
The ITB Journal The ITB Journal

Volume 4 Issue 2 Article 9

2003

Towards a Framework for Modelling Multimedia Conferencing Towards a Framework for Modelling Multimedia Conferencing

Calls in the Next Generation Network Calls in the Next Generation Network

Gavin Byrne

Declan Barber

Follow this and additional works at: https://arrow.tudublin.ie/itbj

 Part of the Digital Communications and Networking Commons

Recommended Citation Recommended Citation
Byrne, Gavin and Barber, Declan (2003) "Towards a Framework for Modelling Multimedia Conferencing
Calls in the Next Generation Network," The ITB Journal: Vol. 4: Iss. 2, Article 9.
doi:10.21427/D7KJ00
Available at: https://arrow.tudublin.ie/itbj/vol4/iss2/9

This Article is brought to you for free and open access by the Ceased publication at ARROW@TU Dublin. It has
been accepted for inclusion in The ITB Journal by an authorized editor of ARROW@TU Dublin. For more
information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/itbj
https://arrow.tudublin.ie/itbj/vol4
https://arrow.tudublin.ie/itbj/vol4/iss2
https://arrow.tudublin.ie/itbj/vol4/iss2/9
https://arrow.tudublin.ie/itbj?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol4%2Fiss2%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol4%2Fiss2%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.tudublin.ie/itbj/vol4/iss2/9?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol4%2Fiss2%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

ITB Journal

Towards a Framework for Modelling Multimedia
Conferencing Calls in the Next Generation Network

Gavin Byrne and Declan Barber

Institute of Technology Blanchardstown

gavin.byrne@itb.ie declan.barber@itb.ie

Abstract
This paper is concerned with the creation of a multiparty multimedia conferencing
application which can be used in Next Generation Networks. It begins by suggesting
ways in which conferencing can be modeled with a focus on separating signaling and
media transfer functionality. Enabling technologies which could support the modeling
framework derived and which are compatible with Next Generation Network (NGN)
principles are reviewed. Finally, a design and implementation for a simple multimedia
conferencing application are described.

Keywords
Multiparty conferencing, Multicast, SIP, RTP, Java, JAIN, collaboration

Introduction
Multiparty conferences over the Internet are increasingly capable of providing real-time media

distribution (voice or video) rather than the non or near real-time functionality (message board,

chat room) of the past One reason for is the increasing availability of broadband access and

the introduction of Universal Mobile Telecommunications Systems (UMTS), which offers

considerably more bandwidth than Global Systems for Mobile Communications (GSM). This

increase in bandwidth will be a key factor in the increased use of media rich real-time

conferencing. Another reason is the increasing support for real-time communication provided

by Internet Protocols such as RTP/RTCP and SIP. This article represents an approach taken

in the early stages of an applied project in ITB that is focused on researching the potential for

creating new real-time multimedia conferencing services in the NGN. Potential applications

areas include education, emergency response services, gaming and any general collaborative

application.

This paper makes certain assumption based on earlier work 1,2,3 that can be summarised as

follows:

 Convergence in the NGN will be based firmly on open standards and the TCP/IP

protocol stack in particular

 Applications leveraging existing and emerging Internet Protocols will dominate

Issue Number 8, December 2003 Page 100

ITB Journal

 Bandwidth availability will steadily increase from end-to-end and decreasingly

represent a technical constraint

Part I: Multiparty Conferencing Models
It is possible to identify differing models for multiparty conferencing based on the physical

topology, media (type, bandwidth usage and heterogeneity), logical connectivity, network-layer

delivery, the distribution of intelligence within the network, signaling and application. There are

inter-relationships between these issues. Assuming that IP will provide best effort delivery in

the NGN over an essentially transparent data-link, we will focus our discussion on

conferencing models to the issues of topologies (and the distribution of intelligence within the

topology), signaling, media transfer and higher layer protocols. Aspects of lower layer

functionality such as bandwidth usage and differing codecs for speech/video will be assumed

to have been resolved by the trend towards convergence.

Topology and the Partitioning of Intelligence

Multiparty Conferencing can use a centralized (Star/Hub & Spoke), distributed (Full

Mesh/Partial Mesh) or hybrid (Partial Mesh/Tree/Extended Star) topology.

Centralised: In the centralized model, a central server receives the media streams from

different participants, combines them and redistributes them as needed. This model

emphasizes the placement of intelligence (for combining, codec translation and redistribution)

at the central processing node and means the end-user nodes can be relatively simple. Other

important advantages are the relative ease with which conference participants with different

media codecs can be supported and the ability to track participants and manage the

conference. The obvious disadvantage is the reliance on the central node for conferencing.

Fully Distributed: In a distributed topology, each end node sends a copy of its media stream

to all other participating end nodes. This requires each end node to have sufficient intelligence

and processing power to translate codings, sum incoming media streams and negotiate and

manage participation. It also adds complexity in the event of people joining or leaving the

conference on an ad hoc basis.

Hybrid: The hybrid model combines some of the benefits of both the centralized and

distributed models, requiring intelligence in both the central and end-user nodes. It behaves

like the central model insofar as some media or signaling streams are sent to the central node

but the central node is only required to re-distribute the incoming streams. There is no need to

Issue Number 8, December 2003 Page 101

ITB Journal

centrally mix or filter the streams before redistribution. Interim nodes such as gateways can

provide codec translation between SIP and H.323, GSM, ISDN or other codings.

Network Delivery

It is possible to deliver media for conferencing using IP Unicast, Broadcast, Multicast or any

combination of these. We summarily dismiss broadcast for media transfer because of its

impact on connected host networks, bandwidth and the lack of support for broadcast in IPv6.

Multicast trees offer clear advantages in terms of bandwidth usage and scalability for

conferencing, as the media stream is only replicated once for each subscribed branch of the

multicast routed tree. This use of bandwidth can be further optimized with multicast-aware

OSI model layer 2 switching. Multicasting is therefore ideal for conferencing applications both

on the LAN and the wider internetwork. While easily achieve on the enterprise LAN,

however, native multicast capabilities are still not widespread on the Internet and this is a

limiting constraint on existing approaches to multiparty conferencing. Unicast works well for a

small number of conference participants but does not scale well for a large number of users.

It is possible, however, to use combine unicast and multicast in an effective manner where the

number of speakers is low e.g unicast could be used for sending media streams to a central

node while the conference output stream can be redistributed using multicast to the

participating end-nodes. In this way, any participant node in a given conference merely

subscribes to the corresponding multicast address. Speaking generally, this hybrid will scale

best (i.e. the disadvantages of unicast for transmission to the central node will be mitigated) if

the number of conference speakers is small while the number of listeners is large.

Signaling for Multiparty Conferencing

Signaling refers to the exchange of information between call components required to provide

and maintain service between two or more endpoints. This is achieved by exchanging protocol

specific messages. Signaling messages carry information related to the following:

 capabilities exchange

 opening and closing of logical channels used to carry media streams

 flow-control messages

 general commands and indications

Signaling is a critical mechanism for call setup and service delivery in conferencing. Signaling

protocols make it possible to establish point-to-point and point-to-multipoint links over a

converged network architecture that can span TCP/IP LANS, the Internet, traditional WANS

(PSTN, ISDN, FR), etc. With this link established it will not only be possible to send voice and

video, but any IP based packet data like multimedia presentations, still images, text, etc. The

Issue Number 8, December 2003 Page 102

ITB Journal

differences in the signaling protocols that have emerged arise largely from the different origins

and philisophical approaches that spawned them and can be summarised as:

Intelligent Network Approach (Centralised): is the traditional approach of the

telecommunications industry and assumes that the network is intelligent and the end nodes are

dumb e.g. MGCP (Media gateway Control Protocol), H.248/Megaco, etc. These protocols

are highly complex, they don’t fit the Internet model and are not directly compatible with

existing LAN infrastructures.

Intelligent Node Approach (Distributed): The end nodes are intelligent but the network is

dumb e.g. the Session Initiation Protocol (SIP) which is designed for use over the Internet.

SIP has low complexity, is designed for the Internet and provides a simple clean end-to-end

architecture.

Intelligent Nodes & Network Approach (Hybrid): Both the network and the end nodes

are intelligent e.g. H.323 which was designed for use over the enterprise LANs. Although the

best established protocol for multimedia conferencing on the enterprise LAN, H.323 is highly

complex, not very scalable, doesn’t fit the internet model and is expensive to deploy.

The figure below summarises the protocol stacks used with each of the signalling protocols.

Media Transfer

The Real-Time Protocol (RTP) and the Real-Time Control Protocol (RTCP) are the main

IETF protocols for transferring media in real-time over the Internet. The User datagram

Protocol (UDP) is used at the transport layer because of the reliability provided by RTCP.

RTP/RTCP packets can in turn be delivered using unicast, multicast or broadcast addressing.

The fact that SIP separates signaling from media transfer is an illustration of an important

modeling concept in conferencing, namely that it is possible to separate the design of the

signaling from the design of the media transfer. Indeed, different aspects of signaling and

different aspects of media transfer could be handled separately, allowing a more granular

approach to the design of these aspects of conferencing.

Issue Number 8, December 2003 Page 103

ITB Journal

Application

Applications may vary according to the conference size (number of participants), profile (ratio

of speakers to listeners, open or closed), media type (text, audio, video or combined),

environment (LAN, WAN, Internet or combination) and the end-node profile (access

bandwidths, codecs, user interfaces and available protocols). The ratio of speakers to listeners

is an important aspect of the conference system design. Multicast will scale well for listeners

but not necessarily as well for speakers, especially in a shared or non-intelligent layer-2

switched environment. So the number of speakers impacts more directly on scalability. The

conference media type will directly impact on required bandwidths while its open or closed

requirements will add management overhead. The capabilities of the end nodes in terms of

access bandwidth, employed codecs, interfaces and available protocols are also an influencing

factor in system design. The Application goals and constraints will represent the main drivers

in design of a conferencing system solution and it is difficult to see how any approach other

than a structured top-down approach could be adopted.

Towards a Framework for Conference Modeling
One framework for modeling conferencing systems that may be useful is to consider the

following design issues separately:

 Physical topology/Logical Connectivty

 Packet Delivery

 Signaling (Registration, Naming and Location)

 Signaling (Call establishment, maintenance/manipulation and termination)

Issue Number 8, December 2003 Page 104

IP

TCP UDP
(SIP can also run on TCP)

H.245 Q.931 RAS SIP MGCP RTP RTCP RTSP

Figure 1: Comparison of Signaling Protocol Stacks

Call Control & Signaling
Signaling &

Gateway

Control

Audio & Video

media streams

ITB Journal

 Media Transfer

 Application

This framework model is clearly consistent with the existing OSI and TCP/IP models. Not

only could it be applied separately to the signaling and media transfer function, to could also be

applied to different aspects of the signaling function (e.g. registration and calling) or of the

media transfer function (e.g. for incoming and outgoing media streams). Centralised

structures imply that unicast or broadcast (from central node) are possible for delivery.

Distributed structures imply multicast is also an option. The following Figures illustrate the use

of such a modeling framework to develop some basic conferencing models.

Example 1: In this fully meshed example, each participant in the conference has a direct

connection with each other participant. Signaling could be provided separately using a

centralized model for registration and address resolution functions while calls could be

established directly between peers. In the full mesh, any node could function as the

registration proxy or it could be a separate node. User A would have 4 incoming streams, and

4 outgoing streams. That is 8 media streams to send over one link and to process with one

device. Straight away it is clear to see that this architecture is not very scalable all and would

be appropriate only for conferences with a small number of participants.

Example 2: In a partially meshed architecture, some users can connect to each other directly

but others can only see each other through indirect connections. In signaling terms, each node

must be able to directly connect to a proxy however or initial registration/location is not

possible. A has a connection to both B and C, but B and C only have a single connection to

A. C now calls D and brings it into the conference. D receives its media stream through C

regardless of the source, so forwarding is a key function which the partial mesh model needs

and which was not needed by the full-meshed model. This architecture scales better than the

Issue Number 8, December 2003 Page 105

E

A

B

DC

Figure 2: Fully Meshed Conference Architecture

E

A

B

DC

E

A

B

DC

EAB DC

Distributed

Physical Topology Signaling (Registration) Signaling (Call) Media Transfer

Distributed DistributedCentralised

Proxy

ITB Journal

fully meshed and would suit small to medium sized conferences, but again would not scale

easily to a large conference. This architecture would most likely arise in the form of an ‘ad-

hoc’ conference where A and B are in a call, and A decides to invite C. In this example,

signaling is achieved by one or more centralized proxies. Each node must be in direct

connection with a proxy in order to register initially.

z

Example 3: A more centralized approach is shown in this example. A conference server

approach uses an architecture where a central server maintains a signaling dialogue and media

transfer dialogue with each participant. For conferencing purposes, the nodes can only send

signaling and media to the conference server node (although this does not preclude them from

other peer-to-peer sessions with other nodes if the topology allows). The server plays the role

of the centralized manager of the conference. Signaling could be unicast and media transfer

could be either unicast or multicast, depending on whether it is the incoming or outgoing

stream.

Issue Number 8, December 2003 Page 106

C

A

B

D

Figure 3: Partially Meshed Conference Architecture

C

A

B D C

A

B DC

A

B

D

Physical Topology Signaling (Registration) Signaling (Call) Media Transfer

Distributed Distributed DistributedDistributed

E

A

B

DC

Centralised

Physical Topology Signaling (Registration) Signaling (Call) Media Transfer

Centralised Distributed

E

A

B

DC

E

A

B

DC

E

A

B

DC

Centralised

M/castProxyProxyProxy

Proxy

Proxy

Figure 4: Conference Server Architecture

ITB Journal

Part II: Enabling Technologies

Signaling

SIP is an application layer signalling protocol which provides call set-up, modification and

termination. It can also provide services such as name translation, user location, feature

negotiation and call participant management.

We believe that SIP will be the protocol of choice for Next generation Networks and we have

chosen SIP to develop our multimedia conferencing application because of its ease integration

with existing IETF protocols, simplicity, mobility, scalability, and ease of development,

extensibility and deployment in the core and at the edge of the enterprise and support for

multicast, unicast or a combination of both. It is designed for integration with existing IETF

protocols, using existing protocols and extensions to provide message formatting (HTTP),

media (RTP), name resolution and mobility (DNS and DHCP) and multimedia (MIME).

The main SIP protocol components are User Agents (end system) and Network Servers.

Each Agent has a Client (caller) and Server (receiver) component. Examples of SIP Network

Servers are Registration Server, Redirect Server, Voicemail Server, etc. These Servers can

be separate devices in logical terms, but be physically implemented on the one network device,

or alternatively can be physically distributed over multiple devices to provide greater

scalability. These servers can be stateful (knows the state of all current calls), or stateless

(doesn’t track calls). SIP provides its own reliability mechanism so it runs over UDP.

Importantly, participants can communicate using multicast, unicast or a combination of both.

As a protocol used in a distributed architecture, SIP allows you to build large-scale networks

that are scalable, resilient, and redundant. It provides mechanisms for interconnecting with

other VoIP networks and for adding intelligence and new features on either the endpoints or

the SIP proxy/redirect servers. Each signaling protocol follows this general idea, but each

protocol’s implementation of signaling varies. The diagram below (International Engineering

Consortium/Cisco) shows an example of SIP architecture.

Issue Number 8, December 2003 Page 107

ITB Journal

As an application layer signaling protocol used in a distributed architecture, SIP is best suited

to meet our scalability, real-time, simplicity and extensibility design requirements.

The Session Description Protocol is used in conjunction with SIP for exchanging session

capabilities (ability to send and/or receive audio or video, supported codecs, IP address to send

media, etc.).

Media Transmission

The Real-time Transmission Protocol (RTP) was defined by the IETF and is used for the

delivery of time-sensitive data (e.g. voice, video). As retransmission of lost, or out of

sequence, packets is in reality pointless for this kind of time-sensitive data, RTP uses the User

Datagram Protocol (Postel, 1980) which has a ‘best effort’ approach. UDP also has a much

lower protocol overhead than the connection oriented Transmission Control Protocol (TCP)

(Postel, 1981), which is important for efficiency reasons.

The functionality of RTP is simple. The data to send is divided up into smaller parts, to which

an RTP header is added. This header includes information such as the sequence number, a

timestamp, and a header which identifies the type of payload. RTP is not able to prevent jitter

but it provides enough parameters to compensate for its effects. In fact it is the Real-time

Transport Control Protocol (RTCP) which enables the senders and receivers to adapt their

sending rates and buffer sizes. RTCP has to be supported by RTP devices in any case. It is

suggested that the proportional relation of RTCP in RTP traffic should not exceed 5 percent (I.

Miladinovic and J. Stadler).

JAVA support for conferencing applications
This next section focuses on the Java programming language and how it is enabling the

development of computer telephony applications which leverage the functionality of the

Issue Number 8, December 2003 Page 108

Figure 5: SIP Architecture

ITB Journal

previously described protocols. The Java platform is based on the idea that the same software

should run on many different kinds of computers, consumer gadgets, and other devices. Java’s

main strengths are this platform independence (or portability), adaptability, scalability,

multithreaded ability, and Object Oriented Design.

Java has historically been viewed inferior to C for real-time applications (such as computer

telephony applications) as C is able to talk directly to the native code where Java talks through

an interpreter called the Java Virtual Machine (JVM). This JVM translates Java classes to

byte code which the underlying operating system can understand (which gives Java’s its

portability). In certain circumstances, Java can talk directly to native code written in languages

such as C. This weakness of Java is slowly becoming less of an obstacle to real-time

programming with the development of JIT (Just In Time) controllers and with the emergence

of real-time Java.

Java provides a wide range of programming API’s for various application functions:

networking (net package), multimedia (JMF package), encryption (crypto package), GUI

design (awt/swing packages), etc. This range of API’s is ever increasing, as both developers

create their own API’s, and third party vendors create publicly available API’s, thus enabling

developers to easily and seamlessly add new functionality to their systems.

Java also provides support for a wide variety of Internet protocols such as HTTP

(applet/servlet packages), SIP (JAIN Framework), RTP (JMF package), IP (net package),

which allow development of inter-networked applications. The Java API’s of most importance to this

project are:

The Java Network package (java.net.*): Through the java.net package, Java provides

the ability to create both unicast and multicast sockets for the transmission and receipt of data.

This ability to create multicast sockets will be an advantage in certain circumstances where

we are sending identical data to multiple recipients as multicast is far more bandwidth and

processor efficient than having to open up multiple unicast sockets for the same data.

Multicast is a far more scalable solution than unicast and will be very useful for sending &

receiving data in conference calls.

The Java Media Framework (javax.media.*): The Java Media Framework (JMF) is a

package for developing multimedia applications with Java. It enables easy integration of audio

and video clips into an application from a local file, URL, or a device such as a microphone or

Issue Number 8, December 2003 Page 109

ITB Journal

web-cam. JMF also provides the necessary methods for the transmission and receipt of real-

time media streams using the Real Time Protocol (RTP) and the Real Time Control Protocol

(RTCP), which will obviously be necessary for transmitting audio and video during calls.

The Java Intelligent Network Framework: (JAIN including javax.sip.*,

javax.sdp.*): The Java Intelligent Network Framework (JAIN) is a set of Java technology

based APIs which enable the rapid development of Next Generation communications-based

products and services on the Java platform. By providing a new level of abstraction and

associated Java interfaces for service creation across point-to-point, circuit-switched (PSTN,

ISDN), packet/cell-switched (X.25, Frame Relay, ATM) networks. JAIN technology enables

the integration of Internet (IP) and Intelligent Network (IN) protocols. This is referred to as

Integrated Networks. JAIN provides specifications for signaling and network service

creation, some of which are Protocol API specifications; others are Application API

specifications as shown in the table below:

Protocol API Specifications Application API Specifications
JAIN TCAP 1.1 (Final Draft) JAIN Call Control 1.1 (Final Draft)
JAIN INAP 1.0 (Final Draft) JAIN Coordinations and Transactions (Final Draft)
JAIN MGCP 1.0 (Final Draft) JAIN Service Logic Execution Environment (SLEE)
JAIN OAM 1.0 (Final Draft) JAIN Presence and Availability Management (PAM)

JAIN MAP Java Payment API (JPay)
JAIN MEGACO JAIN Presence

JAIN SIP 1.0 (Final Draft) JAIN Instant Messaging
SIP API for J2ME JAIN SIMPLE Instant Messaging

JAIN ENUM JAIN SIMPLE Presence
JAIN SDP SIP Servlets 1.0 (Final Draft)

JAIN SIP Lite
JAIN Service Creation Environment (SCE) - SCML
JAIN Service Creation Environment (SCE) - Java

Server API for Mobile Services (SAMS): Messaging

The two specifications we are currently using to implement our conferencing applications are

JAIN SIP 1.0 and JAIN SDP. The SIP and SDP protocols have been outlined in the previous

section of this paper.

For service creation, the JAIN connectivity management specification was submitted for

review. This is a specification that encompasses different layers of interfaces for controlling

connectivity in intelligent IP networks. Connectivity management is a collection of services for

dynamically providing connectivity with specified QoS (Quality of Service), security (using

IPSec), and routing attributes in IP networks. This specification was later withdrawn and has

Issue Number 8, December 2003 Page 110

Figure 6: The JAIN Framework

ITB Journal

yet to be replaced with another specification which provides these connectivity management

services.

The JAIN initiative brings service portability, convergence, and secure network access to

telephony and Internet networks. This will positively alter the current business structure of

these networks as follows:

 Service Portability: - Write Once, Run Anywhere. Technology development is

currently constrained by proprietary interfaces. This increases development cost, time

to market, and maintenance requirements. With the JAIN initiative, proprietary

interfaces are reshaped to uniform Java interfaces delivering truly portable

applications.

 Network Convergence: (Integrated Networks) - Any Network. By delivering the

facility to allow applications and services to run on PSTN, packet (e.g. IP or ATM)

and wireless networks, JAIN technology speeds network convergence. As demand

for services over IP rises, new economies of scale are possible as well as more

efficient management and greater integration with IT.

 Secure Network Access - By enabling applications residing outside the network to

directly access network resources and devices to carry out specific actions or

functions, a new environment is created for developers and users. The market

opportunity for new services is huge when controlled access is provided to the

available functionality and intelligence inside the telecommunications networks.

Part III - Current Work

Our current research is in the area of sensor data retrieval, display, and collaborative analysis.

As part of this, we are working on a SIP agent which offers telephony functionality (one-to-

one calls, call forward, busy here, forward to voicemail on busy/no answer, etc) as well as the

ability for users to participate in conference calls with a view to collaboratively analysing

sensor data. The following section givse an overview of our analysis & design, our prototype

implementation, and an example usage scenario of this system. Our initial simple application

assumes a single source for the distribution of all combined conference media to which other

participants contribute or listen.

Analysis & Design

Our conferencing system had the following design requirements:

 Scalability in the number of users (primarily affected by media transfer)

Issue Number 8, December 2003 Page 111

ITB Journal

 Efficiency in its use of network and node resources

 Simplicity of implementation

 Extensibility for the rapid deployment of new services

 Real-time Functionality: it must allow effective real-time conferencing

For simplicity and efficiency our approach uses a centralized signaling architecture and hybrid

media delivery, where unicast is used for signaling and multicast or a mixture of

unicast/multicast is used for media delivery. This is scalable large numbers of participants and

bandwidth utilization and processing. Overheads are good. Each participant makes a normal

peer-to-peer SIP call to the conference server using unicast signaling. Once the call is

established media is sent and received on a multicast connection. The role of the conference

server is to act as the centralized manager of the conference, and to maintain a signaling

dialog with each participant in the conference.

Users wishing to join the conference can simply send a standard SIP INVITE message to the

conference server which in turn can choose to authenticate the user or simply send an

immediate ACK reply to set-up the call. Users currently participating in a conference who

would like to invite other users into the conference can send a SIP REFER message with the

URI of the conference server, inviting them into the call (this REFER message could

alternatively be sent to the conference server with the intended recipient’s URI).

Implementation
The SIP agent was implemented by extending the functionality of the basic reference

implementation developed by Emil Ivov. These extensions include:

o Converting the application to an applet.

Issue Number 8, December 2003 Page 112

Figure 7: Conference Server Architecture

E

A

B

DC

Centralised

Physical Topology Signaling (Registration & Name) Signaling (Call) Media Transfer

Centralised Distributed

E

A

B

DC

E

A

B

DC

E

A

B

DC

Centralised

M/castProxyProxyProxy

ITB Journal

o SIP proxy/registrar registration (the reference implementation was supposed to do

this, but it needed some alterations to successfully register to a SIP registration server)

o Call forwarding when busy/unavailable.

o Calls to conference servers using multicast address for audio and video.

o Enabling the applet to identify more SIP messages (e.g. Temporarily Unavailable).

o The ability to view sensor data in graph form which is stored in a web server

database, or to collaboratively view these graphs with other called parties (both on-to-

one calls and conference calls) and highlight (by drawing on the graph) interesting

findings.

The conference server was implemented by altering the SIP web client previously described.

The purpose of the conference server is to simply give the conference a focus, or endpoint, to

call (and to also store information about collaboration taking place in the conference call

allowing users joining the conference to know what everyone is looking at and what has so far

been highlighted by others). The conference server does not receive or send any media

streams. It simply returns a multicast address to which all users who want to participate can

do so to a multicast group to which all other users subscribe.

For collaboration during a conference, the aim was to make the task of collaboration the same

for a user irrespective of whether the call was a 2-party call or a conference call. Our

implementation involved having a collaboration button which when pressed would send a

collaboration request either to the other call party (for a 2-party call) or the conference server

(for a conference call). This collaboration processes is shown in the next two diagrams.

Issue Number 8, December 2003 Page 113

ITB Journal

Example Scenario

The following example shows a conference call where multiple users want to collaboratively

examine sensor data (we will use temperature for this example) from the last 24 hours.

John dials the conference server (e.g. sip:ConferenceServer@domain.com) and is

automatically connected. John selects the collaborate option and as he is the first user in the

Issue Number 8, December 2003 Page 114

A BCollaboration Request

 Do You Want to
Collaborate with A?

 Yes No

Collaboration Response (Yes/No, Please Specify Data)Data to Collaborate on (Selection)What Data do you want to
collaborate on?

Sensor Data

Location Data

Etc..

Unicast updates (i.e. Drawings)Establish Call* (For rest of Collaboration)

A Conference

Server

Collaboration RequestCollaboration Response (Yes, Please Specify Data)Data to Collaborate on (Selection)What Data do you want to
collaborate on?

Sensor Data

Location Data

Etc.

Multicast updates (i.e. Drawings)Establish Call* Is calaler first in
conference?

Collaboration Response (Yes, Don’t Specify Data) Y NStore Drawings for

future participants

Figure 8: 2-party Call Collaboration

Figure 9: Conference Call Collaboration

ITB Journal

conference he is asked by the conference server to specify what data to view. John selects

the temperature sensor and selects the last 24 hours. John’s web client is updated with a graph

showing this sensor data. John circles a few parts of the graph which are of interest with his

draw tool which are multicast to other participants of the call. Currently there are no other

participants in the conference, but the conference server also listens for these multicast

updates to store for any future conference participants.

Garry now dials and connects to the same conference server as John. John and Garry can

now select if they want to send audio or video (if they have a web-cam), or whether they just

want to listen to other users of the conference. Garry now selects the collaborate option and

his screen is automatically updated with the same graph John is viewing, as well as the

drawings John had made prior to Garry joining the conference. Any drawings Garry makes

will be multicast to other participants of the call (John and the conference server).

Sarah now joins the conference and repeats the same process. We now have a three member

conference scenario where each user can choose to send or just receive audio and video, as

well as collaborate on data stored on a web server. As all this media is sent using multicast

packets, this architecture can scale very well, especially if not all users need to be sending

audio and video streams.

The example diagram (figure 8) shows the basic network infrastructure of the conference. In

this example only one conference member is talking and the other users (2 in this example) are

listening, but all users are collaboratively analyzing the data graph. Any updates being sent to

other participants of the conference are also sent to the conference server.

Issue Number 8, December 2003 Page 115

Audio/Video
John Sarah

Conference Server

Garry

Multicast

Group
Collaboration Data

Figure 8: Media Stream Transmission

ITB Journal

Conclusions

A range of models is possible for designing multiparty conferencing for the NGN. A modeling

framework that supports a top-down approach should be adopted (i.e. the design is

approached primarily from the perspective of the conference application drivers such as media

type, end-node profile, etc). An important aspect of modeling conferencing systems is to

recognize the capabilities of emerging Internet protocols to decouple the signaling and media

transfer functionality. It is possible to model at an even more granular level by differentiating

between aspects of the signaling functionality (e.g. between registration, location and calling)

and media transfer functionality (e.g. based on incoming and outgoing directions. Emerging

Internet protocols such as SIP, SDP, RTP and RTCP offer some support in this regard but it

may be necessary to design new protocols that can more effectively meet the requirements of

more granular design models. While traditional conferencing has tended to use a completely

centralized approach, future implementations will see a divergence in how signaling and media

transfer are implemented. Conferencing in the NGN is likely to diverge on an even more

granular basis. More work will be required to develop the modeling framework to reflect the

multiplicity of permutations in the context of this granularity.

 In the short term it seems that conference management (registration, security and location

services) will maintain strong centralization characteristics while call signaling and media

transfer will use a more distributed approach. The influence of routing protocol and related

ideas associated with path determination in data networks, however, could see the signaling

management become more distributed in the longer term. Although multicast delivery is ideal

for scalable conferencing, the lack of widespread availability across the internet remains a limit

to internet-based conferencing. In the interim, a hybrid unicast/multicast model will be best for

media transmission and delivery with the central node acting as the root of the multicast tree

for media delivery to participants.

SIP seems to be the preferred signaling protocol for NGN conferencing applications and is in a

position to leverage existing IETF protocols such as RTP/RTCP while being extensible to add

further functionality quickly. Although SIP can be implemented in a centralized and distributed

fashion and using SDP can support calls with both unicast and multicast delivery of media.

Java provides all the necessary API’s for developing SIP telephony applications. In developing

this system we have used the JAIN API’s, the SIP reference implementation, Java’s ability to

transmit and receive multicast traffic, and a lot of the other standard java packages such as

swing, net, awt, etc. The conference server architecture, using multicast rather than unicast

Issue Number 8, December 2003 Page 116

ITB Journal

for the transmission of media, saves on both network bandwidth requirements and conference

server processor requirements and allows for a more scalable system.

Looking Forward
One key area of research going forward will be to develop the framework for modeling

multiparty conferencing systems to reflect the separation of signaling and media transfer and

the improved granularity within each layer of functionality. Another will be to research

emerging extensions to the SIP specification, such as the SIP SUBSCRIBE method and to

identify potential for new extensions which would support more granular designs. A third

focus of research will be to identify if an altogether new protocol with a more granular

approach, (for example, one which considers application layer issues such as speaker/listener

ratio, media type, etc), and which supports mobile ad hoc environments is needed for improved

conferencing service creation.

References
Miladinovic, I. and Stadler J., Multiparty Conference Signaling using the Session
Initiation

Protocol
Schulzrinne, H., Handley, M.,Schooler, E. and Rosenberg, J. (1999), SIP: Session Initiation

Protocol, IETF RFC 2543
Rosenberg, J. and Schulzrinne, H. (2001), Models for Multi Party Conferencing in SIP,
IETF

Internet Draft, work in progress
Postel, J. (1980), User Datagram Protocol, IETF RFC 768.
Postel, J. (1981), Transmission Control Protocol, IETF RFC 793.
International Engineering Consortium/Cisco, Understanding Packet Voice Protocols

Issue Number 8, December 2003 Page 117

	Towards a Framework for Modelling Multimedia Conferencing Calls in the Next Generation Network
	Recommended Citation

	ITB Journal

