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Algebraic Discretization of the Camassa-Holm and
Hunter-Saxton Equations

Rossen I. Ivanov1

Abstract

The Camassa-Holm (CH) and Hunter-Saxton (HS) equations have an
interpretation as geodesic flow equations on the group of diffeomor-
phisms, preserving the H1 and Ḣ1 right-invariant metrics correspond-
ingly. There is an analogy to the Euler equations in hydrodynamics,
which describe geodesic flow for a right-invariant metric on the infinite-
dimensional group of diffeomorphisms preserving the volume element of
the domain of fluid flow and to the Euler equations of rigid body whith
a fixed point, describing geodesics for a left-invariant metric on SO(3).
The CH and HS equations are integrable bi-hamiltonian equations and
one of their Hamiltonian structures is associated to the Virasoro alge-
bra. The parallel with the integrable SO(3) top is made explicit by
a discretization of both equation based on Fourier modes expansion.
The obtained equations represent integrable tops with infinitely many
momentum components.

An emphasis is given on the structure of the phase space of these
equations, the momentum map and the space of canonical variables.

1 Introduction

This geometric interpretation of the Camassa-Holm equation [6] as a geodesic
flow equation on the group of diffeomorphisms, preserving the H1 right-
invariant metrics metric was noticed firstly by Misio lek [42] and developed
further in many recent publications, e.g. [37, 25, 14, 15, 39, 13]. The CH
equation has an interpretation in the context of water waves propagation
[6, 34, 35, 19, 20, 32, 29]. The spectral problem for the CH equation on the
line is developed in [2, 8, 10, 11, 17, 36], the periodic spectral problem – in
[7, 16, 48]. The CH solutions are investigated in a variety of recent papers,
e.g. in [4, 5, 9, 12, 21, 22, 23, 26, 30, 46]. Hierarchies of CH equations are
studied in [11, 31, 33], different modifications are studied in [41, 47].

There are different forms of the CH equation, containing linear term
with a first derivative ux; with a third derivative uxxx (called sometimes
Dullin-Gottwald-Holm equation [19, 20, 43, 44, 49]), or without such terms.
These terms can be put in or removed from the equation independently by
Galilean transformations.

1Present address: School of Mathematical Sciences, Dublin Institute of Technology,
Kevin Street, Dublin 8, Ireland, Email: rivanov@dit.ie
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We will be interested in the CH equation of the form

mt + auxxx + 2mux + mxu = 0, m = u− uxx, (1.1)

with a being an arbitrary constant. It can be written in Hamiltonian form

mt = {m,H1}, (1.2)

where, assuming that m is 2π periodic in x, i.e. m(x) = m(x + 2π), the
Poisson bracket and the Hamiltonian are

{F,G} ≡ −
∫ 2π

0

δF

δm

(
a∂3 + m∂ + ∂ ◦m

) δG

δm
dx, (1.3)

H1 =
1

2

∫ 2π

0
mudx. (1.4)

The equation (1.1) is bi-Hamiltonian with a second Hamiltonian represen-
tation mt = {m,H2}2, where

{F,G}2 ≡ −
∫ 2π

0

δF

δm
(∂ − ∂3)

δG

δm
dx, (1.5)

H2 =
1

2

∫ 2π

0
(u3 + uu2x −

a

2
u2x)dx. (1.6)

One can notice that the integral

H0 =

∫ 2π

0
mdx (1.7)

is a Casimir for the second Poisson bracket (1.5).
The relation of the first Poisson bracket (1.3) to the Virasoro algebra

can be seen as follows [18]. The 2π-periodic function allows a Fourier de-
composition

m(x, t) =
1

2π

∑
n∈Z

Ln(t)einx +
a

2
, (1.8)

(the reality of m can be achieved by L−n = L̄n). Then the Fourier coeffi-
cients Ln close a classical Virasoro algebra of central charge c = −24πa with
respect to the Poisson bracket (1.3):

i{Ln, Lm} = (n−m)Ln+m − 2πa(n3 − n)δn+m,0. (1.9)

The CH equation in the form

mt + 2ωux + 2mux + mxu = 0, m = u− uxx, (1.10)

can be obtained from (1.1) via u → u + a, and apparently ω = 3a/2.
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Since

H0 =
L0

2π
+ πa (1.11)

is an integral of motion (Casimir), so is L0.
The first Hamiltonian is

H1 =
1

4π

∑
n∈Z

LnL−n

1 + n2
+

a

2
L0 +

2πa2

8
. (1.12)

From (1.9) and (1.12) we obtain the ’Camassa-Holm top’ equations on
the Virasoro group, which are a discretization of the Camassa-Holm equation
(1.1)

iL̇k =
1

2π

∑
n∈Z

k + n

1 + n2
LnLk−n +

a

2

3k − k3

1 + k2
Lk, (1.13)

(the dot is a t-derivative). This equation is analogous to the Euler top (rigid
body) equation on the Lie group SO(3)

Ṁk =

3∑
p,l=1

εkplΩpMl, Mk ≡ IkΩk

for the quadratic Hamiltonian

HE =
1

2

3∑
p=1

MpΩp,

where Ik (k = 1, 2, 3) are three constants – the principle inertia momenta.
The phase space is embedded in the Lie coalgebra so(3)* as a coadjoint
orbit. The Lie-Poisson bracket, related to the so(3)* coalgebra is

{Mn,Mm} = εnmkMk. (1.14)

The inertia operator I: so(3)→ so(3)* (see e.g. [1]) relates the parametriza-
tion on the so(3) algebra given by the functions Ωk and the parametrization
on the co-algebra so(3)* given by the functions Mk = IkΩk. Note that the
Poisson bracket (1.14) has a Casimir

K = Ω2
1 + Ω2

2 + Ω2
3, (1.15)

constraining the phase space on a sphere. Since the Lie-Poisson bracket is
degenerate on so(3)*, the coadjoint orbits (which are spheres centered at
the origin) are labelled by the value of the Casimir K.

For the CH top (1.13) the coadjoint orbits are embedded in the Virasoro
algebra (parameterized by the functions Lk) due to the Lie-Poisson bracket
(1.9).
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2 Lax representation for the discrete Camassa-
Holm equation and integrals of motion

The Lax pair for the discrete CH equation (1.13) can be obtained from the
Lax pair for (1.10),

Ψxx =
(1

4
+ λ(m +

a

2
)
)

Ψ (2.1)

Ψt =
( 1

2λ
− u + a

)
Ψx +

ux
2

Ψ, (2.2)

as follows. We take the expansions

Ψ =
∑
n∈Z

Ψn
2
ei

n
2
x, (2.3)

u =
1

2π

∑
n∈Z

une
inx +

a

2
, un =

Ln

1 + n2
. (2.4)

Then (2.1) gives

1

λ
Ψn

2
=

∑
p∈Z

Ln
2
,n
2
−pΨn

2
−p, (2.5)

where

Ln
2
,n
2
−p = − 4

n2 + 1

(Lp

2π
+ aδp,0

)
,

or

Ln
2
−q,n

2
−p = − 4

(n− 2q)2 + 1

(Lp−q

2π
+ aδp,q

)
(2.6)

Now from (2.2), (2.3), (2.4) and (2.5) it follows

Ψ̇n
2

=
∑
p∈Z

An
2
,n
2
−pΨn

2
−p, (2.7)

where

An
2
,n
2
−p = − i

4π

(
2n

p2 + 1

n2 + 1
+ n− 3p

)
up + in

(1

4
− 1

n2 + 1

)
aδp,0,

or

An
2
−q,n

2
−p = − i

4π

(
2(n− 2q)

(p− q)2 + 1

(n− 2q)2 + 1
+ n− 3p + q

)
up−q

+ i(n− 2q)
(1

4
− 1

(n− 2q)2 + 1

)
aδp,q. (2.8)
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Differentiating (2.5) with respect to t we obtain

1

λ
Ψ̇n

2
=

∑
p∈Z

L̇n
2
,n
2
−pΨn

2
−p +

∑
p∈Z

Ln
2
,n
2
−pΨ̇n

2
−p,

and with the further substitution from (2.7),

1

λ

∑
q∈Z

An
2
,n
2
−qΨn

2
−q =

∑
p∈Z

L̇n
2
,n
2
−pΨn

2
−p +

∑
p,q∈Z

Ln
2
,n
2
−qAn

2
−q,n

2
−pΨn

2
−p,

∑
q∈Z

An
2
,n
2
−q

( 1

λ
Ψn

2
−q

)
=

∑
p∈Z

L̇n
2
,n
2
−pΨn

2
−p +

∑
p,q∈Z

Ln
2
,n
2
−qAn

2
−q,n

2
−pΨn

2
−p,

and finally, the substitution of (2.5) gives∑
p,q∈Z

An
2
,n
2
−qLn

2
−q,n

2
−pΨn

2
−p =

∑
p∈Z

L̇n
2
,n
2
−pΨn

2
−p +

∑
p,q∈Z

Ln
2
,n
2
−qAn

2
−q,n

2
−pΨn

2
−p, (2.9)

or in matrix form,

L̇ = [A,L]. (2.10)

After some lengthy computations one can verify that (2.10) gives (1.13).
The integrals of motion are given by Ik = tr(Lk). For example,

I1 = tr(L) =
∑
p∈Z

Ln
2
−p,n

2
−p = −4

(L0

2π
+ a

)∑
p∈Z

1

(n− 2p)2 + 1

produces, up to an overall constant, the Casimir H0, (1.11).

I2 = tr(L2) =
∑
p,q∈Z

Ln
2
−p,n

2
−qLn

2
−q,n

2
−p

=
4

π2

∑
p,q∈Z

Lp−qLq−p

[(n− 2p)2 + 1][(n− 2q)2 + 1]

+
16a

π
(L0 + πa)

∑
p∈Z

1

[(n− 2p)2 + 1]2
. (2.11)

With partial fractions decomposition with respect to n one can derive the
identity

1

[(n− 2p)2 + 1][(n− 2q)2 + 1]

=
1/4

(p− q)2 + 1

{ (n− 2q) + (p− q)

(p− q)[(n− 2q)2 + 1]
− (n− 2p) + (q − p)

(p− q)[(n− 2p)2 + 1]

}
.
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Further, using the fact that all expressions that change sign under p− q →
−(p− q) are zero, due to the summation over all integer numbers, we have

4

π2

∑
p,q∈Z

Lp−qLq−p

[(n− 2p)2 + 1][(n− 2q)2 + 1]

=
1

π2

∑
p,q∈Z

Lp−qLq−p

1 + (p− q)2

{ 1

(n− 2p)2 + 1
+

1

(n− 2q)2 + 1

}
=

2

π2

∑
p∈Z

LpL−p

1 + p2

∑
q∈Z

1

(n− 2q)2 + 1
.

Thus, the new integral that appears is
∑

p∈Z
LpL−p

1+p2
, giving H1, the first

Hamiltonian (1.12).

3 Oscillator algebra, Miura transformation and mo-
mentum map

Let us introduce now the oscillator algebra

i{an, am} =
2πa

κ2
nδn+m,0, (3.1)

where κ is an arbitrary constant. Clearly, a0 is a Casimir due to (3.1).
One can easily verify the following oscillator representation of the Virasoro
algebra [38, 24]:

Ln = −κ(n− 1)an +
κ2

4πa

∑
k∈Z

akan−k. (3.2)

This representation is also known as Sugawara construction. Further, it is
evident that

i{an, Lm} = nan+m +
2πa

κ
n(n + 1)δn+m,0. (3.3)

Since ak satisfy the ’canonical’ Poisson brackets they are natural candi-
dates for the coordinates in the phase-space. Thus, Ln has an interpreta-
tion of a momentum and (3.2) gives the momentum map. The Sugawara
construction relates to the Miura transformation, which in terms of field
variables can be obtain as follows. Defining

v =
1

2π

∑
k∈Z

ake
ikx +

a

κ
(3.4)

from (3.2) and (1.8) we have the analog of the Miura transformation:

m = iκvx +
κ2

2a
v2 +

a

2
(3.5)
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The reality can be achieved by taking κ purely imaginary, ak = ā−k for
k ̸= 0 and κ = 2πia/ℑ(a0).
Here we notice that the Casimir (1.7) due to (3.5) leads to the restriction∫ 2π

0
v2(x, t)dx = const, (3.6)

which reduces the evolution of v(x, t) on the L2-sphere. In terms of the
canonical coordinates this condition is∑

k>0

|ak|2 = const, (3.7)

since a0 is a constant. It shows that the time evolution of the canonical
variables, given by

ȧn = {an, H1}

is constrained on the infinite-dimensional l2-sphere, a condition, similar to
the one that we see in the so(3) example (1.15).

When a = 0, the Sugawara construction for the Virasoro modes in the
case of zero central charge is

Ln =
1

2κ̃

∑
k∈Z

akan−k,

where κ̃ is an arbitrary constant and

i{an, am} = κ̃nδn+m,0. (3.8)

The Casimir with respect to the first Poisson bracket (1.3) with a ≡ 0 is∫ 2π

0

√
mdx =

√
π

κ̃

∫ 2π

0
vdx = 2π

√
π

κ̃
a0,

i.e. this is the Casimir a0 of (3.8).
With the expansions

m =
1

2π

∑
n∈Z

Lne
inx, v =

1

2π

∑
n∈Z

ane
inx

the Sugawara construction takes the form m = π
κ̃v

2. Since the integral∫ 2π
0 mdx = const is a Casimir, we have again∫ 2π

0
v2dx = const,

leading to (3.7).
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4 The Hunter-Saxton equation

The Hunter-Saxton (HS) equation

uxxt + 2uxuxx + uuxxx = 0

describes the propagation of waves in a massive director field of a nematic
liquid crystal [27], with the orientation of the molecules described by the
field of unit 1 vectors n(x, t) = (cosu(x, t), sinu(x, t)), where x is the space
variable in a reference frame moving with the linearized wave velocity, and
t is a ’slow time variable’. A linear term auxxx can be generated by a shift
u → u + a:

uxxt + auxxx + 2uxuxx + uuxxx = 0. (4.1)

The HS equation is a short-wave limit of the CH equation, and can be
obtained if one takes m = −uxx. The Hamiltonian representation (1.2) –
(1.4) for this equation is also valid. The HS equation (4.1) is an integrable,
bi-Hamiltonian equation with a second Hamiltonian representation mt =
{m,H2}2, where

{F,G}2 ≡
∫ 2π

0

δF

δm
∂3 δG

δm
dx, (4.2)

H2 =
1

2

∫ 2π

0
(u− a

2
)u2xdx. (4.3)

The HS Lax pair is

Ψxx = λmΨ, (4.4)

Ψt =
( 1

2λ
− u− a

)
Ψx +

ux
2

Ψ. (4.5)

The analytic and geometric aspects of the HS equation are discussed in
a variety of recent papers, e.g. [28, 3, 40] and the references therein.
Again, assuming periodicity and using the expansions

Ψ =
∑
n∈Z

Ψne
inx, u =

1

2π

∑
n∈Z

une
inx

we obtain the discrete form of the HS equation:

inu̇n − an2un − 1

2

∑
k∈Z

k(n + k)ukun−k = 0.

In a similar manner from the Lax pair we obtain the matrix Lax represen-
tation for the discrete HS equation

L̇HS = [AHS ,LHS ]. (4.6)
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where

LHS
n,n−p = − p2

n2
up, AHS

n,n−p =
i

2

(
− p2

n
− 2n + 3p

)
up − inaδp,0.

The momentum map (the Sugawara construction) for the HS equation
remains the same as for the CH equation. However, it becomes degenerated
in the case a = 0, since m = −uxx and the Casimir

∫ 2π
0 mdx = 0. Then∫ 2π

0 v2dx = 0, which, for real variables is only possible when v ≡ 0, i.e.
m ≡ 0.

5 Conclusions

At the examples of the CH and HS equations we have shown that the in-
tegrable systems with quadratic Hamiltonians are equivalent to integrable
tops (possibly with infinitely many components), associated to the algebra
of their Poisson brackets. An example for the two dimensional Euler equa-
tions in fluid mechanics is presented in [50], another example for the KdV
superequation in [38, 45].
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