade-

off in achieving the maximum average throughput with the minimum average 

delay for all three algorithms considered as it achieves the largest throughput at 

the cost of the least average delay. 
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5.2.2 Performance in an Error-Prone Wireless Network 

The AAM, SSFS and FIFO algorithms are implemented in the same wireless network 

simulation but with transmission errors present and the PHY rate adaption mechanism 

enabled. The transmission errors are characterized by the BER and the PHY rate 

adaption mechanism is implemented by the AarfWifiManager module in the ns-3 

simulator. As described in chapter 4, the objective of the PHY rate adaption mechanism 

is to improve the throughput by selecting the most effective PHY rate to transmit the 

frames. However, in this case it will be shown that the AARF mechanism is not the 

main factor contributing to the throughput improvement when using the AAM 

algorithm.  

 

Figure 5-21: The throughput against data rate for the different BERs for the captured 

trace file 2. 

Figure 5-21 and Figure 5-22 show the performance in terms of the throughput against 

data rate for the different BERs (i.e. 10
-4

, 10
-3

 and 5×10
-3

) for the captured traffic trace 

files 2 and 14 respectively. The graphs show that the throughput improvement increases 
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as the BER decreases. As can be seen, the AAM algorithm has the best performance in 

terms of the throughput for all three algorithms considered when the BER is 10
-4

 and 

10
-3

. For example, for the captured traffic trace file 2 the throughput for the AAM 

algorithm is 25 Mbps while it is 19.5 Mbps for the FIFO algorithm with a fixed BER of 

10
-4

 which corresponds to a throughput improvement of 28%. This value of the 

throughput improvement is 18% for a BER of 10
-3

. However, when the BER is large (i.e. 

5×10
-3

) the AAM algorithm has a similar performance to that for the FIFO and SSFS 

algorithms in terms of the throughput. The reason is that when the BER is small, the 

AAM algorithm has more packets than the other algorithms to be successfully 

transmitted; When the BER is large, a significant number of aggregate packets are 

corrupted and therefore need to be re-transmitted. 

 

Figure 5-22: The throughput against data rate for the different BERs for the captured 

trace file 14. 
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Figure 5-23: The maximum throughput against BER with a fixed data rate of 26 Mbps 

for the captured traffic trace file 2. 

 

Figure 5-24: The maximum throughput against BER with a fixed data rate of 26 Mbps 

for the captured traffic trace file 14. 

The performances in terms of the maximum throughout against BER with a fixed data 

rate of 26 Mbps for the captured traffic trace files 2 and 14 are presented in Figure 5-23 
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and Figure 5-24 respectively. The maximum throughput improvement decreases as the 

BER increases. When the BER is 10
-3

, the AAM algorithm can improve the maximum 

throughput by 20% compared to the FIFO algorithm. For low values of BER, the AAM 

algorithm can significantly improve the maximum throughput; while for large values of 

BER, the AAM algorithm has a similar performance to that for the other algorithms in 

terms of the maximum throughput. The maximum throughputs for all three algorithms 

considered decrease as the BER increases. However, the maximum throughput levels-

off when the values of BER are between 4×10
-3

 and 10
-2

. The reason for this is that a 

significant number of packets are transmitted at the lowest PHY rate (i.e. 6 Mbps) 

which has been determined by the AARF mechanism. The maximum throughput is 

almost zero when the BER is greater than 2×10
-2

 as only a few packets are successfully 

transmitted. This result demonstrates that when the BER is large (e.g. 2×10
-2

), the 

performances in terms of the maximum throughput for all three algorithms considered 

are similar as a significant number of packets are corrupted. 

 

Figure 5-25: The average PHY rate against BER with a fixed data rate of 26 Mbps for 

the captured traffic trace file 2. 
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Figure 5-26: The average PHY rate against BER with a fixed data rate of 26 Mbps for 

the captured traffic trace file 14. 

The performances in terms of the average PHY rate against BER with a fixed data rate 

of 26 Mbps for the captured traffic trace files 2 and 14 are presented in Figure 5-25 and 

Figure 5-26 respectively. It can be clearly seen that the performances in terms of the 

average PHY rates are similar for all three algorithms considered. When the BER is less 

than 10
-3

 the PHY rate is close to 54 Mbps and the PHY rate is almost 6 Mbps if the 

BER is greater than 4×10
-3

. The PHY rate sharply decreases from 54 Mbps to 6 Mbps 

when the BER increases from 10
-3

 to 4×10
-3

. The result shows that the PHY rate 

adaption mechanism AARF is not the main factor contributing to the improvement in 

the throughput by using the AAM algorithm but rather the adaptive nature of the AAM 

algorithm.  

Conclusion  

Based on the previous discussions for the AAM algorithm implemented in a wireless 

network with transmission errors present and with the PHY rate adaption mechanism 

enabled, the following conclusions can be draw:  
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 The AAM algorithm has a superior performance compared to the other two 

algorithms in terms of the throughput. Moreover, the improvement in the 

throughput decreases as the BER increases. When the BER is 10
-4

, the AAM 

algorithm improves the throughput by 28%, while it cannot significantly 

improve the throughput when the BER is large (i.e. 5×10
-3

). 

 The PHY rate adaption mechanism AARF is not the main factor responsible for 

the improvement in the throughput as the performances are similar for all three 

algorithms considered in terms of the average PHY rate against BER with a 

fixed data rate of 26 Mbps. The main factor that contributes to the improvement 

in the throughput is the adaptive nature of the AAM algorithm.  

5.3 Chapter Summary 

In this chapter the main findings of the analysis of the AAM algorithm implemented in 

two test scenarios have been presented. The performance of the AAM algorithm 

implemented in the first scenario involving the aggregation process only demonstrated 

that the AAM algorithm is an adaptive packet aggregation algorithm which can operate 

over a wide range of different traffic loads by employing a tunable selection window 

scheme and a hybrid selection strategy. An analysis of the CCDF of the number of sub-

packets and the CDF of the sub-packet delay demonstrated that the AAM algorithm has 

a superior performance compared to the FIFO and SSFO algorithms.  

The AAM algorithm also has the best performance in terms of the number of sub-

packets against the average packet delay as it can combine a larger number of sub-

packets per aggregate packet for a given average packet delay. It was also shown that 

when the packet rate is low, the performances are similar in terms of the number of sub-

packets against the average packet delay as the performance for the AAM algorithm 

degrades towards that for the FIFO algorithm. 



122 
 

The results of the second scenario where the AAM algorithm has been deployed in a 

simulated wireless network with and without transmission errors present were presented. 

In the ideal wireless network (i.e. without transmission errors present) where the PHY 

rate adaption mechanism is not employed, the AAM algorithm has the best performance 

in terms of the throughput and the average delay for the different IEEE 802.11 PHY 

rates. The AAM algorithm can improve the throughput by 30% and reduce the average 

delay by 15% compared to the FIFO algorithm with a fixed PHY rate of 54 Mbps. 

However, when the data rate is low with a fixed PHY rate, the performances are similar 

in terms of the throughput and the average delay for all three algorithms considered. 

The performances in terms of the average aggregate packet size and the mean square 

deviation for the AAM algorithm are the best for all three algorithms considered. The 

AAM algorithm also has the best performance in terms of the aggregation trade-off in 

achieving the maximum average throughput with the minimum average delay for all 

three algorithms considered. The improvement in this performance increases as the 

PHY rate increases. When the PHY rate is 6 Mbps, the performances are similar in 

terms of the aggregation trade-off in achieving the maximum average throughput with 

the minimum average delay for all three algorithms considered. 

In the case of a wireless network with transmission errors present where the PHY rate 

adaption mechanism is employed, the AAM algorithm has the best performance in 

terms of the throughput when the BER is low. The AAM algorithm can improve the 

throughput by 28% compared to the FIFO algorithm when the BER is 10
-4

. The 

improvement in the throughput decreases as the BER increases. When the BER is 10
-3

, 

the AAM algorithm can improve the throughout by 20% compared to the FIFO 

algorithm.
 
However, the throughputs are almost zero for all three algorithms considered 

when the BER is 2×10
-2

. Therefore the AAM algorithm cannot provide any significant 

benefits in a simulated wireless networks with large values of BER as a significant 
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number of packets are corrupted and need to be re-transmitted. Furthermore, the results 

demonstrate that the PHY rate adaption mechanism is not the main factor contributing 

to the improvement in the throughput but rather the adaptive nature of the AAM 

algorithm.   
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Chapter 6 
Conclusions and Future Work 

Packet aggregation is a technique which combines a number of data packets into a 

single large data packet in order to achieve higher throughputs by reducing the overhead 

associated with protocol headers in packet-based communications networks. In the 

IEEE 802.11n standard, two packet aggregation algorithms have been proposed to 

improve the throughput: A-MSDU and A-MPDU. However, a packet aggregation 

algorithm can also increase the delay as it may need to wait for more packets to arrive in 

order to be aggregated into an aggregate packet. Consequently, there exists a trade-off 

between the throughput and the delay for all packet aggregation algorithms. However, 

most of the packet aggregation algorithms proposed so far just tend to optimize a single 

metric, i.e. either to maximize throughput or to minimize delay. In other words, they do 

not take account of the varying nature of the mixed traffic load particularly the random 

nature of the packet size and inter-arrival time.  

In this thesis, an adaptive packet aggregation algorithm called the Adaptive Aggregation 

Mechanism (AAM) has been proposed to achieve the best aggregation trade-off in 

realizing the maximum average throughput with the minimum average delay compared 

to two other packet aggregation algorithms (i.e. FIFO and SSFS) for different traffic 

loads. The AAM algorithm is essentially a feedback control system that can operate 

over a wide range of different traffic loads by employing an adaptive selection window 

mechanism and a hybrid selection strategy. There are three elements to the AAM 

algorithm: Adjustable Aggregation Algorithm (A
3
), Aggregate Packer Analyzer (APA) 

and Aggregate Tuning Algorithm (ATA). The A
3 

selects packets from the selection 

window in the input buffer based on a hybrid selection strategy and then aggregates 

them together in the output buffer. The hybrid selection strategy results in the first sub-
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packet being selected based on the packet arrival time and the other sub-packets being 

selected based on the packet size. The selection window size can be adaptively adjusted. 

The APA analyses the number of sub-packets and the aggregate packet delay between 

the current and previous aggregate packet. The ATA determines the size of the selection 

window for the next aggregate packet based on the analysis results from the APA. The 

aggregation process is determined by two user specified threshold values: the target 

aggregate packet size and the maximum acceptable delay. 

In order to demonstrate the performance for the AAM algorithm over a wide range of 

different traffic loads, there were 16 traffic trace files used which were captured from a 

number of live Wi-Fi hotspot networks at different times and locations. These captured 

traffic trace files were used as the input traffic source in the test simulations. There were 

two test scenarios used to analyze the performance of the AAM algorithm: 

   In the first test scenario, the AAM algorithm was implemented as a standalone 

aggregation process only. This scenario was used to demonstrate that the AAM 

algorithm is an adaptive packet aggregation algorithm which can combine the 

largest number of sub-packets per aggregate packet for a given average packet 

delay compared to other two aggregation algorithms, namely the FIFO and 

SSFS algorithms. 

   In the second test scenario, the AAM algorithm was implemented in the ns-3 

simulator and deployed in a test wireless network with and without 

transmission errors present. This scenario was used to demonstrate that the 

AAM algorithm has the best performance in terms of the aggregation trade-off 

in achieving the maximum average throughput with the minimum average 

delay compared to other two aggregation algorithms for different traffic loads. 

In the same wireless network with transmission errors present where the PHY 
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rate adaption mechanism AARF was employed, it was demonstrated that the 

AAM algorithm is also a robust algorithm. The AAM algorithm can 

significantly improve the performance in terms of the throughput for low 

values of BER (e.g. not greater than 10
-3

), while for large values of BER (e.g. 

10
-2

) the AAM algorithm can still improve the throughput but cannot 

significantly improve it. 

We briefly summarize the key contributions of this work and discuss several future 

research directions. The central claim of this thesis is that the adaptive packet 

aggregation algorithm AAM can significantly improve the aggregation trade-off in 

terms of achieving the maximum average throughput with the minimum average delay 

over a wide range of different traffic loads in wireless networks. Moreover, it is a robust 

algorithm as it has the best performance in terms of the throughput compared to the 

FIFO and SSFS algorithms in error-prone wireless networks. The results of the 

performance investigation for the AAM algorithm presented in chapter 5 support this 

claim. 

6.1 Summary of Contributions and Achievements 

Throughout this thesis, we have presented arguments as to why this work represents an 

important contribution to the development of packet aggregation. The objective of this 

section is to collect these arguments together in order to create a more coherent and 

concise picture of how this work contributes to the packet aggregation research. 

Specific contributions include: 

 An adaptive adjustable selection window mechanism for aggregating packets. 

This adaptive selection window mechanism for the AAM algorithm helps to 

achieve the best aggregation trade-off in terms of realizing the maximum 

average throughput with the minimum average delay for all three algorithms 
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considered (i.e. AAM, FIFO and SSFS) under different traffic loads. To the best 

knowledge of the author, the AAM algorithm is the first packet aggregation 

algorithm that employs an adaptive selection window mechanism. Chapter 5 

presented the performances in terms of the size of the selection window and the 

average packet rate to show that the selection window size follows the variations 

in the average packet rate. The performance in terms of the number of sub-

packets against the average packet delay, and the aggregation trade-off in 

achieving the maximum average throughput with the minimum average delay in 

wireless networks are presented which demonstrate that the adaptive adjustable 

selection window mechanism can help to achieve the goal of the best 

performance in terms of the aggregation trade-off for the AAM algorithm in 

wireless networks. 

 A hybrid selection strategy for selecting packets. In the AAM algorithm, a 

hybrid selection strategy is employed to take account of the random packet rate 

and the packet size where the front packet is always selected as the first sub-

packet in order to avoid the possibility of the delay for the first sub-packet 

increasing indefinitely and other sub-packets are selected based on their size in 

order to maximize the number of sub-packets in an aggregate packet. Chapter 5 

showed that the AAM algorithm has the best performance in terms of the 

throughput for different PHY rates; even in error-prone wireless networks, the 

AAM algorithm still can improve the throughput by up to 28% compared to the 

FIFO algorithm. The AAM algorithm also achieves the goal of the best 

aggregation trade-off in terms of realizing the maximum average throughput 

with the minimum average delay for all three algorithms considered by 

employing this hybrid selection strategy.  
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 An adaptive feedback mechanism that ensures robustness in error-prone 

wireless networks. The AAM algorithm is based upon an adaptive feedback 

mechanism that allows it to operate over a wide range of different traffic loads 

in error-prone wireless networks. Chapter 5 presented the performances for the 

AAM algorithm in a wireless network where transmission errors were present 

and it showed that the throughput can be improved by up to 28% compared to 

the FIFO algorithm. Even if the BER is increased up to 10
-3

, the AAM 

algorithms still can improve the throughput by 18%. 

In other words, the three elements (i.e. A
3
, ATA and APA) that comprise the AAM 

algorithm allow it to achieve the best aggregation trade-off in terms of realizing the 

maximum average throughput with the minimum average delay compared to the FIFO 

and SSFS algorithms for different traffic loads in wireless networks. 

6.2 Open Problems and Future Work 

The research in this thesis represents important progress in using packet aggregation to 

improve the throughput in WLANs. However, every new solution naturally generates 

more questions. Therefore, this section introduces some of the research directions which 

are closely related to the work in this thesis and appear promising for future research:  

 Employing a more appropriate channel model for the analysis of the 

performance of the AAM algorithm. The AAM algorithm has been shown to 

have good performances under different levels of static BER conditions in 

wireless networks. However, the simulation scenario used here for the 

performance analysis is poor in the sense that it uses a simplistic and unrealistic 

loss model for the wireless channels. This would suggest that it needs to use a 

more appropriate channel model that includes the time-varying and the busty 

nature of real wireless channels where transmission errors tend to occur in bursts 
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due to the effects of fading and interference. A number of models may be 

employed to demonstrate the performance of the AAM algorithm, such as the 

log-distance path loss model [Rap96] which assumes an exponential path loss 

based on the distance from the sender to the receiver, or the Jakes model [ZeX03] 

which calculates the propagation loss by modeling a set of rays transmitted from 

the sender to the receiver via different paths. 

 Carrying out an experimental validation of the AAM algorithm to better gauge 

its performance under realistic wireless network conditions. In this thesis, the 

AAM algorithm is simulated using the ns-3 simulator. The AAM algorithm can 

be implemented in the MAC layer of the station nodes in an experimental 

wireless network by modifying the open source ath9k [ath9] or ath10k [ath10] 

driver. The ath9k driver can support all the Atheros IEEE 802.11n WLAN based 

chipsets and the ath10k driver can support the IEEE 802.11ac chipsets. There is 

a need to develop three modules to implement the three algorithms considered 

(i.e. AAM, FIFO and SSFS) and these modules then need to be incorporated into 

the ath9k or ath10k driver. The modified driver is deployed in the MAC layer of 

all the stations in a multiple-hop wireless network which contains an AP station 

and multiple client stations. The 16 captured traffic trace files can still be used as 

the input in the sender stations. After that, other applications (e.g. VoIP) can be 

used to test the performance of the AAM algorithm in the same test-bed scenario.  

 Employing an adaptive step size for tuning the size of the selection window. The 

current tuning rules used in the ATA increase/decrease the size of the selection 

window in steps of 1 which has been shown to produce a good performance in 

terms of the throughput and the delay. An adaptive step size for 

increasing/decreasing the step size may achieve an even better performance. For 
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example, the AIMD (Additive Increase Multiplicative Decrease) [ChJ89] 

strategy which combines the linear growth of the selection window size with an 

exponential reduction could be used by the AAM algorithm. The AIMD strategy 

may further improve the throughput and reduce the delay. Another adaptive 

strategy can be used to adaptively tune the step size of the selection window 

which is still based on the analysis results from the APA. The rules for tuning 

the step size of the selection window are shown in Table 6-1 where MI means 

multiplicative increase, MD means multiplicative decrease, AI means additive 

increase and AD means additive decrease. These rules can be explained as 

follows: (1) If the delay has increased and the number of sub-packets has not 

decreased, this means that the network performance is slowly deteriorating and 

the selection window size needs to be slowly decreased. Therefore, the step size 

is additively decremented. (2) If the delay has increased and the number of sub-

packets has decreased, this means that the network is rapidly deteriorating. 

Therefore, the selection window size needs to be rapidly reduced by using a 

multiplicative decrement.  (3) If the delay has decreased and the number of sub-

packets has increased, this means that the network performance is slowly 

improving and the selection window size needs to be slowly increased. 

Therefore, the step size is additively incremented. (4) If the delay has decreased 

and the number of sub-packets has not increased, the step size is additively 

incremented. (5) If the delay has maintained, the step size is additively 

incremented. The biggest challenge of this adaptive strategy is that one needs to 

determine what values for the multiplicative factors and additive steps to use in 

order to achieve the best network performance. 
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Table 6-1: The rules for tuning the step size of the selection window size 

 

 

 

 

 Investigating the performance of the AAM algorithm when combined with a 

routing protocol. It is well known that routing is critical to the network 

throughput in WMNs. Packet size is one of the most important metrics that 

impacts on the routing decision of routing protocols in WMNs [YWK05A], such 

as the WCETT (Weighted Cumulative ETT) [DPZ04] and MIC (Metric of 

Interference and Channel-switching) [YWK05]. There is an optimal aggregate 

packet size associated with some routing protocols to achieve the maximum 

network throughput in WMNs [GoY13]. In particular for the ETT (Expected 

Transmission Time) [DPZ04] routing protocol which is a popular routing 

protocol and chooses the routing based on the packet size, the AAM algorithm 

may significantly impact on the routing decision as the size of the AAM 

aggregate packet can be controlled. Therefore, the interaction between the 

routing protocol ETT and the AAM algorithm should be investigated [GoY13] 

in order to achieve an optimal network performance. Furthermore, there is a 

need for an investigation to determine which routing protocol works best with 

the AAM algorithm.  

 Optimizing the selection strategy in the A
3
 algorithm in wireless networks. The 

A
3 

selection strategy is a hybrid selection strategy which has successfully helped 

                

Aggregate packet delay 

>  0 < 0 = 0 

Number of sub-packets 

> 0 AD AI AI 

< 0 MD AI AI 

= 0 AD AI AI 



132 
 

to achieve the goal of the best aggregation trade-off in terms of realizing the 

maximum average throughput with the minimum average delay. There may be 

some other selection strategies that could be used to further improve the 

throughput. For example, a priority strategy based on the least life time could be 

used to reduce the delay by selecting the packets which have the smallest life 

time [LYY09]. In particular, for the multi-hop wireless networks, the value 

density selection strategy [Mod82] can be used where the packets are selected 

based on the value density. The value density of a packet is defined as the 

number of transmitted hop-counts per payload in byte. The largest value density 

packet in the input buffer is serviced first in order to reduce the packet dropped. 

 Specifying the values of the target aggregate packet size and the maximum 

acceptable delay parameters for different application types. Currently, the 

values of the both parameters are fixed and specified by the user at the outset. 

There may be further benefits in terms of network performance if these 

parameters can be specified according to the application types. There is one 

method that can be implemented in several steps. At first, all the applications 

within a mixed traffic load are divided into two classes based on tagging and 

packet size [EEV06], the time sensitive application (e.g. VoIP, video streaming) 

and the time insensitive application (e.g. E-mail) which are pushed into separate 

buffers. Here, the biggest drawback is that it may fail to identify the time 

sensitive application packets as they tend not to use tagging. Then the values of 

the two parameters for each class of application can be specified for the different 

applications in order to improve the network performance. For example, for the 

time sensitive applications the maximum acceptable delay and the target 

aggregate packet size can be specified in order to minimize the delay. For the 
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time insensitive applications, the values of the two parameters can be specified 

in order to maximize the throughput. After that, the two classes of applications 

each employ separate AAM algorithms to aggregate packets based on the 

different specified input parameters. Finally, the aggregate packets are moved 

into the output buffer and are transmitted based on the arrival time. The 

aggregate packet of the time sensitive application is moved into the output 

buffer first if there are two aggregate packets arrivals into the output buffer at 

the same time. Another method that can be used is to develop a smart algorithm 

which can adaptively adjust the values of the two parameters based on the 

different traffic loads. The values of the two parameters can be adaptively 

adjusted based on the ratio of the small size packets to the overall packets which 

arrive within a certain duration of time (e.g. 20 ms). The values of the two 

parameters are inversely proportional to the value of this ratio. The reason for 

this is that the VoIP packet is a small size packet and is time sensitive packet. 

Here, the biggest challenge is that how to determine what constitutes a small 

size packet and what time duration to use and how to adjust the values of the 

two parameters based on the ratio in order to achieve the best network 

performance.  
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6.3 Publications 

The publications arising from this thesis are as followings: 

[1] Jianhua Deng, Mark Davis, “An Adaptive Packet Aggregation Algorithm for 

Wireless Networks,” International Conference on Wireless Communications and Signal 

Processing 2013 (WCSP 2013), pp. 449-504, Hangzhou, China, 24 -26 October 2013. 

[2] Jianhua Deng, Mark Davis, “The Performance of the Adaptive Aggregation 

Mechanism (AAM) in Lossy Wireless Networks,” acceptable for publication at 20
th

 

IEEE Symposium on Communications and Vehicular Technology in the Benelux 2013 

(IEEE SCVT 2013), Namur, Belgium, 21 November 2013. 
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Appendix A 

The captured traffic trace file 1 

Table A-1: The details for the captured traffic trace file 1. 

Time Date Location PPS 

10:30 – 11:30 29th ,May, 2012 JAVA City, DIT, 

Dublin 

92.1 

 

Figure A-1: The average packet rate for the captured traffic trace file 1. 

 

Figure A-2: The selection window size sampled every ten aggregated packets generated 

for the captured traffic trace file 1. 
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The captured traffic trace file 2 

Table A-2: The details for the captured traffic trace file 2. 

Time Date Location PPS 

12:00 – 13:00 29th ,May, 2012 JAVA City, DIT, 

Dublin 

114 

 

Figure A-3: The average packet rate for the captured traffic trace file 2. 

 

Figure A-4: The selection window size sampled every ten aggregated packets generated 

for the captured traffic trace file 2. 
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The captured traffic trace file 3 

Table A-3: The details for the captured traffic trace file 3. 

Time Date Location PPS 

14:00 – 15:00 29th ,May, 2012 JAVA City, DIT, 

Dublin 

75.7 

 

Figure A-5: The average packet rate for the captured traffic trace file 3. 

 

Figure A-6: The selection window size sampled every ten aggregated packets generated 

for the captured traffic trace file 3. 
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The captured traffic trace file 4 

Table A-4: The details for the captured traffic trace file 4. 

Time Date Location PPS 

16:00 – 17:00 29th ,May, 2012 JAVA City, DIT, 

Dublin 

111.3 

 

Figure A-7: The average packet rate for the captured traffic trace file 4. 

 

Figure A-8: The selection window size sampled every ten aggregated packets generated 

for the captured traffic trace file 4. 
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The captured traffic trace file 5 

Table A-5: The details for the captured traffic trace file 5. 

Time Date Location PPS 

17:30 – 18:30 29th ,May, 2012 JAVA City, DIT, 

Dublin 

109.4 

 

Figure A-9: The average packet rate for the captured traffic trace file 5. 

 

Figure A-10: The selection window size sampled every ten aggregated packets 

generated for the captured traffic trace file 5. 
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The captured traffic trace file 6 

Table A-6: The details for the captured traffic trace file 6 

Time Date Location PPS 

09:30 – 10:30 19th, June, 2012 Costa coffee shop, Dublin 9.4 

 

Figure A-11: The average packet rate for the captured traffic trace file 6. 

 

Figure A-12: The selection window size generated by the AAM algorithm for the 

captured traffic trace file 6. 
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The captured traffic trace file 7 

Table A-7: The details for the captured traffic trace file 7 

Time Date Location PPS 

11:00 –12:00 19th, June, 2012 Parliament Square, TCD, 

Dublin 

5.6 

 

Figure A-13: The average packet rate for the captured traffic trace file 7. 

 

Figure A-14: The selection window size generated by the AAM algorithm for the 

captured traffic trace file 7. 
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The captured traffic trace file 8 

Table A-8: The details for the captured traffic trace file 8 

Time Date Location PPS 

12:30 – 13:30 19th, June, 2012 Costa coffee shop, 

Dublin 

9.2 

 

Figure A-15: The average packet rate for the captured traffic trace file 8. 

 

Figure A-16: The selection window size generated by the AAM algorithm for the 

captured traffic trace file 8. 
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The captured traffic trace file 9 

Table A-9: The details for the captured traffic trace file 9 

Time Date Location PPS 

16:00 –17:00 19th, June, 2012 Parliament Square, TCD, 

Dublin 

3.6 

 

Figure A-17: The average packet rate for the captured traffic trace file 9. 

 

Figure A-18: The selection window size generated by the AAM algorithm for the 

captured traffic trace file 9. 
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The captured traffic trace file 10 

Table A-10: The details for the captured traffic trace file 10 

Time Date Location PPS 

17:00 – 18:00 19th, June, 2012 Costa coffee shop, 

Dublin 

6.6 

 

Figure A-19: The average packet rate for the captured traffic trace file 10. 

 

Figure A-20: The selection window size generated by the AAM algorithm for the 

captured traffic trace file 10. 
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The captured traffic trace file 11 

Table A-11: The details for the captured traffic trace file 11 

Time Date Location PPS 

12:00 –13:00 24th, June, 2012 Hueston train station, 

Dublin 

6.87 

 

Figure A-21: The average packet rate for the captured traffic trace file 11. 

 

Figure A-22: The selection window size generated by the AAM algorithm for the 

captured traffic trace file 11. 
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The captured traffic trace file 12 

Table A-12: The details for the captured traffic trace file 12 

Time Date Location PPS 

13:30 – 14:30 24th, June, 2012 Hueston train station, 

Dublin 

4.2 

 

Figure A-23: The average packet rate for the captured traffic trace file 12. 

 

Figure A-24: The selection window size generated by the AAM algorithm for the 

captured traffic trace file 12. 
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The captured traffic trace file 13 

Table A-13: The details for the captured traffic trace file 13 

Time Date Location PPS 

15:00 –16:00 24th, June, 2012 Hueston train station, 

Dublin 

6.2 

 

Figure A-25: The average packet rate for the captured traffic trace file 13. 

 

Figure A-26: The selection window size generated by the AAM algorithm for the 

captured traffic trace file 13. 
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The captured traffic trace file 14 

Table A-14: The details for the captured traffic trace file 14 

Time Date Location PPS 

10:30 –11:30 26th, June, 2012 Library, Kevin street, DIT, 

Dublin 

19.2 

 

Figure A-27: The average packet rate for the captured traffic trace file 14. 

 

Figure A-28: The selection window size generated by the AAM algorithm for the 

captured traffic trace file 14. 
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The captured traffic trace file 15 

Table A-15: The details for the captured traffic trace file 15 

Time Date Location PPS 

12:00 –13:00 26th, June, 2012 Library, Kevin street, DIT, 

Dublin 

3.8 

 

Figure A-29: The average packet rate for the captured traffic trace file 15. 

 

Figure A-30: The selection window size generated by the AAM algorithm for the 

captured traffic trace file 15. 
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The captured traffic trace file 16 

Table A-16: The details for the captured traffic trace file 16 

Time Date Location PPS 

19:00 –19:50 17th ,July, 2012 Shuangliu airport, Sichuan, 

China 

6.9 

 

Figure A-31: The average packet rate for the captured traffic trace file 16. 

 

Figure A-32: The selection window size generated by the AAM algorithm for the 

captured traffic trace file 16. 
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Appendix B 

The captured traffic trace file 1 

Table B-1: The details for the captured traffic trace file 1 

Time Date Location PPS 

10:30 – 11:30 29th ,May, 2012 JAVA City, DIT, Dublin 92.1 

 

Figure B-1: The CCDF of the number of sub-packets for the captured traffic trace file 1. 
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The captured traffic trace file 2 

Table B-2: The details for the captured traffic trace file 2 

Time Date Location PPS 

12:00 – 13:00 29th ,May, 2012 JAVA City, DIT, 

Dublin 

114 

 

Figure B-2: The CCDF of the number of sub-packets for the captured traffic trace file 2. 
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The captured traffic trace file 3 

Table B-3: The details for the captured traffic trace file 3 

Time Date Location PPS 

14:00 – 15:00 29th ,May, 2012 JAVA City, DIT, 

Dublin 

75.7 

 

Figure B-3: The CCDF of the number of sub-packets for the captured traffic trace file 3. 
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The captured traffic trace file 4 

Table B-4: The details for the captured traffic trace file 4 

Time Date Location PPS 

16:00 – 17:00 29th ,May, 2012 JAVA City, DIT, 

Dublin 

111.3 

 

Figure B-4: The CCDF of the number of sub-packets for the captured traffic trace file 4. 
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The captured traffic trace file 5 

Table B-5: The details for the captured traffic trace file 5 

Time Date Location PPS 

17:30 – 18:30 29th ,May, 2012 JAVA City, DIT, 

Dublin 

109.4 

 

Figure B-5: The CCDF of the number of sub-packets for the captured traffic trace file 5. 
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The captured traffic trace file 6 

Table B-6: The details for the captured traffic trace file 6 

Time Date Location PPS 

09:30 – 10:30 19th, June, 2012 Costa coffee shop, Dublin 9.4 

 

Figure B-6: The CCDF of the number of sub-packets for the captured traffic trace file 6. 
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The captured traffic trace file 7 

Table B-7: The details for the captured traffic trace file 7 

Time Date Location PPS 

11:00 –12:00 19th, June, 2012 Parliament Square, TCD, 

Dublin 

5.6 

 

Figure B-7: The CCDF of the number of sub-packets for the captured traffic trace file 7. 

 

 

 

 

 

 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

C
C

D
F 

Number of sub-packets 

FIFO SSFS AAM 

Fixed AAM with N=3 Fixed AAM with N=8 Fixed AAM with N=10 



179 
 

The captured traffic trace file 8 

Table B-8: The details for the captured traffic trace file 8 

Time Date Location PPS 

12:30 – 13:30 19th, June, 2012 Costa coffee shop, 

Dublin 

9.2 

 

Figure B-8: The CCDF of the number of sub-packets for the captured traffic trace file 8. 
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The captured traffic trace file 9 

Table B-9: The details for the captured traffic trace file 9 

Time Date Location PPS 

16:00 –17:00 19th, June, 2012 Parliament Square, TCD, 

Dublin 

3.6 

 

Figure B-9: The CCDF of the number of sub-packets for the captured traffic trace file 9. 
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The captured traffic trace file 10 

Table B-10: The details for the captured traffic trace file 10 

Time Date Location PPS 

17:00 – 18:00 19th, June, 2012 Costa coffee shop, 

Dublin 

6.6 

 

Figure B-10: The CCDF of the number of sub-packets for the captured traffic trace file 

10. 
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The captured traffic trace file 11 

Table B-11: The details for the captured traffic trace file 11 

Time Date Location PPS 

12:00 –13:00 24th, June, 2012 Hueston train station, 

Dublin 

6.87 

 

Figure B-11: The CCDF of the number of sub-packets for the captured traffic trace file 

11. 
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The captured traffic trace file 12 

Table B-12: The details for the captured traffic trace file 12 

Time Date Location PPS 

13:30 – 14:30 24th, June, 2012 Hueston train station, 

Dublin 

4.2 

 

Figure B-12: The CCDF of the number of sub-packets for the captured traffic trace file 

12. 
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The captured traffic trace file 13 

Table B-13: The details for the captured traffic trace file 13 

Time Date Location PPS 

15:00 –16:00 24th, June, 2012 Hueston train station, 

Dublin 

6.2 

 

Figure B-13: The CCDF of the number of sub-packets for the captured traffic trace file 

13. 
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The captured traffic trace file 14 

Table B-14: The details for the captured traffic trace file 14 

Time Date Location PPS 

10:30 –11:30 26th, June, 2012 Library, Kevin street, DIT, 

Dublin 

19.2 

 

Figure B-14: The CCDF of the number of sub-packets for the captured traffic trace file 

14. 
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The captured traffic trace file 15 

Table B-15: The details for the captured traffic trace file 15 

Time Date Location PPS 

12:00 –13:00 26th, June, 2012 Library, Kevin street, DIT, 

Dublin 

3.8 

 

Figure B-15: The CCDF of the number of sub-packets for the captured traffic trace file 

15. 
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The captured traffic trace file 16 

Table B-16: The details for the captured traffic trace file 16 

Time Date Location PPS 

19:00 –19:50 17th ,July, 2012 Shuangliu airport, Sichuan, 

China 

6.9 

 

Figure B-16: The CCDF of the number of sub-packets for the captured traffic trace file 

16. 
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Appendix C 

The captured traffic trace file 1 

Table C-1: The details for the captured traffic trace file 1 

Time Date Location PPS 

10:30 – 11:30 29
th

 ,May, 2012 JAVA City, DIT, 

Dublin 

92.1 

 

Figure C-1: The CDF of sub-packet delay for the captured traffic trace file 1. 
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The captured traffic trace file 2 

Table C-2: The details for the captured traffic trace file 2 

Time Date Location PPS 

12:00 – 13:00 29
th

 ,May, 2012 JAVA City, DIT, Dublin 114 

 

Figure C-2: The CDF of sub-packet delay for the captured traffic trace file 2. 
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The captured traffic trace file 3 

Table C-3: The details for the captured traffic trace file 3 

Time Date Location PPS 

14:00 – 15:00 29
th

 ,May, 2012 JAVA City, DIT, Dublin 75.7 

 

Figure C-3: The CDF of sub-packet delay for the captured traffic trace file 3. 
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The captured traffic trace file 4 

Table C-4: The details for the captured traffic trace file 4 

Time Date Location PPS 

16:00 – 17:00 29
th

 ,May, 2012 JAVA City, DIT, Dublin 111.3 

 

Figure C-4: The CDF of sub-packet delay for the captured traffic trace file 4. 
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The captured traffic trace file 5 

Table C-5: The details for the captured traffic trace file 5 

Time Date Location PPS 

17:30 – 18:30 29
th

 ,May, 2012 JAVA City, DIT, 

Dublin 

109.4 

 

Figure C-5: The CDF of sub-packet delay for the captured traffic trace file 5. 
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The captured traffic trace file 6 

Table C-6: The details for the captured traffic trace file 6 

Time Date Location PPS 

09:30 – 10:30 19
th

, June, 2012 Costa coffee shop, Dublin 9.4 

 

Figure C-6: The CDF of sub-packet delay for the captured traffic trace file 6. 
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The captured traffic trace file 7 

Table C-7: The details for the captured traffic trace file 7 

Time Date Location PPS 

11:00 –12:00 19
th

, June, 2012 Parliament Square, TCD, 

Dublin 

5.6 

 

Figure C-7: The CDF of sub-packet delay for the captured traffic trace file 7. 
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The captured traffic trace file 8 

Table C-8: The details for the captured traffic trace file 8 

Time Date Location PPS 

12:30 – 13:30 19
th

, June, 2012 Costa coffee shop, 

Dublin 

9.2 

 

Figure C-8: The CDF of sub-packet delay for the captured traffic trace file 8. 
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The captured traffic trace file 9 

Table C-9: The details for the captured traffic trace file 9 

Time Date Location PPS 

16:00 –17:00 19
th

, June, 2012 Parliament Square, TCD, 

Dublin 

3.6 

 

Figure C-9: The CDF of sub-packet delay for the captured traffic trace file 9. 
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The captured traffic trace file 10 

Table C-10: The details for the captured traffic trace file 10 

Time Date Location PPS 

17:00 – 18:00 19
th

, June, 2012 Costa coffee shop, 

Dublin 

6.6 

 

Figure C-10: The CDF of sub-packet delay for the captured traffic trace file 10. 
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The captured traffic trace file 11 

Table C-11: The details for the captured traffic trace file 11 

Time Date Location PPS 

12:00 –13:00 24
th

, June, 2012 Hueston train station, Dublin 6.87 

 

Figure C-11: The CDF of sub-packet delay for the captured traffic trace file 11. 
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The captured traffic trace file 12 

Table C-12: The details for the captured traffic trace file 12 

Time Date Location PPS 

13:30 – 14:30 24
th

, June, 2012 Hueston train station, Dublin 4.2 

 

Figure C-12: The CDF of sub-packet delay for the captured traffic trace file 12. 
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The captured traffic trace file 13 

Table C-13: The details for the captured traffic trace file 13 

Time Date Location PPS 

15:00 –16:00 24
th

, June, 2012 Hueston train station, Dublin 6.2 

 

Figure C-13: The CDF of sub-packet delay for the captured traffic trace file 13. 

 

 

 

 

 

 

 

 

 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

C
D

F 

Sub-packet Delay (second) 

AAM FIFO SSFS 



201 
 

The captured traffic trace file 14 

Table C-14: The details for the captured traffic trace file 14 

Time Date Location PPS 

10:30 –11:30 26
th

, June, 2012 Library, Kevin street, DIT, 

Dublin 

19.2 

 

Figure C-14: The CDF of sub-packet delay for the captured traffic trace file 14. 
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The captured traffic trace file 15 

Table C-15: The details for the captured traffic trace file 15 

Time Date Location PPS 

12:00 –13:00 26
th

, June, 2012 Library, Kevin street, DIT, 

Dublin 

3.8 

 

Figure C-15: The CDF of sub-packet delay for the captured traffic trace file 15. 
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The captured traffic trace file 16 

Table C-16: The details for the captured traffic trace file 16 

Time Date Location PPS 

19:00 –19:50 17
th

 ,July, 2012 Shuangliu airport, Sichuan, 

China 

6.9 

 

Figure C-16: The CDF of sub-packet delay for the captured traffic trace file 16. 
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Appendix D 

The captured traffic trace file 1 

Table D-1: The details for the captured traffic trace file 1 

Time Date Location PPS 

10:30 – 11:30 29
th

 ,May, 2012 JAVA City, DIT, Dublin 92.1 

 

Figure D-1: The number of sub-packets against the average packet delay for the 

captured traffic trace file1. 
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The captured traffic trace file 2 

Table D-2: The details for the captured traffic trace file 2 

Time Date Location PPS 

12:00 – 13:00 29th ,May, 2012 JAVA City, DIT, Dublin 114 

 

Figure D-2: The number of sub-packets against the average packet delay for the 

captured traffic trace file 2. 
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The captured traffic trace file 3 

Table D-3: The details for the captured traffic trace file 3 

Time Date Location PPS 

14:00 – 15:00 29
th

 ,May, 2012 JAVA City, DIT, Dublin 75.7 

 

Figure D-3: The number of sub-packets against the average packet delay for the 

captured traffic trace file 3. 
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The captured traffic trace file 4 

Table D-4: The details for the captured traffic trace file 4 

Time Date Location PPS 

16:00 – 17:00 29
th

 ,May, 2012 JAVA City, DIT, Dublin 111.3 

 

Figure D-4: The number of sub-packets against the average packet delay for the 

captured traffic trace file 4. 
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The captured traffic trace file 5 

Table D-5: The details for the captured traffic trace file 5 

Time Date Location PPS 

17:30 – 18:30 29
th

 ,May, 2012 JAVA City, DIT, Dublin 109.4 

 

Figure D-5: The number of sub-packets against the average packet delay for the 

captured traffic trace file 5. 
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The captured traffic trace file 6 

Table D-6: The details for the captured traffic trace file 6 

Time Date Location PPS 

09:30 – 10:30 19
th

, June, 2012 
Costa coffee shop, 

Dublin 
9.4 

 

Figure D-6: The number of sub-packets against the average packet delay for the 

captured traffic trace file 6. 
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The captured traffic trace file 7 

Table D-7: The details for the captured traffic trace file 7 

Time Date Location PPS 

11:00 –12:00 19
th

, June, 2012 Parliament Square, TCD, 

Dublin 

5.6 

 

Figure D-7: The number of sub-packets against the average packet delay for the 

captured traffic trace file 7. 
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The captured traffic trace file 8 

Table D-8: The details for the captured traffic trace file 8 

Time Date Location PPS 

12:30 – 13:30 19
th

, June, 2012 
Costa coffee shop, 

Dublin 
9.2 

 

Figure D-8: The number of sub-packets against the average packet delay for the 

captured traffic trace file8. 
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The captured traffic trace file 9 

Table D-9: The details for the captured traffic trace file 9 

Time Date Location PPS 

16:00 –17:00 19
th

, June, 2012 Parliament Square, TCD, Dublin 3.6 

 

Figure D-9: The number of sub-packets against the average packet delay for the 

captured traffic trace file 9. 
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The captured traffic trace file 10 

Table D-10: The details for the captured traffic trace file 10 

Time Date Location PPS 

17:00 – 18:00 19
th

, June, 2012 
Costa coffee shop, 

Dublin 
6.6 

 

Figure D-10: The number of sub-packets against the average packet delay for the 

captured traffic trace file 10. 
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The captured traffic trace file 11 

Table D-11: The details for the captured traffic trace file 11 

Time Date Location PPS 

12:00 –13:00 24
th

, June, 2012 
Hueston train station, 

Dublin 
6.87 

 

Figure D-11: The number of sub-packets against the average packet delay for the 

captured traffic trace file 11. 
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The captured traffic trace file 12 

Table D-12: The details for the captured traffic trace file 12 

Time Date Location PPS 

13:30 – 14:30 24
th

, June, 2012 Hueston train station, Dublin 4.2 

 

Figure D-12: The number of sub-packets against the average packet delay for the 

captured traffic trace file 12. 
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The captured traffic trace file 13 

Table D-13: The details for the captured traffic trace file 13 

Time Date Location PPS 

15:00 –16:00 24
th

, June, 2012 
Hueston train station, 

Dublin 
6.2 

 

Figure D-13: The number of sub-packets against the average packet delay for the 

captured traffic trace file 13. 
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The captured traffic trace file 14 

Table D-14: The details for the captured traffic trace file 14 

Time Date Location PPS 

10:30 –11:30 26
th

, June, 2012 
Library, Kevin street, DIT, 

Dublin 
19.2 

 

Figure D-14: The number of sub-packets against the average packet delay for the 

captured traffic trace file 14. 
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The captured traffic trace file 15 

Table D-15: The details for the captured traffic trace file 15 

Time Date Location PPS 

12:00 –13:00 26
th

, June, 2012 
Library, Kevin street, DIT, 

Dublin 
3.8 

 

Figure D-15: The number of sub-packets against the average packet delay for the 

captured traffic trace file 15. 
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The captured traffic trace file 16 

Table D-16: The details for the captured traffic trace file 16 

Time Date Location PPS 

19:00 –19:50 17
th

 ,July, 2012 
Shuangliu airport, Sichuan, 

China 
6.9 

 

Figure D-16: The number of sub-packets against the average packet delay for the 

captured traffic trace file 16. 
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