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measures and a high convergent validity with existing measures of mental workload.
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Chapter 1

Introduction

Modern organisations solve difficult problems that require complex decision making

and reasoning involving partial and often conflicting information. Examples of such

problems are found in many different contexts: in management at large companies, in

medicine, in the command of military units or in investment banking. In companies,

management must make decisions about next years products without knowing what

products their competitors will release and without a full insight into why their current

products are performing the way they are. Doctors may have to treat unconscious pa-

tients in emergency situations. Without access to a patient’s medical records or being

able to talk to them a doctor cannot access critical information about patient; for ex-

ample, what medication the patient may currently be taking which could interfere with

certain treatments. Without this crucial information a doctor must make assumptions,

apply a reasoning process and prescribe a treatment based solely on what she can ob-

serve, with incomplete information. In the context of modern warfare, military strikes

may put the lives of civilians at risk. The decision to attack is a difficult one made by

military commanders. It is made more difficult in the case of guerrilla warfare, in which

information is often conflicting as enemy combatants are embedded amongst ordinary

citizens.

The rapid evolution of technology is increasing the amount of data that can be gathered

about these problems. Product sentiment information can be gathered from social me-

dia; improved patient monitoring gives doctors better insight into a patient’s condition;

1
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government agencies gather information from emails and phone calls. The abundance of

information associated with these problems make unaided decision making difficult and

reasoning a non-trivial task. Decisions Support Systems (DSS) attempt to aid decision

makers in solving these problems by presenting information in a manner that makes it

easier to reason about. Turban et al. (2005) explain that the central purpose of Decision

Support Systems is to support and improve decision making. Many Decision Support

Systems make use of intelligent components to provide an improved understanding of

the problem at hand to decision makers. The purpose of this research study is to investi-

gate two of the approaches used in the design of these intelligent components; learning

based approaches and knowledge based ones.

Learning based approaches modify their underlying models for data based on experi-

ence. Supervised machine learning makes predictions based on a labeled training set

of data. Machine learning techniques can provide reasonable predictions based on data,

however, they often fall short in presenting their process to the user. As machine learn-

ing is automatic it is unsuitable for the representation of complex constructs such as an

expert’s knowledge.

Knowledge based approaches focus on the acquisition and representation of knowledge

as well as the modeling of processes of reasoning about that knowledge. Defeasible

reasoning is one such approach. An expert in a field typically doesn’t look at some

variables and apply a function to them. She considers the information at hand and

reasons about it in the context of what she already knows. Within her reasoning process

she may make assumptions that get changed as a result of the reasoning process. This

reasoning process is better reflected in Defeasible Reasoning which offers a solution to

the short comings of the automatic process of ML.

1.1 Background

The process by which humans reason has typically been examined in the fields of Phi-

losophy and Psychology but has been further investigated by the field of computer sci-

ence in the last 30 years or so. This investigation began in order to develop “expert
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systems”: systems that attempt to model and elicit the reasoning of an expert in a com-

puter. In an expert system a knowledge engineer typically uses a number of knowledge

elicitation techniques to compile expertise in a particular domain. The knowledge engi-

neer inputs this knowledge into the system in the form of rule sets. These rule sets can

be used by an inference engine to produce useful output based on input data.

Expert Systems have evolved in the last few decades with computer scientists looking to

Psychology and Philosophy to develop a greater understanding of how reasoning works.

Several mechanisms by which humans reason have identified.

On one hand is deductive reasoning; reasoning in which conclusions logically follow

from a set of premises falls into a category known as monotonic reasoning(Baroni et al.

(1997)). In monotonic reasoning proof of the conclusions is embedded in the premises

and the conclusions remain true in the presence of new evidence.

On the other hand is defeasible reasoning (DR), defined by Pollock (1987) as reasoning

in which “the premises taken by themselves may justify accepting the conclusion, but

when additional information is added, that conclusion is no longer justified.” Non-

monotonic reasoning is more suitable for modelling human reasoning, which is non-

monotonic, and for implementation in DSS.

As a result of recent advances, it is possible to model defeasible reasoning using argu-

mentation theory, a computational technique to model non-monotonic reasoning. Argu-

mentation theory allows us to model arguments and the interactions between them. An

overview of this technique is given in Chapter 2.

Knowledge based argumentation systems have many other characteristics that make

their use in decision support systems advantageous. Argumentation systems can imple-

ment reasoning based on incomplete or corrupt data as well as conflicting information

and explain how a reasoning process arrived at a conclusion. Through the process of

visualising a knowledge base using an argumentation tool an expert may gain insight

into his/her own ideas and refine the rules of his/her reasoning process.
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Knowledge based approaches accrue their insights and advantages by having a human

expert interacting with the system. These benefits are less prevalent in machine learning

based systems.

On one hand, ML provides us with an approach that is automatable and can provide

insights into data that it is unlikely any human would find sifting through large amounts

of data by hand. ML is a better approach to solving classification problems such as

natural language processing as well as image and handwriting recognition; tasks where

it is difficult for a human to encode their understanding in a way that a machine can

process. It is suitable for automatically extracting knowledge and rules from complex

and unknown data.

On the other hand, ML is not always suited to modelling constructs, as human expertise

is not accounted often for. Knowledge based approaches are better suited to representing

ill defined concepts, constructs such as intelligence, mental workload and personality,

that are difficult to measure and assess.

1.2 Research Project

This research project aims to provide a comparison between an implementation of DR

(via argumentation theory) and a type of machine learning (supervised ML). The aim is

to outline the strengths of both techniques and provide guidelines on what problems a

particular approach may be suited for.

The comparison will build on previous research by evaluating the ability of the ap-

proaches to model a construct, to measure and assess it and determine the capacity of

these assessments to be used in prediction tasks.

The research question (RQ) is formally defined:

“To what extent can an implementation of Defeasible Reasoning enhance the repre-

sentation of a construct (mental workload) and support inference in comparison with

Machine Learning?”
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1.3 Research Objectives

The objective of this project is to provide an overview of the differences and similarities

in learning based and knowledge based approaches and to investigate their strengths and

weaknesses, in relation to construct modelling, assessment and prediction capacity.

The goals of the research project are outlined as follows:

1. To gain insight about knowledge-based inference approaches and learning based

inference methods. The focus will be on defeasible reasoning, argumentation

theory and supervised machine learning in relation to construct modelling.

2. To design a computable model of DR for construct representation as well as a

structured experiment.

3. To implement the designed computational model as software in order to execute

the experiments.

4. To evaluate the designed model.

1.4 Research Methodology

This project will use a mixed research methodology - a combination of both qualitative

and quantitative methods. The study begins with secondary research (literature review)

to develop gather understanding that supports the primary research (the design and im-

plementation of an experiment).

1. A literature review is carried out to outline the strengths and weaknesses of the

techniques mentioned in objective 1.

2. The output of the literature review is used to inform the theoretical solution and

design of an experiment to tackle objective 2.
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3. The theoretical solution will be implemented as a piece of software employing

state-of-the-art technologies in the field of web development. This will be used to

perform the designed experiments and accomplish objective 3.

4. The output of this experiment is quantitatively analysed using evaluation metrics

as emerged from the literature review. Statistical methods are used on the results

produced in the experiment to empirically demonstrate the predictive capacity of

the designed model of DR against the one of selected supervised machine learning

classifiers.

1.5 Scope and Limitations

• The project scope is that of a single construct. Mental Workload has been mod-

eled as a defeasible construct in previous work by Dr. Longo who has provided

his knowledge base for the purpose of the experiment.

• Further constructs could not be adopted due to limited avaiblable time for re-

search.

• Similarly, although planned, it was not possible to interview other experts (in

MWL) and translate their expertise in computable terms.

• The project is limited by the size of the data set that has been used and provided

by Dr. Longo.

• The implemented software has not been fully documented according to best prac-

tices because this task is beyond the scope of the RQ.

1.6 Document Outline

This thesis is organised into the following sections:
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• Chapter 2 provides a review of the literature relevant to defeasible reasoning,

argumentation theory and machine learning including cutting-edge research in

the area.

• Chapter 3 outlines the design of the DR implementation and the experiment and

the justification of those design choices in the context of the research methodol-

ogy

• Chapter 4 details the implementation of the software and the experiments; the

implementation and deployment of relevant software artifacts, their use and the

overall execution of the experiments are described as well.

• Chapter 5 presents and critically discusses the results of the experiments high-

lighting the main findings, strengths and limitations.

• Chapter 6 summarises the thesis, highlighting its main contribution to the body

of knowledge. Future work and recommendations are suggested.



Chapter 2

Literature Review

This section introduces fields of study under investigation in this project, Machine

Learning and Defeasible Reasoning. The existing literature on both areas is reviewed in

order to provide the reader with an understanding of the context in which the research

occurs. As the project is fundamentally a comparison between the two fields this litera-

ture review also gathers results and conclusions from other work that will help to inform

this comparison.

This material will be used to support the arguments made for both approaches and will

also inform the design of an experiment evaluating the approaches. At a high level

this project examines two differing approaches to artificial intelligence, knowledge-base

approaches and learning based approaches (machine learning).

Mitchell (2006) defines machine learning as a field of computer science that attempts to

solve the question:

“How can we build computer systems that automatically improve with experience, and

what are the fundamental laws that govern all learning processes?”

On a practical level it is an area of study that concerns itself with the design of tech-

niques and algorithms that run uniquely on different data to achieve some aim without

being explicitly programmed. A machine learning program initial takes a data as input

which it learns from; this learning is then used on future inputs to make a prediction

8



Chapter 2. State of the Art 9

FIGURE 2.1: Chapter Overview - Top down approach (Blue boxes contain notions
used in this thesis)

or to provide some understanding. Mitchell outlines that while there had been no suc-

cessful commercial applications of machine learning as late as 1985, it has since been

successfully applied in diverse fields such as speech recognition, computer vision, bio-

surveillance, robot control and accelerating empirical sciences. Indeed in the last sev-

eral years some of the biggest names in technology such as IBM, Google, Microsoft and

Baidu have been making great strides in the development of advanced machine learning

techniques and reaping the rewards.

Knowledge-base approaches differ from learning approaches in that instead of learning
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from labeled data, the software makes decisions based on ‘knowledge’. The software

is not explicitly programmed to perform operations on the data; a knowledge based

approach takes a knowledge base and uses its contents to make inferences based on

data. The most common example of a knowledge based approach is in expert systems

where the knowledge base is that of an expert. The knowledge used in KB systems

can have many forms such as natural language text, mathematical functions and raw

data. Some knowledge based systems may infact learn from previous experience, for

example, in CASE-based reasoning in which solutions for new cases may be added to

the repository of cases used for inference.

2.1 Knowledge-Based Approaches

Akerkar and Sajja (2010) describe knowledge based systems as distinct from tradi-

tional information systems as they have an understanding of the data that they process.

This understanding comes from a knowledge base made up of data, information and

knowledge. Knowledge-base systems tend to be made up of a knowledge base and an

inference engine, a program that can infer outcomes from the knowledge base given

some input. Knowledge-base systems include expert systems and CASE-based reason-

ing systems.

Key issues in knowledge based systems include the acquisition of knowledge, the rep-

resentation of knowledge and reasoning about that knowledge.

In order to develop expert systems a knowledge engineer must gather domain expertise.

This knowledge is elicited in a number of ways. Typically the knowledge engineer is

not an expert in the domain and will gather the knowledge from books, journals and

other sources. It may be more efficient for the knowledge engineer to elicit a knowl-

edge base directly from an expert by interviewing them. Although this approach is

preferable it is not always possible as the expert is busy with other work and unavail-

able for the long periods of time required to build a knowledge base. According to
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Sagheb-Tehrani (2009) in the early 1990’s the most popular means of eliciting knowl-

edge from an expert was the structured interview; other techniques include unstructured

interviews, documentation and case study analysis, simulations and observation.

Davis et al. (1993) identifies five fundamental roles of knowledge representation. A

knowledge representation is a surrogate; an imperfect stand in for something in the real

world. Since it is imperfect, inferences made from it won’t always be correct. The au-

thor discusses knowledge representation as an ‘ontological commitment’; by choosing

one knowledge representation strategy over another we become bound to it and the on-

tology will have an influence on how reality is interpreted. A knowledge representation

is a ‘fragmentary theory of intelligent reasoning’; the choice of knowledge represen-

tation influences what can be infered from it and is opinionated with regards to what

it means to reason intelligently. A knowledge representation is a medium for efficient

computation; it doesn’t gather every nuance of reality, if it did the problems it is at-

tempting to solve would be computationally intractable. Lastly the author explains that

a KR is a medium of human expression; like programming languages, KRs are used for

communicating not just with the system but with other knowledge engineers as well.

Petrik provides descriptions of a number of knowledge representation strategies em-

ployed in expert systems examples of which include semantic networks, frames, logic,

bayes networks and influence diagrams.

Rules are a form of KR in which the knowledge is encoded using if-then clauses acti-

vated with some heuristic function. Rules can be examined through the lens of the five

roles propsed by Davis et al. (1993). As a surrogate rules are poor at modeling complex

relationships. By choosing to use rules for KR in a system the ontology will be overly

simplified. its theory of reasoning is that everything can be represented as an action

to take in a given situation. Thanks to fast Rete matching algorithms it is an effective

medium for computation for simple problems. As a medium of human expresion it is

desirable; as rules can be formulated in natural language, they are easy to understand

and to create.
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2.1.1 Expert Systems

Todd (1992) describes an expert system as one in which an inference mechanism is ap-

plied to the knowledge of an expert. Expert systems typically are employed in decision

support systems in which they may provide assistance in tasks such as diagnosis. Expert

systems typically have to reason with imprecise and incomplete information and various

means have been adopted to deal with this information in expert systems. Kandel (1991)

explains how two implementations CASNET and MYCIN handle these uncertainties;

the later uses certainty factors while the former uses the most significant results of tests.

Expert systems are limited by their ability to codify knowledge. Different knowledge

bases vary in structure with more abstract knowledge bases typically more difficult to

codify. They also often have trouble balancing knowledge bases involving conflicting

goals.(Cowan (2001))

2.1.2 Fuzzy Logic

Kandel (1991) goes on to describe how fuzzy logic like that proposed by Zadeh (1965)

has been utilsed in expert systems to deal with uncertainty. In a nutshell fuzzy sets

attempt to define the membership of a set by quantifying it. Membership is defined using

membership functions which take an instance as input and quantify its membership as

a real number in the range zero and one. If the output of the membership function is

zero then the instance is not a member of the set; on the other hand if it is greater than

zero then the input is a member of the set with some degree of truth (maximum 1). The

values in between zero and one define the degree to which the instance is a member of

the set. The strength of fuzzy logic is that it enables the modeling of vaguely defined

rules (premises) but it is limited in its ability to model the interaction and relationships

between those rules.
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2.1.3 Reasoning Systems

Once knowledge has been acquired and represented it is reasoned about using an in-

ference engine. Reasoning involves using some known knowledge to deduce logical

consequences. Singh and Karwayun (2010) provides a comparison between different

inference engines. Jess utilises rule based inference to make inferences.(O’Connor and

Das (2012)) Hoolet translates its ontology to a collection of axioms which are reasoned

about using first order logic.(Bechhofer and Horrocks) Pellet uses probabilistic means

of inference.(Parsia and Sirin (2004)) All of these different engines attempt to make

inferences based on imperfect data. In the last 20 years or so interest has increased in

using defeasible reasoning and argumentation theory to make these inferences in the

absences of consistent data. AT provides a model of reasoning that is both intuitive and

computable.

2.1.3.1 Case-Based Reasoning

According to Leake (2003), the knowledge base of a case-based reasoning system con-

sists of knowledge obtained in the past from solving problems (previous cases). When

the system encounters a new situation not accounted for by the knowledge base, cases

that may be relevant and useful are brought up and adapted to solve the new prob-

lem. The resulting new solution is then saved to the knowledge base for future use.

Through the process of solving new problems the system effectively learns. CBR has

the advantage of not requiring new solutions to be generated when familiar problems

are encountered. CBR has applications in tasks such as interpreting the law, informing

design and diagnosis.

2.1.3.2 Monotonic Reasoning

Baroni et al. (1997) explains that monotonic reasoning can be defined as follows: Given

three sets A,B,C, if A ` B then also A[C ` B. Informally, monotonic reasoning can be

thought of a reasoning in which the conclusions for an argument are embedded in the

premises and are not retracted in the light of new evidence. The truth that results from
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one statement cannot be retracted as a result of new evidence in monotonic reasoning.

Take the example “Tweety is a bird, birds can fly, therefore Tweety can fly.” Tweety

being able to fly is inferred by default since Tweety is a bird. Premise A, that Tweety

is a bird and premise B, that birds fly results in the conclusion that Tweety can fly. No

matter what new evidence is discovered about Tweety or about birds we will continue

to believe that Tweety can fly.

2.1.3.3 Non-Monotonic Reasoning

As a result of the limitations found in monotonic reasoning, researchers have formulated

non-monotonic reasoning to better model human reasoning. In non-monotonic reason-

ing conclusions can be retracted in light of new evidence.(Baroni et al. (1997)) In our

day to day activities humans make assumptions based on past experience. If a person

lives in a part of the world that often has sunny weather then they assume this to be true

by default and generally behave as if it is going to be that way. If the weather forecast

warns them of heavy rain they will retract their conclusion that today will be sunny and

bring an umbrella. The logic of making assumptions is known as default logic. De-

fault logic allows us to make assumptions with incomplete evidence based on what we

believe to typically be the case. Non-monotonic reasoning allows us to override these

defaults when presented with new information.

Refering to the example in the previous section, we discover that there is infact a subset

of birds that do not fly. As mentioned, in monotonic reasoning this has no effect since

we still believe that all birds fly. However with non-monotic reasoning, we can revise

our believe so, if Tweety is a penguin, we believe that Tweety cannot fly. Our new belief

can be that “Birds fly, unless they are penguins”.

2.1.4 Defeasible Reasoning (Longo and Dondio (2014))

Argumentation theory has its roots in philosophy and is concerned with how issues

are discussed and conclusions arrived at in the context of incomplete and conflicting
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evidence. The ability to deal with inconsistent information through reasoning is what

has motivated its use in AI.

Reiter (1980) recognised the need to make assumptions when presented with incom-

plete evidence and to change these assumptions when presented with new evidence.

Reiter recognised that classical logic is insufficient for dealing with these situations and

proposed a logic for default reasoning. Default reasoning is a formalisation of what we

believe to be true in the absence of other evidence that makes the case exceptional; what

we believe to be true by default.

Default logic is a non-monotonic logic. Reiter describes first order logic as monotonic -

conclusions drawn in the presence of information A remain valid in the presence of new

information B. Non-monotonic reasoning provides a mechanism for revising old beliefs

in the presence of new information. Default logic takes into account that conclusions

drawn in the case of A may not be true in the case of B. In first order logic we would

still believe that Tweety can fly even though it is a penguin. Default logic allows us to

revise our belief about what can fly.

Pollock (1987) recognised that while non-monotonic logic in AI is similar to how hu-

mans reason, it was also falling short in it’s recognition of the complexities of reasoning.

Pollock introduced the concept of defeasible reasoning, similar to nonmonotonic rea-

soning, to AI to better model these complexities. Reasoning can be said to be defeasible

if the premises taken in isolation can infer a conclusion, but that this conclusion can be

defeated when additional information is added. An important element of Pollock’s de-

feasible reasoning is the idea of warrant; he defined a proposition as being warranted

if it would be believed by an ideal reasoner. The conditions that determine whether an

argument is warranted are made explicit by his work and include notions such as defeat

relations between arguments.

2.1.5 Argumentation Frameworks (Longo and Hederman (2013))

Arguably the most important work in the field is that of Dung (1995). Dung described

his work as provided a bridge from ”argumentation theory as a supporting analytic



Chapter 2. State of the Art 16

tool for non-monotonic reasoning and the independent exploitation of argumentation

models in wider AI contexts”. The work was concerned with modelling the fundamental

mechanism humans use to argue so as to implement this model on computers. He

summarised the basis for his work in the old saying “the one who has the last word

laughs best.” In other words, in human typical human argumentation the last piece of

evidence to be produced can nullify evidence produced earlier by opposing arguments

winning the argument.

An objection to the argumentation approach produced by Dung is that the source of

the information comes from one perceived rational entity. Argumentation naturally

involves multiple rational agents; not one as in Dung’s framework. Ideas are exchanged

and discussed. In Dung’s framework notions of fallacy are embedded in the defeat

relations of the framework. This fails to take into account wider issues of fallacy.

Dung’s work can be divided into two important contributions. The first is the reduction

of argumentation into a simplified abstract model, the Argumentation Framework. The

second contribution is the techniques necessary to reduce an argumentation framework

to a set of justified arguments. These two innovations have had a considerable influence

of research in the area and are the fundamental basis for the defeasible reasoning imple-

mentation used in this project. What follows is a description of these ideas as previously

explained in Dung (1995)’s work.

In a typical debate a participant may put forward an argument which is considered to

be valid based on its premises. An opponent may put forward another argument that

invalidates what the first participant has just stated. This cycle will continue throughout

the debate and what we are left with is a collection of arguments and ‘attack’ relation-

ships between those arguments. Dung modelled this interaction mathematically as a

directed graph; with nodes representing the arguments and edges representing the at-

tack relations between the arguments. This model of arguments and attack relations is

known as an argumentation framework. The advantage of this representation is that it

is relatively intuitive in comparison to other models of defeasible reasoning proposed

previously and also relatively straightforward to implement in computers.
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Formally, an argumentation framework AF can be defined as a pair hAR,attacksi where

AR is the set of arguments and attacks, the set of attack relations between those argu-

ments, R ✓ A⇥A. An attack, a attacks b, is defined (a,b) 2 R. An example of an

argumentation framework can be seen in figure 2.2.

FIGURE 2.2: Example of an argumentation framework

Once arguments have been formulated in an AF it must be determined which arguments

are admissible. Figure 2.3 shows an typical interaction. Within an argumentation

framework an argument A can become inadmissible if it is attacked by another argument

B. However, if B is attacked by C and becomes in admissible then A may be reinstated.

a b c

FIGURE 2.3: A is reinstated since C attacks B

As many arguments within an AF interact in this way, determining which arguments

are admissible is difficult. Dungs solution is to use extension semantics to determine

these arguments. These semantics contain conditions that a subset of arguments in an

AF must satisfy in order to be collectively justified. Different semantics apply varying

levels of strictness to the interpretation of what arguments are justified.

Semantics are based on a number of definitions given by Dung. A set of arguments

is considered to be conflict free if no argument in the set attacks another argument in

the set. A formal method to identify how conflicts are resolved is known as a seman-

tic.(Baroni et al. (2011)) The literature defines two approaches to computing semantics:

the labeling approach and the semantic approach. In a labeling approach arguments may
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be defined as out(if they are attacked), in (if they recieve no attacks or if the arguments

attacking them are labeled out) or undecided (if a resolution cannot be immediately

found). In the extension based approach the strategy is to look at groups of arguments

that can win the conflict as opposed to individual arguments in the labeling approach.

An argument A is acceptable with respect to the set S if every argument that attacks A

is attacked by an argument in S. A set is considered admissible if every argument in it

is acceptable with respect to the AF. From these definitions Dung defined the preferred

extension as the maximum admissible set of arguments in the AF. A stable extension

is defined as a conflict-free set of arguments that attacks every argument not in the set.

The grounded extension of an AF is the smallest complete extension that exists within

the set of admissible arguments. Each of the semantics interprets the AF in a different

way, the preferred extension is more inclusive while the grounded extension is more

skeptical.

a b c

d

e

FIGURE 2.4: An example AF taken from Baroni et al. (2011)

In figure 2.4 the grounded extension is empty. There are two preferred extensions the

set {a} and the set {b,d}. The stable extension is {b,d}.

The implementation of a system based on defeasible reasoning and argumentation the-

ory is a central focus of this project. This section has briefly outlined DR and AT at a

high level for the reader. For a more detailed background in AT the reader is referred to

Bench-Capon and Dunne (2007).

Implementations of argumentation theory based systems tend to fall into two broad

categories. One branch takes advantage of the computational power of the techniques

to solve problems in medicine, law and online behaviour. The other implementations

focus on creating GUI tools in order to improve the reasoning process of their users.

Argument diagramming tools leverage visualisation techniques to aid users in reasoning

about arguments. This has practical applications in several fields.
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Twardy (2004) demonstrated the advantages of computer based Argument mapping sys-

tems in improving student critical thinking. Twardy measured improvement in student

performance on the California Critical Thinking Skills Test across a semester. Students

from an “introduction to critical thinking” class were divided into three groups, two

groups recieving normal course tutorials, the third group using Reason!Able (argument

mapping) software. Students who used argument mapping software scored results on

average three times higher than their peers by the end of the semester. Twardy believes

that the students’ critical thinking improved by using the software as it allowed them to

distinguish between reasons and supporting premises.

In the same domain, Reed and Rowe (2001) designed Araucaria to make argument dia-

gramming for undergraduates easier and also to support research activities. In addition,

the authors developed AML (Argument Markup Language) an XML based syntax for

describing the structure of arguments. They explain the strength of their software as

its platform independence (it was developed in Java) and its interoperability with other

tools. Araucaria represents arguments in a tree structure with the branches of this tree

representing support relations. This is in contrast to Dung’s argumentation framework

which uses edges to represent attack relations.

Karacapilidis and Papadias (2001) developed the HERMES system, an implementation

of Argumentation Theory that allows users to collaboratively develop arguments online

and support those arguments with data. HERMES also provides users with access to

information from external databases to further justify their arguments. Arguments are

represented using a labelling approach as opposed to a graph approach. Constraints

are inserted into a discussion graph and when new constraints are introduced they are

checked against existing ones.

The authors evaluated their system focusing on usability. A wide variety of users such as

students, researchers and medical doctors were surveyed. The participants attempted to

solve two problems collaboratively using the tool and then answered questions. These

questions were both about the users overall opinion of the system (ease of use, enjoy-

able, intention to use again) and about effectiveness of the system (task clarity, easy to
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FIGURE 2.5: Argument diagramming with Araucaria

read, sufficiently informative). The tool focuses on collaborative decision making and

not on automated output so there is no evaluation of task performance.

Easterday et al. (2009) surveyed many argument mapping tools, listed shortcomings

common to the tools and developed requirements for argumentation tools from this list.

The six requirements listed are correct visual representation, flexible construction, con-

trol over visual properties, automation of non-semantic operations, multiple diagrams

for comparison and cross platform compatibility. As none of the avaiable tools at the

time satisfied all of these requirements, the authors developed a prototype, iLogos that

would fulfill these requirements.

The fact that decision support systems allow users to aggregate evidence and make deci-

sions based on that evidence lends makes them an obvious fit for medical practitioners.

Hunter and Williams (2010) developed a framework for generating inference rules to

argue for and against the benefits of medical treatments based on evidence. Their work
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highlights the benefits of argumentation systems in abstracting away the complicated

nature of medical evidence into a form more manageable for practitioners.

A review of defeasible reasoning implementations by Bryant and Krause (2008) high-

light the need for well designed empirical evaluations of implementations and formal

complexity analysis to justify the practical applicability of a reasoning engine. The

paper also highlights the proprietary nature of successful argumentation theory based

applications preventing researchers from peer reviewing the software.

Dimopoulos et al. provided one of the initial complexity analysis of the approach pro-

posed by Dung. The authors found that while many believed that Dung’s AF would

simplify the implementation of non-monotonic logics, it turns out that the computa-

tional complexity of Dung’s AF is greater than that of standard implementations of

non-monotonic reasoning. The authors outline that in a particular worst case scenario,

“Autoepistemic Logic” the computational complexity is two orders higher than in a

standard implementation. In the discussion of their results the authors underline that for

the computational complexity is only better in for sceptical reasoning and only in trivial

cases that are almost equivalent to classical logic.

Vreeswijk (2006) opposed the authors approach of specifically targeting worst case sce-

narios. Vreeswijk takes a more pragmatic approach designing algorithms that produce

grounded and admissible semantics for practical implementation in systems. The author

presents average and best-case complexity as well as worst case complexity. He states

that the admissible membership problem is NP-complete; for the worst case the com-

plexity grows exponentially with the number of nodes. The algorithm developed by the

author is an efficient and practical one and has been ultilised in serveral implementations

of AFs including the Dung-o-matic used in this project.

Modgil and Prakken (2014) presented a tutorial introduction to ASPIC+; a framework

for specifying argumentation systems, rather than an implementation of a system. The

authors claim that while Dungs calculus is indispensable, it provides little guidance

for the development of a system based on his theories. ASPIC+ aims to provide guid-

ance on how the constituent premises of an argument make up an attack. Within their

framework arguments could be attacked in three ways: their uncertain premises, their
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(a) Input attacks and arguments (b) Output graph and semantics

FIGURE 2.6: The Aspartix web interface

defeasible inferences or on the conclusions of their defeasible inferences. They suggest

their approach as a best practice for the development of argumentation systems.

Egly et al. (2008) introduces Aspartix. Aspartix can compute the extensions that the

authors consider to be most important from Dungs AF (admissible, prefered, stable,

complete, and grounded). ASRARTIX uses answer set programming, a type of logic

programming designed to solve intractable problems, in order to compute the semantics.

The authors believe that implementing argumentation systems within this programming

paradigm provides clarity not offered in other paradigms. It also offers a computational

advantage since the computations that are intitially intractable may be reduced into

another language which already has efficient solutions implemented in it. In order to run

Aspartix a computer must already have an answer set programming solver like Gringo

installed on the system. Users also interact with a web hosted version of Aspartix1.

Motivated by the desire to apply argumentation in multi-agent systems Podlaszewski

et al. (2011) developed Argulab. Argulab is an attempt to provide a standard library of

argumentation algorithms for use in multiple applications. The authors demonstrate the

ability of Argulab to compute semantics, argument justification status, argument-based

discussion and judgement aggregation.

Comparing the performance of programs to compute AF semantics is a challenging

aspect of these new systems. Cerutti et al. explains that the lack of a large set of
1http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/loadGraph.faces

http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/loadGraph.faces
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challenging AFs makes benchmarking the algorithms difficult and offers a solution in

the form of AFBenchGen. AFBenchGen is a C++ program designed to generate random

a AFs for benchmarking. The program was able to efficiently generate large AFs with

5,000 nodes and 270,000 attacks. The authors explain that a more through test suite

should contain AFs with different structures and determining how to generate these test

cases is a subject for further study.

Two studies have built upon this work and benchmarked implementations designed to

compute the semantics of Dung’s AFs. Bistarelli et al. provide a performance compari-

son of the computation of stable semantics in ASPARTIX, dynPARTIX, Dung-O-Matic,

and ConArg2. The semantics were benchmarked across three different graph structures;

the Erdos-Re nyi model, the Kleinberg small-world model, and the scale-free Barabasi-

Albert model. By focusing on stable semantics they focus on one of the worst case

scenarios as a stable semantic doesn’t always exist and its computation is NP-Hard.

Out of all four Dung-o-matic performed least favourably, ASPARTIX performed well

at solving Erdos-Renyi but overall ConArg2 was found to be the strongest implementa-

tion.

FIGURE 2.7: Performance benchmarks taken from Bistarelli et al.

These findings are echoed in earlier work carried out by Bistarelli et al. (2013) that

found ASPARTIX and ConArg to significantly out perform Dung-o-matic. Similarly in

this work the authors attempted to compute the complete and stable extensions for the

three random graphs given above and also for Watts-Strogatz graphs.
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FIGURE 2.8: Performance benchmarks taken from Bistarelli et al. (2013)

An alternative to Dung’s argumentation framework has been proposed by Gordon et al.

(2007). Their model contrasts with Dung’s AF by considering the internal structure of

arguments in evaluating their feasibility. The model uses directed graphs to model the

argumentation process as well, however, there are additional elements instead of simply

arguments and attack relations. Nodes may be arguments or supporting information

such as datum, claim, warrant, backing and exception. The relationships between nodes

may be attack or support relations and are distinguish by using different arrow heads.

An implementation of their framework exists known as Carneades.

Van Gijzel and Nilsson (2014) provide techniques for translating Carneades argumenta-

tion frameworks into Dung style AFs in order to use the more efficient implementations.

While the Carnedes approach may be overly complex for practical purposes, it does

underline the importance of considering the internal structure of arguments. Most of the

implementations considered so far evaluate the semantics of an AF with respect to the

framework as it is defined. However, whether arguments are relevant varies depending

on the instance of data being considered.

A comparison between argumentation theory and machine learning was made by Longo

et al. (2012a) in the domain of health informatics. The comparison specifically tackled

the ability of both approach to solve a classification problem; the recurrence of breast

cancer. The authors developed a Dung style argumentation framework based on the

knowledge base of a single health-care practitioner. The authors used this knowledge
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FIGURE 2.9: A Carnedes argument graph showing more complex relations than con-
sidered in a Dung-style AF

based to determine results for rows in a classic breast cancer data-set. In order to deter-

mine whether or not an argument in the framework was activated the authors used fuzzy

membership functions. The authors then compared the results of this experiment with

the predictive capacity of several machine learning algorithms (decision tables, bayesian

networks, best-first and alternating decision tree, regression and multilayer perceptron)

varying percentage of split and the number of folds. The results of their experiment

showed that argumentation based systems could perform as well and in some cases bet-

ter than machine learning algorithms. Moreover, as there was no training involved the

approach was likely to perform equally well on a different data set, unlike the machine

learning approaches.

Overall the advantages outlined by the authors highlight the ‘human’ element of the

approach. AT is more intuitive and can provide users with greater understand of the

problems they seek to solve. Experts can subjectively compare knowledge bases and
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obtain explanations for results computed on the basis of their knowledge. The lack of

the same human element in machine learning is what provides its advantages over AT;

training is automatic and doesn’t require a knowledge base to be elicited.

2.1.6 Construct Modeling

In order to answer the research question posed at the beginning of this dissertation the

idea of a construct must be defined. Price and Jhangiani (2013) discusses measurement

in the context of psychology. He explains that many variables are simple to determine

such as height, age, sex. We can gather this information by simply observing it. By

contrast, a construct can be considered to be as a non-physical thing that cannot be

simply measured.2

Constructs are ideas people have about things, they may be idealised or may not really

exist. Constructs are useful in science for improving our understanding of difference

phenomena and techniques are often established in an attempt to quantify them. Ex-

amples of such constructs include intelligence (measured using IQ tests), personality

(measured using surveys) and evolution (measured using changing characteristics over

generations).

Representing constructs in a computable manner offers many potential benefits. By

automating the representation of constructs we can free up the time of experts, for ex-

ample, by automating diagnosis. We can reduce human error, for example in the case

of reasoning. We can make predictions about certain situations and generally improve

our understanding of phenomena.

Developing systems that can represent constructs accurately is not trivial. There are

a number of underlying issues that make solving this problem hard. Evaluating the

performance of such systems is challenging as we have have no external measurement

to compare the construct with. The same issues of implementation that occur in regular

systems occur in these systems as well. There are a number of areas errors could arise:
2For the purpose of this experiment, time is not a construct. Time can be measured with a watch.
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• Problems could occur as a result of errors in the data set

• the experts knowledge about the construct could be unsound

• the entire school of thought about the construct could be unsound

• the experts knowledge might be modeled incorrectly in the system

• the design of the system may be flawed drawing incorrect conclusions

• the implementation of the system may have underlying bugs that the software

developer is unaware of.

In order to mitigate against these kinds of problems special care should be taken in gath-

ering data for experiments. Experts should be selected carefully for modeling knowl-

edge bases. There isn’t much that the designer of a system can do to ensure that the

knowledge of an entire field of study is correct. However, by interacting with a system

for the evaluation of constructs, experts may gain a deeper understanding of the phe-

nomena that they study. To ensure that an expert’s knowledge base is modeled correctly

user interfaces to the system should provide clear feedback and knowledge engineers

should be trained to use them appropriately. Special care should be taken in the design

of the system and appropriate test cases determined.

In order that a system can be evaluated using the techniques discussed in section 2.1.7

the data set must contain some representation of the construct being studied. One

method for evaluating the representation of the construct would be to have an expert

manually determine labels for each row in a data set. These labels can then be com-

pared with the output of an experiment to determine the accuracy of the output.

This method is problematic as it is time consuming and may not yield accurate results.

In order that a label is applied correctly an expert will need to study each row the data

individually and take the time to assess it accurately. As this would need to be done for

thousands of rows it will take up a lot of time. On top of this, the work is tedious so

many experts will apply less scrutiny to each row resulting in less accurate labels.
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Alternatively, the output can be compared with columns already present in the data but

not used in the final result. It might be determined that there is a strong correlation

between the construct and some other variable. If this variable is not included in the

determination of the construct then we can measure the accuracy of our construct by

seeing how it correlates to this variable.

Constructs are typically made up of interleaved ideas and variables which makes their

representation in computer systems complex. The structure of constructs varies and

as a result different models may be developed to measure them. Similarly, different

computational techniques may be used to represent these models.

For example, if we take intelligence as a construct, there are a number of approaches

we could use to measure it. Intelligence can be represented by IQ; by computing the

sum of an individuals scores on questions across a number of domains. If intelligence

is modeled in this manner then it is easy to derive the model using linear regression. If

on the other hand a more complex scoring system was used then a different supervised

machine learning technique could be used. Similarly an expert could communicate

with a group of people in a room and give their opinion on which people they believe are

intelligent. This opinion then be used as labels for a data set in which a (very bad) model

of intelligence could be made by training a classifier based on age, weight, sex etc. In

another case, we could run clustering algorithms on out data. If the algorithm returns

two clusters and one cluster has all the Nobel prize winners we might conclude that is

the intelligent cluster. An expert could model intelligence defeasibly. For example, if

someone performs well on tests they are intelligent but if they cheat on tests they are

not. We could run semantics on those defeasible representations to determine who is

intelligent.

None of the approaches outlined above can objectively say that they truly measure in-

telligence. However, if they are useful they will give some indication of how a person

will perform on a task. The purpose of this example is to underline the differences in

models and how these models can be represented using computational techniques.

It is with this in mind that an experiment is designed to compare these techniques. To

do an experiment this has to be done:
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• A suitable construct must be chosen and access to an expert secured.

• Machine learning software must be procured and a number of machine learning

techniques chosen for evaluation.

• A system based on defeasible reasoning must be designed.

• an experiment built on top of this must be chosen

2.1.7 Evaluation of Knowledge-based Techniques

As the overall aim of the research project is to compare an implementation of defeasible

reasoning with machine learning, a framework for comparing the two must be devel-

oped. This is no easy task as the techniques vary considerably in the output they will

produce. For supervised machine learning the output of the experiment will be a num-

ber or a classification. These numbers and classes will already be present in the training

and test data sets. For defeasible reasoning this is not the case. The implementation

outputs a value that is a representation of a construct. In the experiments performed for

this project, that construct is mental workload. There are many ways to measure mental

workload but there is no one definitive value that can be used for comparison with this

value. There is no value already present in the dataset that we can compare the output

of the defeasible reasoning system with.

The following section gives an overview of the various methods used to evaluate the

techniques in work by previous authors.

As the aim of this project is to compare the ability of machine learning and argumen-

tation theory to represent and predict the value of a construct, an investigation into

construct validity is necessary. Constructs can be thought of as things that are not easy

to observe. The are difficult to measure as they are often ambiguous, abstract and can

be quite complex. Measuring constructs requires that they are defined precisely and a

way to translate the construct from the abstract to the concrete is established.

Construct validity refers to the accuracy of this translation. Construct validity is not

refered to in absolute terms, however, we can say that over time a certain measure has
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shown strong construct validity3. Two measures used to determine construct validity

are concurrent validity and convergent validity.

2.1.7.1 Concurrent Validity

Concurrent validity is used to establish that a particular measure may be used to predict

some other outcome that is determined by the construct. The outcome to be verified

against must be collected in the same experiment as the new measure being explored.4

The ability of the new contruct to predict this outcome can then be determined by using

a regression model. A notable flaw in concurrent validity is that the measure used to

benchmark the new measure may itself be flawed. As a result of this it is rarely used

alone but has been used with other measures to assess the validity of a wide variety of

constructs such as social anxiety by La Greca and Stone (1993), martial satisfaction by

Schumm et al. (1986) and depression by Storch et al. (2004).

2.1.7.2 Convergent Validity

Another means of determining the validity of a measure is the convergent validity of a

measure. Concurrent validity was introduced by Campbell and Fiske (1959). If there

already exists some accurate measure for the construct that is being examined, the new

measure can be evaluated by looking at its relationship to the old measure (how the two

converge). Convergent validity can be established by computing a correlation between

the new measure and an old measure. This suffers from the same problems as concurrent

validity since the measure used as a benchmark may be flawed. Convergent validity has

also been widely used, for example in establishing measures for post traumatic stress

disorder (Neal et al. (1994)), social desirability (Stöber (2001)) and social phobia(Beidel

(1996)).
3See http://dissertation.laerd.com/construct-validity.php
4https://explorable.com/concurrent-validity

http://dissertation.laerd.com/construct-validity.php
https://explorable.com/concurrent-validity
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2.2 Learning Based Approaches

The literature makes the distinction between different learning scenarios: supervised

and unsupervised.

2.2.1 Supervised Machine Learning

Alpaydin explains that ‘supervised learning’ happens in a scenario in which the task of

the algorithm is to learn the mapping from some input X to an output Y. In a review

of supervised learning classification techniques, Kotsiantis et al. (2007) explains that if

“known labels (the corresponding correct outputs)” are used “then the learning is called

supervised”. Examples 5 of questions supervised learning attempts to answer include:

• What is the probabilistic distribution of hourly rain given polarimetric radar mea-

surements?

• What category does a particular product belong to given its features?

• Given a number of objective measurements, what will be a restaurant’s annual

sales?

Supervised learning problems can be further divided into two categories; regression

problems and classification problems. Ng explains that regression problems are prob-

lems where the output to be predicted is continuous. In a regression problem as spe-

cific numeric value is predicted, for example, a restaurant’s annual sales in the example

above. Problems in which the output to be predicted is discrete are considered classifi-

cation problems. Classification problems tend to be concerned with the sorting of data

into correct categories, as in the second example above. Another such problem might

be determining whether or not a particular email should be categorised as spam or not.

The following sections introduce the reader to supervised machine learning techniques

relevant to this project from each of the different categories at a high level. Many of
5Taken from Kaggle.com; a website for data science competitions
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the techniques outlined require a strong understanding of mathematics in order to fully

understand and engage with them. This outline will avoid these details as explaining

them sufficiently is beyond the scope of this project.

2.2.1.1 Naive-Bayes

Kohavi et al. (1997) introduces Naive-Bayes or Simple-Bayesian Classifier and then

outlines techniques for its improvement. The learner is “built based on a conditional

independence model of each attribute given the class.” Put simply the learner uses

probability to classify the data. Bayes refers to Bayes rule, a mathematical rule for

computing the probability that something happens given some other a priori condition.

The technique is called Naive as the probabilities of the features in the model are as-

sumed to be independent. The probability of each class is computed for a row in the

data set. The class with the highest probability for that row is the class that is chosen

for that instance of the data.

2.2.1.2 Bayesian Networks

Heckerman (1995) explains that Bayesian Networks have been increasingly employed

in expert systems as an encoding for an experts knowledge. One of the strengths

of Bayesian Networks is that they can still produce an output with incomplete data.

Bayesian Networks provide methods for dealing with uncertainty by graphically mod-

elling dependent relationships. Each attribute is modelled as a vertex in the graph

with the relationships modeled as edges. Internally the nodes have a table contain-

ing the probability outcomes given conditions have occurred in their parent nodes. In

figure 2.10, an example taken from Witten and Frank (2005) the probability of the tem-

perature being hot, mild or cool depends on the values of play and outlook. The table

appears as in table 2.1.

While Bayesian Networks are typically developed by mathematicians they can also be

learned using ML techniques.
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play

humidity

temperature

outlook

windy

FIGURE 2.10: An example of a Bayesian Network from Witten and Frank (2005)

play outlook hot mild cool
yes sunny 0.413 0.429 0.429
yes overcast 0.455 0.273 0.273
yes rainy 0.111 0.556 0.333
no sunny 0.556 0.333 0.111
no overcast 0.333 0.333 0.333
no rainy 0.143 0.429 0.429

TABLE 2.1: The table of probabilities associated with the temperature node in fig-
ure 2.10

2.2.1.3 Decision Tables

Kohavi (1995) proposed decisions tables as a representation for hypothesis in order to

solve supervised machine learning problems. Decision tables are typically used in the

development of rules in expert systems. The table consists of a list of conditions and

actions to be taken depending on what conditions are met. An example decision table

taken from Hoffer (1999) is given in figure 2.11.

Kohavi (1995)’s supervised technique uses an induction algorithm to develop a decision

table who’s default is the majority class in the data set (the decision table majority). The

induction algorithm build a decision table based on training data. When the model is

presented with a new instance of test data it checks the decision table for matches. If

there are no matches it returns the majority class of the training data. If there are several

matches with different classes the class that makes up the majority of the classes is
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FIGURE 2.11: Decision table example taken from Hoffer (1999)

chosen. Through experimentation the author determined that the technique performed

with prediction accuracy comparable with C4.5, a decision tree algorithm.

2.2.1.4 K Star

Cleary et al. (1995) describes K*, an instance based learner that uses entropy as a dis-

tance measure. An instance based learner classifies an instance based on a database of

labeled examples. K* uses entropy in order to determine which instance in the database

the current instance is most like. The entropy can be determined by taking the Kol-

mogorov distance (the length of the shortest string) between the two instances. The

author reports that through experimental validation K8 performed better than another

instance based learner, the 1R algorithm.

2.2.1.5 Linear Regression

Simple linear regression is a fundamental technique in supervised learning used to solve

regression problems. In simple linear regression the technique takes a data set with one

explanatory variable and one dependent variable and attempts to fit a simple line to it.

According to Ng this line can be defined as hq (x) = q0 + q1x. The parameters q that
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define the function are tweaked in order to minimise a cost function. An efficient way

to do this is using a technique known as gradient descent.

Linear regression can be used with many explanatory variables; in this case it is known

as multivariate linear regression. The same basic principles that apply to simple linear

regression apply here but the function we are trying to optimise is hq (x) = q0 +q1x1 +

q2x2 + . . .+ qnxn. In order to compute the large number of multiplications that need

to occur the calculations are often formulated as linear algebra problems. The advan-

tage of formulating these learning algorithms as linear algebra problems is that many

programming languages contain libraries with optimised methods for computing matrix

operations.

2.2.1.6 Logistic Regression

The regression techniques described above can be slightly modified to classify labeled

instances of a data set. Ng gives the example of classifying an email as spam (assigned

the value 1) or not spam (assigned the value 0). In this case logistic regression com-

putes the probability that an email is spam. This probability is given by the hypothesis

function:

hq (x) =
1

1+ e�xq T

If there are multiple labels that need to be accounted for in the data set then logistic

regression can be still be used in a ‘one-vs-all’ fashion. Each label has its own unique

hypothesis function that can be used to determine whether or not to apply that label to

the data.

2.2.1.7 Artificial Neural Networks

Shiffman et al. (2012) provides an introduction to Neural Networks. Neural networks

attempt to model the way learning occurs in the brain by simulating neurons and axions.

The fundamental unit of a neural network is a perceptron; similar to one neuron. A

single perceptron takes a number of weighted input values, computes their sum and
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applies a sigmoid function (in a similar manner to logistic regression) to the sum. It

then compares this to a label and computes the error. This error value is used to adjust

the weights of the input values; this feedback process is how the perceptron ‘learns’.

A single perception can only compute linearly separable hypotheses. In order to com-

pute more complex hypotheses the perceptrons are linked in what is called a muli-layer

perceptron. In a multilayer perceptron an input layer of perceptrons take the inputs and

then passes their output to another ‘hidden’ layer of perceptrons. There may be multiple

hidden layers that the output propagates through until it eventually reaches the output

layer. The error for the network is then computed and applied to the weights of each

perceptron using a technique known as back-propagation.

FIGURE 2.12: An example of a multilayer perceptron taken from Shiffman et al.
(2012)

The state of the art in machine learning is “deep” learning, currently being utilised

by Google, Microsoft, IBM and others. Arel et al. (2010) outline how deep learning

overcomes the exponential growth in learning complexity associated with an increase

in data dimensionality. Deep learning focuses on the development of computational

models that represent information in a fashion similar to the neocortex. Convolutional

Neural Networks are described as being the first successful approach to learning many

dimensions in a complex manner. Deep belief networks are “probabilistic generative

models”; provide a different solution to the problem of deep learning by providing

probabilities associated with observations and labels bidirectionally.
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2.2.2 Unsupervised Machine Learning

Supervised learning can be contrasted with unsupervised learning; described by Mohri

et al. (2012) as problems in which “the learner receives unlabelled training data and

makes predictions for all unseen points.” The learning is called unsupervised because

the techniques don’t attempt to make predictions based on a specific labeled output.

Instead unsupervised learning techniques are used to perform tasks such as identifying

clusters in data, anomaly detection and dimensionality reduction. Examples of practical

applications of unsupervised learning (taken from Ng) are:

• Organizing computer clusters.

• Social network analysis.

• Identification of market segments.

Unsupervised ML is sometimes known as class discovery (Gentleman and Carey (2008)),

refering to the ability of the techniques to uncover groupings not already made explicit

through labeling. The literature refers to two approaches to clustering: hierarchical

clustering and partitioning. In hierarchical clustering the algorithms work by building

up small clusters or breaking large ones down in a hierarchical fashion. The advantage

of this technique is that the number of clusters can be specified after the algorithm has

run. With partitioning the number of clusters is specified before hand and this number

of elements are chosen at random to define clusters around based on distance. These

clusters are then refined over a number of iterations. An example of a commonly used

partitioning technique is K-Means.

2.2.3 Evaluation of Machine Learning Techniques

There are a number of methods typically used for evaluation of machine learning tech-

niques. Numeric predictions are evaluated similarly to many scientific experiments

using statistical values such as correlation and mean absolute error. Machine learning

techniques for solving classification problems are often more detailed as the costs of
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false positives and false negatives may be different depending on the problem. Take for

example the prediction of cancer recurrence. A false positive (that it is predicted cancer

will recur when it will not) will result in a patient being examined by a doctor; on the

other hand a false negative would result in the missed opportunity of early diagnosis,

potentially costing a life.

Witten and Frank (2005) explain that machine learning techniques are typically eval-

uated first developing a model using a labeled ‘training set’ of data. Once the model

has been developed it can be run on a labeled ‘test set’ of data. The performance of the

technique can then be measured by comparing the values predicted by the model with

the labels in the test set. The exception to this is with unsupervised machine learning

as the data is unlabeled. As the purpose of unsupervised machine learning is to come

up with a kind of ‘theory’ about the data, good techniques “make everything as simple

as possible, but not simpler”. This idea is the foundation of the Minimum Discription

Length Principle.

Typically the amount of data used for training and testing is limited and so techniques

such as cross validation and percentage of split may be used to test and validate the

model. In percentage of split the data set is divided into two groups, one for training

and one for testing. Typically a higher percentage is used for training the data than

testing it. In cross validation a data set is divided into groups. One group is used at

a time for testing the model while the rest of the data in the set is used for training it.

This technique is often referred to as N-fold cross validation where N is the number of

groups the data is divided into.

The following is a brief description of a number of measures used when evaluating the

results of machine learning techniques.

2.2.3.1 Numeric Prediction Problems

Witten and Frank (2005) explain that for practical situations the best numeric prediction

method tends to perform well across all performance measures. Most performance mea-

sures tend to give an overall value for the difference between the predicted and actual
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value in a test set. Examples of such measure include mean-squared error, root mean-

squared error and mean absolute error. As mean squared error squares the difference

from the mean it tends to punish large errors more than the other measures.

Mean-squared error can be defined:

n
Â

i=1
(pi�ai)2

n

Where p are the predicted values and a are the actual values.

Another performance measure used for numeric prediction problems is Pearson’s Cor-

relation Coefficient. This measures the linear correlation between the predicted value

and the actual value. It differs from the other measure in that it ignores the differences

in the scale of the two values.

SPAp
SPSA

where:

SPA =
Âi(pi� p̄)(ai� ā)

n�1
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2.2.3.2 Classification Problems

Evaluating the performance of a classifier is not as straight forward as in assessing the

performance of regression techniques. Regressive techniques are often not expected

to predict an exact value, but a good approximation of the value. As classification
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problems deal with discrete answers, there is a well defined notion of whether or not

an answer is correct. As a result of this there are a number of extra considerations that

are made when choosing classifiers. The cost of incorrectly classifying an instance (a

false positive) must be weighed against the cost of not classifying an instance correctly

(false negative). Take for example the cancer recurrence problem. If a patient is a false-

positive the patient will have to pay medical bills for extra tests. On the other hand a

false-negative is more costly potential costing a life. In order to capture these ideas a

number of measures are used in the literature.

Common measures for evaluating the performance of a classifier include precision, re-

call, F-score and area under the ROC curve. (Powers (2011))

• Recall refers to the ratio of the number of true-positives versus the total number

of real-positives. Recall is useful in determining how much of what we are inter-

ested in has been identified. However, alone it is a poor performance measure; a

classifier that returns the whole data set including false positives can be said to

have 100% recall.

• Precision balances this by offering a measure of number of correct positives as a

whole of what is returned. Precision is defined as the ratio of true-positives against

the total number of classified positives. Both of these measures say nothing about

how the classifier deals with negative cases.

• The same is true of F-score which is simply the harmonic mean of precision and

recall (F1 =
precision⇥recall
precision+recall ).

• The area under the ROC curve is a technique taken from electrical engineering

that better captures the tendencies of a classifier report false positives. A plot of

true positives against false positives is made for varying by varying the classifier

threshold. The area under this curve can be used to evaluate the classifier. It can

be calculated as follows:
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AUC =
T PR�FPR+1

2

=
T PR+T NR

2

= 1–
FPR+FNR

2

Where AUC is Area Under the Curve, TPR is true positive rate, FPR is false

positive rate, TNR is true negative rate and FNR is false negative rate.

2.2.3.3 Minimum Description Length

Grünwald (2005) gives an overview of how the Minimum Description Length Principal

is used to solve the problem of model selection. Overfitting is a problem that occurs

frequently with ML techniques. Overfitting occurs when a learning technique puts too

much emphasis on fitting the data exactly. As a result data points like outliers can skew

the model and result in it classifying future instances of the data wrongly. A model that

overfits the data will classify the data set used to train it with very little error, however,

when used on a test set will perform poorly. A simpler model may not classify the

training data perfectly but will perform better on test data.

As observed earlier, a simpler theory is one that allows data to be encoded using fewer

bits. This idea is born from information theory. For example, the SVG file type encodes

a red circle as <circle cx="50" cy="50" r="40" stroke="black" stroke-width="3" fill="red" />.

This is far simpler than sending every single bit used to describe circle in raw data. From

the perspective of programming MDL can be compared to Kolmogorov Complexity; the

simplest theory is the one that produces the shortest computer program that will print

the data.

MDL views learning as data compression; Grünwald (2005) defines this formally: “for

a given set of hypotheses H and data set D, we should try to find the hypothesis or

combination of hypotheses in H that compresses D most.” The best point hypothesis H

to explain the data D is the one which minimizes the sum L(H) + L(D—H), where
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• L(H) is the length, in bits, of the description of the hypothesis; and

• L(D—H) is the length, in bits, of the description of the data when encoded

with the help of the hypothesis.

The underlying idea of that can be derived from the principle is that the simple rep-

resentation of constructs should be considered favourable to one that is complex. An

informal approach to computing the MDL of a model is to describe a model in terms of

the number of lines of code it would take to output the data. The greater the number of

lines of code, the greater the MDL.

2.3 Discussion

This chapter began with an exploration of two broad domains; knowledge base systems

and machine learning. Knowledge based techniques were explored and in particular ar-

gumentation theory and defeasible reasoning were introduced. In particular the funda-

mental work of Dung (1995) was introduced. This lays the foundation for the defeasible

reasoning implementation of this experiment. Implementations for the computation of

AF semantics have been reviewed in order to be integrated in this design. The results of

other work using argumentation theory have been explored. Within machine learning

several supervised learning techniques were explored; bayesian networks, naive bayes,

artificial neural networks, kstar and various regression techniques.

The implementation of argumentation theory in knowledge based approaches is advan-

tageous as it allows for default reasoning, while simultaneously being able to derive

solutions in the case of conflicting data. With a reasoning based approach data can be

evaluated with greater scrutiny that can’t be captured automatically through learning.

Experts can provide the insight into why a particular outcome occurred, this could be

modeled defeasibly in a way that wouldn’t be captured by simply plugging data into an

equation.
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Machine learning on the other hand can in some cases be more convenient than knowl-

edge based systems. Linear regression is intuitive for developers and researchers as

fitting a line to data is a familiar task. Linear regression is like default reasoning in

that the line attempts to model things that happen typically. Outliers can be ignored as

deviations from the norm and good predictions can be made some of the time. Lin-

ear regression considers outliers to be noise in the data and attempting to accommodate

these outliers results in a model that overfits the training data. A more complex machine

learning technique such as an ANN could account for an outlier, however, it would need

to be provided with enough instances of similar outliers that is appropriately labeled. A

data set large enough to train a classifier sufficiently to accommodate for these outliers

may not exist. Once this hypothetical classifier has been trained, the resulting repre-

sentation may not be easy for an expert to interpret. The automatic nature of machine

learning has advantages that could not be obtained using a knowledge based approach.

For example it would be difficult and time consuming for an expert to codify all of the

different ways a person might write the letter ‘t’. An artificial neural network can be

trained to recognise the letter if provided with enough labeled training data.

Both knowledge based approaches and learning based approaches fall in the field of

artificial intelligence. Despite this there are relatively few works that provide compar-

ison between the two. Within each approach exist many variations in techniques and

algorithms with more being created as years go by. To specialise in one domain takes

researchers years of focus; many would rather focus on advancing their research further

than taking a step back to look at what research has been done in other fields. This is

reasonable as it can take months of study to become familiar with even the basic con-

cepts in an entirely different domain. A comparison made at this stage would likely

be biased and would fail to account for the subtleties of one approach or another. Re-

searchers that investigate both fields tend to do so to create advanced hybrid approaches

(for example Gómez and Chesnevar (2004)) rather than provide a comparison for the

benefit of the research community. This research project attempts to fill that gap by pro-

viding such a comparison. The comparison of the two domains is a non-trivial task and

it is unreasonable to expect it to be without bias. This project will attempt to provide
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some value to readers interested in both domains, however, it is to be considered by no

means exhaustive.

A number of argumentation theory implementations were surveyed. Many of these im-

plementation focused on aiding users in their reasoning. This focus has likely come

about because it is a domain in which argumentation theory has an obvious immediate

application. Graphical tools that incorporate the argument diagramming and the com-

putation of results are less likely to be developed as they require several design issues

to be resolved such as argument activation by data. It is also difficult for designers to

know before implementation that such a system will fulfill a practical purpose.

As a result of the gaps identified in the literature, a problem has been identified to be

the subject of research. The problem is the shortage of available comparisons between

knowledge based and learning based approaches, particularly in the area of construct

modeling. In order to solve this problem a research question is defined:

“To what extent can an implementation of Defeasible Reasoning enhance the repre-

sentation of a construct (mental workload) and support inference in comparison with

Machine Learning?”

Several techniques for assessing the predictive capacity of the techniques have been

identified. Measures for establishing the validity of the construct measures have been

determined. These measures will be valuable when assessing the techniques in a quan-

titative experiment as they will provide some objective way to compare results. None of

these measures are perfect. Error values obtained during experiments of this nature may

be misleading as the data used to train classifiers comes from the same set of data that is

used to validate those classifiers. The measures being used to validate the representation

of constructs are similarly imperfect. These measures rely on a correlation between the

new measure and a previously established measure of the construct. If the previously

established measure in fact is a poor representation of the construct then we may have

simply created another poor representation. These factors will need to be considered in

order to thoroughly evaluate the results of the experiment.
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Design

In order to answer the research question posed in Chapter 1, an experiment was de-

signed. The research question is restated here:

“To what extent can an implementation of Defeasible Reasoning enhance the repre-

sentation of a construct and support prediction capacity in comparison with Machine

Learning?”

In order to answer this question a number of hypotheses to be tested were defined as

follows:

• The defeasible measure of a construct created by an expert is better at predicting

objective performance values than machine learning approaches.

• The construct measure of an expert will have a high concurrent validity with ob-

jective measures related to the construct.

• The construct measure of an expert will have a high convergent validity with

existing measures for the construct.

In order to test these hypotheses the following experiments are conducted.

• An argumentation system is developed in software and used to elicit a knowledge

base from an expert.

45
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FIGURE 3.1: Chapter Overview

• A number of ML classifiers (using both classification and regression algorithms)

are trained to using a partition of the experiment data set.

• The predictive ability of the classifiers and the knowledge based system are tested

using a subset of the data set.

The rest of this chapter deals with the design associated with these experiments. The

choice of construct to be examined is justified, the design of the software is outlined

and the experiment procedure is defined.

3.1 Choice of Construct Longo and Kane (2011) Longo

et al. (2012b)

In order to perform the experiment a subject must be chosen. Access to an expert in the

field of this subject needs to be secured as well as a data set that can be used to evaluate

the representation of the construct. Suitable constructs don’t have a conclusive easy to

assess for of measurement such as cancer, intelligence or personality.

For this experiment Human Mental Workload was chosen as the construct. Mental

Workload can loosely defined as the amount of effort it takes a user to perform a task.

Researchers across a wide variety of domains study MWL, particularly those with inter-

ests in human performance and machine usability. Meshkati and Hancock (2011) out-

lines the problems that are associated with defining, quantifying and measuring MWL.

Generalising MWL is difficult as it is a multifaceted phenomenon that varies depending

on context. Meshkati and Hancock (2011) defines MWL as “the operator’s evaluation
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of the attentional load margin (between their motivated capacity and the current task de-

mands) while achieving task performance in a mission-relevant context.” Possible ways

of measuring MWL include objectively (using task time, physiological indicators or

task success) or subjectively (by having the participant answer introspective questions

about their perceived state while completing the task).

One possible way of measuring MWL is using the NASA-Task Load Index (TLX).

NASA-TLX is an introspective questionnaire in which participants subjectively assess

their mental demand, physical demand, temporal demand, performance, effort and frus-

tration after completing the task. Participants are then asked to compare the importance

of these factors in their completion of the task.

Another possible way to determine that MWL was high for a given task is based on the

task completion time. If all variables are equal then task time can help us determine

which tasks were most difficult.

Dr. Luca Longo from the DIT School of Computing is an expert in the area of MWL

having completed his doctoral dissertation in formulating MWL as a defeasible con-

struct. He has kindly volunteered his knowledge base to be used within the experiment.

The data set was obtained in an experiment performed by Dr. Longo that aimed to

gather MWL information from participants based on their used of different web based

interfaces. The participants had to complete 11 web based tasks using popular web

applications including Google Search, Youtube and Wikipedia. 40 participants between

ages 20 and 35 were split into two groups. In a given task, one group used the original

application interface while the other group received a version in which the presentation

of the page had been altered. Which group received the original or modified interface

varied by task. It was believe that the changes to the structure of the interface would

impose a greater mental workload on the participants. After each task was completed

the participants answered a questionnaire designed to assess their subjective mental

workload. The data set contains the results of the experiment. Sample rows are available

in the appendix along with the details of each column.(Longo (2014))
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3.2 Machine Learning Software

In order to implement the experiment a suite of machine learning software needed to be

procured. Designing and implementing a suite of ML algorithms is a time consuming

process. Moreover, a naive implementation of ML software will result in software that

performs poorly. For these reasons, it was decided to use an existing ML tool set.

Proprietary options include Oracle Data Miner or SAS Enterprise Miner while open

source alternatives include the R programming languge or Rapid Miner. It was decided

that WEKA would be a good fit for the project.

WEKA (Waikato Environment for Knowledge Analysis) is an open source ML work-

bench developed at the University of Waiko. WEKA is widely used in both academia

and business. It has a simple user interface which provides feedback related to model

performance in a clear and concise format. It contains implementations of machine

learning algorithms across a range of typologies which allows for a large comparison

with defeasible reasoning. As it is an open-source project it is possible to investigate

the source code to gain a greater understanding of the underlying techniques. WEKA

has a low barrier to entry; this is important to save time as a significant portion of the

project will involve the implementation of defeasible reasoning software.

3.3 Defeasible Reasoning Software Design

In order to demonstrate how DR can model a complex construct, software was designed

that would allow an expert to input their knowledge base as directed graph. There is

no standard way to implement a system based on defeasible reasoning. Section ??

outlines approaches taken by others in the past to implement such systems. By drawing

on these designs and identifying use cases for this project a new DR implementation

can be designed.
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3.3.1 Use cases

The users of the system are both the experiment administrator and the expert/knowledge

engineer. In the context of the experiment the role of knowledge engineer is played by

the experimenter.

• “As an expert/KE I want to input my/a knowledge base as a defeasible construct.”

• “As an expert/KE I want to model my/an expert’s knowledge base in a way that

will produce a numerical output given some numerical input.”

• “As a system user I want to be able to save my work and retrieve work I have done

previously.”

• “As a system user, when I open the program what I was last working on should

be displayed or a new project should open.”

• “As a system user I should be able to retrieve data to test my knowledge base with.

I should be able to investigate that data and investigate the results of running my

knowledge-base on that data.”

• “As an experimenter I should be able to collect results from running an experts

knowledge-base on a full set of data.”

By investigating each of these user stories a system can be designed suitable for the

purposes of the experiment.

3.3.2 Defeasible Knowledge Base

The expert or knowledge engineer must be able to model their knowledge base as a

defeasible process. This process is being modeled as an Argumentation Framework as

proposed by Dung (1995). To reiterate, an argumentation framework is a set of argu-

ments and attack relations between those arguments. In the case of MWL, an example
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of an argument is “if the user’s effort is low, this implies that the user’s mental work-

load is low”. Another is “if the user’s performance is low, this implies that the user’s

mental workload is high”. It can be said that the former attacks the later since if the

user doesn’t make any effort the performance will be low. In the argumentation frame-

work S = hA,RiA is the set of arguments A = {a,b,c,d} and R is the set of attacks

R = {(a,b) ,(b,c) ,(c,d)} These arguments and attacks relations must be input into the

system in a format that allows them to be processed and that allows the user to easily

modify and reason about what they have input.

One method that could be adopted in designing the interface is a text based approach.

The user enters their knowledge base in a text editor as a list of nodes and attack rela-

tions according to a format specified by the system designer that can be parsed by the

software. An example of a JSON based format would be the following:

"knowledge_base" {

"arguments": [

"Low Effort->Low MWL",

"High Effort->High MWL",

"Low Performance->High MWL",

"High Performance->Low MWL"

],

"attacks": [

["Low Effort->Low MWL", "Low Performance->High MWL"]

]

}

Using this approach it is easy to implement logic to parse the AF. This lightweight

approach is preferable for designing test cases for the system as it is trivial for a technical

user to modify and copy.

This approach is unsustainable for regular users and large (real) knowledge bases. It is

time consuming and cumbersome for a user to have to type out an argument every time

that they want to create an attack. It is also intimidating for non-technical users and

error-prone. As they are stored separately it can be difficult for the user to keep track

of the nodes and attacks. The user would need to establish a strong naming convention

to ensure that the correct arguments are attacking each other. If the user needs to store
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more information about the arguments and their relationships the resulting file format

will grow increasingly complex.

For this reason the software has been designed to utilise a Graphical User Interface that

allows a user to draw a directed graph. A user creates a new argument by clicking on an

empty space on the graph. The user can name this node in order to keep track of what it

represents. Once nodes have been created the user can then model the attack relations

between the arguments by dragging from one node to another.

This approach has many advantages in comparison with the first approach. A non tech-

nical user will be more comfortable using a GUI than using the text based approach.

When the knowledge base is input using text the user must take special care to ensure

that the attack relations are correct.

There are additional requirements that need to be satisfied by the software in order to

correctly model an AF. The first is the concept of rebutting attacks. In order to model

rebutting attacks the user must be able to draw edges in the graph with arrows on both

ends. The second is modeling the concept of mitigating arguments. Some arguments

weigh in on the final evaluation of the semantic without actually contributing to the

value of the construct. These arguments must be taken into consideration but have their

output ignored in the final value.

FIGURE 3.2: A Mockup of the UI for entering an Argumentation Framework
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3.3.3 Membership Functions

As the system is currently defined it will provide an expert with the ability to visualise

their knowledge base in the form of a directed graph. The only information that can

be obtained about an argument is its relationship with other arguments and its label (a

natural language statement that allows the user to identify the argument and that may in

some way describe the nature of the argument).

In order that the argumentation framework can be used to compute results a number

of other concepts need to be designed into the system. The notion of whether or not

an argument is activated or not needs to be modeled. Argument activation allows us

to consider which attack relations to take into consideration and which to discard for a

particular tuple in the data set. Arguments are based on one or more premises and each

premise corresponds to one column in the data set. An argument is activated if it all of

its premises are relevant to a particular instance in the data.

Example 3.3.1. If an instance had a value of 0 for effort then an argument with the

premise “Low Effort” would be activated and an argument with the premise “High Ef-

fort” would be discarded. For a value of 0 effort and 0 motivation an argument with two

premises “Low Effort and Low Motivation” would be activated. Given this same input,

the argument “High Effort and Low Motivation” would be discarded as only one of its

premises are satisfied.

The process of activating and discarding arguments results in a sub-graph of arguments

relevant to the row in the database. In order to further reduce the sub-graph argumen-

tation semantics are run on it which take into account the attack relations between the

arguments. This results in a set of possible sub-graphs that are applicable to that in-

stance in the data-set.

From the remaining arguments in each sub-graph a value for the construct being mea-

sured must be determined. These values can then be averaged for a particular graph to

give an overall value for the construct for that instance.
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Example 3.3.2. If the argument is “low performance! high MWL” then for a simple

mapping a performance value of 0 will result in a MWL value of 100. This can be

repeated for every argument and averaged for a value of MWL.

In order to determine whether or not an argument is activated we will use fuzzy sets in

a manner similar to Longo and Hederman. Fuzzy Sets were defined by Zadeh (1965)

as “a class of objects with a continuum of grades of membership.” These sets are char-

acterised by membership functions; functions that take a value and map it to a number

between 0 and 1 (where 0 indicates absence of the value in the set and 1 indicates its

presence.) This allows us to take a vague statement such as “High Performance” and

determine to what extent a value of performance is considered to be high.

For the purposes of the experiment we consider a premise to be relevant if the input

value falls between the bounds of its membership function. If all associated values

satisfy the membership functions of an argument, even with a very small degree of

truth, then that argument is taken into consideration when evaluating the semantics of

the AF for that row. If even one value associated with an arguments premise falls outside

the membership function then the argument is disregarded.

By taking a value from a column the degree of truth of the premise as applied to the row

can be determined using a membership function. We can then determine the overall

degree of truth for an argument by computing the average of the degrees of truth of the

premises. The degree of truth for the argument is then used as the input for an argument

output function which determines value associated with the construct for that argument.

The following is an example of this process. Taking the argument labeled “Low Effort

& Low Performance ! Low MWL”; two premises can be identified: “Low Effort”

and “Low Performance” and an output function “Low MWL”. The premises and output

function could be modeled as in figure 3.3. Table 3.1 shows example input and output

for the function.

It is possible that membership functions could be input by the user in the form of math-

ematical functions. This would require the user has sufficient mathematical proficiency

that they can express their beliefs in as mathematical functions. A more user friendly
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(a) Low effort membership func-
tion

(b) Low performance member-
ship function

(c) Output function

FIGURE 3.3: Example membership functions and output function

Effort Performance Result
0 0 The argument’s degree of truth is 1 overall, the

value for MWL is 0.
30 30 The argument’s degree of truth is 0 overall, its

output is considered since the input’s are in
range. its value for MWL is 40.

50 15 The argument is discarded as the value for Ef-
fort is out of the range of the membership func-
tions.

20 15 The argument’s degree of truth is .5 overall, the
value for MWL is 20.

TABLE 3.1: Membership function example results

method of eliciting membership and output functions from the user is to have them draw

the functions by hand using the software. We can then use the data associated with this

drawing to determine the appropriate output for a given premise given a tuple in the

data set.

3.3.4 Additional Software Requirements

Additional requirements specified in the user stories involve being able to retrieve and

save the knowledge bases they have been working on. This is to be implemented by

serealizing and deserealizing the AF into a JSON file similar in format to that described

in section 3.3.2. This serialization will also be used to retrieve whatever the user was

last working on when they utilise the system.
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In order that a user can test their knowledge base the user will be given access to a data

set. This will be displayed as a table with the user able to compute results for individual

rows.

The complete design for the regular user stories has been achieved. A mock up of the

resulting UI is given in figure 3.4.

FIGURE 3.4: A Mockup of the UI for entering an Argumentation Framework

In order that the experiment administrator can compute results for may knowledge bases

and collect additional information, the business logic for the application is encapsulated

in a class, FrameworkRunner. This allows it to be called from both the GUI and a command

line interface with additional options.

3.4 Experiment Procedure

Now that the necessary software for the experiment has been designed a formal pro-

cedure for undertaking the experiment can be defined. The research question referred

to at the beginning of this chapter needs to be reinterpreted in the context of mental
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workload. With respect to predictive capacity an attempt will be made to answer the

following question: “Given data associated with an individual undertaking a task can

we predict their mental workload?”

We will attempt to answer this question by performing four sub-experiments. Each ex-

periment will examine a different technique’s ability to model and predict MWL based

on the data set that has been provided. An experiment will be performed for Supervised

ML continuous techniques, Supervised ML discrete techniques, Unsupervised ML and

Defeasible Reasoning. All of the techniques will be required to make their inferences

based on the following data set columns: mental, temporal, psychological, performance,

effort, central, response, visual, auditory, spatial, verbal, manual, speech, arousal, bias,

intention, knowledge, parallelism, skill, difficulty.

What is important to note, as explained in section 3.1 is that there is no concrete def-

inition of what MWL is. Each technique will have a different interpretation of what

MWL really “means”. As a result there is no yardstick we can objectively measure the

results against and say that one technique is inconclusively better than the other. The re-

sults will be evaluated both quantitatively and qualitatively in the context of the material

gathered in the literature review.

In order to test ML techniques for predicting numerical outputs, some measure of a con-

struct must already be present in the data used for training and testing. For this reason

MWL is interpreted to be equivalent to task time. Time on task is often used in usabil-

ity experiments to determine the usability of a computer interface. This approach has

several flaws which will be the subject of further discussion in the evaluation chapter.

Similarly for the classification techniques, the construct must be interpreted as some

label in the data. There is a relationship between MWL and the task ID, some tasks

were designed to produce greater MWL than others. Thus in this experiment task ID is

interpreted as MWL.

The unsupervised ML techniques will produce subsets of the data. These can be com-

pared against the results of the other experiments to yield some insight into MWL.
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For each of the ML techniques mentioned a number of common algorithms of that

category are chosen. Each algorithm is run on the data using Weka. The output from

each iteration of the experiment are the models developed by the algorithm and statistics

about the performance of the model. All of the supervised ML algorithms are trained

and evaluated on the dataset using 10-fold cross validation. The results of each iteration

are collected and stored for analysis later.

The last experiment to be conducted involves determining the defeasible reasoning soft-

ware implementation’s capacity to model and predict a construct. The software is im-

plemented and then used by to elicit the knowledge base of both an expert and a lay

person with regards to MWL. The participant evaluates their knowledge base using a

portion of the data set. The results of running the knowledge base using DR techniques

are then collected by the experiment implementer. Within this experiment a completely

new value for MWL is developed based on the participants beliefs. The experiment also

returns a degree of truth for MWL value and some performance characteristics of the

software. These results may then be evaluated with respect to each other and the results

from the other experiments.

3.5 Conclusions

This chapter presented the experiment being undertaken to evaluate the hypothesis of

this research project. The experiment will consist of a test of machine learning methods

and defeasible reasoning techniques. In order to establish how the research question

will be tested the idea of a construct was defined. The construct for the experiment was

chosen to be mental workload and an experiment for determining the ability of different

techniques to model this construct was designed.

A necessary step in performing this experiment is the implementation of a defeasible

reasoning system. The design of this software is influenced by the implementation cre-

ated by Longo et al. (2012a); however it build upon this work by offering a GUI that

allows the implementation to be used for modeling multiple phenomena as defeasible

processes. A software design is outlined order to undertake the defeasible reasoning
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portion of the evaluation. The design of the software includes the requirements for the

user to be able to draw an argumentation framework that models their knowledge base

and determine activation of the arguments within that framework by drawing member-

ship functions.



Chapter 4

Implementation

4.1 Introduction

This chapter describes the implementation of an experiment undertaken to answer the

research question proposed by this thesis. A critical first step in performing that experi-

ment is the implementation of a defeasible reasoning system. This is taken as a starting

point for this chapter.

The application architecture and programming decisions that were made are explained

and justified with respect to how they support the experiment. The challenges associ-

ated with implementing a system of this nature are presented along with the solutions

pursued to overcome those challenges.

The implementation of the experiment is then discussed. Specific details of how events

unfolded are mentioned where they are relevant to discussion in the evaluation section.

4.2 Defeasible Reasoning Software Implementation

The research question of this dissertation deals specifically with an implementation of

defeasible reasoning. The design of the system was outlined in chapter 3 without any

specific implementation details discussed.

59
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It was decided to implement the software as a web application. In the last 10 years

web browser technology has improved vastly. Advances such as HTML5 APIs, pow-

erful Javascript engines and mobile technology allows fully featured applications to be

developed and run in the browser.

Developing the application as a web based one offers a number of practical advantages

to the experiment. Participants in the experiment can access the application remotely

from anywhere. The software is platform independent and can run on any web browser

with Javascript enabled. No software needs to be installed on different machines. No

software needs to be updated locally, just once on the application server. All of the data

associated with the DR experiment is all located and stored on the server allowing it to

be retrieved easily for analysis.

4.2.1 System Architecture

In chapter 3 the required system functionality was designed and relevant components

identified. The functionality of eliciting the knowledge base (the AF and membership

functions) and the verification of this knowledge base is implemented as a Javascript

client application. This communicates with a back-end server that provides a RESTful

Web service written in PHP (using the Slim Framework1).

The Web Service back-end provides the basic functions outlined for the application.

The back-end saves a knowledge base to disk as a JSON file. The Javascript client can

request a list of knowledge bases and from this list retrieve a knowledge base previ-

ously created by the user. Knowledge bases were saved as JSON files on disk rather

than in a database. This allowed structure of the application to change more fluently

during development. It also supports knowledge bases to be examined and serialized in

their complete form without needing to assemble it with queries from the database. The

server allows the client to access data stored as CSV files so that an expert can evaluate
1www.slimframework.com

www.slimframework.com
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their knowledge base against the data. The last critical component of the server appli-

cation is to take a row from the data set and compute the value of the construct using

the knowledge-base.

The application is served from an apache server running on a virualised Ubuntu instance

provided by the Okeanos project 2.

In order to speed up the development process a number of open source frameworks

and libraries have been utilised in the software implementation. The CSS framework

Bootstrap3 and the Javascript library JQuery4 have been used for presentational aspects

of the site. Bootstrap provides a number of useful components such as modal boxes

tjat allow the software to present information to the user in a clear manner. JQuery

provides wrappers arround native browser functionality such as DOM manipulation

and AJAX networking facilities that abstract away the inconsistencies between browser

implementations.

The graphical input of argumentation frameworks and membership functions is achieved

using the D3 library5 developed by Bostock et al.Bostock et al. (2011) D3.js is a data

visualisation library that allows developers and designers to interact with data in the

browser. Data can be loaded from urls in multiple formats such as JSON and CSV.

Data points can be “attached” to DOM elements which provides useful functions. The

styling of the DOM element can be linked to the value of the data and the data can

be manipulated by user interactions. D3 is most commonly used with SVG6 (Scalable

Vector Graphics) a markup language for implementing vector graphics. SVG has been

an open standard for more than 10 years now, as a result it has been widely imple-

mented and there is currently more support for it than other graphics alternatives such

as HTML5 Canvas. Two key features of D3 that are used in the implementation of the

experiment software are its implementation of Bezier curves and its force directed graph

implementation.
2okeanos-global.grnet.gr
3getbootstrap.com
4jquery.com
5d3js.org
6www.w3.org/Graphics/SVG/

okeanos-global.grnet.gr
getbootstrap.com
jquery.com
d3js.org
www.w3.org/Graphics/SVG/
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The server implementation requires Argumentation semantics to be computed based on

the input of a Dung Argumentation Framework. Computing these semantics efficiently

requires a deep understanding of argumentation theory, graph theory and algorithms.

This implementation is specialised and a number of libraries have been explored in

the literature review for its implementation. Dung-o-matic, an implementation of these

algorithms has been made available by the University of Dundee under the Apache

License, Version 2.0. The Dung-o-matic7 was found not to be the most efficient imple-

mentation for the computation of semantics by a number of studies. However, its source

code is freely available and can be run on any platform provided the platform has Java

installed. Moreover, the advantage of using Java is that as one of the world’s most

popular programming languages there is abundant documentation available to assist in

its integration. The source code for both dynPARTIX and ConArg2 are unavailable

and cannot be used for implementation in this project. It could be possible to integrate

ASPARTIX for a more efficient implementation, however, this requires an answer set

programming solver to be installed. It is anticipated that the integration of such a solver

could be laborious and time consuming without adding much value to the project. For

these reasons the Dung-o-matic was chosen despite performance concerns.

The technologies outlined in this section are manifested in the application architecture in

figure 4.1. With these underlying technologies established a number of implementation

challenges remain. The solutions to these challenges are the focus of the following

chapters.

4.2.2 Application Front End

The two crucial features of the application front-end are the interface for drawing argu-

mentation frameworks and the interface for drawing membership functions. The imple-

mentation of these features is discussed here.

The implementation leverages D3’s force-directed layout8, a built in layout that solves

the problems posed when visualising graph data structures. Typical data visualisation
7www.arg-tech.org/index.php/projects/dung-o-matic/
8https://github.com/mbostock/d3/wiki/Force-Layout

www.arg-tech.org/index.php/projects/dung-o-matic/
https://github.com/mbostock/d3/wiki/Force-Layout
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FIGURE 4.1: Application Architecture

techniques take values and parse them one by one, drawing a marker in a position based

on each value. This is not the case with graph data structures. With graph data struc-

tures, it is generally preferable to have vertices that have common edges close together

and to have those without common edges far apart. D3’s force directed layout takes

list of vertices and edges and generates positions for vertices using simulation inspired

by physics. Similarly to sub-atomic particles, nodes are given charges that repel other

nodes in the graph and are kept from drifting apart by the links in the graph. There is

also a force at the center of the visualisation that prevents any of the nodes from drifting

outside the view port.

By utilising this layout and D3’s event helpers (listeners for mouse actions such as click

and drag) an interface can be implemented that allows a user to input a directed graph,

or in the case of the experiment, an argumentation framework. The user can create a

node by clicking on an empty space on the graph and can create links between two

nodes by dragging from one node to another. When the user creates a node they are

prompted to give the node a label. This results in a knowledge base being represented

as in listing 4.1.

knowledge_base {

nodes : [

{

id: 0

},

{
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id: 1

},

{

id: 2

}

],

lastNodeId : 2,

links : [

{source: nodes[0], target: nodes[1], left: false, right: true },

{source: nodes[1], target: nodes[2], left: false, right: true }

]

}

LISTING 4.1: JSON data structure for argumentation framework

D3 expects the data as an array of node objects and an array of links which contain

references to the nodes. It adds x and y values to the nodes to track their position in

the viewport and updates theses values at a fixed interval in order to animate the graph.

The id of the last node added to the viewport is stored in the lastNodeId variable. This

is important for creating new nodes as nodes are tracked based on their IDs, not their

array indexes.

Three types of attack relation must be modeled by the interface for correct implemen-

tation of the system. These attacks are undercutting attacks, rebutting attacks and mit-

igating arguments. Undercutting attacks are implemented simply as an arrow from the

attacking node to the attacked node. In the data structure this is modeled as a link with

the value for either ‘right’ or ‘left’ equal to true. In a rebuttal attack both arguments

attack each other. This link is visualised as an arrow with two ends. In the data struc-

ture this is represented by setting both ‘right’ and ‘left’ equal to true. Examples of

these arguments visualised using the tool are shown in figure 4.2. Mitigating arguments

are modeled the same as undercutting arguments but are represented in the system by

labeling their output functions as “mitigating arguments”.

By selecting a node in the graph a user can then define membership functions repre-

senting the internal premises of the argument and an output function representing the

contribution of the truth of this argument to the overall value of the construct. It was

decided in the system design phase that the user should be able to draw these functions
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[An undercutting attack] [A rebuttal attack]

FIGURE 4.2: Examples of different attacks drawn using the interface

using the interface. It was decided to utilise Bezier curves to achieve this in a manner

that is simple to implement, usable and that would facitiate easy representation, storage

and serialisation of membership functions.

According to Farin et al. (2002), Bezier curves provide a “geometric-based method

for describing and manipulating polynomial curves and surfaces.” Bezier curves are

parametric curves in which each point on the curve is a function of the parameter t.

Bezier curves are defined by a number of control point that they interpolate. The curves

begin at their first control point x(0) and end at their last control point x(1).

Bezier curves may be defined recursively is draw on for their implementation in the

system. Given a Bezier curve BP0P1...Pn with points P0P1 . . .Pn the recursive definition

of a curve is:



Chapter 4. Implementation 66

B(t) = BP0P1...Pn(t) = (1� t)BP0P1...Pn�1(t)+ tBP1P2...Pn(t)(4.1)

where BP0(t) = P0 and BPn(t) = Pn.

D3 provides methods for manipulating SVG, which defines its ‘paths’ (Bezier curves)

using control points. By providing the user with a collection of control point the can

drag it is possible for them to define curves however they please. It also provides the

advantage of allowing membership functions and output functions to be defined simply

as control points in the data model. As bezier curves exist within the range 0 and 1 on

the x and y axis the associated values must be scaled to the users desires. Users can

input minimum and maximum values that are used to scale the graph. These are stored

with the membership function in the JSON data structure for later processing. From this

a single argument can be defined in JSON as in listing 4.2. In order to allow users to

create membership functions quickly functionality was implemented to allow the user

to save previously used functions as template functions as can be seen in figure 4.3.

FIGURE 4.3: An interface that allows a user to ‘draw’ a membership function using
Bezier curves

{

id: 0,

"name": "MD1",

membership_functions: [{

title: "Low Effort->Low MWL",

points: [{x: 1, y: 25}, {x: 0, y: 0}, {x: 10, y: 0},

{x: 20, y: 25}, {x: 22, y: 12}],

xLabel: "Effort",

yLabel: "Degree of Truth",
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xMin: 0,

xMax: 50,

yMin: 0,

yMax: 50,

},

{

title: "Low Performance->High MWL",

points: [{x: 10, y: 140}, {x: 30, y: 0}, {x: 140, y: 0},

{x: 200, y: 150}, {x: 125, y: 125}],

xLabel: "Performance",

yLabel: "Degree of Truth",

xMin: 0,

xMax: 250,

yMin: 0,

yMax: 300,

}

],

"output_function": {

"title": "Underload",

"xLabel": "Degree of Truth",

"yLabel": "Mental Workload",

"xMin": 0,

"xMax": 1,

"yMin": 0,

"yMax": 33,

"points": [

{"x": 0.00454,"y": 33},{"x": 0.222,"y": 24.849},

{"x": 0.46136,"y": 16.954},{"x": 0.65681,"y": 10.3458},{"x": 1,"y": 0}]

},

}

LISTING 4.2: JSON data structure a node including its fuzzy membership functions

There is a flaw in this approach that should be noted. In order to compute the users

beliefs accurately the membership function should follow the strict mathematical defi-

nition of a function; that it should only output a single value for any input. Bezier curves

do not obey this rule as they are parametrised by t and as a result it is possible for users

to draw functions like in figure 4.4. It is also possible for users to define functions with

no corresponding output for a given figure. If a user does the system will compute an

incorrect value for the premise and the result will be compromised. Participants in the

experiment are made aware of this before undertaking the experiment.
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FIGURE 4.4: Examples of Bezier curves that can be drawn that are not functions

With the argumentation framework and membership function finally implemented the

web interface appears as in figure 4.5.

FIGURE 4.5: The fully developed tool for eliciting knowledge bases

Once a knowledge base has been elicited from a user they can test their with the system

by computing results. They can download a sample data set which is displayed as in

figure 4.6.

FIGURE 4.6: A selection of data for the user to test their knowledge base with

For a single row in the data the user can choose from a selection of semantics to run on

the data (see figure 4.7).
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FIGURE 4.7: A list of options for semantics that can be computed by the system

URL Request Method Functionality
/ POST Compute the Knowledge

Base result for a given row of
data

/knowledgebases/ GET Return a list of Knowledge
Bases saved on the server

/knowledgebases/:filename GET Retrieve a specific knowledge
base named :filename

/knowledgebases/:filename POST Save a knowledge base in a
JSON file named :filename

/datasets/ GET Return a list of data sets saved
on the server

/datasets/:filename GET Retrieve a specific data set
csv file named :filename

TABLE 4.1: Documentation of the Application REST routes

The results of running the semantics are then presented to the user in the form given

in figure 4.8. The results present an overall value for the construct as well as the total

degree of truth of the semantic. Each argument that contribute to the semantic is re-

turned as well as a degree of truth value and the value of the construct computed for that

value. This extra information allows the user to scrutinise their knowledge base and its

associated results further.

4.2.3 Application Back-End Implementation

The application back-end implements a REST architecture that allows the front-end to

retrieve data via AJAX requests. A summary of the REST API is outlined in table 4.1.
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FIGURE 4.8: Results of computing the semantics on the framework. (Undefined values
belong to mitigating arguments)

In order to compute the result for a single row in the data set the front end sends a POST

request containing the knowledge base nodes and links, the row in the data and a list of

semantics to be computed. A PHP class FrameworkRunner copies these values into a local

list of arguments and attacks.

The first step in the process is to determine which arguments are activated. This is done

by looking at each argument and determining if each of its premises are satisfied by

the data in the row. For an individual premise the value of data associate with its x

label is retrieved. If this value is between the premise’s xMin and xMax values then the

premise is relevant. If the value falls outside these bounds then the parent argument and

its associated attack relations are discarded.

The sub-graph of activated arguments and their attack relations remains in the class to

compute semantics for. In order to compute the semantics the Dung-o-matic Java class

is wrapped in another class that allows it to read a list of arguments and attacks as a
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string and return the results in a similar format. The FrameworkRunner class produces a

string containing the IDs of the nodes in the format expected by this Java class. The Java

class has been exported as an executable JAR file which is then called from PHP using

the exec() function and passing this simple string as an argument. The Java code returns

JSON object with the name of the computed semantic as keys and the sub-graphs as an

array of arrays associated with those keys.

Once the semantics have been computed for an Argumentation Framework the values

associated with each argument can be computed. For a given row in the data set, the

results for an argument remain the same no mater what the configuration of the frame-

work is. This allows us to cache the output value of an argument in memory rather than

having to recompute the same values for each semantic. The results are computed on

the server using a Bezier curve implementation.

The Bezier curve computation is implemented in a PHP class Bezier. This class contains

methods to compute the X and Y values for a point on the line given a list of control

points and a value for t. It provides two other methods yFromX and xFromY that compute

a value for Y given X and vice versa. The Bezier curve implementation is based on the

recursive definition given in equation 4.2.2. Its implementation is given in Algorithm 1.

Algorithm 1 Computing a point on the curve for a given value of t
Data: A list of control points L = P0P1 . . .Pn and a value t

Result: A point P = (X ,Y ) corresponding to t

Algorithm bezier(L, t)

if there is only one control point in L then
return P0

else
P0 bezier(P0P1 . . .Pn�1, t)

P1 bezier(P1P2 . . .Pn, t)

X  (1� t)P0X + tP1X

Y  (1� t)P0Y + tP1Y

return (X ,Y )

end
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For a given membership function with fixed values for its control points any point on the

curve can be described by a value t between 0 and 1. By passing t into the function we

obtain a value for x and y. As it is not possible to simply pass in an x value and obtain

a corresponding y value we must search for y by varying the parameter t. This is done

efficiently using a binary search algorithm. For each iteration we pass in two values of t

to get two values of x and compare them with our target x value. We continue to search

a space closer and smaller to x until we arrive at a value that is within a threshold we

consider to be satisfactory. From this point we can obtain the Y value. The pseudocode

for this algorithm is given in Algorithm 2.

Algorithm 2 Obtaining a value for Y given an X value
Data: A list of control points L = P0P1 . . .Pn, a tolerance T and a value X

Result: A value for Y corresponding to the input X

tlower 0

tupper 1

while The computed X values are outside the tolerance T of X do
Plower bezier(L, tlower)

Pupper bezier(L, tupper)

if PlowerX is closer to X than PupperX then
tupper tupper + tlower

else
tlower tupper + tlower

end

end

This calculation is performed for each membership function in the node and an average

of the values of the output is produced. This corresponds to the overall degree of truth

for the argument. This value is then used as the input to the output function which

computes an overall construct value for that argument. If the output function of an

argument is labeled as a mitigating argument then that argument is ignored.

Once the all of the argument construct values and degrees of truth are taken the overall

results for the semantic can be computed. An overall construct value and degree of truth

for the semantic is computed by taking the average of these values for each argument in
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the semantic. The client presents this information to the user in the evaluation interface

previously presented.

The software was manually validated in order to determine that it was functioning cor-

rectly. Initially simple test cases were developed using the ASPARTIX online interface9

in order to validate that the argument evaluation was working correctly. Once the in-

terface was working for small test cases it was evaluated by hand using an existing

knowledge base. A number of bugs were discovered and fixed at this stage. The pro-

cess continued iteratively until the implementation was considered to be of a quality

appropriate to the experiment.

4.3 Experiment Implementation

In order two provide a comparison of the ability of the defeasible approach to model a

construct the knowledge bases of both an expert and a lay person were modeled using

the tool developed in this chapter. The two knowledge bases provide a contrasting result

and it is expected that the knowledge base of the expert will perform better than that of

the lay person. These knowledge bases were saved on the server and evaluated in order

to determine that they matched the expert’s expectations.
9http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/index.faces

http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/index.faces
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FIGURE 4.9: The Argumentation Framework developed by the expert using the tool
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FIGURE 4.10: The Argumentation Framework developed by the non-expert using the
tool

As computing the semantics for an AF is an NP complete problem computing the results

for a whole data set carries a large overhead for time. The time is considerably larger

than the time of a typical HTTP request-response cycle so it was not feasible to compute

all of the results for the data set in the web application format.

In order to generate the results of running a knowledge base on a whole data set the

FrameworkRunner tool was wrapped in a command line tool written in PHP. Results were

computed for the ‘grounded’ and ‘preferred’ extensions of the argumentation frame-

works. The overall values for MWL for the extensions were collected for each row in

the data. The time taken to compute these results was also collected in order to have an

objective measure of the performance of the technique.
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The second part of the research question was then answered by running machine learn-

ing algorithms on the experiment data using Weka. In order to assess regression algo-

rithms task time was chosen as the dependant variable. Classification algorithms were

testing using task ID as the dependent variable.

The regression algorithms used were additive regression, k-star, linear regression, mul-

tilayer perceptron, regression by simple linear regression and additive regression. These

results were collected for each regression algorithm: correlation coefficient, mean ab-

solute error, root means squared error, relative absolute error and root relative squared

error.

In order to run classification algorithms on data, Weka requires the dependent variable

to be in a string format. A simple python script was written to create a new column in

the data set that would have the task numbers represented as letters (1 A,2 B, . . .).

The classification algorithms used were bayes net, decision table, logistic regression,

naive bayes and multilayer perceptron. The following metrics for these algorithms were

collected: percentage of correctly classified instances, percentage of incorrectly clas-

sified instances, Kappa statistic, mean absolute error, root mean squared error, relative

absolute error and root relative squared error. Confusion Matrices and a breakdown of

accuracy by class (including TP Rate, FP Rate, Precision, Recall, F-Measure and ROC

Area) was also collected for each model.

In order to determine the concurrent validity of the defeasible MWL models two regres-

sions needed to be run on each model. The first regression is a linear regression using

the values for MWL against time. The second is a logistic regression using the values

for MWL against task number. Lastly in order to determine the convergent validity of

the MWL values the Pearson co-relation of the values with other measured of MWL

was determined.
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4.4 Conclusions

This chapter outlined the deployment of a piece of software and an experiment to im-

plement in practice the theoretical model designed in Chapter 3. Additionally, an exper-

iment that uses this software has been executed. The process of realising a tool used to

elicit and perform computations on a defeasible knowledge base was not a trivial task.

Several challenges were encountered:

• The implementation of membership functions required that functions could be de-

fined graphically. This required that the view rendering logic be decoupled from

the client data. An implementation of Bezier curve calculations were required on

the server.

• As time and resources (implementations of semantic computation) were limited

the project required that Java and PHP were integrated in the same application.

This required writing wrappers for the Java code and a more complex deployment

process.

• As the application initially performed poorly when comuting a number of se-

mantics, performance bottlenecks were identified. One was the computation of

Bezier curves. This was improved by caching the previously computed results for

the curves.

The chapter briefly discussed the implementation of an experiment using the software

and the machine learning work-bench Weka. Finally, the collection of extra data to

analyse the experiment results was briefly discussed. The analyses of the information

that has been gathered is the subject of the next chapter.
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Evaluation of Results and Discussion

This chapter discusses the ability of an implementation of defeasible reasoning to model

a construct in comparison with machine learning. The chapter presents and discusses

the results of the experiment performed in the previous chapter. A comparative anal-

ysis of both techniques is performed using the evaluation techniques gathered in the

literature review.

5.1 Results

The research question posed at the start of this project is focused on the ability of two

techniques to represent a construct and make predictions based on this representation.

The predictive capacity of the techniques is presented here. In order to determine how

these new measures perform, the concurrent and convergent validity of the new values

is calculated using existing measures of mental workload.

5.1.1 Predictive Capacity - Numeric

In order to compare the predictive capacity of the approaches each technique was used to

compute the value of an objective performance measure: time. The mean absolute error

for time prediction was taken for each technique. In order to gather a wider comparison

78
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the size of the data used for training and testing was adjusted by varying the number

of folds and percentage of split. Figure 5.1 displays the results of the experiment. Im-

mediately obvious in this graph is the poor performance of Artificial Neural Networks.

According to Silvert and Baptist (2000) ANNs typically require large ammount of data

for training. The performance of the ANN could be improved by pre-processing the

data. It is also possible that the ANN has overfit the training data. This could be de-

termined by evaluating the minimum description length of the model, however, this is

is beyond the scope of the thesis as it is not possible to compare that measure with the

knowledge based approach.

The performance of the machine learning algorithms vary dramatically. It is interest-

ing to note that simple linear regression using one variable doesn’t out perform the

regression based on the non-expert knowledge base which is also based on one vari-

able. Decision table, kstar and additive regression have error rates higher than the ex-

pert knowledge base. Decision table and kstar don’t correlate well with time although

additive regression performs nearly as well as the expert knowledge base. A linear re-

gression outperforms all of the techniques and can predict task time with the strongest

correlation. With the exception of linear regression, the machine learning techniques all

show a large variability based on the amount of data that is available for training. KStar

and additive regression are outperformed by linear regression.

Table 5.1 and table 5.2 gives a breakdown of the results that provides more clarity than

the previous figures. For different numbers of folds we can see that the regressions based

on the expert’s knowledge base perform best of all which validates the first hypothesis

of the experiment. What is interesting is that the predictions based on the knowledge of

the non-expert perform better than that of the expert for varying percentage of split. As

the knowledge base of the non-expert contains fewer nodes it is possible that it weighs

some variable heavily that contributes greatly to task time.
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FIGURE 5.1: Mean Absolute Error for Time Prediction

10-fold 20-fold 40-fold
ANN 137.238 126.9808 141.3834
K Star 93.6672 92.1658 91.1066

Additive Regression 85.8072 83.5995 82.0641
Regression 80.8231 80.9963 80.2697

Expert (Grounded Extension) 80.6007 80.5986 80.5241
Expert (Prefered Extension) 80.4185 80.4475 80.3192

Non-Expert (Grounded Extension) 81.5565 81.6743 81.7295
Non-Expert (Prefered Extension) 81.5565 81.6743 81.7295

TABLE 5.1: Mean Absolute Error Using K-Fold Cross Validation

30% Split 50% Split 70% Split
ANN 163.7684 152.5288 147.3721
K Star 101.9482 93.8966 92.0756

Additive Regression 93.3442 81.2395 87.8533
Regression 83.1717 80.868 83.589

Expert (Grounded Extension) 81.0625 78.0558 78.7381
Expert (Prefered Extension) 80.4185 80.4475 80.3192

Non-Expert (Grounded Extension) 79.5426 77.2909 79.9484
Non-Expert (Prefered Extension) 79.5426 77.2909 79.9484

TABLE 5.2: Mean Absolute Error Varying Percentage of Split
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5.1.2 Predictive Capacity - Task Membership

A comparison of the techniques ability to predict task membership was also performed.

The performance of each measure was evaluated simply using 10-fold cross validation.

This was chosen as there are a larger number of evaluation metrics for classifiers that

are being considered here than for the numeric prediction task. The first metric that is

examined is the number of correctly and incorrectly classified instances which is shown

in figure 5.2. This metric shows that ANN, Naive Bayes and Logistic Regression

perform best in terms of correctly classified instances. This nullifies the hypothesis

that the knowledge base of the expert predicts task membership better than machine

learning. In this case the knowledge base of the expert actually performed worse than

the knowledge base of the non-expert.

FIGURE 5.2: Classified Instances - Task ID

By examining the precision and recall of the classifiers we can gain further insight into

their performance. The best performing machine learning tasks have about the same

precision and recall. We can see a large variation in the precision and recall of the

expert and non-expert. The recall of the non-expert is higher than that of the expert

resulting in a greater number of correctly classified instances.
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FIGURE 5.3: Precision, Recall and F-Score

The area under the ROC curve provides further clarification of the performance of the

classifiers as it takes into account the number of false positives. We can see that while

the non-expert may have classified more instances correctly, the expert’s knowledge

base provides a greater balance between true positives and false positives.

FIGURE 5.4: Area Under ROC Curve
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It is interesting that the machine learning approach was more effective in determining

task membership than the defeasible reasoning approach. This could be because the

tasks don’t vary MWL strongly enough. Another possibility is that the knowledge bases

are failing to take into account some aspect of mental workload that could determine

task membership better.

5.1.3 Concurrent Validity

The concurrent validity of the defeasible constructs was measured by performing re-

gressions against time (tables 5.3). Time is an objective performance measure that

is similar to MWL. The Pearson correlation provides an understanding of the perfor-

mance of each knowledge base. The results show a much stronger correlation between

the knowledge base of the expert and time than the knowledge base of the non-expert.

This provides some confirmation that the implementation is modeling defeasible knowl-

edge bases correctly as it is expected that the knowledge base of the expert should more

accurately represent MWL that that of the non-expert. The preferred extension of the

knowledge base of the expert performed better than the grounded extension. The pre-

ferred extension and the grounded extension of the non-expert were determined to be

equivalent by the software and so show the same results.

Grounded Extension Preferred Extension
Expert 0.3362 0.3414

Non-Expert 0.2046 0.2046
TABLE 5.3: Concurrent Validity - Pearson Correlation with Time

5.1.4 Convergent Validity

In order to determine how well the constructs actually modeled MWL the convergent

validity of these measures was determined. The convergent validity was determined

by computing the correlation of each measure with existing measures of MWL. These

existing measures are the NASA Task Load Index and the Workload Profile.
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It can be seen that the expert’s knowledge base correlates strongly with the other mea-

sures for MWL (table 5.4). There is a moderate correlation between other measures of

MWL and and the non-expert’s knowledge base. This strong correlation reinforces the

belief that defeasible reasoning can accurately model a construct.

NASA WP
expertGroundedExt 0.7233711 0.8593995

expertPref1 0.7247067 0.8499664
non-expertGroundedExt 0.5518035 0.5648483

non-expertPref1 0.5518035 0.5648483
TABLE 5.4: Pearson correlation of measures of MWL

5.2 Summary and Final Recommendations

The results presented in this chapter were collected in order to test the designed hy-

potheses:

1. The defeasible measure of a construct created by an expert is better at predicting

objective performance values than machine learning approaches.

2. The construct measure of an expert will have a high concurrent validity with ob-

jective measures related to the construct.

3. The construct measure of an expert will have a high convergent validity with

existing measures for the construct.

5.2.1 First Hypothesis

The first hypothesis was examined by comparing the capacity of the techniques to make

predictions of two objective values: task time and task ID.

In the case of task time, the knowledge base of the expert proved to be the best for pre-

diction. This supports the hypothesis. On the other hand the knowledge based approach

performed worse for the prediction of task membership. These contradictory results
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require further investigation. The time prediction experiment should be further refined

by including a greater number of knowledge bases and learners. A more statistically

valid comparison of the task ID and MWL value could be performed, for example by

examining the distribution of MWL values with respect to the task ID.

As the expert and non-expert knowledge bases perform similarly, it is difficult to tell

why the approaches perform the way they do. It is possible that as regressions are

performed, the use of one independent variable is more useful than using many. Future

work might include a comparison between knowledge bases that use intentionally bad

premises to model MWL and expert ones.

5.2.2 Second Hypothesis

The second hypothesis was examined by determining the concurrent validity of the

measures of mental workload with time, an objective performance measure. It was

found that the knowledge base of the expert had a statistically significant correlation

with time, however, it was not a very strong one. This can be explained by considering

the construct of MWL as a defeasible phenomenon. The time spent on a task could be

high, however, the participant may not be very motivated or may be distracted. In this

case the MWL would in fact be low. A short coming of machine learning is highlighted

here. If we do not believe time to accurately model MWL in all cases we must create a

new model. This would require an expert to apply labels to the data in a time consuming

procedure.

5.2.3 Third Hypothesis

The third hypothesis was examined by determining the convergent validity of the mea-

sures of MWL with other existing measures of MWL: NASA-TLX and Workload Pro-

file. It was found that the construct measure developed by the expert had a high con-

vergent validity with existing measures of MWL. It was also found that the construct

measure of the expert had a higher convergent validity than that of a non-expert. This



Chapter 5. Evaluation of Results and Discussion 86

reinforces our belief that the defeasible modeling of the construct is working effectively.

Again, it should be pointed out that this modeling is not possible in supervised machine

learning without applying labels to the data. An underlying flaw in this approach is that

it is assumed that the existing measures correctly model the construct. These measures

may be proven invalid in the future and so if such a system were to be adopted it is im-

portant to consider this. The accuracy of the diagnoses made by the knowledge based

system are entirely influenced by the knowledge used. The system cannot automatically

detect that the mappings from premises to conclusions are incorrect. On the other hand,

it is hoped that through using the system and obtaining visual feedback a user might

improve their understanding in their area of expertise.

5.2.4 Recommendations

These finding support the case for the implementation of defeasible reasoning as an

alternative to learning based approaches.

The main advantage of learning based systems is that the learning is automatic. If

given enough data and enough computing power machine learning can tackle many

problems well. However, the available data sets are often not comprehensive enough

or representative of the wider picture. This can result in models that are too localised

and unable to predict exceptional cases. Data often must be cleaned and labeled, a time

consuming and expensive process. Knowledge based approaches offer and alternative

to this. The results of the experiments suggest that knowledge based approaches offer a

viable alternative for prediction. While the time to input a knowledge base is non-trivial,

it is less than the time required for labeling in many cases.

One of the shortcomings of using convergent validity for assessment is that the exist-

ing measures of the construct must also model the construct accurately. This means

that while in this particular instance we have shown a strong concurrent validity with

existing constructs, this may not always be the case. In order to further verify that the

system is working as intended more experiments need to be performed with a wider

variety of knowledge bases and data sets. If it is then verified that the system works as
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intended it may then be used to develop alternative measures for constructs that deviate

from previous measures.

What has not been examined is the role that the system feedback could play in im-

proving an expert’s understanding. the machine learning techniques typically represent

their findings as numeric and mathematical models. In the DR system it is possible to

represent these visually. Comparing these representations and how helpful they are in

assisting an expert could be the subject of future work.



Chapter 6

Conclusions and Future Work

This chapter revisits the aims of the projects. The key results of the research are sum-

marised and their significance to answering the research question is discussed. The

contribution of the research is made clear. Finally, areas for future research are out-

lined.

6.1 Problem Definition and Research Overview

The central motive of this project is to compare and contrast machine learning with an

implementation of defeasible reasoning. This research was motivated by a lack of com-

parison between knowledge based approaches and learning based approaches. Specifi-

cally, the project examined the ability of the two techniques to measure a construct; in

this case mental workload. Constructs by their nature are abstract and difficult to mea-

sure, so evaluating the performance of the techniques empirically is also a challenge. In

order to determine that the techniques performed well two measures were taken which

are widely used to assess the accuracy of measures; concurrent validity and convergent

validity. Neither of these measures can conclusively tell us that the results are correct;

they can only suggest to us that we are on the right path.

88
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6.2 Experimentation, Evaluation and Limitations

Although there was a limited amount of data to train and evaluate the techniques with,

the results from the experiment can still provide us with some insight into the question

posed at the start of the project. A core finding of this thesis is that supervised machine

learning techniques are limited to learning to make predictions based on labeled train-

ing data. The only way to predict construct measures is to choose a field in the data

and decide that this accurately measures the construct we are interested in. In the ex-

periment, it was decided that MWL could be modeled using an objective performance

measure, time. This approach was flawed, as it was shown that time had a poor conver-

gent validity as a measure for MWL. From a practical point of view, this would suggest

that if machine learning is to be used in an application to predict a construct, the data

should be labeled or a column with a high convergent validity with other measures of

the construct should be used.

The convergent validity of the experts knowledge base was very high with respect to

an existing measure of MWL. The non-expert’s knowledge base had a high convergent

validity with the existing measure of MWL as well, however, it was not nearly as strong

as the expert’s. This suggests that the implementation was providing a good represen-

tation of the construct and demonstrates the strength of defeasible reasoning for use in

this situation.

The concurrent validity of the approaches was measured by their ability to predict an

objective performance measure, time, and another objective value, task membership.

It was believed that MWL would vary consistently across tasks as some tasks were

designed to be more difficult than others. Predictions of task time made based on the

MWL values computed from the expert’s knowledge base were better than those of

the amature and all but one machine learning approach. Over all, linear regression

performed best at predicting task time. Predictions of task membership based on values

for MWL from the knowledge based approach were found to be inaccurate. In this case

logistic regression and naive bayes performed best. It is possible that task membership

has a weak relationships with MWL. Unfortunately, as the task IDs are discrete values

it is not possible to determine their convergent validity with other MWL measures.
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The performance of machine learning was likely hindered significantly by the limited

amount of data available for training. It would be interesting to perform the experiments

again with a larger data set. This highlights another strength of the defeasible reasoning

approach, no training based on data is required. It is noted that the ability to verify a

knowledge base against a data set is useful in the implementation of such a system as

in this project. This requires a significantly smaller data set than that required to train

a machine learning model. One criticism of knowledge based approaches is that they

allow predictions to be made based on anecdotal evidence and not hard data. This is

alleviated somewhat by the verification step in our approach.

It was noted that this implementation of defeasible reasoning was particularly slow;

implementation reasons for this have been identified. This approach may not be ready

for real world implementation today, however, a hybrid approach using AT for data set

labeling could be adopted as outlined in Appendix B. One of the main culprits of perfor-

mance issues was the Dung-o-matic inference engine. It has been noted that other faster

implementations exist but were not ready or available for integration in this project.

This highlights a greater need within this argumentation theory community for an open

source implementation of a library for computing argument semantics. This sentiment

is shared by other authors who’s work has been highlighted in the literature review.

The implementation of defeasible reasoning used in this project is (to my knowledge)

the first implementation to adopt a graphical diagramming approach that is also used

for computation of results. This has several possible advantages that could be investi-

gated as the subject of future research. An expert could be trained in using the tool to

elicit their knowledge base graphically which is likely more intuitive than inputting their

knowledge base using some domain specific language. It is possible that in a similar

fashion to the findings of Twardy (2004), experts could improve their critical reason-

ing around their domain through interaction with the tool. It is also likely that through

visualisation the comparison of knowledge bases will be made easier.
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6.3 Contributions to the body of knowledge

The contributions of this work are outlined as follows:

• This project has highlighted a shortcoming of machine learning, the measurement

of constructs, that can be better accomplished using a DR based approach.

• A key strength of argumentation theory over machine learning has been high-

lighted; that AT can allow experts to develop and evaluate constructs in an intu-

itive way.

• The project provides a generalisable implementation of defeasible reasoning that

is user friendly. It is the first implementation (to my knowledge) that integrates

an argument diagramming approach with the computation of results.

• This implementation and its design can provide guidance to engineers and aca-

demics that seek to integrate these approaches into applications or their research.

6.4 Future Work and Research

• In order to provide greater insight into the problem at hand the experiment could

be carried out again with larger data sets across using different constructs.

• Further steps should be taken to optimised the DR implementation, including

possible research into the efficient computation of argument semantics.

• This project focused exclusively on supervised machine learning. An exploration

of construct representation with unsupervised machine learning might provide

new insights that have been ignored in this research.

• The application developed in this project could itself be the subject of further

research. The usability of the interface could be examined and whether it provides

advantages in the elicitation of knowledge bases. In a similar manner to the work

conducted by Twardy (2004) it could be interesting to examine whether or not
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an expert’s understanding of their domain was improved through the knowledge

elicitation process.



Appendix A

Details of Experiment Data

The data set has the following columns (shown with example rows):

expID user userID taskID time
4 imac1@gabi.com 1 8 251
5 imac1@gabi.com 1 1 186
6 imac2@gabi.com 2 8 114
7 imac2@gabi.com 2 1 26

TABLE A.1: Sample data: Columns 1 - 5

mental temporal psychological performance effort
4 1 1 50 50
50 62 5 67 20
30 30 30 68 34
28 31 20 99 28

TABLE A.2: Sample data: Columns 6 - 10

central response visual auditory spatial
32 14 3 23 34
13 7 15 3 21
33 67 60 60 20
44 59 56 30 53

TABLE A.3: Sample data: Columns 11 - 15
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verbal manual speech arousal bias
3 6 37 21 66
17 13 3 4 4
33 20 20 60 34
27 58 32 39 31

TABLE A.4: Sample data: Columns 16 - 20

intention knowledge parallelism skill difficulty
37 71 1 82 19.0
72 70 13 86 11.5
50 80 60 25 39.125
30 61 36 33 44.875

TABLE A.5: Sample data: Columns 20 - 25
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expID An ID that uniquely identifies the experiment instance
user The participant’s email address
userID The participant’s unique ID
taskID The experiment task ID undertaken by the participant
time The time taken by the participant to complete the task
mental The mental demand of the task, the answer to the question

“How much mental and perceptual activity was required
(e.g., thinking, deciding, calculating, remembering, look-
ing, searching, etc.)? Was the task easy (low mental de-
mand) or complex (high mental demand)?” on a scale from
0 - 100

temporal The temporal demand, the answer to the question “How
much time pressure did you feel due to the rate or pace at
which the tasks or task elements occurred? Was the pace
slow and leisurely (low temporal demand) or rapid and fran-
tic (high temporal demand)?” on a scale from 0 - 100

psychological The frustration felt while completing the task, the answer
to the question “How secure, gratified, content, relaxed and
complacent (low psychological stress) versus insecure, dis-
couraged, irritated, stressed and annoyed (high psychologi-
cal stress) did you feel during the task?”

performance The effort expended completing the task, the answer to the
question “How successful do you think you were in accom-
plishing the goal of the task? How satisfied were you with
your performance in accomplishing the goal?” on a scale
from 0 - 100

effort The effort expended completing the task, the answer to the
question “How much conscious mental effort or concentra-
tion was required? Was the task almost automatic (low ef-
fort) or it required total attention (high effort)?”on a scale
from 0 - 100

central The answer to the question “How much attention was re-
quired for activities like remembering, problem-solving,
decision-making and per- ceiving (eg. detecting, recogniz-
ing and identifying objects)?” on a scale from 0 - 100

response The answer to the question “How much attention was re-
quired for selecting the proper response channel and its ex-
ecution?(manual - key- board/mouse, or speech - voice)” on
a scale from 0 - 100

visual The effort expended completing the task, the answer to the
question “How much attention was required for executing
the task based on the information visually received (through
eyes)?” on a scale from 0 - 100

auditory The effort expended completing the task, the answer to
the question “How much attention was required for execut-
ing the task based on the information auditorily received
(ears)?” on a scale from 0 - 100

TABLE A.6: Explaination of data columns 1 - 14
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spatial Spatial workload, the answer to the question “How much
attention was required for spatial processing (spatially pay
attention around you)?” on a scale from 0 - 100

verbal Verbal workload, the answer to the question “How much
attention was required for verbal material (eg. reading or
processing linguistic material or listening to verbal conver-
sations)?” on a scale from 0 - 100

manual Manual effort, the answer to the question “How much at-
tention was required for manually respond to the task (eg.
keyboard/mouse usage)?” on a scale from 0 - 100

speech The effort expended through speech, the answer to the ques-
tion “How much attention was required for producing the
speech response(e.g. engaging in a conversation or talk or
answering questions)?” on a scale from 0 - 100

arousal The degree to which the participant was aroused, the answer
to the question “Were you aroused during the task? Were
you sleepy, tired (low arousal) or fully awake and activated
(high arousal)?” on a scale from 0 - 100

bias The context bias, “How often interruptions on the task oc-
curred? Were distractions (mobile, questions, noise, etc.)
not important (low context bias) or did they influence your
task (high context bias)?” on a scale from 0 - 100

intention The effort expended completing the task, the answer to the
question “Were you motivated to complete the task?” on a
scale from 0 - 100

knowledge The knowledge of the user before the experiment, the an-
swer to the question “How much experience do you have in
performing the task or similar tasks on the same website?”
on a scale from 0 - 100

parallelism The degree to which a user multi-tasked, the answer to the
question “Did you perform just this task (low parallelism) or
were you doing other parallel tasks (high parallelism) (eg.
multiple tabs/windows/programs)?” on a scale from 0 - 100

skill The effect of the participants skill level on completing the
task, the answer to the question “Did your skills have no
influence (low) or did they help to execute the task (high)?”
on a scale from 0 - 100

difficulty 1
8 ((solving/deciding) + (response) + (task/space) + (ver-
bal material) + (visual resources) + (auditory resources) +
(manual response) + (speech response))
TABLE A.7: Explaination of data columns 15 - 25
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