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ABSTRACT: 

The specific properties of nanoscale particles, large surface-to-mass ratio and highly reactive surfaces, 

have increased their commercial application in many fields. However, the same properties are also 

important for the interaction and bio-accumulation of the non-/biodegradable nanoscale particles in a 

biological system and are a cause for concern. Hematite (α-Fe2O3), being a mineral form of Fe(III) oxide, 

is one of the most used iron oxides besides magnetite. The aim of our study was the characterization and 

comparison of biophysical reactivity and toxicological effects of α-Fe2O3 nano- (d < 100 nm) and 

microscale (d < 5 µm) particles in human lung cells. Our study demonstrates that the surface reactivity of 

nanoscale α-Fe2O3 differs to that of microscale particles with respect to the state of agglomeration, radical 

formation potential, and cellular toxicity. The presence of proteins in culture medium and agglomeration 

were found to affect the catalytic properties of the hematite nano- and microscale particles. Both the 

nano- and microscale α-Fe2O3 particles were actively taken up by human lung cells in vitro, although, 

they were not found in the nuclei and mitochondria. Significant genotoxic effects were only found at very 

high particle concentrations (> 50 µg/ml). The nanoscale particles were slightly more potent in causing 

cyto- and genotoxicity as compared to their microscale counterparts. Both types of particles induced 

intracellular generation of reactive oxygen species. This study underlines that α-Fe2O3 nanoscale particles 

trigger different toxicological reaction pathways than microscale particles. However, the immediate 

environment of the particles (biomolecules, physiological properties of medium) modulates their toxicity 

on the basis of agglomeration rather than their actual size. 
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Introduction 

The large surface-to-mass ratios and the reactive surfaces of nanoparticles are important for the 

interaction and bio-accumulation of the non-/biodegradable nanoscale particles in biological systems and 

in organisms. This raises concern of possible risks, now also seen and evaluated by international 

regulatory committees. In order to explore the possible health effects and regulate occupational and non-

occupational exposure scenarios, the Organization for Economic Cooperation and Development (OECD) 

has generated a list of 14 commercially important nanoparticulate materials, which includes iron oxide 

[1]. In this context, it becomes important to determine the bio-nano-interaction of the iron oxide 

nanoscale particles following respiratory exposure. Hematite, being a mineral form of Fe(III) oxide, exists 

in several polymorphous subtypes (α-, γ-Fe2O3), has about 70% iron content and, due to its utilization as a 

pigment, is one of the most industrially used forms of iron oxide besides magnetite. The use of Fe2O3 

nanoscale particles also includes drug targeting of cancer cells, tracking target cells using labeling, and 

imaging techniques like magnetic resonance tomography [2].  

In vivo studies with Fe2O3 nanoscale particles have demonstrated severe inflammatory and toxicity 

responses in rats exposed to the nanoscale particles through inhalation [3, 4]. Fe2O3 particles (diameter < 

100 nm) have been found to translocate and interact with the olfactory nerve and trigeminus of brain stem 

after 14 days post-inhalation in mice models [5]. Other studies have demonstrated that Fe2O3 nanoscale 

particles cause oxidative stress to human bronchoalveolar epithelial and murine neuronal cells leading to 

loss of cell viability, genotoxicity and causing a change in the electrical activity [6, 7]. In contrast to these 

finding, other studies performed with microscale and nanoparticulate Fe2O3 had described them both to be 

nontoxic under in vitro test conditions in human small airway epithelial and mouse fibroblast cells 

(exposure concentration up to 400 µg/cm²) [8]. Therefore, it is of interest to observe the difference in the 

bio-nano-interaction between Fe2O3 nano- and microscale particles in human lung cells in vitro and to 

correlate the effect with their physico-chemical properties.  

Most studies under in vitro-conditions consider the basic physico-chemical characteristics of the 

nanoscale particles, such as shape, size and surface coating. However, recent studies have shown that the 

surface of the nanoscale particles changes after interaction with the surrounding environment through 

opsonization, solvation, protein corona formation and agglomeration [9, 10].  

The present study characterizes the biophysical reactivity of Fe2O3 nano- (d < 100 nm) and microscale 

(d < 5 µm) particles under in vitro test conditions in human lung epithelial and fibroblast cells. Physico-

chemical properties of Fe2O3 particles were determined through morphological investigations with 

scanning electron microscopy (SEM), specific surface analysis using Brunauer-Emmett-Teller (BET) 
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technique, determination of zeta potential and particle-size distribution via dynamic light scattering 

(DLS), and by the determination of total and leachable iron content and surface reactivity through 

electron paramagnetic resonance (EPR). The biological responses to the Fe2O3 nano- and microscale 

particles were studied by transmission electron microscopy (TEM), cyto- and genotoxicity analyses, 

measurement of intracellular reactive oxygen species (ROS) generation, and mitochondrial membrane 

potential detection. This study was designed to investigate the influence of particle size on biological 

effects in human lung cells after exposure.  Additionally, the study explores the modification of the metal 

oxide (hematite) nanoscale particles in their immediate environment (media) in correlation to microscale 

particle with same chemical compositon. 
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Material and Methods 

Nanoparticles and reagents 

Hematite (α-Fe2O3) nano- (Cat. No. - 529311) and microscale (Cat. No. - 310050) particles were 

purchased from Sigma-Aldrich. According to the manufacturer’s specifications, the average size 

range of the nanoscale particle was 10 - 100 nm and the microscale particle was 0.5 - 5 µm. Both 

the particles had a specified purity of ≥ 99.9% and an average molecular weight of 159.69 g/mol. 

Defined keratinocyte serum free medium (DKSFM) supplemented with 0.1% Epithelial Growth 

Factor (EGF) protein was purchased from GIBCO™ (Cat. No. - 10744). All the other 

supplements for cell culture media and required reagents were bought from Sigma-Aldrich, 

Germany. Fluorescent dyes, 2’,7’-dichlorodihydrofluo-rescein diacetate (H2DCFDA) (Cat. No.- 

D-399) and SYBR-Green nucleic acid stain (Cat. No. - S7585) were purchased from Invitrogen, 

Germany.  

 

Physico-chemical characterization of the Fe2O3 nano- and microscale particles 

a) Scanning Electron Microscopy (SEM) 

For the analysis, both the nano- and microscale particles were dried in an oven overnight at 

100ºC and layered onto a Formavar coated copper grid and gold palladium coated under low 

vacuum. SEM images of the dry particle samples were obtained at 30 kV under high vacuum 

condition, using a Zeiss LEO 1530 Gemini Field-emission SEM coupled with energy dispersive 

X-ray spectrometer. Particle size analysis from the SEM images was performed manually using 

Zeiss AxioVision LE software measuring the average diameter of 50 particles per SEM image. 

b) Adsorption isotherm according to Brunauer-Emmett-Teller (BET) 

BET surface areas (m
2
/g) of the α-Fe2O3 nano- and microscale particles were measured using 

Micromeritics Gemini 2360 instrument (Micromeritics, Bedfordshire, UK). Both the nano- and 

microscale particles having equal mass (1 gram) were degassed at 300°C for 3 h under inert 

conditions and the surface area measured by nitrogen adsorption under isothermal conditions 

using BET technique.  

c) Zeta potential and particle size distribution using dynamic light scattering 
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Zeta potential and particle size distribution measurements of the α-Fe2O3 nano- and microscale 

particles were studied in different liquid suspensions using Malvern's NanoZetasizer-ZS series. 

Both, the nano- and microscale particles of equal concentrations (100 µg/ml) were suspended in 

a) MilliQ water (collected at 18.2 MΩ·cm resistivity; Model: Simplicity, Millipore Ireland), b) 

BEAS-2B cell lysate protein solution (final conc.: 450 µg/ml) prepared following protocol of 

Bhattacharya et al. [6], and c) Defined keratinocyte serum free medium (DKSFM) supplemented 

with 0.1% epithelial growth factor (EGF) protein. All the particle suspensions were kept at room 

temperature (25 ºC) for 1 h and then suspended using an ultrasonic bath (ULTRAsonik™ 

Cleaner, Model 57X, Ney Dental Inc., USA ) at 25 ºC for 5 min at 310 W, 47 kHz. Zeta potential 

measurement was measured following the Smoluchowski model [11]. Dynamic light scattering 

was used for the determining the particle size distribution (Number percentage: count of the size 

of each particle and calculation of the percentage of particles of any specific size category). All 

the measurements were taken at an ambient temperature of 25°C. 

d) Non-/leachable Fe(III) content 

Non-/leachable Fe(III) content of the α-Fe2O3 nano- and microscale particles were determined 

through the spectrometric 1,10 phenanthroline chloride assay following the previously described 

protocol [6]. Spectroscopic analysis was performed using Unicam UV/Visible Spectrometer 

(ATI Unicam, Germany). A standard curve to interpolate the quantity of Fe(III) was prepared 

using 1–6 mM concentrations of FeCl3.6H2O (Regression coefficient (R
2
): 0.998).  

e) Electron Spin Resonance (ESR) spectrometry 

Surface reactivity of the nano- and microscale particles in acellular environment leading to the 

generation of OH
•
 radicals was studied using a spin trap, 5, 5-dimethyl-1-pyrroline-N-oxide 

(DMPO) and ESR spectrometry [6]. For the study, nano- and microscale α-Fe2O3 particles 

(Conc. - 125 μg/ml) were suspended in 1 ml ddH2O and tested in the presence 120 mM H2O2 and 

50 µl of 1 M DMPO. As a negative control, ddH2O without particles was used. Generation of 

OH
•
 by the α-Fe2O3 nano- and microscale particles after treatment with SV-40 virus transformed  

with human bronchial epithelial (BEAS-2B)  cell lysate followed by 120 mM H2O2 and 50 µl of 

1 M DMPO was measured using technique as has been previously described [6].  
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All suspensions were incubated at 37°C for 2 h and filtered through a 0.45 μm syringe filter. The 

filtrates were immediately transferred to a glass capillary and measured using Miniscope MS200 

EPR spectrometer at room temperature and the instrument settings as follows: magnetic field 

3360 G, sweep width 100 G, scan time 30 sec, modulation amplitude 1975 G, receiver gain 

1000. Quantification was done by accumulation of three different spectra each averaging three 

different scans. The amplitudes of all four peaks were taken and the outcomes were expressed as 

(ESR units in) arbitrary units (a.u.).  

 

Biological interaction between α-Fe2O3 particles and human bronchial epithelial cells 

a) Cell culture 

SV40-transformed human bronchial epithelial (BEAS-2B) cells were obtained from the 

European collection of cell cultures (Cat. No.- 95102433) and were cultivated in defined 

keratinocyte serum free media (DKSFM) supplemented with 0.1% epithelial growth factor 

proteins and 1% antibiotics. The cells were cultivated at 36 ºC and 5% CO2. 

Human lung fibroblasts (IMR-90) were obtained from the American type culture collection 

(ATCC, CCL-186) and were cultivated in Roswell Park Memorial Institute medium (RPMI-

1640) supplemented with 2 mM Glutamine, 1% non-essential amino acids (NEAA) and 5 % 

foetal bovine serum (FBS). The cells were cultivated at 36 ºC and 5% CO2. 

b) Transmission Electron Microscopy (TEM) 

For the study, 10x10
5
 BEAS-2B cells were plated in a Falcon‘s T-75 flask and preincubated 

before exposure. Before exposure, α-Fe2O3 nano- and microscale particles (concentration: 50 

µg/ml) were prepared and cells were exposed for 48 h. Post-exposure, the cells were washed 

with phosphate buffered saline solution (PBS) and fixed in 4% paraformaldehyde (EM grade; 

EMS, USA) and 0.1 % glutaraldehyde (EM grade; EMS, USA) in 0.1 M PHEM buffer (pH 6.9) 

for 45 min at room temperature followed by 3 h fixation in 4 % paraformaldehyde alone. Free 

aldehyde groups were neutralized by 50 mM glycine in 0.1 M PHEM. Cells were released from 

the plastic surface with a Teflon edge in PBS containing 1 % gelatin and centrifuged. Pellets 

were resuspended and pelleted in 10 % gelatin and incubated on ice. Gelatin-embedded pellets 
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were cut into square blocks and infiltrated in 2.3 M sucrose in PBS at 4 °C overnight and 

mounted onto copper pins afterwards. Samples were shock frozen in liquid nitrogen and then 

trimmed and cut with an Ultracut UCT cryotome (Leica, Germany) using a Cryotrim 45° 

diamond knife (Diatome, USA). Ultra-thin sections of 65 nm thickness were cut using a diamond 

knife at -120 °C, picked in 2 % methyl cellulose / 2.3 M sucrose and then placed on formvar 

coated grids. Cryosections were finally contrasted and sealed in 3 % uranyl acetate / 2 % methyl 

cellulose (1.5 parts / 8.5 parts). Several cryosections were analyzed and eight images per sample 

were taken using a Zeiss EM10 electron microscope.  

c) Cell viability analysis 

The study was performed using the Trypan blue assay. In brief, for each measurement, 1x10
5
 

BEAS-2B and IMR-90 cells were plated individually in Falcon’s T-25 flasks and pre-incubated 

for 24 h. For exposure, the α-Fe2O3 nano- and microscale particles were freshly suspended in 

DKSFM supplemented with 0.1% epithelial growth factor protein for BEAS-2B cells and in 

RPMI-1640 supplemented with 2 mM Glutamine, 1% non-essential amino acids (NEAA) and 5 

% foetal bovine serum (FBS) for IMR-90 cells, at concentrations of 10, 25, 50, and 250 µg/ml. 

The cells were exposed for a time period of 24 h. For negative control cells were exposed to 

normal cell culture medium. In the BEAS-2B cells, 10 µM cis-diamminedichloroplatinum(II) 

(Cisplatin) exposure was used as a positive control [12]. For detecting the cell death percentage, 

the cells were washed twice with 2 ml of pre-warmed PBS, trypsinized and exposed to 0.5% 

Trypan blue solution. The cells were incubated for 4 min at 37 °C and viable (white) and dead 

(blue) cells were counted manually using a haemocytometer. The mean cell death percentage and 

cell viability percentage were calculated, setting negative controls at ‘0’ and ‘100’ percents, 

respectively. All the experiments were conducted in triplicates and statistically analyzed using 

one way ANOVA (exposure vs. negative control) followed by Holm-Sidak post-hoc test. 

d) Genotoxicity analysis  

Genotoxic effect of the α-Fe2O3 nano- and microscale particles was determined by analyzing 

DNA fragmentation using the alkaline comet assay technique (pH 12.7). For each measurement, 

1x10
5
 cells (BEAS-2B) were plated individually in Falcon’s T-25 flasks and pre-incubated for 24 

h. The cells were exposed to a freshly prepared suspension of α-Fe2O3 nano- and microscale 
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particles at the concentrations of 10, 25, 50 and 250 µg/ml and for a time period of 24 h. As a 

negative control cells were treated with normal cell culture media (DKSFM supplemented with 

0.1% epithelial growth factor protein ) and as a positive control 200 µM N-ethyl-N-nitrosourea 

(ENU) was used to form alkylating adducts [13]. Post-exposure, the cells were washed, 

trypsinized and suspended in low melting agarose and cast onto a gel bond film. Following the 

polymerization of the agarose, the cells were lysed overnight in a freshly prepared and pre-

cooled cell lysis buffer. Electrophoresis of the lysed cells was performed at a pH of 12.7 for 10 

mins (conditions: 300 mA, 1.5 V/cm at 4°C), following which the agarose was treated with 

neutralization solution for 30 min and dehydrated in absolute CH3COOH for 2 h. These agarose 

gels were dried in darkness overnight at 4°C and stained with SYBR-Green nucleic acid stain. 

Imaging and analysis were performed on a Leica upright microscope attached with a CCD 

camera and using 'Comet Assay IV' software (Perceptive Instruments, UK). The parameter of 

olive tail moment (OTM) was used for analysis of the DNA damage. The quantitative 

measurement of all the assays was expressed as mean percentage increase relative to unexposed 

control ± SD. Negative control values were set at ‘0’. The results were statistically analyzed 

(exposure vs. negative control) using one way ANOVA followed by Holm-Sidak post-hoc test. 

e) Detection of intracellular reactive oxygen species (ROS) 

Intracellular ROS were measured through spectroscopic analysis of fluorescent 2’,7’-

dichlorodihydrofluorescein diacetate (H2DCFDA) dye. BEAS-2B cells at the concentration of 

1x10
5 

cells per well were plated in 96 well plates and pre-incubated overnight. α-Fe2O3 nano- 

and microscale particles were freshly suspended in DKSFM media supplemented with 0.1% 

epithelial growth factor protein. BEAS-2B cells were exposed to α-Fe2O3 nano- and microscale 

particles at concentrations of 5, 10, and 50 µg/ml for 6, 12, and 24 h. As negative control, cells 

were treated with normal cell culture medium, while Cisplatin (10 µM) was used as positive 

control [14]. At the end of the exposure time, the cells were washed with PBS and exposed to 

H2DCFDA dye at a concentration of 10 μM for 20 min. After staining, the cells were washed and 

re-suspended in PBS and the fluorescence at 535 nm was measured with excitation at 485 nm on 

a Tecan multiplate reader.   

 The metal chelator desferrioxamine mesylate (conc. 100 μM) was given to the BEAS-2B cells 

simultaneously with 5, 10 and 50 µg/ml Fe2O3 nano- and microscale particles for time periods of 
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12 and 24 h. After the lapse of the exposure time, the cells were washed and treated with the 

H2DCFDA dye as previously described and the quantity of ROS was measured using the Tecan 

multiplate reader.  

f) Detection of mitochondrial membrane potential  

BEAS-2B cells at the concentration of 1x10
5 

cells per well were plated in 96 well plates and pre-

incubated overnight. α-Fe2O3 nano- and microscale particles were freshly suspended in DKSFM 

media supplemented with 0.1% epithelial growth factor protein. BEAS-2B cells were exposed to 

Fe2O3 nano- and microscale particle at the concentrations of 5, 10, and 50 µg/ml for the time 

periods of 6, 12, and 24 h. As negative control cell were only treated with normal cell culture 

medium, while as a positive control 100 µM of ionophore Valinomycin was used. Post-exposure, 

the cells were washed thoroughly using PBS and exposed to 5 µM Rhodamine-123 dye. The 

cells were again incubated for 30 mins and then washed with PBS to remove excess dye. 

Measurements were obtained immediately at excitation and emission wavelengths of 488 and 

535 nm using Tecan microplate reader.  

The quantitative measurement of all the assays was expressed as mean percentage increase 

relative to unexposed control ± SD. Control values were set at 0%. Results were statistically 

analyzed using one way ANOVA followed by Holm-Sidak post-hoc test. 
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Results 

Physico-chemical analysis of the α-Fe2O3 nano- and microscale particles 

Scanning electron microscopic (SEM) images showed the α-Fe2O3 nano- and microscale 

particles to be heterogeneous in shape and size  (Figure 1). Particle size distribution measured 

manually using Zeiss AxioVision LE software on the acquired SEM images, showed the 

percentage of nanoscale particles in the diameter range of <25 - 50 nm: 95%, >50 - 100 nm: 4% 

and >100 nm: 1%. Similarly, the percentage of microscale particles was found in the diameter 

range of ≤500 nm: 98% and >500 nm - 1.0 µm: 2%. Energy dispersive X-Ray spectroscopy 

showed the surface elemental composition of the α-Fe2O3 nano- and microscale particles to be 

78.7% Iron (Fe) and 21.3% Oxygen (O).  

Brunauer-Emmett-Teller (BET) surface area measurement of the dry α-Fe2O3 nano- and 

microscale particles of equal mass (1 g) revealed a surface area of 34.4 ± 0.2 m
2
/g for the 

nanoscale and a surface area of 0.72 ± 0.1 m
2
/g for the microscale particles. Based on surface 

area of a sphere (A) equation A= πD
2
, (D= diameter of the sphere) the diameter of the nanoscale 

particles was 7 times smaller as compared to the microscale particles, keeping the mass constant. 

This fold difference in the BET surface area provided evidence that the nanoscale particles under 

dry condition were loosely bound single entities providing higher surface area for the nitrogen to 

be adsorbed and proved the accuracy of the particle size distribution analysis determined from 

the SEM images.  

Zeta potential, particle size distribution (Number %; hydrodynamic diameter in nm) and 

polydispersity index of both the α-Fe2O3 nano- and microscale particles in suspension are shown 

in Table 1. Zeta potential charge measurement of the α-Fe2O3 nanoscale particles suspended in 

different liquid suspensions showed a decrease in their negative zeta potential towards neutral 

charge based on the ionic and biomolecular constitution of the liquid media (MilliQ water> cell 

lysate protein> DKSFM + 0.1% EGF) (Table 1). However, particle size distribution and 

polydispersity index measurements of the nanoscale particles suspended in MilliQ water and 

DKSFM supplemented with epithelial growth factor protein showed insignificant changes. 

Nanoscale particles suspended in cell lysate (native cellular) protein solution showed significant 

reduction in the particle size distribution indicating a reduction in the agglomeration of the 



Toxicological Sciences 

(Accepted: November, 2011) 

Final Submitted Format 

 12 

particles following interaction with the cellular proteins. The polydispersity index (≤1.0) 

indicated an instability of the particle suspension.  

Suspension of the α-Fe2O3 microscale particles in different media showed a change in the zeta potential 

charge, similar to the nanoscale particles. Native cellular proteins were found to increase the negative zeta 

potential charge on the surface of the microscale particles (-30 ± 0.5 mV) (Table 1). Measurement of the 

particle size distribution of the microscale particles showed negligible differences when 

suspended in MilliQ and DKSFM supplemented with epithelial growth factor proteins and a 

significant reduction when suspended in cell lysate solution, similar to that observed with the 

nanoscale particles. Polydispersity index of all the microscale particle suspensions indicated a 

highly unstable particle suspension.  

Presence of a higher zeta potential charge on the surface of the nanoscale particle as compared to 

the microscale particles when suspended in the MilliQ water proved a link between the particle 

surface charge and dimension. However, in suspensions containing inorganic ions and 

biomolecules, the nano- and microscale particles lost their dimensional specificity through 

reduction in equal zeta potential following adsorption and opsonization on the surface of the 

particles and their agglomeration. Agglomerates formed by nanoscale particles were found to be 

larger as compared to those formed by the microscale particles.  

Spectroscopic analysis of leachable and non-leachable Fe(III) using 1, 10 phenanthroline 

chloride dye, showed a variation of 0.6 mM in the concentration of non-leachable Fe(III) 

between the nanoscale (5.2 mM) and microscale (5.8 mM) particles of equal mass (Figure 2A). 

The concentration of leachable Fe(III) on the surface of the α-Fe2O3 nanoscale particles was 

observed to be 7.5 times higher as compared to the microscale particles, indicating its 

dependence upon the available surface area (BET surface area) of the nano- and microscale 

particles (Figure. 2B).    

Acellular hydroxyl  radical (OH
•
) generation capability of the α-Fe2O3 nano- and microscale 

particles through the dissociation of hydrogen peroxide (H2O2) was studied using electron spin 

resonance (ESR) spectrometry. The results indicated 11 times higher formation of OH
•
 on the 

surface of the microscale particles (2,800 ± 450.0 ESR units) as compared to the nanoscale 

particles (252.3 ± 0.0 ESR units) when suspended for 2 h in MilliQ water with 120 mM H2O2 
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(Figure 3A and B). However, treatment of the nano- and microscale particles with cell lysate 

proteins resulted in 8 and 31 times higher generation of OH
•
 radicals by the nanoscale particles 

compared to the microscale particles at the time period of 4 and 6 h (Figure 3). 

 

Biological interaction between α-Fe2O3 nano- or microparticles and human lung cell lines 

Transmission electron microscopic (TEM) images of the interaction between the α-Fe2O3 nano- 

and microparticle and the BEAS-2B cells showed both types of particles intracellularly in close 

proximity to mitochondria (Fig. 5A and B). This indicates the possibility of direct or indirect 

stimulation of cell signaling leading to active mitochondrial involvement in oxidative stress. 

Neither nano- nor microscale particles were found within the nuclei and mitochondria in all 

examined samples. Although we did not carry out a quantitative analysis by stereological 

approaches, our TEM images provided evidence of an intracellular presence of nano- and 

microscale particles in agglomerates, which could induce oxidative stress and altered cell 

viability.  

Exposure of BEAS-2B cells to the different concentrations of nano- and microscale particles 

resulted in a cytotoxic response reaching the maximum at the concentration of 250 µg/ml (Figure 

5).  

To compare the cell type specific response, human lung fibroblasts (IMR90, non-transformed) as 

well as human lung epithelial cells (BEAS-2B, SV40-virustransformed) were used for the 

experiments. IMR-90 cells exposed to the Fe2O3 nanoscale particles resulted in an increased loss 

of cell viability depending upon exposure concentration (Fig. 6A). EC50 was calculated and 

found to be at 148 µg/ml for nanoscale particles. The highest cytotoxicity was achieved at 250 

µg/ml (40.18 ± 0.25%; p value <0.001). Reductions of cell viability at all the exposure 

concentrations measured were found to be statistically significant as compared to the negative 

control (Fig. 6A). BEAS-2B cells exposed to the α-Fe2O3 nanoscale particles resulted in a 

gradual loss of cell viability (Fig. 6B). The results show clearly that cyto- and genotoxicity 

caused by nano- and microscale particles can only be observed at very high concentrations of > 

50 µg/ml. At occupationally relevant concentrations of <10 µg/ml no cyto- and genotoxic effects 

can be observed (data not shown). 
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Generation of intracellular reactive oxygen species (ROS) in BEAS-2B cells exposed to Fe2O3 

nanoscale particles was detected after 12 h of exposure and continued till later time points 

(Figure 7A). In contrast, exposure of the BEAS-2B cells to Fe2O3 microscale particles resulted in 

a generation of intracellular ROS after 6 h already (Figure 7B). Simultaneous exposure of the 

BEAS-2B cells to metal chelator (Desferrioxamine) and α-Fe2O3 nano- or microscale particles showed a 

time- and concentration-dependent generation of ROS. Desferrioxamine was able to bind Fe(III) ions at 

the shorter exposure time of 12 h and therefore, free radical production was reduced (Fig. 7 A and B).  

Mitochondrial membrane potential measurements indicated a high metabolic activity at the 

measured time periods of 12 and 24 h post-exposure to the α-Fe2O3 nano- and microscale 

particles (Figure 8). While the initial measured response of the BEAS-2B cells showed the α-

Fe2O3 nanoscale particles to cause higher mitochondrial activity at the time period of 12 h, as 

compared to the microscale particles, by 24 h it became equal for both types of particles. 

Valinomycin, a potential K
+
 ionophore, was used as positive control in our study.  
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Discussion 

To elucidate the interaction of particles with cellular systems, it is important to characterize and 

relate the physico-chemical properties of the particles under test conditions to their effect on 

cellular activity [15]. Our study showed that the surface of both α-Fe2O3 nano- and microscale 

particles has a significant interaction with the surrounding environment and alters the physical 

properties of the particles, depending upon the presence of ionic (salt) and biomolecules in their 

vicinity. Proteins were found to play an important role in agglomeration activity of both particle 

types. Particles suspended in native cellular protein fractions showed the highest agglomeration 

capacity compared to cell culture medium (DKSFM + 0.1% EGF) and water. Agglomeration of 

nanoparticles was higher compared to microparticles probably because of stronger van-der-

Waals-forces. A modification of the composition or the chemical properties (e.g. the pH) of the 

surrounding medium resulted in changed agglomeration capacities of the particles. These 

findings are in agreement with studies of Kumar et al. [2] who found that the adsorption of 

biomolecules on the surface of particles followed by modification of the zeta potential and the 

agglomerate size play a vital role in their reactivity to the surrounding environment. Some key 

proteins such as albumin, immunoglobulin, fibrinogen, and apolipoproteins have been reported 

to bind strongly with iron oxide particles  [2]. The formation of a protein corona has been 

suggested by several groups [9, 10,16,17]. 

Although the agglomeration capacity of the nanoparticles was higher compared to the 

microparticles, the available surface area of nanoparticles was greater than that of the 

microparticles. This might have influenced the leachable Fe(III) ion content which was higher in 

NP suspensions than in microparticle suspension. However, the differences in particle size, 

leachable Fe(III) and biological effects of nano- and microscale particles were reduced because 

of the agglomeration of particles in the cellular system. 

All the mentioned physico-chemical parameters have an impact on toxicological effects in 

human cells like cellular uptake of particles, cyto-/genotoxicity, radical generation and changes 

in mitochondrial potential. The catalytic effect of α-Fe2O3 nano- and microparticles on the 

reduction of hydrogen peroxide (H2O2) indicated a reactive surface capable of generating 

extracellular reactive oxygen species and causing oxidative stress in the cells. Both the α-Fe2O3 

nano- and microscale particles were found to generate acellular ROS depending upon their 
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particle size distribution, their agglomeration in suspension with/without proteins and the 

presence of hydrogen peroxide. Fe(III) has been stated to catalyze the reduction of H2O2 to 

hydroperoxyl (OOH
•
) and hydroxyl (OH

•
) radicals [18,19]. Native cellular proteins were seen to 

reduce the particle size distribution of the α-Fe2O3 nanoscale particles through surface interaction 

leading to higher levels of ROS generation as compared to the microscale particles.  

Insignificant changes in the pH of the cell culture medium indicated the short duration of 

generated free radicals on the surface of the particles. Treatment of particles with L-ascorbic acid 

and whole cell proteins increased the surface area of the nanoscale particle by reducing the size 

of agglomerates leading to increased breakdown of H2O2. L-ascorbic acid acts as an anti-oxidant 

and is able to effectively reduce Fe(III) to Fe(II) in the ratio of 1 mol ascorbic acid per 2 mol 

Fe(III) at pH < 5 and have slower kinetics when the pH shifts towards alkaline conditions [20]. 

Cellular proteins are a mixture of simple and conjugated proteins with/without enzymatic 

functionality. Therefore, from our study we conclude that both ascorbic acid and proteins can be 

stated to act as capping agents for the α-Fe2O3 nano- and microparticles by modifying the surface 

properties of the particles. The type of interaction between the L-ascorbic acid and proteins with 

the surface of the α-Fe2O3 nano- and microparticles must be further investigated to answer if the 

particles catalyzed the reduction of H2O2 on their surface directly or indirectly by providing 

space for the L-ascorbic acid and proteins to react with H2O2.   

In our study, transmission electron microscopy showed an active uptake of the α-Fe2O3 nano- 

and microparticles by human lung cells as large agglomerates. Similar to our observations, Cho 

et al. [21] have shown that nanoparticles form clusters following agglomeration and reach the 

cells through sedimentation and diffusion.  

Cyto- and genotoxicity studies revealed that both the α-Fe2O3 nano- and microscale particles 

have the ability to induce cyto- and genotoxicity in human lung cells (BEAS-2B and IMR90) in 

vitro. In IMR90-cells the results of genotoxicity analysis were more pronounced after NP-

exposure. However, very high particle concentrations of > 50 µg/cm² were needed to detect a 

cellular effect.  

The results of the present study also point towards the relationship between loss of cell viability, 

DNA damage and generation of ROS. Interestingly, the response of the BEAS-2B cells to the α-

Fe2O3 nanoscale particles regarding ROS formation was delayed by several hours compared to 
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microparticles. Delayed generation of intracellular ROS can be related to the accumulation of 

nanoscale particles in large agglomerates after uptake and their fragmentation into smaller ones 

with increased surface area inside the endoplasmic reticulum (ER).  

The physiological role of mitochondria in the generation of oxidative stress and apoptosis is well 

established [14, 22]. Our study showed an increase in the mitochondrial membrane potential 

directly proportional to the increasing concentration of the α-Fe2O3 nano- and microscale 

particles. O’Rouke [23] and Nicholls [24] have reported that a high mitochondrial membrane 

potential indicates an increase in the protonmotive force, thereby increasing the rate of oxidative 

phosphorylation, K
+
 ionophore activation and ROS generation.  

In summary, the study indicates that the surface charge and area of α-Fe2O3 nano- and 

microparticles are important for their toxicity to human lung cells. The immediate environment 

of the particles (presence of biomolecules, chemical composition and physiological properties of 

the liquid in which they are suspended) modulates their toxicity on the basis of agglomeration 

rather than their actual size. Nanoparticles showed higher agglomeration in the present study 

than the microscale particles. The mechanism of toxicity was found to be through the generation 

of reactive oxygen species (ROS) which itself was modulated by the availability of free surface 

area. However, the particle concentrations which induced cytotoxicity and DNA damage (> 50 

µg/ml) are, even in occupational settings, not relevant. At relevant particle concentrations of < 10 

µg/ml no DNA breakage can be observed. More sensitive test methods have to be applied here to 

detect cellular responses caused by nanoparticles. 
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a)      b)  

 

Figure 1: Scanning electron microscopy images of Fe2O3 (a) nano- and (b) microscale particles.  
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Zeta potential 

(mV) 

Particle size 

distribution 

(Number %; 

diameter in 

nm) 

Polydispersity 

Index 

Nanoscale 

particle 

MilliQ Water -30.4 ± 0.0 750.7 ± 73.4 0.7 ± 0.1 

Cell Lysate Protein -25.5 ± 0.6 462 ± 85 1 ± 0.0 

DKSFM + 0.1% 

Epithelial Growth 

Factor Protein 

-9.35 ± 0.5 776.1 ± 96.4 0.8 ± 0.1 

Microscale 

particle 

MilliQ Water -23 ± 0.0 382.1 ± 8.5 0.9 ± 0.1 

Cell Lysate Protein -30 ± 0.5 171 ± 20.6 1 ± 0.0 

DKSFM + 0.1% 

Epithelial Growth 

Factor Protein 

-11.1 ± 0.9 347.2  ± 56.0 1 ± 0.0 

 

Table 1: Observed zeta potential (mV), particle size distribution (Number %; diameter in nm) 

and polydispersity index of α-Fe2O3 nano- and microscale particles (concentration: 100 µg/ml) 

suspended in MilliQ water, cell lysate protein and defined keratinocyte serum free medium 

(DKSFM) + 0.1% epithelial growth factor protein.   
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Figure 2: 1,10-Phenanthroline-chloride spectroscopy-based determination of non-leachable (A) 

and leachable Fe(III) (B) in Fe2O3 nano- and microscale particles. Fe(III)  concentrations 

determined using standard curve of Fe2Cl3. 
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Figure 3: Acellular hydroxyl radical measurement on the surface of α-Fe2O3 nano- (A) and 

microscale particles (B) using spin trap, 5, 5-dimethyl-1-pyrroline-N-oxide with electron spin 

resonance (ESR) spectrometry. The particles were suspended in MilliQ water and cell lysate 

proteins (450 µg/ml) along with hydrogen peroxide (120 mM) treatment. The measurements 

were taken at time points of 2, 4 and 6 h post-suspension. 
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Figure 4: Transmission electron microscopy images of BEAS-2B cells after exposure to 50 

µg/ml of α-Fe2O3 (A) nanoscale particles and (B) microscale particles for 48 h, respectively. 

Shown are surrounding mitochondria (*). Bars, 1 µm. 
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Figure 5: Cytotoxicity in BEAS-2B cells exposed to different concentrations of α-Fe2O3 nano- 

and microscale particles and 10 µM cisplatin (positive control) for 24 h (negative control: 

without exposure). Values of negative control were set at 0%. P value: * ≤0.05, ** ≤0.01; *** 

≤0.001 

 

 

(A) 
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B) 
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Figure 6: Genotoxicity (Comet Assay: Olive tail moment) in A) IMR-90 and B) BEAS-2B cells 

following exposure to different concentrations of Fe2O3 nano- and microscale particles for 24 h. P value: 

* ≤0.05, ** ≤0.01; *** ≤0.001. As a negative control cells were exposed to cell culture medium 

only and as a positive control 200 µM N-ethyl-N-nitrosourea (ENU) was used (OTM in BEAS-

2B: 1.5+0.8; in IMR90: 5.8+1.2). P value: * ≤0.05, ** ≤0.01; *** ≤0.001 
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A) 
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B) 

 

Figure 7: Intracellular reactive oxygen species generation in BEAS-2B cells following exposure to different concentration of (A) α-

Fe2O3 nanoscale particles and (B) α-Fe2O3 microscale particles with and without addition of the iron chelator siderophore 

Desferrioxamine mesylate (100 µg/ml). The nano- and microscale particle concentrations were 5, 10 and 50 µg/ml. Cells were 

exposed for the time periods of 6, 12 and 24 h. As negative control, culture medium and as positive control 10 µM Cisplatin was used 

(p value ≤0.05 *; ≤0.01 **; ≤0.001 ***). Negative control was set as 0%. 
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Figure 8: Mitochondrial membrane potential of the BEAS-2B cells after exposure to different concentration of Fe2O3 nano- and 

microscale particles at concentrations of 5, 10 and 50 µg/ml (exposure time: 12 and 24 h). As negative control, cells were exposed to 

only cell culture medium and as positive control to 100 µM of Valinomycin. (P value ≤0.05 *; ≤0.01 **; ≤0.001 ***). Negative 

control was set as 0%. 
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