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Abstract 

 

The aim of this research was to characterise domestic electricity patterns of use on a 

diurnal, intra-daily and seasonal basis as a function of customer characteristics.  This 

was done in order to produce a library of representative electricity demand load profiles 

that are characteristic of how households consume electricity. In so doing, a 

household’s electricity demand can be completely characterised based solely on their 

individual customer characteristics. 

 

A number of different approaches were investigated as to their ability to characterise 

domestic electricity use.  A statistical regression approach was evaluated which had the 

advantage of identifying key dwelling, occupant and appliance characteristics that 

influence electricity use within the home.  An autoregressive Markov chain method was 

applied which proved to be effective at characterising the magnitude component to 

electricity use within the home but failed to adequately characterise the temporal 

properties sufficiently. Further time series techniques were investigated: Fourier 

transforms, Gaussian processes, Neural networks, Fuzzy logic, and Wavelets, with the 

former two being evaluated fully.  Each method provided disparate results but proved to 

be complimentary to each other in terms of their ability to characterise different patterns 

of electricity use.  Both approaches were able to sufficiently characterise the temporal 

characteristics satisfactorily, however, were unable to adequately associate customer 

characteristics to the load profile shape. 

 

Finally clustering based approaches such as: k-means, k-medoid and Self Organising 

Maps (SOM) were investigated.  SOM showed the greatest potential and when 
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combined with statistical and regression techniques proved to be an effective way to 

completely characterise electricity use within the home and their associated customer 

characteristics.  A library of domestic electricity demand load profiles representing 

common patterns of electricity use on a diurnal, intra-daily and seasonal basis within the 

home in Ireland and their associated household characteristics are then finally presented. 
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1 INTRODUCTION 

1.1 Overview 

Throughout the EU, there has been a move towards smarter electricity networks, where 

increased control over electricity generation and consumption has been achieved with 

improvements in new technologies such as Advanced Metering Infrastructure (AMI).  

Smart metering is part of this and is seen as a necessary component  to achieve EU 

energy policy goals by the year 2020: to cut greenhouse gas emissions by 20%, to 

improve energy efficiency by 20% and for 20% of EU energy demand to come from 

renewable energy resources [1].   

 

Advances in metering, data management and information services as well as the 

regulatory environment over the past decade has meant that smart metering programmes 

are more prolific of late, especially for the residential sector [2].  These advances, in 

combination with the mandate for European countries to collectively meet EU 20/20/20 

targets has encouraged interest in the area, with policy makers and energy suppliers 

willing to support smart metering programmes [3].  As a result, a wealth of new 

information now exists giving detailed electricity consumption data for large sample 

sizes in the residential sector [4]. 

 

Also, advances in generation and storage technologies such as microgeneration and 

electric vehicles has meant new opportunities now exist for changing how energy is 

produced and consumed within the home.  However, to assess the impact of such 

generation and storage technologies a detailed understating of how energy is used in the 

home is necessary. 
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In July 2009, the Commission for Energy Regulation (CER), in collaboration with the 

largest Irish electricity supplier – Electric Ireland (formally Electricity Supply Board) - 

commenced a smart metering trial for the residential sector and small-to-medium 

enterprises [5].  The trial was conducted between 2009 and 2010 and consisted of 

installing smart meters in over 5,000 residential dwellings in Ireland.  Electricity 

demand at half hourly intervals as well as information on dwelling and occupant 

characteristics for a representative sample of dwellings in Ireland was recorded [5].   

 

The dataset was kindly provided to the author for this research by Electric Ireland.  

Subsequently, it has been made publically available from the Irish Social Science Data 

Archive (ISSDA) [6].  The collection of such a detailed amount of data in the residential 

sector for such a large sample size, offers a unique opportunity to investigate the 

manner with which electricity is consumed in the home and the significant factors 

behind its use.   

 

1.2 Problem Definition 

Electricity is a unique form of energy such that its supply and use need to occur at the 

same time.  As a result, a large amount of research has been focussed on characterising 

and forecasting electrical demand at a system demand level, in order to balance supply 

and demand [7].  Various mathematical techniques have been used to do this, each with 

their own strengths and weaknesses [8][9].  Recently, the availability of detailed 

electricity consumption for the domestic sector also means that it is now possible to 

apply these techniques to characterise individual dwelling electricity demand [6]. 
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However, patterns of electricity use at a system demand level and at an individual 

dwelling level are very different.  Figure 1.1 shows a typical system demand load 

profile for the Irish Transmission System Operator (TSO), Eirgrid, on the 1st July 2009 

over a twenty four hour period [10].  The figure shows a smooth profile shape with 

relatively small amount of electricity consumption over the night time, a clearly defined 

peak in the morning time and a smaller defined peak in the evening time.  Although not 

shown below, the profile shape changes slightly for different days of the week and over 

the course of the year due to fluctuating working patterns and seasonality respectively. 

 

 

Figure 1.1:  Daily electricity system demand load profile across a 24hr period on 1st 

July 2009 [10] 

 

The system demand load profile shown in Figure 1.1 is classed as a diversified load.  

What this means is that as each individual user connected to the grid consumes 

electricity at different times of the day, the combined effect of a large number of 

households is in fact an averaging process.  In contrast, Figure 1.2 shows a distinctly 

different pattern of electricity use from the smart metering dataset for a single random 
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dwelling on the same day of the year [6].  The profile shows a peak in the late morning 

around 10am which lasts until 4pm in the evening and a later peak at 10.30pm that 

night.  This pattern of electricity use across the day is very different to that of the 

system demand load profile, where a more sporadic use is apparent rather than a gradual 

smooth profile shape as one would anticipate. 

 

Figure 1.2:  Daily electricity demand load profile for an individual dwelling across a 

24hr period on 1st July 2009 [6] 

 

Figure 1.3 shows a standard load profile issued by the Retail Market Design Service 

(RMDS) for the Irish domestic electricity market on the same day as above [11].  

Standard domestic load profiles are used for the purposes of settlement between 

suppliers in the electricity market.  They are normalised, with the summation of each 

interval across a day (96 intervals of fifteen minute periods) and for each day of the year 

summing to one.  The methodology used to characterise the profiles is based on a 

regression on various parameters across a representative sample of domestic customers 

[12]. 
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Figure 1.3:  Electricity standard load profile for urban domestic across a 24hr period on 

1st July 2009 [11] 

 

Domestic standard load profiles, like that shown in Figure 1.3, reflect average electricity 

consumption for all households across a 24 hour period.  They can be considered to be 

deterministic in nature and can be in part explained by three key events.  Firstly, very 

little electricity is used over the night time period, a result of little or no activity within 

the household while occupants are sleeping.  Secondly, there is an increase in electricity 

demand in the morning time as household occupants awaken and start to use electrical 

appliances.  Finally, as people come home from work and start to cook the dinner there 

is a further increase in electricity demand before dropping off as occupants return to 

bed.  This is characteristic of how individual households on average consume electricity 

across the day. 

 

However, in practice electricity is consumed far more stochastically across a 24 hour 

period as was shown in Figure 1.2.  There are similar characteristic deterministic 

patterns to that of the standard load profile, but these often change on a daily basis and 
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between households.  In this manner, a domestic electricity demand load profile can be 

thought of as a combination of both deterministic and stochastic processes.  Therefore, 

it is apparent that the standard load profiles used by electricity suppliers to characterise 

domestic households is not an accurate reflection of how individual dwellings consume 

electricity and merely reflects a highly averaged usage pattern for all customers more in 

common with that of a system demand load profile shown in Figure 1.1. 

 

As discussed, typical domestic electricity load profiles are far more variable than that 

shown in Figure 1.3 and can vary greatly in the time (on a day to day basis) and space 

domains (between customers).  Figure 1.4 shows a single random household from the 

dataset [6] over a weekly period from 01st – 07th July 2009.  On a daily basis, the profile 

shape can change significantly from one day to the next in terms of the magnitude of 

electricity demand and the time at which it is used. 

 

 

Figure 1.4:  Daily electricity load profiles for a single randomly chosen household over 

a weekly period showing intra-daily variations [6] 
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Similarly, the profile shape can change significantly between households.  Figure 1.5 

shows nine different customer profiles from the dataset at random for the 1st July 2009 

[6].  The figure shows how the profile can change considerably between households in 

both magnitude and Time of Use (ToU) of electricity demand.  

 

Figure 1.5:  Daily electricity load profiles for nine randomly chosen households, 

illustrating variation between households [6] 

 

A seasonality component also exists within a domestic electricity demand load profile, 

mainly as a result of changes in external temperature and daylight hours for heating 

(albeit small in Ireland due to limited penetration of electric heating – see Figure 3.5) 

and lighting homes respectively.  This trend is shown in Figure 1.6 where half hourly 

periods for a random individual household from the dataset [6] are plotted across the 

year (01st July 2009 to 30th June 2010).  When a trend line (quadratic polynomial 

function) is fitted to the data it shows an increase in electricity demand during the 

winter period of approximately 200 Watts compared to the summer time.  Figure 1.6 

also shows a period of approximately two weeks in April where electricity demand 
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decreases to near zero.  This period is very different to any other time of the year and 

most probably identifies a time when the dwelling was unoccupied.  

 

Figure 1.6:  Electricity demand load profile for a single randomly chosen household 

over a yearly period [6] 

 

Therefore, in order to characterise individual domestic electricity demand load profiles 

effectively an approach needs to consider the following key factors: 

 

o diurnal variations in electricity demand; 

o intra-daily variations in electricity demand (i.e. day of the week); 

o seasonal electricity demand effects ; and 

o electricity demand variations between households 
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1.3 Data Structure 

In order to identify methods to characterise domestic electricity load profiles it is 

important to first define the data structure.  Figure 1.7 shows how electricity demand 

can be broadly categorised into four groups based on the period of data collection and 

the level at which it is collected.  The x-axis indicates the time interval at which 

electricity demand is collected (i.e. small time interval refers to ≤ 1 hour where as large 

time interval can refer to anywhere from one day to a year) and the y-axis indicates the 

level at which the data is collected (i.e. at an individual dwelling or at an aggregate 

system demand level).  

 

Figure 1.7:  Taxonomy of data structure relating to electricity demand load profiling 

 

For large time intervals, data collection for the domestic sector has historically relied 

upon manual meter readings taken every two months or more.  This is then often 

aggregated together and/or combined with other data sources to provide electricity 

consumption statistics at a national level for the sector.  Data collected at these time 
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intervals obviously does not allow for the level of characterisation discussed above.  

However, although detail is lost by collecting data in this manner, it provides a 

relatively straightforward method of determining the factors that influence electricity 

consumption in the home (such as dwelling and occupant characteristics) due to the 

aggregated nature of the demand. 

 

For smaller time intervals, studies involving metering individual households have 

usually been limited to small sample sizes due to the prohibitive cost of installing AMI 

[13].  This often results in electricity load profiles that are not representative and do not 

reflect common patterns of electricity use within the home.  In recent years, smart 

meters have become more prevalent in the residential sector, providing large amounts of 

data at intervals of less than one hour.  Historically, this period of data collection has 

been limited to other sectors such as commercial, industrial and at an electricity system 

demand level.  In particular, there is a significant amount of literature and 

characterisation approaches that have been applied at an electricity system demand level 

as will be shown in the next Chapter.  A large proportion of these methods have yet to 

be applied at an individual dwelling level.  However, it must be stressed that patterns of 

electricity use at a system demand level and at an individual dwelling level are very 

different as was shown in Figure 1.1 and Figure 1.2.   

 

1.4 Motivation 

In the past, characterisation of domestic electricity demand at small time intervals has 

been limited to small sample sizes and hence often cannot be considered to be 

representative [13][14]. However, this has changed in recent years with large smart 

metering programmes being rolled out in most European countries [3].  Conversely 
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where large samples sizes do exist, the approaches used to characterise domestic 

electricity demand often result in highly averaged load profiles, like that shown in 

Figure 1.3. 

 

Therefore there is a need for approaches to be able to characterise domestic electricity 

demand based on the following criteria: 

 

o describe household electricity demand on a diurnal, intra-daily and seasonal 

basis at small time intervals (i.e. at half-hourly time intervals or less); 

o be representative of the national housing stock and population for a country or 

region; 

o be characteristic of the way with which dwelling occupants consume electricity; 

and 

o can be linked to household characteristics by one or more variables (i.e. 

dwelling type, head of household age, etc) in order to describe the factors 

influencing electricity use across the day within the home 

 

The smart metering trial carried out by CER has provided the necessary data to carry 

out such a task.  However, gathering data for individual households at such small time 

intervals also produces its own difficulties.  Electricity suppliers are now being faced 

with a data tsunami where detailed information needs to be collected and stored 

efficiently.  In addition to this, methods of extracting useful information from the raw 

data need to be found in order to help condense and present it in a meaningful way, thus 

making full use of the richness of the data source.   



14 

This research presents new methods for characterising individual domestic electricity 

demand and provides a number of representative load profile groups based on patterns 

of electricity use and common dwelling and occupant characteristics.  A profile group 

can then be assigned to a particular household without any prior knowledge of their 

electricity consumption and solely based on their household characteristics.  The 

electricity load profile groups can then be used to investigate various scenarios, some of 

which are described below: 

 

1.4.1 Planning and Forecasting 

Over the last decade, electricity markets are becoming increasingly competitive, mainly 

due to the liberalisation of the sector across the EU.  As a result, new entrants are 

joining the market, eager to gain market share.  In order to compete in such an 

environment, utilities need to have a better understanding of their customers to gain a 

competitive advantage over other market participants.  In addition, detailed knowledge 

of their customer base will allow utilities to shape market strategies for their business 

and plan for future growth on their network.  

 

Understanding customer electricity consumption and how this relates to dwelling and 

occupant characteristics can result in more direct marketing strategies for a electricity 

suppliers.  For example, there are certain electricity customers that are more profitable 

than others and these can be targeted in order to maximise revenue. 
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1.4.2 New Technologies 

The introduction of new technologies such as micro-generation and electric vehicles 

onto European networks is beginning to gather pace, as most member states try to 

reduce greenhouse gas emissions in order to meet EU 20/20/20 targets.  In order to fully 

assess these from a technological, economic and environmental perspective a detailed 

understanding of individual customers demand is required.  This research provides the 

means to carry out this by presenting a number of electricity load profiles that are 

representative in the manner with which homeowners consume electricity and therefore 

can be used to fully assess the performance of these new technologies. 

 

1.4.3 Tariff Structure 

Currently, electricity prices for the residential sector are constant across the day and 

therefore do not accurately reflect the actual cost of electricity generation at different 

times of the day [15].  This means that there is no incentive for dwelling occupants to 

consume electricity at off peak times when the cost of generation is more efficient for 

the supplier.  Currently there are only four tariffs on offer in Ireland for the domestic 

sector, 24 hour and Nightsaver for both urban and rural customers [15].  A range of new 

pricing plans is expected in the future when a national roll out of smart meters occurs 

over the next 4 – 7 years.  This will enable electricity suppliers to offer ToU tariffs at a 

domestic level in order that the true cost of generation across the day can be reflected 

within the price.   

 

However, in order to build appropriate tariff structures knowledge of customers’ 

electricity demand is required.  Applying the profiles presented in this research will 
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enable new pricing plans to be developed that are appropriate to certain types of 

customer.  Designing new tariffs for domestic customers could potentially achieve 

savings for both the electricity supplier and the customer alike.  The customer will 

benefit by choosing an electricity tariff that is suited to their lifestyle while at the same 

time the supplier will be able to diversify their customer base.  This should allow 

electricity suppliers to purchase electricity more efficiently on the wholesale market by 

smoothing out demand and supply across the day. 

 

1.4.4 Environment and Sustainability 

Reducing Greenhouse gas emissions, of which Carbon Dioxide (CO2) is the largest 

contributor, is a driving force within EU energy policy [16].  As a result a number of 

different policies are being implemented throughout member states within Europe (e.g. 

micro generation, electric vehicles, demand side management) that are changing how 

electricity has traditionally been consumed in the home [17].  In order to fully assess the 

impact of such policies to offset national CO2 emissions a detailed understanding of 

domestic electricity consumption is required. 

 

1.5 Aims and Objectives 

Current approaches used to characterise domestic electricity consumption generally lead 

to a highly averaged load profile shape for all households like that shown in Figure 1.3 

which is not an accurate reflection of how individual households consume electricity 

across the day.  This research aims to characterise the different patterns of electricity 

use within the home and relate this to dwelling and household characteristics by: 
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o developing a methodology for characterising individual domestic electricity 

demand load profiles on a diurnal, intra-daily and seasonal basis; 

o identifying a number of different electricity demand load profiles that are 

representative of how electricity is consumed within the home in Ireland; 

o associate the electricity demand load profiles to dwelling and occupant 

characteristics so they can be used to test various scenarios such as those 

outlined in Section 1.4. 

 

A number of different approaches are presented in this research such as statistical, 

autoregressive (Markov chain), time series (Fourier Transforms and Gaussian 

Processes) and clustering (Neural network - Self Organising Maps).  Each method is 

applied to the dataset in hand and discussed in terms of its relative strengths and 

weaknesses.  A series of electricity demand load profiles are then presented which 

reflect common patterns of electricity use within the home that are representative of the 

domestic building stock in Ireland. 

 

1.6 Thesis Layout 

The thesis is composed of nine main components which are as follows: 

 

o Review of Literature (Chapter 2) 

o Description of the Smart Metering Dataset (Chapter 3) 

o Presentation of overall methodologies for domestic electricity load profile 

characterisation (Chapter 4) 
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o Application of statistical analysis and regression to electrical parameters for 

electricity load profile characterisation (Chapter 5) 

o Application of autoregressive - Markov chains for electricity load profile 

characterisation (Chapter 6) 

o Application of time series techniques (Fourier transforms and Gaussian 

processes) for electricity load profile characterisation (Chapter 7) 

o Application of clustering techniques (Self Organising Maps) for electricity load 

profile characterisation (Chapter 8) 

o Review of findings and recommendations (Chapter 9) 

 

Chapter 2 contains a description of the literature available in the area.  This chapter is 

split into four sections, detailing the different approaches to electricity load profile 

characterisation.  First of all, characterisation approaches that have either been applied 

at an aggregate level or over large time intervals to domestic electricity consumption are 

discussed. The second section then introduces approaches that have used data collected 

at an individual dwelling level and for small time intervals.  These mainly consist of 

engineering and statistical approaches that have been used to characterise domestic 

electricity consumption but traditionally have been limited to small sample sizes.  These 

two sections together form a large percentage of the literature in the area to date.  The 

next section discusses methods that have mainly been applied at an aggregate level to 

characterise electricity system demand at small time intervals, which mainly consist of 

time series approaches. Lastly, clustering methods to electricity load profile 
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characterisation are presented which have been applied at an individual level and for 

small time intervals but mostly in the commercial and industrial sectors. 

 

Chapter 3 provides a complete overview of the smart metering dataset used throughout 

the research.  The dataset is split into three main categories: dwelling characteristics, 

occupant characteristics and appliance characteristics. 

 

Chapter 4 gives a methodological overview of the how the approaches in the following 

chapters are applied.  It introduces four electrical parameters and a number of time 

series tests that are used throughout the research to characterise and validate each 

characterisation approach.  The chapter also describes the methods of regression which 

will be used to associate dwelling and occupant characteristics to electricity 

consumption in the home.  Finally the individual methodologies that will be applied in 

each chapter are presented. 

 

Chapter 5 presents a statistical and regression approach to characterising domestic 

electricity consumption.  Four electrical parameters described in Chapter 4: total 

electricity consumption, maximum demand, load factor and ToU of maximum 

electricity demand are used to parameterise the dataset.  These parameters are then 

linked to dwelling and occupant characteristics through multivariate regression. 

 

Chapter 6 describes an autoregressive approach to characterising domestic electricity 

demand load profiles.  A Markov chain process is presented and used to characterise 

electricity demand load profiles for four individual dwelling types chosen at random.  A 

number of statistical and time series tests are performed on the characterised profiles in 
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order to assess the accuracy of the characterisation process, particularly investigating 

the temporal properties. 

 

Chapter 7 discusses a number of time series techniques, more often applied to 

characterise electricity system demand.  In particular two techniques: Fourier transforms 

and Gaussian processes are used to characterise domestic electricity demand.  The same 

electrical parameters and statistical tests used in the preceding chapters are evaluated 

and used to compare the accuracy of the characterisation processes. 

 

Chapter 8 applies clustering methods to characterise individual households’ electricity 

demand.  A number of techniques are discussed such as: k-means, k-medoid and Self 

Organising Maps (SOM).  SOM showed the greatest potential for domestic electricity 

load profile characterisation and are therefore evaluated further.  A characterisation 

methodology is then applied to produce a series of representative electricity load profile 

groups for the domestic sector.  Each profile group is presented and shows common 

patterns of electricity use within the home across the day.  Finally a multi-nominal 

logistic regression is applied to each profile group in order to determine the dwelling 

and occupant characteristics that most likely describe each electricity load profile.  

Descriptive statistics are also presented in order to graphically present the results. 

 

Chapter 9 provides final conclusions for the research presented and further 

recommendations for future work in the area.   
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1.7 Contribution to Knowledge 

The contribution to knowledge for research in the area can be summarised as follows: 

 

o The characterisation of domestic electricity demand in terms of four key 

electrical parameters, which when combined with statistical and time series tests 

are also used for validation purposes throughout the research.   

o The first time application of various time series techniques such as Auto-

regression (Markov chain), Fourier transforms and Gaussian processes to 

characterise domestic electricity demand. 

o The application of statistical and probabilistic techniques to infer relationships 

between different patterns of electricity use within the home and dwelling, 

occupant and appliance characteristics. 

o Through the application of clustering algorithms and regression, a library of 

representative electricity demand load profiles were produced that reflect 

common patterns of electricity use within the home and their associated 

household characteristics.  In this way, a household and the manner with which 

they use electricity within the home can be identified based solely on their 

individual characteristics, without any prior knowledge as to how they may have 

consumed electricity in the past. 
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2 CHARACTERISING DOMESTIC ELECTRICITY 

DEMAND 

2.1 Introduction 

Over the past 5-10 years, electricity grids throughout the world have been going through 

a period of significant change.  Smart grids are changing the way electricity has 

traditionally been generated, supplied and consumed.  Part of the ‘smartening’ of 

electricity grid infrastructure, is the collection of large amounts of data that up until now 

had previously not existed.  Smart meters provide such information, which deliver near 

real time electricity demand for individual dwellings, as well as other valuable pieces of 

electrical data such as voltage levels, power quality, etc.   

 

However, up until recently, energy utilities relied on manual electricity readings for the 

most part, which varied in frequency anywhere from monthly to every six months.  This 

is a dramatic shift in the period of collection for domestic electricity consumption and 

this is reflected in the literature to date [18].  Combining this information with new and 

existing data sources which describe individual dwelling and occupant characteristics 

has meant that novel approaches to characterising domestic electricity demand patterns 

are now possible.  

 

In the past, much attention in the area has focussed on modelling domestic electricity 

demand [19][20][21].  However, modelling individual dwelling electricity demand is a 

complicated task, not least as it can in part be influenced by the physiological and 

behavioural decisions of the dwelling occupants [22].  The ability to predict electricity 
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demand in advance at an individual dwelling level is also questionable, especially when 

it is considered to be highly variable in nature.  However, despite this a number of 

approaches have been used to predict or simulate electricity demand in the home, 

mainly based on occupancy patterns and appliance holdings [23][24][25].  In contrast, 

electricity characterisation is a process which describes its use rather than attempting to 

predict its behaviour over time.  Characterisation explains the manner with which 

electricity is used in the home and relates this to dwelling, occupant and environmental 

characteristics.  In this way, a picture is built of a particular household and the manner 

with which they consume electricity.   

 

A number of characterisation approaches have been used in the past; however, much of 

the literature has been focussed on small sample sizes [20][14][26].  An averaging effect 

of the electricity load profile shape also occurs throughout much of the literature, a 

result of combining similar dwelling and occupant characteristics but who differ 

completely in the manner with which they consume electricity [13]. This research 

differs from previous work in the area as currently representative load profiles that 

reflect different patterns of electricity use within the home for a large sample of 

dwellings and which do not reflect an averaged profile shape do not exist.  In addition, 

by correlating dwelling, occupant and appliance characteristics to electricity use within 

the home means that a household’s electricity consumption profile can be completely 

identified based solely on their household characteristics.   
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2.2 Characterisation Techniques 

2.2.1 Statistical, regression and probabilistic techniques 

Statistical, regression and probabilistic approaches are particularly useful when 

comparing household characteristics against electricity consumption patterns.  Most 

approaches that choose this type of technique are based on aggregated or large time 

interval electricity demand [27][28].  ‘Top-down’ approaches take data collected at a 

high level such as demographics, housing statistics and Gross Domestic Product (GDP) 

to derive causal relationships between these and electricity consumption [29].  In 

contrast to this, ‘bottom up’ models use data collected at an individual dwelling level to 

determine casual relationships between household characteristics and electricity 

consumption [13].   

 

A general expression for multivariate linear regression model is described in Equation 

2.1 below [30].  A dependent variable (which in most cases throughout this thesis can 

be regarded as electricity consumption) is regressed against a set of explanatory 

variables to produce a series of coefficients where y(x) is the electricity consumption, 

X1, X2,…,Xn are the explanatory variables referring to dwelling, occupant, and appliance 

characteristics and β1, β2,…, βn are the regression coefficient values that explain the 

influence of each explanatory variable on y(x) and β0 is a constant. 

 

���� � �� � ���� � ���� � 	 � ���� (2.1) 
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These models give a good understanding of electricity consumption patterns but can be 

costly to implement due the amount of data collection required [27][28] which 

invariably leads to small sample sizes on occasions [13].  Often linear regression is used 

to determine the degree of correlation between just one explanatory variable [13] and 

electricity consumption as sometimes multicollinearity issues arise where similar 

variables are investigated together. 

 

2.2.2 Neural Networks 

Neural networks have historically been used to forecast electricity system demand [31], 

however, they have also been applied at a domestic level for large time intervals 

[32][33].  A mathematical expression for a single input neuron within a network is 

shown in Equation 2.2 below where three distinct functional operations are taking place 

[34].  First, the scalar input p is multiplied by the scalar weight w to form the product 

wp. Second, the weighted input wp is added to the scalar bias b to form the net input.  

Finally, the net input is passed through the transfer function f, which produces the scalar 

output a. The names given to these three processes are: the weight function, the net 

input function and the transfer function. 

 

 


 � ��� � �� (2.2) 

 

Although there are various different network architectures for neural networks, common 

networks consist of three layers: an input, a hidden and an output layer [32].  Their self 

learning capabilities can result in an accurate means of characterising electricity 

consumption within the home [19]. However, neural networks are often regarded as a 
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black box approach to characterisation, which also means that it may disregard the 

influence of important structural information (such as individual dwelling, occupant and 

appliance characteristics) on the output [7]. 

 

2.2.3 Engineering 

Engineering approaches can be considered to be a ‘bottom up’ approach to electricity 

characterisation.  Engineering methods use information such as appliance power ratings 

or end-use characteristics to build up a description of electricity consumption patterns 

within the home.  A series of statistical and mathematical functions are usually used to 

describe its use. One of the major strengths associated with such an approach is that it is 

the only methodology that can model electricity consumption without any historical 

information on electricity use [18].  However, engineering methods can be complex to 

implement and need to be validated [23]. 

 

Mathematical expressions differ considerably between one approach and the next as 

there is no generic structure.  However an example of an engineering method developed 

by Aydinalp and Ugursal [19] is presented in Equation 2.3 for illustration purposes. The 

authors take a Conditional Demand Analysis (CDA) approach which use inputs on 

appliance ownership and end-use to describe household electricity consumption. 

 

����,� � � ����,�,�
�
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where HECi,t is the energy consumption by household i in period t, UECi,j,t is end-use j 

unit energy consumption of household i in period t, n is the total number of appliance 

end-uses and sij is a binary indicator of household i’s ownership of appliance j. 

 

2.2.4 Fourier Transforms 

Fourier approaches have been used previous for load forecasting at a Transmission 

System Operator (TSO) level [35][36][37].  However, their application at a domestic 

level has been somewhat limited, mainly due to the poor availability of data [38].  A 

Fourier series is a representation of a time series signal in the frequency domain.  It is 

often used to model and characterise system demand as particular patterns exist on a 

daily, weekly and annual basis [39].  The time series is broken into its individual 

frequency components, where each signal is composed of a collection of sinusoids as 

shown in Equation 2.4 with Fourier coefficients defined in Equation 2.5 [40].  The 

individual coefficients; a0 representing a constant, ar and br, where (r=1,2,3…) 

correspond with the magnitude of each  sinusoid at a particular frequency which when 

all summed together represent the original time series signal.   
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As discussed, Fourier transforms are useful for characterising time series that show 

certain patterns of reoccurrence due to their representation of the signal in the frequency 

domain. However, whether these properties exist and can be characterised effectively at 

an individual dwelling level has yet to be determined. 

 

2.2.5 Gaussian Processes 

Gaussian processes have been used to forecast electricity system demand but to date 

have not been applied at a domestic level [41][8].  Using this technique, an electricity 

load profile can be fully characterised by fitting a series of peaks like that shown in 

Equation 2.6 [42]. 

 

� � � 
�.�

�	�
 $������� ���

 (2.6) 

 

where a is the amplitude, b is the centroid (location), c is related to the peak width, n is 

the number of peaks to fit.  In contrast to Neural networks, Gaussian processes provide 

a much simpler representation with only three moments required to represent each 

distribution for the load profile shape. 

  

2.2.6 Autoregression 

Autoregression (AR) is a time series approach that has often been applied to electricity 

system demand load forecasting but has not been directly applied at a domestic level 

before [39][43][9].  The AR process describes a time series yt as a linear function of 

previous elements and an error term εt as shown in Equation 2.7 [44].  Variable 
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coefficients Ai are calculated by regressing the time series onto itself where t is time, a 

is a constant and i is the time lag. 

 

�� � 
 � � (� .  �����
�

�	�
� )� (2.7) 

 

Box and Jenkins [45] developed a methodology that selects the most appropriate 

forecasting technique based on a combination of an Autoregression (AR) and a Moving 

Average (MA) process.  The developed method is called an Autoregressive Moving 

Average (ARMA) process.  Equation 2.8 shows the MA component where a is a 

constant, Bj are coefficient values and є is the white noise error terms [44]. 
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The ARMA process is described in Equation 2.9 which is a linear combination of 

Equations 2.7 and 2.8 [44]. 
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For the ARMA process to be stable it is necessary for the time series to be stationary 

[45].  For this reason Box and Jenkins introduced a differencing component into their 

methodology so as to remove any seasonality components.  The number of times the 

series is differentiated depends upon the extent of the seasonality component.  This type 
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of process is then referred to as an Autoregressive Integrated Moving Average 

(ARIMA) process. 

 

A variant of the autoregressive approach are Markov chains.  Markov chains have been 

used to forecast electricity system demand before [46].  They describe a stochastic 

process where the future value of a time series is calculated based on past probabilities 

of going from one discrete state to another.  A time series can be described by Equation 

2.10 as X(t), possessing discrete states space S={1,2,.,K} [47].  In general, for a given 

sequence of time points t1 < t2 … < tn-1 < tn, the conditional probabilities are: 

 

+�,����� � -��|���� � ��, … , ������ � ����/
� +�,����� � -��|������ � ���/ (2.10) 

 

The conditional probabilities +�,���� � -0|�� � �/ � +����, �� are called transition 
probabilities from state i to state j for all indices 0 ≤ s <t, with 1 ≤ i and j ≤ k [47].  

 

2.2.7 Fuzzy Logic 

Fuzzy logic approaches have been used to characterise electricity system demand 

[48][49] and are well suited to describing non-linear relationships [50].  Their 

application at a domestic level has not been done to date to the best of the authors 

knowledge.  A fuzzy set is described by Equation 2.11 below [48]. 

 

( � ,1�, 2����3|� 4 �/ (2.11) 
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where µA(x) is called the membership function of x in A.  The membership function 

denotes the degree that x belongs to A and is normally limited to values between 0 and 

1.  For instance a high value of µA(x) implies that it is very likely that x is a member of 

A. 

 

2.2.8 Wavelets 

Wavelets take a time series signal and decompose it into high and low frequency 

components.  Both components are characterised separately which has the added 

advantage over Fourier transforms in that the time series signal can be analysed at 

different resolutions.   

 

A continuous wavelet transform is represented in Equation 2.12 below [51]. 
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 9 !� (2.12) 

 

where f(t) is the original time series signal and 5* is the complex conjugate of the 
wavelet function defined by scale a and position b in Equation 2.12. 

 

2.2.9 Clustering 

Clustering has been used, by large electricity suppliers to group customers together 

which share similar electrical characteristics [52].  Its use at an individual dwelling level 

has been somewhat limited; the main focus to date being the commercial and industrial 

sectors to define particular customer groups [53][54].  There are numerous different 
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methods of clustering; however, usually they can be grouped under the following two 

headings: Hierarchical and Partitional [55]. 

 

Hierarchical Clustering 

Hierarchical clustering produces a set of nested clusters that can be visualised as a tree 

like structure such as a Dendogram shown in Figure 2.1 [56].  Either a top down 

(divisive) or a bottom up (agglomerative) approach to clustering the data can be taken.  

The advantage with this type of approach is that the number of clusters does not need to 

be defined, and the Dendogram can be cut at a particular height so as to define a specific 

number of clusters.  However, the disadvantages are that it is more susceptible to 

outliers within the data and has difficulty dealing with clusters of different sizes [57]. 

 

 

Figure 2.1:  Dendogram for hierarchical clustering [56] 

 

Hierarchical clustering uses a similarity matrix to define individual customer groups.  

Each customer is assigned to a particular cluster based on a linkage criteria and distance 

metric (shown in Figure 2.1 by the heights of the Dendogram) between itself and the 

similarity matrix.  It is an iterative process by which each individual cluster is 
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repeatedly merged with a larger one until all customers are represented by a single 

cluster.  Figure 2.1 shows the individual cluster groups on the x-axis and on the y-axis 

the distance at which the clusters merge. 

 

Equation 2.13 shows the equation for the Euclidean metric d [58] which is one of the 

most common forms of distance measurements between two points x and y used in 

clustering [59]. 

 

! � |� 8 �| � :�|�� 8 ��|�
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Partitional Clustering 

In contrast partitional clustering divides the data into a predefined number of non-

overlapping clusters.  There are various different types of partitional clustering methods, 

however, some of the more common approaches include: k-means, k-medoid and Self 

Organising Maps (SOM) [60]. The advantages with these types of techniques is that the 

clusters are predefined and do not overlap [61].  However, this is also a disadvantage as 

one has to decide upon the number of clusters before the process is started [59].   

 

K-means uses an iterative process that assigns customers into groups based on the 

distance between itself and a cluster centre.  Initially, cluster centres are chosen at 

random within the sample data set.  The distance (again usually Euclidian) is then 

calculated between the sample customer and the cluster’s centres.  The customer is then 

assigned to the cluster with the minimum distance to its centre.  The cluster centre is 

then re-calculated based on the addition of a new customer. 
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Equation 2.14 describes the k-means algorithm where given a set of observations (x1, 

x2, …, xn), where each observation is a d-dimensional real vector, k-means clustering 

aims to partition the n observations into k subsets (k ≤ n) S = {S1, S2, …, Sj} so as to 

minimize the within-cluster sum of squares and where µj is the geometric centroid of the 

data points in Sj in order to achieve a global minimum for J [62]. 
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K-medoid is similar to k-means except that each cluster is represented by one of its own 

points.  It is less susceptible to outliers within the data compared to K-means because 

peripheral cluster points do not affect the cluster centres but as a result has a high 

computation cost [59].   The algorithm most often applied with this type of technique is 

Partitioning Around Medoids (PAM).   

 

Self Organising Maps (SOM) or sometimes referred to as Kohonen maps are based on 

the principles of neural networks but can be considered to be a clustering technique in 

its own right [61].  Figure 2.2 shows the basic structure to a SOM [63]. 
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Figure 2.2:  Self Organising Map (SOM) structure [63] 

 

SOM apply a neural network process that uses unsupervised learning to divide the data.  

A rectangular or hexagonal lattice structure of nodes is usually used to segregate the 

data.  Each hexagonal node is defined by a weight vector which consists of a series of 

different dimensions depending on the input vector.  The mapping process is started by 

initialising weight vectors with random values at each node.  As the network progresses 

each input vector is compared with the weights of each node and the node with the 

greatest similarity, called the Best Matching Unit (BMU), is assigned that particular 

vector.  The weights are then adjusted at the BMU and neighbourhood nodes based on 

the input vector.  The process is repeated until all input vectors have been categorised 

into groups [64]. 

 

2.3 Application of Techniques to Demand Load Profiling 

This section describes the different approaches to characterising domestic electricity 

consumption patterns.  In the past, literature for the area has been divided in different 

ways.  Swan and Ugursal [18] separated the literature based on top-down and bottom-up 

approaches to modelling energy consumption within the home.  Top-down techniques 
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were divided into econometric and technological categories.  Bottom-up approaches 

were divided into two categories: statistical and engineering.  These two categories were 

further sub-dived into: regression, Conditional Demand Analysis (CDA) and neural 

network for statistical techniques, and population distribution, archtype and sample for 

engineering methods.   

 

Time series approaches have mainly been applied to electricity system demand load 

forecasting and Alfares and Nazeeruddin [31] divide the literature into nine different 

categories:  regression, exponential smoothing, iterative reweighted least-squares, 

adaptive load forecasting, autoregressive, fuzzy logic, neural networks and knowledge-

based expert systems.    

 

Based on the data structure presented earlier in Figure 1.7, the literature can be 

categorised into the following subsections 2.3.1 – 2.3.4: 

 

o The first section deals with electricity consumption collected at an aggregate 

level or over large time intervals.  These approaches have been used extensively 

in the past and are explained in detail in Section 2.3.1.  These studies tend to 

pre-date smart metering programmes where more detailed information has 

become available. 

o The second section describes approaches that use data collected at an individual 

dwelling level and for small time intervals.  They mainly consist of engineering 

and statistical approaches which have been used to characterise electricity 

demand across the day but in the most part have been limited to small sample 

sizes as will be shown in Section 2.3.2. 
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o The third section describes methods that have mainly been applied at an 

aggregate level to characterise electricity system demand for small time 

intervals.  These mainly consist of time series approaches which have mostly 

been applied at an electricity system demand level which will be shown in 

Section 2.3.3.  However, with the introduction of smart meters and the 

availability of data at the same time resolution for the domestic sector as that at a 

system demand level, these approaches can now be applied to characterise 

individual dwellings.   

o Finally, the last section describes clustering based approaches to load profile 

characterisation.  These are applied at an individual level and for small time 

intervals.  However, to date these methods have mainly been applied to non-

residential electricity data such as commercial and industrial as will be shown in 

Section 2.3.4. 

 

These methods and where they relate to the data structure presented earlier are shown in 

Figure 2.3 below.  The decision to categorise the literature in this manner was done due 

to the overlap between different approaches but also due to wealth of literature available 

at a system demand level that can now be applied to an individual dwelling. 
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Figure 2.3:  Taxonomy of characterisation approaches for electricity load profiling 

 

2.3.1 Large time interval characterisation approaches 

In the past, data has not been available at adequate sample sizes or at sufficiently high 

time resolution to enable detailed characterisation of domestic electricity demand.  For 

that reason, a large number of methods used to characterise domestic electricity demand 

were based on what could be considered aggregate or large time interval demand 

approaches.  Methods based on this approach tend to be easier to characterise in terms 

of dwelling and occupant characteristics, a result of a larger deterministic component 

caused by the averaging of the electrical demand over a period of time for each 

household. 

 

A commonly used method to describe domestic electricity consumption in this manner 

is regression.  Using regression in this manner also provides a method of determining 
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the household characteristics that have a significant influence over electricity 

consumption within the home.  O’Doherty et al. [27] used data from a National Survey 

of Housing Quality and applied a Papke-Wooldridge generalised linear regression 

model to infer a relationship between appliance ownership and household electricity 

consumption.  Their analysis showed explanatory variables that had a high significance 

with respect to electricity consumption such as: dwelling characteristics; location, value 

and dwelling type as well as occupant characteristics; income, age, period of residency, 

social class and tenure type.  Leahy and Lyons [28] also applied an ordinary linear least 

squares regression using data from the Irish Household Budget Survey.  Disposable 

income, household size, dwelling age and socio-economic group were among the 

variables that were shown to influence electricity consumption in the home.  Leahy et 

al. [65] extended their work and applied a similar regression methodology to the Irish 

smart metering dataset in order to examine the household characteristics that influence 

appliance ownership and use within Ireland.  Among the authors findings were that the 

number of people living within a household had a positive association with appliance 

ownership and use and that the highest earning households tended to own more 

appliances but did not necessarily use them more often.   

 

Baker and Rylatt [20] used regression to determine a relationship between household 

characteristics and annual electricity consumption for 148 dwellings in two major UK 

cities.  In particular the characteristics that showed the greatest significance with respect 

to electricity consumption within the home were: floor area, home working, number of 

televisions, personal computers, digital boxes, portable electric heaters, storage heaters 

and showers per week. 

 



42 

A variant of the regression approach is a technique called Conditional Demand Analysis 

(CDA).  CDA is a method by which total electricity consumption is disaggregated into 

separate components (e.g. lighting, cooking, refrigeration, etc) by knowing the 

appliance holdings and total consumed load within a dwelling.  A regression analysis is 

carried out on the data to generate a series of equations that when combined together 

represent total energy end-use.  A large sample size is generally required in order to 

conduct this form of analysis and produce accurate results. Parti and Parti [66] 

pioneered the method and used monthly electricity bills over a yearly period and 

appliance ownership figures and a number of demographic variables to disaggregate 

electricity demand into 16 different end-uses.  This methodology showed the high 

significance of appliance ownership with respect to electricity consumption patterns.   

 

Aydinalp et al. [32] applied a neural network to model electricity consumption for 

domestic appliances, lighting and space cooling in the home.  Aydinalp [33] also 

extended this work to develop neural network models for space and domestic hot-water 

heating.  In addition, Aydinalp [19] carried out a comparison of models: CDA, neural 

network and engineering approaches to modelling end-use energy consumption for the 

residential sector.  The authors found that CDA was equally as good a method as neural 

network and engineering approaches, however, it was less able to model the effect of 

socio-economic factors due to the limited number of variables the CDA method could 

accommodate.  Gabreyohannes [21] used a time series approach to model monthly 

domestic electricity consumption in Ethiopia.  The author applied a self-exciting 

threshold autoregressive (SETAR) approach and a smooth transition regression (STR) 

to model demand over a two year period of which the SETAR model compared better to 

a simple AR model.   
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2.3.2 Small time interval at an individual dwelling level (small 

sample size) 

For the most part, engineering approaches use data at less than or equal to an hourly 

time interval.  However, there is a trade off between the level of detail at which the time 

interval of electricity consumption is recorded and the ability to manage and analyse 

vast amounts of data for large sample sizes.  Research carried out by Wright and Firth 

[67] found that in certain circumstances, 30 minute time intervals is sufficient.  The 

authors investigated the effect of time averaging of electricity consumption for the 

purposes of modelling on-site generation for seven domestic dwellings.  Data was 

collected at time intervals of 1, 5, 15 and 30 minutes. The authors concluded that 30 

minute data is adequate when investigating the percentage export of on-site generation 

to the grid.  For import, results were less favourable with the authors suggesting 5 

minute intervals would be preferable.  However, the Irish Commission for Energy 

Regulation (CER) concluded that 30 minute data interval was adequate for electricity 

metering.  This was reinforced by the French decision to roll out smart metering 

nationwide at 30 minute intervals stating confidentiality of consumer behaviour as the 

reason [68] 

 

Yohanis el al. [13] applied a statistical approach to investigate patterns of electricity use 

in 27 representative dwellings in Northern Ireland.  Electricity load profiles were 

characterised based on dwelling type, floor area, number of occupants, number of 

bedrooms, tenure, occupant age and household income.  In particular, the authors found 

a significant relationship between domestic electricity consumption and floor area by 

using regression.  Firth el al. [14] also used a statistical approach to characterise 

electricity consumption in 72 domestic dwellings in the UK over a two year period.  
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The author categorised domestic appliances based on four groups according to their 

pattern of electricity use: continuous appliances, standby appliances, cold appliances 

and active appliances.  The focus of their research was to identify trends to explain 

changes in electricity consumption patterns over time.  Wood and Newborough [26] 

characterised domestic electricity consumption using descriptive statistics for 44 

households in the UK based on three categories: “predictable”, “moderately 

predictable” and “unpredictable”.  “Predictable loads” consisted of small cyclic loads 

occurring when a dwelling is unoccupied or all the occupants are asleep.   “Moderately 

predictable” related to the habitual behaviour of the occupants and “unpredictable” 

described the vast majority of electricity consumption within a dwelling. 

 

Hart and de Dear [69] investigated the influence of external temperature on household 

electricity demand in Australia.  Regression was used to establish the relationship 

between electricity use and degree days.  Their research concluded that weather 

variables did influence electricity consumption and that this tended to be stronger 

during periods of cooler weather.  Parker [70] also looked at the affect of external 

temperature on electricity consumption.  Fifteen minute electricity consumption data 

was collected from 204 residences in central Florida, USA.  A significant relationship 

was found by applying linear regression, between all electricity end-uses and external 

temperature.  However, it is important to note that both preceding studies presented by 

Hart and de Dear and Parker were carried out in hot climates where electricity is 

commonly used to heat and cool homes, something which is not replicated in more 

temperate climates such as the UK and Ireland.  Schick et al. [71] regressed household 

characteristics and weather variables onto hourly metered data in order to determine 

their influence on the load profile shape.  The analysis is broken up into two sections, 
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with the first regressing all variables onto the load profile.  Variables that had little or no 

influence over the load profile shape are disregarded and the analysis is run again.  The 

authors found this two stage process to be an effective method of modelling household 

electricity demand. 

 

Aigner et al. [72] furthered the CDA approach developed by Parti and Parti mentioned 

in the last section.  In this case, twenty-four regression equations were used to estimate 

electricity consumption for each hour of the day. Bartels et al. [73] developed a load 

forecasting model called DELMOD at half hourly intervals using CDA in New South 

Wales, Australia.  Half-hourly electricity readings for up to sixteen different end-uses 

were taken from a sample of 250 households over fifteen months.  DELMOD not only 

produced a number of average load profiles for each end-use but also estimated the 

influence of socio-demographic and weather related variables on its use. 

 

Cross and Gaunt [74] used CDA and appliance holdings to characterise electricity 

demand for small rural villages in South Africa.  CDA was used to disaggregate data 

collected form fifteen nearby villages where electricity was monitored and survey data 

collected.  The CDA curves, along with appliance holdings for new villages were then 

used to estimate hourly load curves for newly electrified villages.  Larsen and 

Nesbakken [75] used total electricity consumption, appliance holdings and household 

characteristics to develop a CDA approach based on data from a 1990 energy survey in 

Norway.  The authors compare results to an engineering model ERAD [76] and 

concluded that there are drawbacks to both methods but comment that if survey data 

was collected with CDA analysis in mind the results would be more accurate. 

Tiedemann [77] presented a CDA methodology to estimate residential energy end-use 
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and energy saving measures from data collected from an end-use study carried out in 

2004 in Canada.  A survey detailing all major end-uses for 791 customers were 

collected including billing information, housing characteristics, demographics and 

attitudes towards energy use.  Regression coefficients were calculated representing unit 

energy consumption (UEC) for all major residential end-uses.  A method to calculate 

the saturation rate is also presented which describes the average number of individual 

end-uses per household.  The authors then use the product of UEC and the saturation 

rate to determine the average electricity consumption for individual end-uses across all 

households. 

 

Yao and Steemers [23] developed a dynamic software engineering approach that 

produced load profiles based on occupancy patterns, appliance ownership and ratings.  

The authors categorised electricity consumption determinants based on two categories: 

behavioural and physical, both of which are strongly related to dwelling occupancy 

patterns.  Behavioural determinants relate to decisions made on an hourly, daily and 

weekly basis regarding the use of particular appliances.  Physical determinants relate to 

“fixed” variables that do not change often or at all with time such as dwelling size.  

Widen and Wackelgard [24] used an engineering method that used time-use data (i.e. 

occupant’s schedule of living activities) as well as appliance holdings, ratings and 

daylight distributions to produce electricity load profiles.  Three sets of Swedish time-

use data and energy measurements were used to model and validate the results.  The 

approach built upon previous research by the same authors but was performed at a 

higher time resolution [78].  Richardson et al. [25] developed occupancy and daily 

activity profiles based on time-use data and combined this with appliance profiles in 

order to characterise household electricity demand in the UK.  The measured and 
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generated electricity load profiles were compared based on a number of parameters 

including total electricity consumption on an annual, monthly and daily basis with small 

differences between the two.  Shimoda et al. [79] also used an engineering approach to 

characterise household electricity demand for different dwelling and occupant 

characteristics in Japan.  The authors showed that occupant’s time-use, external 

temperature, appliance efficiencies and dwelling thermal characteristics all significantly 

influenced the electricity consumption pattern across the day.  Capasso et al. [22] used 

homeowner’s occupancy patterns as well as appliance ownership, usage and ratings to 

characterise electricity consumption patterns for the home in Italy. The author also 

incorporated various socioeconomic, demographic, psychological and behavioural 

characteristics for the dwelling occupants in order to determine the effect on the load 

profile shape.  Walker and Pokoski [80] applied an engineering approach based on 

homeowner’s psychological decisions (mental and behavioural) to describe daily load 

electricity patterns in the USA.  A function was developed indicating if a person was 

available at home to use a particular appliance.  The model was compared against 

Connecticut Light and Power Company data for residences having similar family size 

and stock of appliances with comparable results. 

 

Jardine [81] used metered data and average appliance usage to produce electricity load 

profiles for one thousand homes.  The principal part of this analysis is the development 

of an occupancy model that is constructed from a sample of one hundred domestic 

electricity load profiles.  The occupancy model relies on the presence of non-baseload 

appliances to predict when an occupant is within the home.  The method then assumes 

electricity use as a function of three separate factors; number of appliances owned, 

average rated power of appliances and duration of time appliances are used.  Average 
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load profiles are produced based on the occupancy model and appliance ownership 

levels along with load duration curves for domestic appliances.  

 

Stokes [82] developed a high resolution domestic load profile method to investigate the 

impact of embedded generation on the low voltage distribution network.  The author 

used a number of layers to build load profiles at one minute time intervals.  Firstly, 

mean demands at half hourly time intervals were used which reflect an average load 

profile.  The second layer is then added which introduces diversity into the profile by 

introducing dwelling and occupant characteristics and well as other economic factors.  

Finally, appliance duty cycles, triggered at random intervals introduce a variable 

element to produce one minute electricity load profiles.  The author concludes that the 

profiles compare well with measured data, particularly when compared against derived 

parameters such as mean and peak electricity demand and load factor. 

 

Prudenzi [83] used a neuron nets based procedure to identify appliance pattern of use 

from fifteen minute interval electricity data.  The methodology uses data from nine 

domestic houses in Italy where total electricity consumption was recorded for large 

appliances, along with survey data indicating time-use for each appliance.  The 

methodology contains three separate stages: pre-processing stage, time-use 

identification stage and a post-processing stage.  The three stages are used to firstly 

analyse the load shape based on time of day, secondly to identify an appliance type to 

be used, and lastly to produce a load profile for a dwelling.  The approach becomes less 

accurate when a large number of appliances are used simultaneously. 
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2.3.3 Small time interval at an aggregated level 

Time series approaches have been extensively applied to characterise electricity system 

demand, similar to that shown in Figure 1.1.  However, their use at an individual 

dwelling level has been somewhat limited, mainly due to the historic lack of data at this 

level.  Based on the literature, the major time series approaches to electricity load 

profile characterisation can be grouped under the following headings: Fourier 

transforms, Neural networks, Gaussian processes, Autoregressive, Fuzzy logic, 

Wavelets, Multivariate regression and Probabilistic 

 

There is some overlap between time series approaches and other methods presented 

earlier.  However, the majority of techniques discussed in this section have been applied 

to datasets with time intervals of less than or equal to one hour. 

 

Fourier Transforms 

Fourier transforms have been applied extensively to characterise and forecast electricity 

system demand but have rarely been applied at an individual dwelling level before.  

Riddell and Manson [38] fitted polynomials and other mathematical functions to 

electricity demand load profiles before settling on a Fourier series to approximate the 

load profile shape.  The authors applied a fourth order Fourier series to characterise 

electricity load profiles over a twenty four hour period.  Although the data used in the 

analysis was taken from domestic households, the majority of it was collected at 

transformer level and hence in most cases represented anywhere between one to fifty 

households.  Moutter el al. [35] used a Fourier transform approach to forecast medium 

(weekly) to short term (hourly) electricity system demand load profiles at half hourly 

intervals over a yearly period in New Zealand.  Longer term forecasts over a year posed 
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a problem to the authors due to the time series being non-stationary.  Gonzalez-Romera 

et al. [37] used a hybrid approach to model electricity system demand at monthly 

intervals in Spain.  The authors applied a Fourier series to model the periodic behaviour 

of the time series whilst the seasonal trend was modelled with a neural network.  

Satisfactory results were achieved with the approach out performing a neural network 

and autoregressive integrated moving average (ARIMA) techniques using the same 

dataset. 

 

Neural Networks 

Neural networks have not been used to model individual dwelling electricity demand 

for small time intervals across the day but have been applied to forecast system demand.  

Chen et al. [84] applied a neural network for short term load prediction using inputs 

such as load, day type, temperature and electricity price in Ontario, Canada. A three 

layer feed forward neural network with back propagation was shown to be successful at 

modelling the highly non-linear relationship.  Zadeh and Masoumi [85] also used a 

neural network with back propagation to model aggregated residential electricity 

demand in Iran.  The authors used the previous year’s electricity prices and 

consumption data to forecast demand.  Ringwood et al. [7] also examined the use of 

neural networks to forecast electricity system demand.  In particular, the authors found 

that neural networks outperformed linear models for short to medium term time periods, 

with longer time periods better characterised by the latter. 

 

Gaussian Processes 

Singh et al. [86] applied a Gaussian process model to produce electricity load profiles 

for a generic distribution network in the UK.  The authors used a parametric estimation 
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technique known as Expectation Maximisation to obtain values for the mixture 

components (mean, variance and weight).  A Chi-square goodness of fit test was used to 

determine the accuracy of the fitted distribution function and the original time series.  

Leith et al. [41] applied a Gaussian process to forecast electricity system demand over a 

yearly period in Ireland.  The authors found that the Gaussian process performed better 

when compared against an integrated seasonal autoregressive approach and a basic 

structural model.  Lourenco and Santos [8] also used a Gaussian process to forecast 

short term electricity system demand in Portugal.  The authors used data collected over 

a three year period from three separate sub-stations representing non-residential, 

residential and services sector.   Satisfactory results were achieved for different time 

periods and load profiles. 

 

Autoregressive 

Autoregression has commonly been used to forecast electricity system demand.  The 

methods are often adjusted to improve the performance by adding additional 

mathematical functions but all rely on the same autoregressive principles.  Pappas et al 

[43] choose a simple ARMA process to model electricity system demand in Greece.  

The authors found it to be successful for fitting the data and that a multi-model 

partitioning filter was the best selection criteria to determine the model order.  Magnano 

and Boland [39] used a hybrid approach to forecast electricity system demand over a 

three year period in Australia.  The authors found that the model performed better if the 

stochastic and deterministic components were modelled separately.  The stochastic 

components were modelled using an ARMA process and the deterministic components 

with a Fourier series and polynomial functions.  Amaral et al [9] applied a smooth 

transition periodic autoregressive (STPAR) model to forecast short term electricity 
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system demand in Australia.  The authors compared STPAR with a simple 

autoregressive and a neural network approaches over the forecast horizon of a week, 

with the STPAR model performing best.  Ardakanian et al. [46] used a continuous time 

Markovian process to model home electricity consumption in Canada.  The authors 

divide the day into three different time periods representing on-peak (7am-11am and 

5pm-9pm), mid-peak (11am-5pm), off-peak (12am-7am and 9pm-12am).   Twelve 

different profiles were constructed based on the three different time periods and four 

different customer classes which relates to the size of the dwelling and the type of 

heating and cooling system used.  The authors found it to be a useful tool for 

transformer sizing for the electrical grid. 

 

Fuzzy Logic 

Hsu and Ho [48] applied a fuzzy logic process to forecast weather variables for a short 

term electricity system demand model in Taiwan.  The authors used regression to 

determine the correlation between temperature and peak and trough electricity demand.  

As temperature forecasts are often inaccurate an error term was introduced to the 

electricity forecast model equations.  The error term was modelled using a fuzzy logic 

process to take account of this uncertainty.  Mastorocostas et al. [49] also applied a 

fuzzy logic process to predict short term electricity system demand in Greece.  A 

number of fuzzy models were used to generate hourly loads for each day of the year.  In 

total 28 different models were used, one for each day type (i.e. Monday, Tuesday, etc.) 

and season of the year.  The model was compared against a neural network with similar 

results.  Mori and Kobayashi [50] proposed a fuzzy logic model for short term 

electricity system demand load forecasting in Japan.  Membership functions were 

optimally evaluated through a learning algorithm developed by the authors.  The authors 
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initially used two months data to train the model after which a single month’s electricity 

demand was forecasted. 

 

Wavelets 

Xu and Niimura [87] used wavelets and autoregression to model short term electricity 

prices in the USA.  Historical prices were decomposed by applying a wavelet transform 

to the time series. An autoregressive ARMA process was then applied to forecast 

wavelet coefficients for the next day.  The forecasted electricity price was obtained by 

applying the inverse wavelet transform.  Chen et al. [88] combine both wavelet and 

neural network methods for short term electricity system demand load forecasting in the 

USA.  The authors use a wavelet transform to decompose a similar day’s load into high 

and low frequency components.  The two components are then adjusted for weekday 

and weather variables and modelled by two separate neural networks before the two 

components are added back together.  Pahasa and Theera-Umpon [89] also used a 

wavelet transform to forecast short term electricity system demand in Thailand.  The 

authors first decomposed the time series into high and low frequency components and 

then used support vector machines, a classification technique, to forecast each 

component separately.  Each component is then summed together to determine the 

forecasted load.  Nguyen and Nabney [90] applied a wavelet transform for predicting 

electricity system demand and gas forward price one day in advance in the UK.  The 

authors showed that forecasting accuracy significantly improved when using wavelet 

transforms with a number of adaptive models (multi-layer perceptron, radial basis 

functions and linear regression). 
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Multivariate regression and probabilistic 

McSharry et al. [91] applied regression to forecast the magnitude of peak time 

electricity system demand on a daily basis in the Netherlands.  Variables used in the 

forecasting model were: weather variables (temperature and wind speed), luminosity, 

day of week and special event days such as Christmas. Yearly seasonality was modelled 

with a fourth order polynomial.  The UK [12] forecast residential electricity demand, 

mainly for the purposes of electricity settlement, by applying regression to a number of 

variables.  For each half hour time period regression coefficients are calculated based on 

variables such as temperature, sunset and day of the week.  A similar process is used in 

the Republic of Ireland to produce standard load profiles, as shown earlier in Figure 1.3, 

also for the purposes of electricity settlement.  

 

Heunis and Herman [92] used a probabilistic approach to simulate domestic electricity 

demand in South Africa.  The authors used a beta probability distribution function and 

applied a Monte Carlo simulation to predict electricity consumption for individual 

households.  In contrast Cagni et al. [93] applied a Gamma probability distribution 

function to characterise domestic electricity demand in Italy.  The authors applied a Chi-

square goodness of fit test to determine the most suitable distribution. Domestic 

electricity demand was then simulated for individual dwellings based on sampling the 

gamma probability distribution function.  Capasso et al. [94] defined probability 

distributions for individual events such as cooking within the home.  The data used to 

build probability distributions was taken from a customer survey where information on 

electrical appliances and use was recorded.  The events were then simulated over a 24 

hour period and the results compared against total electricity consumption for individual 

dwellings with reasonable accuracy.  Carpaneto and Chicco [95] developed a 
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probabilistic approach for characterising aggregated domestic electricity demand for a 

number of dwellings.  Probability distributions were assigned to time intervals for 

individual customers.  The evolution of mean and standard deviation for increasing 

numbers of customers was calculated and it was found that the gamma probability 

distribution fitted the aggregated domestic electricity demand best.  McQueen et al. [96] 

used Monte Carlo analysis to simulate individual domestic electricity demand at half 

hourly intervals using a gamma distribution.  The profiles were then diversified and 

used to predict maximum demand for a distribution network.  Similarly Jardini et al. 

[97] used mean and standard deviation from a Gaussian distribution to represent 

domestic electricity demand at each half hour interval.  The authors then generated 

average load profiles based on sampling the probability distribution functions.  Chen et 

al. [98] applied the same method as Jardini et al. to describe different customer groups 

based on quarter hourly electricity demand.  Individual domestic electricity demands 

were then integrated to derive a system demand load profile for the distribution system. 

 

A table summarising each of the time series approaches above is shown in Appendix C, 

outlining the advantages and disadvantages of each method when applied to electricity 

load profiling.  The table also indicates whether each method was applied at an 

aggregate or individual dwelling level. 

 

2.3.4 Small time interval at an individual level (large sample size) 

Clustering is a common technique used by electricity utilities to segment their customer 

base.  Chicco et al. [53] characterised customer’s electricity demand based on a set of 

indices representing their electrical behaviour throughout the day.  A number of daily 

and weekly indices were defined such as load factor, night time load (between 23:00 
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and 06:00) for weekday and weekend, lunch time load between the hours of 12:00 to 

14:00.  An automatic clustering algorithm using unsupervised learning was then used to 

segment customers into groups based on these indices.  Chicco et al. [99] then 

compared a number of common clustering techniques (modified follow the leader, k-

means, fuzzy k-means, two types of hierarchical and self organising maps) to divide 

non-residential customers into groups.  The authors found that hierarchical and 

modified follow the leader clustering approaches performed the best.  Verdú et al. [100] 

applied Self Organising Maps (SOM) and a set of indices similar to Chicco et al.[53] as 

well as some frequency based indices to characterise customer electrical demand 

throughout the day.  The author also included a further three indices into their analysis, 

particularly looking at electrical demand during daylight hours.  Figueiredo et al. [52] 

applied clustering and just three indices, load factor, night impact between the hours 

23:00 and 07:00, and lunch impact between 12:00 and 15:00 and used these to 

characterise a sample of 165 customers in Portugal.  Pitt [101] applies an adaptive load 

profiling methodology that uses various clustering algorithms to relate weather, time 

and customer characteristics to the load profile shape.  The author acknowledges the 

complications involved in clustering high dimensional data as well as the difficulties in 

dealing with heterogeneous data, where different customer’s electricity demand may 

vary dramatically on any given day. 

 

Gavrilas et al. [102] used a modified fuzzy SOM algorithm to produce nine typical 

electricity load profiles for commercial and residential data metered on the low voltage 

side of eleven substation transformers.  The authors highlighted the small but important 

differences between weekdays and weekends.  Tsekouras et al. [103] used a two stage 

methodology for classifying electricity customers.  In the first instance, typical load 
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diagrams for each customer are determined based on clustering.  Secondly, customers 

are clustered again based on their typical pattern of electricity use to group similar 

customers together.  This ensured representative classification of customers.  The 

authors compared methods k-means, SOM, fuzzy k-means and hierarchical clustering 

by using six different adequacy indicators.  Carpaneto et al. [104] used frequency based 

indices such as amplitude and phase of customer electricity demand rather than time 

domain data to characterise customers into groups.  Espinoza et al. [105] used a periodic 

autoregression and k-means clustering to develop a short term load forecasting model 

for 245 transformer sub-stations in Belgium.  The stationary properties were extracted 

from the autoregressive model, delivering individual daily load profiles for each 

transformer.  These were then clustered using k-means to reduce the number of profile 

classes down to eight in total.  Zhang et al. [106] investigates three methods k-mean, 

fuzzy k-means and SOM to segment large electricity consuming customers.  A stability 

index is used to evaluate the most appropriate clustering method and a priority index to 

rank the number of clusters.  Bidoki et al. [107] compared a number of clustering 

techniques for non-residential electricity customer classification.  The authors found 

that modified follow the leader performed best for identifying the most distinct clusters.  

However, if more compact clusters were required, weighted fuzzy average k-means was 

found to be a better performing method. 

 

2.4 Summary of Previous Work 

The literature was divided up into four sections based on the level of aggregation and 

time interval applied.  This approach was taken on account of the relatively recent 

widespread introduction of smart meters into domestic homes [3].  This has resulted in 

the availability of a large amount of data at small time intervals and for large sample 
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sizes such as that recorded by the smart metering trial in Ireland.  As a result, methods 

that have traditionally been applied to other sectors such as system demand load 

forecasting and clustering approaches for customer segmentation can now be applied to 

characterise domestic electricity consumption at small time intervals. 

 

Section 2.3.1 described methods that characterised electricity consumption patterns at 

large time intervals and used data that is often aggregated between customers.  These 

approaches are largely based on statistical and regression and have been used in the past 

to characterise domestic electricity consumption by engineers, economists and 

government officials for infrastructure planning and electricity load forecasting [21].  

One of the strengths with these methods, lies in their ability to assess the influence of 

characteristics on electricity consumption patterns [28].  This approach was taken in 

Chapter 5, where parameters were used to aggregate the data in the time domain.  

Characteristics relating to dwelling, occupants and appliances were investigated based 

on their influence with respect to these parameters describing electricity use within the 

home.  

 

Section 2.3.2 presented methods which have been applied most often at small time 

intervals for individual dwellings and mainly consist of engineering and statistical 

approaches.  These techniques represent a significant proportion of the literature to date 

for characterising electricity consumption in the domestic sector.  Engineering methods 

describe or model electricity demand as a function of variables such as occupancy or 

appliance holdings.  They are the only approach that does not require any information 

about electricity demand.  However, they need to be validated against data collected at 

individual dwelling level.  As a result it is often the case that these types of approaches 
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are carried out with small sample sizes [23].  Similarly statistical approaches used to 

characterise domestic electricity demand at this level are often limited to small sample 

sizes too [14][26][13].  This is a result of the difficulty with characterising many 

different patterns of electricity use and individual customer characteristics together at 

small time intervals.   

 

It was found from literature that occupancy patterns are one of the main variables used 

with engineering models [24][25].  Although this variable was recorded by the Irish 

smart metering trial dataset, it was not recorded at sufficient time resolution to enable 

daily load patterns to be produced and therefore an engineering approach was not 

pursued. Similarly, the amount of data available from the smart metering data set means 

that a statistical approach similar to that described in literature would have been difficult 

to implement without a method of reducing the data first.  In particular, Chapters 5 and 

8 provide methods for reducing the data before any such analysis is carried out.  

 

Section 2.3.3 discussed the next group of approaches, applied at small time intervals but 

mostly for aggregated loads such as system demand.  The availability of smart metering 

data at a similar time resolution to that recorded for system demand has meant that an 

opportunity exists to apply similar methods used to characterise system demand and 

apply them at an individual dwelling level.  These approaches mainly consist of time 

series methods.  The main challenge with these techniques is that they have most often 

been used to characterise system demand which varies much less frequently between 

half hour periods compared to individual domestic customers (as was identified in 

Figure 1.1 and Figure 1.2).  Chapter 7 provides an in depth discussion as to how these 
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approaches may be applied to the domestic sector with two techniques being identified 

as the most suitable.   

 

Finally, clustering approaches to characterising domestic electricity demand were 

presented in Section 2.3.4.  These methods have been used to characterise electricity 

demand, often in combination with the calculation of indices [53].  The methods are 

mostly applied to characterise small time intervals of electricity demand and can vary in 

sample sizes from less than a hundred [100] to more than five hundred [97].  Their 

ability to handle large data sets makes them a suitable choice for characterising 

domestic electricity demand in this instance.  However, similar to time series methods 

much of the literature to date in this area has focussed on other sectors such as industrial 

and commercial customers.  Chapter 8 specifically applies clustering techniques to 

characterise electricity consumption for the domestic sector.  

 

2.5 Conclusion 

The literature presented in this chapter provides a review of existing approaches to 

electricity load profile characterisation.   A gap in the literature exists mainly in terms of 

applying time series and clustering techniques to characterise electricity consumption at 

an individual dwelling level for small time intervals (≤1 hour).  Previous research in this 

area has focussed on sample sizes of less than 1,000 and mainly for other sectors such 

as commercial and industrial customers. However, the research presented here for the 

most part is focussed on applying methods capable of characterising large samples of 

domestic electricity customers (≥1,000) at small time intervals.   
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In addition, identifying common representative patterns of electricity use within the 

home has previously never existed before.  Most research to date has either focussed on 

providing highly averaged electricity load profiles for the sector using methods such as 

linear regression, or alternatively engineering and probabilistic techniques which often 

tend not to be representative of the general domestic building stock.  In addition, the 

ability to correlate electricity load profiles with dwelling, occupant and appliance 

characteristics, thus allowing individual households to be identified as to how they 

consume electricity, based solely on these characteristics has also never been done 

previously before. 
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3 OVERVIEW OF SMART METERING DATASET 

3.1 Introduction 

This chapter gives an overview of the smart metering dataset used throughout the 

research.  A full description of the dataset in terms of sample sizes and the associated 

dwelling, occupant and appliance characteristics recorded by the survey are presented.  

The software packages (Matlab and SPSS) used to carry out the analysis, along with a 

sample of the data, is also presented. 

 

3.2 Smart Metering Trial Overview 

Smart metering is entering a new phase with completion of pilot projects and plans for 

national rollouts in a number of EU countries over the next few years.  In particular 

countries such as Finland, France, Italy, Ireland, Netherlands, Norway, Spain, Sweden, 

UK and Malta have clear legal and regulatory frameworks for installing smart meters 

nationwide [3]. 

 

The smart metering pilot trial was carried out by the Commissioners for Energy 

Regulation (CER) and Electric Ireland and ended in December 2010.  The overall 

objective was to conduct a nationally representative smart metering trial in order to 

assess the costs and benefits of smart meters and to inform decisions relating to the full 

rollout of a national smart metering programme.  A series of reports were published 

presenting the results for customer behaviour trails, technology trials and a cost-benefit 

analysis for a nationwide rollout [108].  In July 2012, the CER decided to proceed with 

a national roll out to be completed by 2019 [68]. 
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In order for the smart metering trial to be representative at a national level 

approximately 5,000 residential dwellings were metered at half hourly intervals as well 

as recording a detailed list of socio-economic, demographic and dwelling characteristics 

for each individual household.  A full listing of the questions collected by the survey is 

shown in Appendix D.  A sample of the socio-economic data recorded in SPSS (the 

statistical package used in the research analysis) is shown in Figure 3.1. 

 

 

Figure 3.1:  Sample socio-economic data file in SPSS 

 

The collection of electricity consumption data from individual households commenced 

on the 1st July 2009, in order to ensure all infrastructure was operating effectively.  The 

trial officially started on the 1st January 2010 and lasted until the 31st December 2010.  

As a large amount of data was collected from individual households, Matlab was used 

to carry out any manipulation and analysis of the data.  A sample of the electricity 

consumption data recorded in Matlab is shown in Figure 3.2. The link between the 
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socio-economic SPSS file shown in Figure 3.1 and the electricity consumption Matlab 

file was maintained through a unique service ID (alias).   

 

 

Figure 3.2:  Sample electricity demand data file in Matlab 

 

The survey questionnaire was designed to capture the main components within a home 

in Ireland such as household demographics, dwelling and appliance characteristics and 

household investment in a number of energy efficiency initiatives.  Analysis of the 

participant responses by CER determined that the households were broadly 

representative of the national population [5]. 

 

During the smart metering trial period, households were subject to different tariffs and 

customer behaviour stimuli.  This was done in order to test the effectiveness of the 

different tariff structures and behavioural stimuli at reducing overall and peak time 

usage.  This is in contrast to the current offering of a single flat tariff rate to residential 

customers for electricity irrespective of the time of day at which it is consumed.   The 

type of behavioural stimuli subjected to individual customers includes: bi-monthly 
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detailed bill, monthly detailed bill, bi-monthly detailed bill + In-House Display (IHD), 

bi-monthly detailed bill + overall load reduction scheme.  The breakdown and sample 

size for each category is shown in Table 3.1. 

 

Table 3.1:  Smart Metering Sample Sizes per Tariff Structure and Stimuli [5] 

            

  

Bi-monthly 

detailed bill 

Monthly 

detailed bill 

Bi-monthly 

detailed bill + 

IHD 

Bi-monthly detailed 

bill + overall load 

reduction scheme Total 

Tariff A 342 342 342 342 1,368 

Tariff B 127 129 127 128 511 

Tariff C 342 342 343 343 1,370 

Tariff D 127 129 126 127 509 

Weekend -- -- -- -- 100 

Control Group -- -- -- -- 1,170 

Total 938 942 938 940 5,028 

 

 

The effect of different tariffs and behaviour stimuli is not part of this research and is 

covered under the published reports from the CER [5][109].  However, it is the total 

sample sizes and the periods of collection which are important for the purposes of the 

research presented here.  The final datasets used in the research are presented in Table 

3.2. 

 

Table 3.2:  Dataset I and Dataset II used throughout the research 

          

  

No. of 

customers Period of collection Array size 

Total  No. of 

entries 

Dataset I 3,941 

1st July - 31st December 

2009 3941 x 184 725,144 

Dataset II 509 

1st July 2009 - 30th June 

2010 509 x 365 185,785 
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In order to use the full sample size, any analysis would need to be carried out prior to 

households being subjected to tariffs or behaviour stimuli, as these would influence 

households’ behaviour enticing them to reduce overall usage and peak demand.  Dataset 

I describes the full sample for the period (1st July 2009 to 31st December 2009) prior to 

any tariffs or stimuli being imposed on the household.  Dataset I had to be trimmed in 

size from circa 4,928 households to just 3,941 in total.  This was done in order to 

remove erroneous data for households where communication with the meter was lost for 

a period of time.  In such instances, zero electricity consumption was recorded thus 

severely impacting individual households load profile.  

 

Dataset II described above in Table 3.2 contains the control group for the sample.  As 

these households were not subjected to any tariffs or behaviour stimuli over the period 

of the trial (1st July 2009 to 30th June 2010) the sub-sample could also be used in the 

analysis.  Similar to Dataset I, erroneous periods of non-communication with the meter 

were removed from the dataset.  This resulted in Dataset II being trimmed from 1,100 

to 509 households in total.  Dataset II had to be trimmed by a greater amount compared 

to Dataset I due to a doubling of the period of collection and hence there was a greater 

probability of a households’ smart meter malfunctioning or a data communications 

breakdown. 

 

Both datasets described Table 3.2 were used in the analysis (Dataset I was used in 

Chapters 5, 6, 8 and Dataset II was used in Chapter 7).  The reason for this can be 

explained as follows: 
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o access to data - as the research was carried out in parallel with the 

collection of data, Dataset I was the earliest available.  As a result of 

its early availability and large sample size this dataset was mostly used 

throughout the research  

o sample size - Dataset I is the larger of the two sample sizes by a factor 

of seven compared to Dataset II.  Dataset II is also fully representative 

at a national level on account of it being the control group.  The 

smaller, Dataset II, was used in Chapter 7 on account of the time series 

characterisation processes being computationally demanding for 

Dataset I.   

 

The following section presents tables and figures relating to the household 

characteristics.  The results presented are based on own calculations from Dataset I 

using the software application SPSS.  

 

3.3 Smart Metering Trial Dwelling Characteristics 

The dwelling characteristics collected by the smart metering dataset include the 

following: dwelling type, tenure, period of construction, floor area, number of 

bedrooms, space heating fuel type, water heating fuel type, cooking fuel type, Building 

Energy Rating (BER), percentage Compact Fluorescent Lights (CFL), percentage 

double glazing, presence/absence of hot water lagging jacket, attic insulation and 

external wall insulation.  The main dwelling attributes used throughout the research 

from the smart metering dataset [6] are presented in the following figures. 
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Figure 3.3 shows percentage penetration by dwelling type for the smart metering 

dataset.  Detached dwellings, which includes bungalows, make up the majority of the 

domestic building stock within Ireland.  Apartments only account for just 1.7% of the 

overall building stock within the smart metering survey.  This category of dwelling is 

significantly under represented when compared against national census data from 2011, 

where apartments accounted for approximately 10% of the overall building stock [110].  

This can be explained by the exclusion of short terms tenancies to reduce the probability 

of attrition from the smart metering trial, thus resulting in an under representation of 

apartment dwellings in the sample [5].  The remaining categories are broadly in line 

with that recorded by the 2011 census detached (42%), semi-detached (28%), terraced 

(17%) and apartment (10%) [110]. 

 

 

Figure 3.3:  Percentage penetration by dwelling type 

 

Figure 3.4 shows percentage penetration for dwelling number of bedrooms.  Three 

bedroom dwellings are the most common, representing approximately 45% of the 

domestic building stock.  The national census does not enquire as to the number of 

bedrooms (only the total number of rooms) within a dwelling.  As a result, the Irish 

National Survey of Housing Quality (NSHQ) which was carried out in 2001/02 was 

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

detached semi_detached terraced apartment

P
e

rc
e

n
ta

g
e

 p
e

n
e

tr
a

ti
o

n
 (

%
)

Dwelling type



71 

used for comparison purposes.  The number of one (1%) and two (8%) bedroom 

dwellings within the smart metering dataset compared to the NSHQ (3% and 11% 

respectively) shows these type of dwellings were slightly under represented [111].  

Similar to that discussed above this was most likely a result of an under representation 

of apartment dwellings due to exclusion of short term tenancies.  The remaining 

categories for three (46% and 45%), four (30% and 34%) and 5+ (9% and 11%) 

bedroom dwellings differed slightly between the smart metering and NSHQ datasets 

respectively. 

 

 

Figure 3.4:  Percentage penetration by dwelling number of bedrooms  

 

Figure 3.5 shows space heating fuel type penetration for the smart metering dataset.  A 

comparison could not be made with another independent dataset as the census does not 

record this data and the NSHQ categories were somewhat different making a direct 

comparison unattainable.  Oil, gas and solid fuel such as coal, peat or wood are the most 

common type of fuel source for space heating within Irish dwellings.  Electric heating 

penetration was quite small with less than 5% used for central heating systems such as 

storage heaters and plug in convector type heaters in each instance.  This is consistent 
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with figures published through the Household Budget Survey (HBS) with only 3% of 

households using electricity for their household central heating system [112]. 

 

 

Figure 3.5:  Percentage penetration by space heating fuel type 

 

Figure 3.6 shows water heating fuel type penetration for the smart metering dataset.  

The smart metering survey allowed households to choose multiple heating types, 

therefore resulting in an overall percentage penetration of greater than 100%.  This also 

explains the high percentage penetration for immersions making it the primary method 

for heating water in the home.  However, the NSHQ survey showed that although a high 

percentage of households have an immersion system installed in their home (76%), only 

10% of households use it as the primary method for heating water [111].  In contrast to 

the smart metering survey, the NSHQ reported that in 82% of households the main 

method of heating water was with a central heating system [111].  Although there 

appears to be a large discrepancy between both surveys, when oil and gas categories, 

which are primarily used in central heating systems in the home [112] are included as 

part of the central heating category the figures are comparable.  
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Figure 3.6:  Percentage penetration by water heating fuel type 

 

Figure 3.7 shows cooking fuel type penetration for the smart metering dataset.  

Electricity (70%) is by far the most common method used for cooking, with gas used in 

only about 20% of households. However, the manner with which the question was 

phrased within the smart metering survey did not allow for multiple fuels to be selected.  

Therefore respondents were only able to indicate which method they used most of the 

time, thus leading to a possible over estimation of electricity used for cooking.  In 

contrast to space heating and water heating figures presented above, data was not 

available from another Irish source to check the representatively for fuel type end use 

for cooking within the home.  Yao and Steemers [23] reported that electric ovens and 

hobs have a penetration of 56% and 37% in UK homes respectively.  SEAI report on 

figures from the Department of Business, Enterprise and Regulatory Reform (BERR) in 

the UK that just 6% of electricity end-use is used for cooking [112].  Further data is 

required in Ireland on cooking fuel type end use so that the results in Figure 3.7 can be 

verified. 
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Figure 3.7:  Percentage penetration by cooking fuel type 

 

3.4 Smart Metering Trial Occupant Characteristics 

The main occupant characteristics collected by the smart metering dataset include the 

following: gender, Head of Household (HoH) age, HoH employment status, social class, 

household composition, number of occupants, occupancy, HoH education level, 

household income. 

 

Figure 3.8 shows HoH age penetration for the smart metering dataset.  The number of 

age categories was reduced from six to three overall in order to have three larger groups 

representing young, middle aged and older HoH’s.  When compared against the NSHQ, 

the proportion of age group <36 years (12%) was slightly under represented in the smart 

metering trial (10%) [111].  This again is most likely related to the exclusion of short 

term tenancies from the trial [5].  The remaining categories for the smart metering trial, 

between 36 and 55 years (45%) and 56 years plus (45%) are in line with that recorded 

by NSHQ (44% and 45% respectively).  
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Figure 3.8:  Percentage penetration by HoH age 

 

Figure 3.9 shows social class for households within the smart metering dataset.  Social 

class was based on the UK National Readership Survey (NRS) social grade system 

[113].  A full listing of the categories used and their descriptions are contained in 

Appendix E.  Five categories were reduced to four from the smart metering survey by 

combining categories C1 and C2.  Category AB corresponding with the middle class 

and upper middle class represent around 15% of the households.  The largest category C 

(43%) corresponds to households of lower middle and skilled working classes.  

Category DE (38%) describes the working class and those on the lowest level of 

subsistence.  Finally social class F (3%) corresponds to farmers which represent only a 

small proportion of the households within the survey.  A direct comparison with the 

2011 census results could not be made on account of the use of different categories for 

social class.  
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Figure 3.9:  Percentage penetration by household social class 

 

Figure 3.10 shows household composition for the smart metering survey.  Adults only 

made up the largest category, however, there was also a high percentage of households 

with only one occupant living alone.  When compared against the NSHQ the results 

were similar for an adult living alone (22% for NSHQ compared to 19% for the smart 

metering survey).  For the other two categories for the smart metering survey, adults 

only (52%) living together and adults and children (28%) living together were very 

different to that recorded by the NSHQ (24% and 53% respectively).  It is likely that 

there is some discrepancy between the results and that adults only category may be 

significantly over represented and adults and children under represented within the 

smart metering survey.  
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Figure 3.10:  Percentage penetration by household composition 

 

Figure 3.11 shows household number of occupants for the smart metering dataset.  The 

most frequent number of occupants living within a household was two occupants.  

There was a slight difference of around 1% between Figure 3.10 and Figure 3.11 for one 

occupant households which was likely down to survey error.  When the results are 

compared against that of the census 2011 data one occupant households are under 

represented by the smart metering survey (20% compared to 24% for the census) [114] 

where as two occupant households are over represented (32% compared to 29% 

respectively).  The remaining categories: three (17%), four (18%), five (8%) and six 

plus (4%) occupants are similar between the smart metering survey and census results 

(18%, 16%, 9% and 4% respectively). 
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Figure 3.11:  Percentage penetration by household number of occupants 

 

Figure 3.12 shows an Efficiency Indicator for individual households.  A measure to 

determine the perceived attitude within a household towards energy efficiency was 

sought.  A question was used from the smart metering questionnaire (Question 36 in 

Appendix D) in order to infer energy efficiency behaviour within the home.  

Respondents were asked how much they believed they could cut their bills by making 

changes in the manner with which they use electricity within the home.  The largest 

group representing over 50% of the sample believed that they could only cut their 

electricity bills by less than 10%. 
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Figure 3.12:  Percentage penetration by Efficiency Indicator showing what percentage 

households believed they could cut their electricity bills by 

 

3.5 Smart Metering Electrical Appliance Characteristics 

The number and frequency of use was recorded by the smart metering survey for the 

following appliances: washing machine, tumble dryer, dishwasher, electric shower 

(instant), electric shower (pumped), electric cooker, electric heater (plug in convector), 

stand alone freezer, water pump, immersion, televisions (< 21 inches), televisions (> 21 

inches), desktop computer, laptop computer, game console. 

 

Table 3.3 shows the penetration of common household electrical appliances for the 

smart metering dataset.  Nearly every home in Ireland has a washing machine making it 

the most common appliance recorded by the smart metering survey.  Tumble dryers and 

dishwashers had approximately the same level of penetration at 68% and 67% 

respectively.  Instant electric showers are far more prevalent than pumped showers in 

Irish homes.  Electrical cookers are also very common in Irish households with a 
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penetration of 77%.  Plug in electric heaters have one of the lowest penetrations of 

appliances along with water pump with respective penetrations of 31% and 20%.  

Approximately half of all Irish households own a stand-alone freezer.  The penetration 

of immersions used for domestic hot water heating has a high penetration of 77% but 

are not necessarily used all the time.  Larger televisions (greater than 21 inches) have an 

almost 20% higher penetration than smaller ones (less than 21 inches) in Irish 

households.  Multiple televisions are also a common feature in Irish homes.  Both 

desktop and laptop computers had similar penetrations, with multiple laptops per 

household more common than desktop computers.  Finally, game consoles had an 

overall penetration of 33% within Irish dwellings.  The HBS survey 2009/10 also 

recorded the penetration of some of the same electrical appliances within the home as 

the smart metering survey [115].  The results are consistent with those presented for the 

smart metering survey, with only major differences between appliance type freezer 

(35.3%) and computer (77.3%) recorded by the HBS.  The difference in percentage 

penetration between appliance type computer was probably contributed too by the smart 

metering survey collecting information on both desktop and laptop computers thus 

splitting the category. 
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Table 3.3:  Penetration of common household electrical appliances 

            

Appliance type 
Percentage penetration for number of appliances (%) 

1 2 3 4 Total 

Washing machine 97.6 0.6 -- -- 98.2 

Tumble dryer 68.2 0.1 -- -- 68.3 

Dishwasher 66.7 0.2 -- -- 66.9 

Electric shower (instant) 63.6 5.1 0.5 -- 69.2 

Electric shower (pumped) 26.6 2.1 0.4 -- 29.1 

Electric Cooker 76.8 0.3 -- -- 77.1 

Heater (plug in convective) 23.5 5.2 1.8 -- 30.5 

Freezer (stand alone) 47.9 1.8 0.1 -- 49.8 

Water pump 19.1 0.4 0.1 -- 19.6 

Immersion 76.4 0.3 -- -- 76.7 

TV (<21 inches) 39.8 17.9 5.8 2.1 65.6 

TV (>21 inches) 50.7 25.0 6.0 2.3 84.0 

Computer (desktop) 44.6 2.3 0.3 0.2 47.4 

Computer (laptop) 42.2 8.4 2.0 0.9 53.5 

Game console 22.2 8.3 2.1 0.7 33.3 

 

 

3.6 Conclusion 

This chapter presented an overview of the smart metering dataset.  A description of the 

dataset was given along with a sample of the data and the software packages used in the 

analysis.  The chapter showed that in general the dataset can be regarded as 

representative at a national level and compares well with other similar studies carried 

out in the past.  However, an abnormality with the dataset was identified in terms of the 

exclusion of short term tenancies which had a knock on effect as to the representatively 

of certain categories such as number of apartments and younger HoH’s being under 

represented within the sample.     
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4 METHODOLOGY 

4.1 Introduction 

This chapter outlines the techniques, methodologies and validation approaches used 

throughout the research to characterise domestic electricity demand.  The methods used 

were selected based on the literature review presented in Chapter 2 and also on account 

of the ability to meet the objectives outlined in Section 1.5.  An initial overview of the 

methodological process involved is first given in Sections 4.2 to 4.5 before a more in 

depth description of each characterisation approach applied in the following chapters is 

presented in Section 4.6.  

 

4.2 Data and Averaging 

The datasets used throughout the research were described in Section 3.2.  Dataset I was 

used for all but one characterisation approach on account of the larger sample size.  This 

resulted in larger sample sizes for each dwelling and occupant category thus helping to 

improve representation, particularly for smaller uncommon categories.  Dataset II was 

used in Chapter 7 due to its smaller size and hence was computationally less 

demanding. 

 

The research was primarily focussed on characterising domestic electricity demand over 

a 24 hour period.  Due to the size of the datasets (Dataset I – 35 million entries, Dataset 

II – 8.5 million entries) some level of averaging was required in order to reduce the data 

to a suitable format for the presentation of results.  The data averaging was carried out 

in two ways: 
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Time Domain Averaging (Longitudinal) 

Time domain averaging consists of averaging across a particular time period such as a 

day, week, month, six-months or a yearly period.  In doing so, information is lost on the 

intra-daily and seasonality components to the electricity demand load profile.  This type 

of averaging was mostly applied throughout the research in order to reduce the data. 

 

Space Domain Averaging (Cross-sectional) 

Another approach is to average across individual households within the dataset.  This 

enables the intra-daily and seasonality components to remain but information is lost on 

each individual household.  This type of averaging was carried out in Chapter 8 as part 

of the clustering approach to electricity load profile characterisation. 

 

4.3 Characterisation 

A number of different approaches were used to characterise household electricity 

consumption each with their own advantages and disadvantages.  The methods 

presented in the following chapters are: 

 

o parameterisation - a number of electrical parameters were used to characterise 

daily domestic electricity demand.  A multivariate linear regression was used to 

link parameters to dwelling and occupant characteristics; 

o autoregressive - a Markov chain approach was used to characterise daily 

domestic electricity demand in terms of a probability transitional matrix; 
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o time series - Fourier transforms and Gaussian processes were used to 

characterise daily domestic electricity demand.  A multivariate linear regression 

was used to determine the influence of dwelling and occupant characteristics on 

patterns of electricity use; and 

o clustering - a data mining process was used to segment daily domestic electricity 

demand into groups based on similar patterns of electricity use throughout the 

day.  A multi-nominal logistic regression was used to link patterns of electricity 

use to dwelling and occupant characteristics. 

 

A more detailed explanation as to how each one of these processes was applied in 

later chapters is presented in Section 4.6. 

 

4.4 Validation 

4.4.1 Electrical Parameters 

A number of electrical parameters were used to characterise domestic electricity 

demand in Chapter 5.  These same parameters were also used to validate the approaches 

applied in Chapters 6, 7 and 8.  The parameters describe the main features of domestic 

electricity load profiles and include Total Electricity Consumption, Maximum Demand, 

Load Factor and ToU of maximum electricity demand.  These are commonly used in the 

electricity industry for billing and describing profile characteristics. 

 

Equation 4.1 shows total electricity consumption, ETOTAL which is the total amount of 

electricity consumed over a period in kWh where Ei
j is average electrical demand in kW 
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for each half hour period on day j, n is the total number of periods in a day and > is the 

total number of days. 

 

� !�"# � 12 � � ���
�
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This parameter characterises the total amount of electricity used across a time period.  It 

was chosen as this parameter is currently used for billing domestic customers, which is 

done on a bi-monthly basis in Ireland.   

 

Equation 4.2 describes mean daily maximum demand, EMD over a time period in kW.  

EMD refers to the largest value of electrical demand in a day, averaged over a time 

period where Ei
j is average electrical demand in kW for each half hour period on day j, 

n is the total number of periods in a day and m is the total number of days. 
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This parameter was chosen as it characterises the largest value of electricity demand 

across a 24 hour period.  This parameter is often used as part of billing non-domestic 

electricity customers.  However, it is also of use in the domestic case as it is a defining 

characteristic of the load profile shape. 
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Daily load factor, ELF is a ratio and is shown in Equation 4.3 below where Ei
j is average 

electrical demand in kW over each half hour period on day j, n is the total number of 

periods in a day and m is the total number of days.   
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It is a measure of daily mean to daily maximum electrical demand and is a measure of 

the “peakiness” of a households load profile.  Typically, larger values of ELF correspond 

to households who consume electricity more evenly across the day whereas a low ELF 

indicates small intervals of large electricity consumption.   

 

A maximum ToU parameter, EToU over a period is defined by Equation 4.4 below where 

Ei
j represents average electrical demand in kW over each half hour period on day j, n is 

the total number of periods in a day (where 1 = 00:00 - 00:30 and 48 = 23:30 - 00:00) 

and m is the total number of days. 

 

���� � �������	���
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ToU indicates the time of day at which maximum electricity demand occurs and is 

important as this parameter characterises the most likely time at which they will 

consume most electricity demand. 

 

These parameters are used for validation purposes, in order to assess the performance of 

each characterisation technique.  Paired sample t-tests are used to determine whether 



89 

there are significant differences between the sample and the characterised profiles for 

each individual approach.  In addition these parameters are also used to determine the 

main drivers of domestic electricity demand in terms of dwelling and occupant 

characteristics in Chapter 5.   

 

4.4.2 Time Series Tests 

A number of time series tests are used to interrogate the temporal properties of each 

characterisation approach further.  These ensure that the characterised time series not 

only accurately reflects the magnitude of electricity demand across a 24 hour period but 

also that it occurs at appropriate times of day.  Four tests were used: time series plot, 

frequency histogram, auto-correlation and power spectral density functions. 

 

A time series plot is used to visually compare sample data with that of characterised 

electricity load profiles.  It is a less analytical approach to the other methods; however, 

it gives a good indication of the performance of each technique at charactering the 

magnitude and timing of electricity use within the home. 

 

A frequency histogram is used for visually comparing the performance of different 

characterising techniques.  In particular certain characterisation methods may be better 

at characterising small values of electricity demand across the day whereas other 

approaches are better at characterising larger values of demand.  A frequency histogram 

visually indicates this clearly. 

 

The autocorrelation function is used for investigating the temporal properties of an 

electricity load profile.  The function regresses a time series f(t) onto itself with a time 
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lag τ in order to determine whether a pattern exists.  The autocorrelation function is 

shown in Equation 4.5 for a function f and where �C is the complex conjugate of the time 
series signal [116]. 

 

f E f �  fC�τ�f�τ � t� E dτ��

�
 4.5 

 

As domestic electricity load profiles sometimes exhibit cyclical patterns on an intra-

daily basis, this function will show whether the properties are transferred between 

sample and characterised demand load profiles.   

 

The Power Spectral Density (PSD) function, Py(v) as calculated by the Fast Fourier 

Transform (FFT) and was used to describe the temporal properties of the original 

sample and characterised time series y(t).  The function is shown in Equation 4.6 where 

v is the frequency in rad/sec, t is the time interval in half hour periods and T is the 

length of the time series [117]. 

 

+)�I� � lim *�
2M N  1���� 8 �O3$���+�!� �⁄

 �⁄
N�
 (4.6) 

 

Evaluating the PSD of a time series identifies periodicities within an electricity load 

profile.  The function quantifies the exact frequency of occurrence of a pattern and the 

overall contribution made by each individual frequency component. 

. 
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4.5 Associating dwelling and occupant characteristics through 

regression 

Regression is used to link dwelling and occupant characteristics to electricity load 

profiles.  Depending upon the characterisation approach this takes on two different 

forms.  In Chapters 5 and 7, multivariate linear regression (described earlier in Equation 

2.1) is used as the dependent variable is of type interval.  In Chapter 5 the dependent 

variables is a series of electrical parameters where as in Chapter 7 it is represented by a 

series of characterisation coefficients.  The influence of explanatory variables (X1, X2, 

etc) such as dwelling and occupant characteristics are then investigated as to their 

association over each dependent variable.  The significant influence of each explanatory 

variable is measured using a p-value.  P-values of 0.1, 0.05 and 0.01 represent 

significance levels at 90% 95% and 99% respectively.  The coefficient or β value shows 

the level of influence over the dependent variable and whether it is positive or negative.  

 

Where the dependent variable is of type nominal (i.e. qualitative as opposed to 

quantitative) as is the case in Chapter 8, either binary logistic (output has two 

categories) or multi-nominal logistic regression (output has more than two categories) is 

used.  The expression for binary logistic regression is shown in Equation 4.7 where p(x) 

ranges from 0-1 and logit [p(x)] is called the odds or likelihood ratio that the dependent 

variable is 1 [118]. 

 

P�Q��1���3 � P� R ���1 8 ���S � �� � ���� � ���� � 	 � ���� (4.7) 
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Similar to multivariate linear regression, explanatory variables represent the dwelling 

and occupant characteristics that are being investigated for their influence over the 

dependent variable.  The same measure of significance for each variable is used and 

instead of using the beta coefficients (i.e. β1, β2, etc), its exponential value (Exp(β)) is 

used to gauge influence of a particular characteristic on the dependent variable.  

 

4.6 Methodologies 

The following sub-sections 4.6.1 to 4.6.4 describe the specific techniques and 

methodologies applied in each chapter throughout the research. 

 

4.6.1 Statistical Analysis using Daily Parameters 

Statistical approaches were described in Chapter 2 and have been widely used in past 

literature to describe household electricity use [27][28][65].  The statistical approach 

applied in Chapter 5 uses the same four electrical parameters defined in Equations 4.1 – 

4.4 above to characterise domestic electricity demand.  Each electrical parameter is 

evaluated for Dataset I and include: ETotal, EMD, ELF and EToU.  As discussed earlier, the 

parameters describe important characteristics of domestic electricity consumption across 

a daily period.  A longitudinal averaging process was applied to each daily parameter 

except for ETotal where no averaging was required. 

 

A multivariate linear regression, shown in Equation 2.1 was applied to associate 

electrical parameters to dwelling and occupant characteristics.  Two different 

approaches were used: first looking at dwelling and occupant characteristics and 

secondly looking at individual appliances that influenced electricity consumption 
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patterns in the home.  The first approach, Dwelling and Occupant Characteristics 

(DOC), describes the variables that influence electricity use in the home such as HoH 

age and number of bedrooms etc.  These variables do not “consume” electricity but 

serve to influence occupants demand within the home and may help explain the 

underlining causes of different patterns of electricity use.  The second approach, 

Electrical Appliances (EA), looks directly at the individual appliances and describes the 

direct relationship between their ownership and use on electricity consumption within a 

household.  The EA approach helps to further understanding to electricity use within the 

home but does not explain underlining causes.   

 

The decision to carry out the analysis using two separate models was taken on the 

grounds of the evaluation of a reduced coefficient of determination when all variables 

were lumped together into the same model.  This meant that the model was less able to 

explain the variation in electricity consumption than when two separate models were 

used.  This was likely down to the effect of multi-collinearity between variables causing 

a reduction in the coefficient of determination.  Therefore the decision was made to 

examine the effect of appliances and dwelling and occupant characteristics separately as 

to their influence on home electricity use. 

 

 

4.6.2 Autoregressive (Markov Chain) 

Although highly variable, electricity consumption in the home does follow certain 

patterns.  For example when an electrical appliance is switched on, often it is left on for 

a period of time before it is switched off again [25].  Therefore past values of electricity 

demand should be a good indication of future values of electricity demand (most of the 
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time).  It is based on this observation that Markov chains were investigated in order to 

characterise domestic electricity consumption patterns.  However, traditionally Markov 

chains have been applied in situations where the times series is stationary (i.e. is 

independent of time). 

 

Autoregressive Markov chains were presented in Chapter 2 Section 2.2.6 and are 

evaluated in Chapter 6.  They are based on the construction of a transitional probability 

matrix where the transition from one discrete state to another is characterised in terms of 

its probability.  A first order Markov chain compares the current state and the one 

immediately preceding it to calculate the probability of going to the next state.  A 

second order Markov chain compares the two previous states with the current state to 

determine the next state.  For a first order Markov chain, the transitional probability 

matrix, P, can be defined with pk,k probabilities for k states as shown in Equation 4.8 

[47].  

 

+ � T�,� �,�    	 �,��,� �,�    	 �,�U      U        U     U�,� �,�    	 �,�
V (4.8) 

 

Each element in the matrix P represents the probability of going from one discrete state 

to the next.  For each group of states shown in the transitional matrix (i.e. each row) the 

cumulative probability equals one.  This represents the relative probability of changing 

from the current to every other state including the present state at the next time interval. 

 

In order to characterise each individual electricity load profile successfully the 

following three processes need to be carried out: 
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o an individual dwelling’s electricity demand load profile is sampled;  

o a transitional probability matrix is derived; and 

o finally a load profile is generated.   

 

The execution of all three processes requires a significant amount of computer 

processing time to characterise each individual electricity demand load profile.  

Therefore the decision was made not to use the full sample in the following analysis and 

instead test the methodological approach on a much smaller sample size.  Four 

individual demand load profiles for each dwelling type (detached, semi-detached, 

terraced and apartment) were selected at random from Dataset I.  The disadvantage with 

this approach means that the four profiles selected may not be representative of either 

the entire sample or the dwelling type with which they are associated.  However, by 

carrying out the afore mentioned processes, gives a good indication as to the ability of 

Markov chains to sufficiently characterise domestic electricity demand load profiles and 

whether any further analysis is warranted on the full sample. 

 

Initially a 12x12 matrix was used to sample the data, however, this resulted in too few 

values of electricity demand to adequately characterise each household.  Therefore a 

24x24 transitional probability matrix was applied with bin sizes based on mean (0.5525 

kW) and standard deviation (0.0837 kW) for the entire sample. Individual transitional 

probability matrices were produced for each of the four random dwelling types. 

 



96 

The first state of the Markov chain sequence is generated by a Gaussian distributed 

random number generator with values between 0 and 1.  After the initial state is chosen, 

the transitional probability matrix was then used to select every other consecutive state 

after this.  The state with the highest probability, which is usually the same state, will be 

selected most often but will depend upon the probability matrix.  This is reflected in the 

transitional matrix where the largest probabilities are located along the diagonal.  A 

uniformly distributed random number generator is used to choose values between each 

bin width so that the same value of electricity demand is not repeatedly selected.  

 

Descriptive statistics are presented for each of the four dwelling types.  Electrical 

parameters described above are evaluated and paired sample t-tests used to compare 

original and characterised profiles.  Similar to Chapter 5, a longitudinal averaging 

process was applied across daily parameters: EMD, ELF and EToU.  Time series tests are 

used to test the temporal properties of characterisation process.  An attempt to correlate 

dwelling and occupant characteristics through regression was not pursued on the 

grounds that the Markov chain process failed to adequately characterise the temporal 

properties for domestic electricity demand load profiles sufficiently as will be shown in 

Chapter 6. 

 

 

4.6.3 Time Series Approaches 

Time series approaches to electricity load profile characterisation were first presented in 

Chapter 2 Sections 2.2.4 to 2.2.8.  Chapter 7 compares and contrasts these methods, 

specifically looking at: Fourier transforms, Neural networks, Gaussian processes, Auto-

regression, Fuzzy logic, Wavelets and multivariate regression.  The most applicable 
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methods are then applied to characterise domestic electricity demand load profiles in 

order to meet the objectives outlined in Section 1.5.   

 

In order to evaluate the performance of the characterisation process, Dataset II was used 

in the analysis.  The decision to use Dataset II was made on account of its smaller 

sample size.  The time series techniques evaluated in Chapter 7 were computationally 

intensive and therefore required a considerable amount of time to characterise 

individual customers.  As Dataset II was smaller by a factor of seven but still 

representative for all customers it was used in the analysis. 

 

Electrical parameters and time series tests were evaluated to determine the accuracy of 

the characterisation techniques.  A multivariate linear regression was then used to 

associate dwelling and occupant characteristics to domestic electricity demand load 

profiles, where a longitudinal averaging process was applied across the coefficient 

values.  Median values instead of mean were used to minimise the influence of large 

outliers produced by the characterisation process. 

 

4.6.4 Clustering 

Clustering was discussed earlier in Section 2.2.9 and is applied in Chapter 8.  The 

overall methodology used in Chapter 8 can be broken down into the following three 

sub-sections: 

 

o Evaluation of clustering methods and number of clusters 

o Characterising domestic electricity demand load profiles 
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o Profile classification by dwelling and occupant characteristics 

 

Evaluation of clustering methods and number of clusters 

In order to evaluate the most appropriate clustering approach and the number of clusters 

a ‘validity’ index was used.  The Davies-Bouldin (DB) index is a ratio of the intra 

cluster distance (i.e. average distance of all patterns in a cluster to the cluster centre) 

divided by the inter cluster distance (i.e. the distance between different cluster centres).  

It is a measure of how compact individual clusters are while maximising the distance 

between each cluster centre.  An expression describing the DB index is shown in 

Equation 4.9 [119]. 

 

W* ��!$� �XO� �  1Y � X�
-

�	�
 (4.9) 

 

where N is the number of clusters, Ri is the similarity measure of cluster i with its most 

similar cluster.  The best choice for number of clusters, is the one that minimises the 

average system wide similarity XO. 
 

Clustering algorithms: k-mean, k-medoid and SOM are evaluated for Dataset I; these 

use unsupervised learning to segment a dataset into clusters.  Unsupervised learning 

requires the number of clusters to be pre-defined before the process is carried out.  

Therefore, in order to establish an appropriate number of clusters, each method was 

evaluated for a range of different values (clusters 2-16).   
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In order to evaluate the best performing clustering approach a single random day was 

clustered.  Each clustering method was applied for varying number of clusters and the 

DB index was evaluated.  The best performing clustering technique along with the 

number of clusters was identified by a minimum value for the DB index. 

 

Characterising domestic electricity demand load profiles 

The same process described above (for the chosen clustering method and number of 

clusters) was applied to each day over the six month period for Dataset I.  Figure 4.1 

outlines the overall methodology employed to characterise domestic electricity load 

profiles.  This enables the diurnal, intra-daily and seasonal patterns of electricity 

demand, as well as the variations between households to be characterised to fulfil the 

objectives set out in Section 1.5.  The process is divided into three stages: 

 

o clustering 

o electricity load profile characterisation  

o electricity load profiles by day type (weekday, Saturday and Sunday) 
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Figure 4.1:  Clustering methodology for electricity load profile characterisation using 

SOM 

 

Clustering 

As will be shown later Self Organising Maps (SOM) provided the lowest DB index 

overall and hence this was evaluated further.  The clustering method applied resulted in 

two very large clusters representing over two thirds of the entire sample.  As a result, 

when dwelling and occupant characteristics were investigated, the level of significance 

for each category was lost within the two larger clusters.  This is not very useful from a 

practical point of view and therefore a sub-clustering approach was adopted in order to 

divide the two largest clusters.  This technique has been used before most recently by 

Lo et al. and Zainal et al. [120][121].  
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Electricity Load Profile Characterisation 

Mean half-hourly electricity demand from each cluster was used to produce individual 

load profiles based on all households using that particular profile on that day.  Profiles 

that showed similar patterns of electricity use were grouped together.  This was done in 

order to reduce the number of similar profiles that differed only slightly in terms of 

timing and magnitude of electricity use.  This resulted in ten electricity load profile 

groups overall, indicating different representative types of electricity use within the 

home over the six month period. 

 

It is important to note that as households tend to use electricity differently on an intra-

daily basis (as identified earlier in Figure 1.4) each household may use different profile 

groups over the six month period.  In order to show this, a Customer Profile Index (CPI) 

was produced indicating which profile (i.e. P1 – P10) each household used on a 

particular day over the six month period.  The Household Mode (HMode) of the CPI 

was calculated using Equation 4.10 and shows which profile group households most 

frequented for the majority of the time over the six month period.   

 

,�Z�!$�.��|0 \ �]�� @ 3941-/
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(4.10) 

 

The Average Percentage Profile Time (APPT) each household spends within each 

profile group is calculated in Equation 4.11.  Individual households are assigned to the 

HMode profile group and the time spent within this and all other groups over the six 



102 

month period is calculated.  This indicates how often a household will use a particular 

profile group over the six month period.  

 

,(++M0%!/1|0 \ �Z�!$ @ 10-/
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(4.11) 

 

Electricity load profiles by day type (weekday, Saturday and Sunday) 

Finally the CPI index was split by day types: weekday, Saturday and Sunday.  This was 

done in order to identify whether different patterns of electricity use were apparent 

during the weekdays, where occupancy and behavioural patterns may differ compared 

to the weekend.  Appendix A presents each of the ten characterised electricity load 

profile groups based on a diurnal, intra-daily and seasonal basis over the six month 

period. 

 

Profile classification by dwelling and occupant characteristics 

In order to establish a relationship between each electricity load profile group and 

individual dwelling and occupant characteristics a multi-nominal logistic regression was 

applied as shown in Equation 4.7.  The dependent variable is represented by the HMode 

profile group number (P1 – P10) and the explanatory variable by each dwelling and 

occupant characteristic.  The characteristics used in the analysis are the same as those 

used in Chapter 5 where Dwelling and Occupant Characteristics (DOC) and Electrical 

Appliances (EA) were investigated.  
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The odds or likelihood ratio (Exp(β)) was shown earlier in Equation 4.7.  This 

represents the likelihood of a household using a particular profile group based on their 

dwelling and occupant characteristics.  It is important to note that for small sample sizes 

within a variable category, the multi-nominal logistic regression sometimes produces an 

unusually large odds ratio.   Consequently if one plots odds ratio for these small sample 

size categories it generally results in an exceptionally large influence when compared 

against other categories.  Therefore, in addition to carrying out the multi-nominal 

logistic regression, percentage penetrations for each explanatory variable and profile 

group are presented in the following figures in order to graphically show the household 

characteristic composition for each profile group. 

 

4.7 Conclusion 

This chapter presented the techniques, methodologies and validation approaches applied 

throughout the research.  Firstly the types of averaging processes applied across the 

datasets were discussed in order to reduce the data.  Secondly, the characterisation 

processes were introduced which will be used throughout the research.  The validation 

methodology was then presented which consisted of two parts: calculating the electrical 

parameters and evaluating a number of time series tests in order to determine how 

successful each method was at characterising domestic electricity load profiles.  The 

methodology of associating dwelling and occupant characteristics to the load profile 

shape were then presented.  Finally the individual methodologies used in each of the 

forthcoming chapters were presented in detail. 
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CHAPTER 5 

 

STATISTICAL ANALYSIS USING DAILY 

PARAMETERS
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5 STATISTICAL ANALYSIS USING DAILY 

PARAMETERS 

5.1 Introduction 

A statistical regression approach is presented in this chapter to characterise Dataset I.  

Total Electricity Consumption across a six month period as well daily parameters, 

which describe an electricity demand load profile across a 24 hour period are used.  

These parameters are then linked to dwelling and occupant characteristics by 

multivariate linear regression.  This process was also used to identify the most 

significant dwelling and occupant characteristics that influence domestic electricity 

consumption across the day. 

 

5.2 Discussion and Results 

There are two main advantages to regressing the electrical parameters against dwelling 

and occupant characteristics rather than individual half hourly demand: 

 

o Firstly it removes the need to have multiple equations representing each 

individual half hourly period, therefore simplifying the analysis and 

interpretation of results.  Instead of having 48 individual equations representing 

each individual half hourly period, each household is represented by a single 

value for each parameter.  Note that as a result of this the time series tests 

outlined in the methodology Chapter 4 were not carried out for this particular 

approach. 
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o Secondly as electricity use within the home is aggregated in the case of ETOTAL 

and averaged for the remaining parameters EMD ELF and EToU, the probability of 

a significant relationship increases.  This is due the highly variable use of 

electricity across the day as was described in Figure 1.2.  These parameters help 

smooth out this variability thus making the relationship between household 

characteristics and electricity use within the home less susceptible to chance. 

 

Electrical Parameters 

Descriptive statistics are presented for each electrical parameter in Table 5.1.  A 

Weibull and Log-logistic probability distribution function were found to be the best fit 

for the parameters, with scale and shape values presented in the table below. 

 

Table 5.1:  Descriptive statistics for electrical parameters 

                

Parameter  Mean Median 

Standard 

Deviation Max Min 

Probability 

Distribution 

Scale 

Parameter 

(η) 

Probability 

Distribution 

Shape 

Parameter 

(α) 

ETOTAL (kWh) 2,261 2,142 1,108 10,065 99 2,555 2.15 

EMD (kW) 2.50 2.49 1.01 7.36 0.07 2.81 2.65 

ELF (%) 23.43 22.53 6.33 82.00 8.13 -1.49 
*
 0.14 

*
 

EToU

** 31.40 35.00 9.85 n/a n/a n/a n/a 

Weibull Probability Distribution Function 

f�T� � α
η �T

η	
���

e��
�
��

�

 where f�T� � 0, T � 0, α � 0, � � 0 
* Log-logistic Probability Distribution Function 

f�T� � e�
αT�1 � e��	   where z � T
 � η

α , T
 � ln�T�, 0 � � � ∞, �∞ � � � ∞, 0 � � � ∞ 

**where 1 = 00:00 - 00:30 and 48 = 23:30 - 00:00 
 

Regression 

A multivariate linear regression was carried out using the following variables: dwelling 

type, number of bedrooms, head of household (HoH) age, household (HH) composition, 
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HoH social class, water heating type and cooking type.  An efficiency indicator variable 

(defined in Section 3.4) was also included to measure potential household electricity 

savings by asking those surveyed to quantify how much they believed they could cut 

their electricity consumption by changing their behaviour.   

 

All the variables listed above were found to have the greatest significance on dwelling 

and occupant characteristics without causing multi-collinearity.  Other independent 

variables tested for significance included dwelling age, number of occupants, HoH 

employment status, tenure type, HoH education level and space heating type.  These 

variables were omitted from the analysis since they either showed little or no 

significance over the tested parameters or showed a high degree of multi-collinearity 

with other independent variables.  In particular, HoH age showed strong collinearity 

with dwelling age and tenure type with Pearson correlation coefficients exceeding 35% 

in both cases.  This can be explained by younger HoH’s having a higher percentage of 

mortgages and occupying newer dwellings.  In comparison, a higher percentage of older 

HoH’s have their mortgage paid off and live in older dwellings.  Similarly number of 

occupants showed a high degree of collinearity with dwelling number of bedrooms and 

household composition, with a Pearson correlation coefficient also exceeding 35% in 

both instances.  It was therefore decided to use household composition only in this 

instance.  HoH employment status and education level had little effect on the parameters 

and showed high collinearity to HoH social class with Pearson correlation coefficients 

exceeding 25%.  Space heating type (electric, non-electric) had no significance at all 

over the four parameters, due to the very low penetration of electric central heating (less 

than 5%) in Ireland and therefore was excluded from the analysis. 
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A full listing of the independent variables and sample sizes used in the analysis is 

shown in Table 5.2, with the base variable highlighted in bold italics where dummy 

categorical variables are used.   
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Table 5.2:  List of independent variables used in regression model 
 

Variable name Variable explanation 

Sample 

Size 

(N) 

Detached Dwelling is detached (includes 

bungalows) 

2068 

Semi-detached Dwelling is semi-detached 1230 

Terraced Dwelling is terraced 569 

Apartment Dwelling is apartment 67 

      

No. of bedrooms Number of bedrooms within dwelling 3941 

    

18 ≤ HoH Age < 36 Head of household age between 18 & 35 390 

36 ≤ HoH Age < 56 Head of household age between 36 & 55 1776 

56 ≤ HoH Age Head of household age above 55 1753 

      

HH Comp. - Live Alone Household composition - live alone 756 

HH Comp. - with Adults Household composition - live with adults 2064 

HH Comp. - with adults and 

children 

Household composition - live with adults 

and children 

1121 

      

HoH Social Class - AB High and intermediate managerial, 

administrative or professional 

593 

HH Social Class - C Supervisory and clerical and junior 

managerial, skilled manual workers 

1697 

HH Social Class - DE Semi-skilled and unskilled manual 

workers, state pensioners, unemployed 

1505 

HH Social Class - F Farmers 107 

      

Water Heat - Non-electric 

Water is heated by other (oil, gas, solid 

fuel) 

3144 

Water Heat - Electric Water is heated by electricity 771 

      

Cooking Type - Non-electric 

Cooking is mostly done by non-electric 

means (oil, gas, solid fuel) 

1192 

Cooking Type - Electric Cooking is mostly done by electricity 2749 

    

Efficiency <10% 

HoH who believe they can cut electricity 

consumption by 10% 

1950 

10% ≤ Efficiency < 20% 

HoH who believe they can cut electricity 

consumption by between 10% & 20% 

916 

20% ≤ Efficiency < 30% 

HoH who believe they can cut electricity 

consumption by between 20% & 30% 

345 

Efficiency ≥ 30% 

HoH who believe they can cut electricity 

consumption by more than 30% 

123 
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Table 5.3 shows results for the linear regression for the DOC model and each of the four 

dependent electrical parameters.  Pearson’s coefficient of determination for each 

parameter as well as regression coefficients β (which indicates the magnitude of 

influence of each variable on the parameters and was defined in Equation 2.1) as well as 

standard errors are shown in the table below.  The significance of variables on each 

parameter is shown by way of a p-value, indicating 90%, 95% and 99% significance 

levels.   

 

Table 5.3:  Regression results for dwelling and occupant characteristics model (DOC) 
 

ELF (%) EToU

Pearson's Coefficient of Determination (%) 32% 33% 9% 2.60%

Coeff. (β) Std. Error Coeff. (β) Std. Error Coeff. (β) Std. Error Coeff. (β) Std. Error

(Constant) 18.6055 101.633 0.6388*** 0.092 0.2169*** 0.0068 29.4659*** 1.0786

Semi-detached -175.6725*** 34.1701 -0.0766** 0.0309 -0.0082*** 0.0023 -0.414 0.3626

Terraced -147.045*** 45.9229 -0.0583 0.0416 -0.0114*** 0.0031 -1.2872** 0.4874

Apartment -245.5571** 119.4231 -0.2963** 0.1081 0.0084 0.008 0.1958 1.2674

No. of bedrooms 349.036*** 19.9182 0.2365*** 0.018 0.0089*** 0.0013 0.6785*** 0.2114

36 ≤ HoH Age < 56 282.8721*** 51.7462 0.0722 0.0468 0.0171*** 0.0034 -0.9431* 0.5492

56 ≤ HoH Age 212.0358*** 57.7676 -0.1515*** 0.0523 0.0318*** 0.0038 -2.0417*** 0.6131

HH Comp. - with Adults 730.9512*** 40.7046 0.7036*** 0.0368 -0.0022 0.0027 1.2854*** 0.432

HH Comp. - with adults and children 1083.688*** 50.2313 0.9853*** 0.0455 0.0043 0.0033 2.0295*** 0.5331

HH Social Class - C -73.6939* 44.1127 0.0407 0.0399 -0.0134*** 0.0029 1.2344** 0.4682

HH Social Class - DE -132.952** 48.522 -0.0146 0.0439 -0.0155*** 0.0032 0.8489 0.515

HH Social Class - F -370.2021*** 98.0024 -0.2591*** 0.0887 -0.0016 0.0065 -2.8708** 1.0401

Water Heat - Electric 148.9229*** 29.5042 0.2379*** 0.0267 -0.0077*** 0.002 -1.3368*** 0.3131

Cooking Type - Electric 185.6567*** 32.2118 0.3896*** 0.0292 -0.0241*** 0.0021 0.1381 0.3419

10% ≤ Efficiency < 20% 142.7689*** 37.6209 0.1139*** 0.0341 0.0015 0.0025 -0.4104 0.3993

20% ≤ Efficiency < 30% 188.2471*** 54.1685 0.1638*** 0.049 0.0021 0.0036 -0.2999 0.5749

Efficiency ≥ 30% 274.1978*** 85.5507 0.1476* 0.0774 0.0089 0.0057 -0.57 0.908

ETOTAL (kWh) EMD (kW)

P values: *** p<0.01, ** p<0.05, * p<0.1   

 

Base variables: Detached, 18 ≤ HoH Age < 36, HH Comp. - Live Alone, HoH Social Class - AB, Water Heat - Non-

electric, Cooking Type - Non-electric, Efficiency <10% 

EToU (where 1 = 00:00 - 00:30 and 48 = 23:30 - 00:00) 

 

Multivariate linear regression was carried out for the EA model with the same four 

dependent parameters as before and fifteen common household appliances as 

explanatory variables.  The results are presented in Table 5.4 alongside household 

appliance penetration levels.  The base variable chosen for the analysis was washing 

machine due to its high penetration level of 98.3% within the survey.  
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Table 5.4: Regression results for electrical appliances model (EA) 
 

ELF (%) EToU

33.0% 31.0% 11.1% 2.4%

Appliance 

Penetration (%) Coeff. (β) Std. Error Coeff. (β) Std. Error Coeff. (β) Std. Error Coeff. (β) Std. Error

(Constant) 656.9107*** 51.3526 0.8771*** 0.0472 0.2444*** 0.0035 29.8274*** 0.5578

Tumble Dryer 68% 375.3768*** 33.5586 0.3951*** 0.0309 -0.0045* 0.0023 -0.1742 0.3645

Dishwasher 67% 406.0503*** 33.7939 0.2894*** 0.0311 0.0128*** 0.0023 1.4145*** 0.3671

Shower (instant) 69% 44.0911 32.8842 0.2557*** 0.0302 -0.0189*** 0.0022 -1.1625*** 0.3572

Shower (pumped) 29% 34.5628 33.0484 -0.0159 0.0304 0.0025 0.0022 -0.2293 0.359

Electrical Cooker 76% 182.6508*** 34.2263 0.3758*** 0.0315 -0.0241*** 0.0023 0.5208 0.3718

Heater (plug in convective) 30% 56.5369* 31.4838 -0.0339 0.029 0.008*** 0.0021 -1.1678*** 0.342

Freezer (stand alone) 50% 198.131*** 29.6764 0.0775*** 0.0273 0.0129*** 0.002 0.0618 0.3224

Water pump 20% 208.1565*** 36.7427 0.0902** 0.0338 0.0063** 0.0025 0.7612* 0.3991

Immersion 77% 73.4666** 34.6355 0.1701*** 0.0319 -0.0068*** 0.0023 -0.4635 0.3762

No. TV <21inch 66% 100.8994*** 15.8887 0.1059*** 0.0146 -0.0017 0.0011 0.434** 0.1726

No. TV>21inch 84% 197.2184*** 18.4409 0.1393*** 0.017 0.0026** 0.0012 0.5456** 0.2003

No. computer (desktop) 48% 287.3278*** 26.4866 0.1626*** 0.0244 0.0095*** 0.0018 0.6874** 0.2877

No. computer (laptop) 54% 135.1009*** 19.7789 0.0978*** 0.0182 0.0042*** 0.0013 0.2103 0.2149

No. game consoles 33% 193.1296*** 20.7689 0.1953*** 0.0191 0.0017 0.0014 0.2495 0.2256

ETOTAL (kWh) EMD (kW)

Pearson's  Coefficient of Determination (%)

P values: *** p<0.01, ** p<0.05, * p<0.1   

Base variable: Washing Machine 

EToU (where 1 = 00:00 - 00:30 and 48 = 23:30 - 00:00) 

 
 

5.2.1 ETotal  

 
ETotal was regressed against dwelling and occupant characteristics described in Table 5.2 

and a coefficient of determination of 32% was recorded for the DOC approach.  This 

indicated that only 32% of the variation could be explained by the variables listed in 

Table 5.3 with the remainder due to other factors that may not have been able to be 

measured.  This highlights the highly variable nature to domestic electricity demand 

even when daily electrical parameters are used. 

 

All dwelling types had a negative effect on ETotal when compared to the base variable 

detached dwelling, which included bungalows.  Apartments had significantly lower 

ETotal than all other dwelling types, a result of their smaller size and fewer number of 

occupants.  For each additional bedroom, ETotal on average increased 349 kWh over the 

six month period.  On a per capita basis, ETotal for the residential sector accounted for 

948 kWh over the six month period.  



113 

 

Electricity consumption for younger HoH’s was significantly lower when compared to 

the other two HoH age categories, 36-55 and 56 plus.  This could be attributed to 

middle aged HoH’s having more children living at home (thus having a higher number 

of occupants) and increased occupancy patterns (i.e. dwelling occupants at home for 

longer periods of the day).  This is also apparent when looking at household 

composition: adults living with children consume considerably more electricity than 

those living alone or with other adults.  HoH Social class had a negative effect on ETotal 

when compared against the base category AB, representing Higher Professionals.  

Social class was used as a proxy in the absence of reliable data on household income. 

This suggests that Higher Professionals are inclined to consume more electricity than 

Lower Professionals with the former tending to live in larger dwellings and have a 

greater number of electrical appliances, suggesting a possible income effect. 

 

The efficiency indicator variable showed strong positive correlation with increasing 

electricity savings (i.e. respondents with higher electricity consumption believed they 

could make greater electricity savings than those who consumed less).  This suggests 

that larger electricity consumers are wasteful (i.e. leave lights on in unoccupied rooms) 

and hence believe they can cut back on their electricity use.  In contrast, those who 

consume less may believe that they are efficient in their use of electricity and cannot 

make further substantial cuts. 

 

Table 5.4 showed regression results for the EA approach, where a coefficient of 

determination of 33% was recorded.  Similar to the DOC method, this suggests that a 

large part of the variation could not be explained by the ownership of particular 
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appliances and are a result of other factors.  Tumble dryers, dishwashers, cookers, 

freezers, water pumps (used in low water pressure residential areas) and brown goods 

(televisions, computers, game consoles) were all significant at the 99% level.  Showers 

showed no significance at all and immersions were only significant at the 90% level.  It 

is also important to note that the analysis above is independent of lighting, which is a 

significant contributor to electricity consumption.  The effect of lighting demand could 

not be distinguished in the survey as the number of fittings was not recorded.  Similarly, 

electrical appliance refrigerator was not recorded as part of the survey.   

 

5.2.2 EMD 

EMD was regressed against the variables listed in Table 5.2 and a coefficient of 

determination of 33% was recorded for the DOC approach.  EMD was significantly 

influenced by semi-detached and apartment dwellings at the 95% level as was shown in 

Table 5.3.  When compared against the base variable (detached dwelling) each had a 

negative influence on EMD, particularly apartments.  Number of bedrooms was 

significant at the 99% level and serves to increase EMD by 0.23kW for every additional 

bedroom within a dwelling.  Similarly, household composition significantly influenced 

EMD, with adults and children consuming nearly an extra kilowatt compared to the base 

variable (adult living alone).   Apartment dwellings tend to be smaller in size, have 

fewer occupants and have a smaller stock of appliances than other dwelling types, all of 

which are drivers of EMD.  As one would anticipate, homes with electric water heating 

and cooking also had higher EMD compared to those that use other methods to heat 

water and to cook.   
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The EA approach recorded a coefficient of determination of 31%.  Almost all household 

appliances showed significant influence on EMD at the 99% level.  Pumped showers and 

plug in convective heaters were the only appliances not to show any significance at all, 

possibly due to their low penetration within the sample.  The three largest contributors 

to EMD were tumble dryers, dishwashers and electric cookers which all have significant 

heating components to their operation.  Instant electric showers and immersions, both 

used for heating water were the next largest contributors to EMD. 

 

Electricity generated at peak times such as early morning and evening times is far less 

efficient than electricity generated at other times of day.  This is a direct result of 

running expensive peaking generation plant such as open cycle gas turbines to respond 

to quick changes in system demand, which are less efficient than other types of 

generation.  Shifting demand away from peak times will result in a more efficient 

electricity system and as a consequence reduce greenhouse gas emissions for the sector.  

In particular, tumble dryers and dishwashers offer the best opportunity for shifting 

demand away from peak time use compared to electric cookers as they are less 

dependent on the timing of high priority household routines such as cooking.  The 

introduction of ToU tariffs for the residential sector, so that electricity consumed at peak 

times reflects the true cost of generation, may encourage homeowners to shift non-

essential appliance use to off peak times when electricity is cheaper.   

 

5.2.3 ELF 

A significantly lower coefficient of determination, 9%, was recorded for ELF for the 

DOC approach compared to the previous two parameters.  ELF changes only slightly 

between households as indicated by the low standard deviation for the parameter (6%) 
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as shown in Table 5.1.  However, the parameter is useful for describing the electricity 

load profile shape for individual households.  A low value for ELF indicates households 

whose electricity consumption pattern is high for short periods of time whereas a higher 

value for ELF indicates a more constant use of electricity across the day.  

 

Semi-detached and terraced dwellings had a significant impact on ELF compared to the 

base variable (detached dwelling).  Larger dwellings such as detached and semi-

detached homes had a positive effect on ELF.  For each additional bedroom, ELF on 

average increased by 1%.  HoH age also strongly influenced ELF in a positive manner 

with younger HoH groups having slightly lower ELF representing a more “peaky” load 

across the day.  In contrast, older HoH age groups have a larger ELF, indicating a 

smoother electricity consumption pattern across the day.  This is most likely due to 

older HoH’s possibly being more active in the home during the day.  Water heating and 

cooking type influenced ELF in a negative manner and therefore households that use 

electricty to heat water and cook will therefore tend to have lower values for ELF. 

 

The EA approach recorded a coefficient of determination of 11.1% for ELF.  Most 

household appliances were significant at the 99% level except for tumble dryers, 

electric showers (pumped), water pumps, televisions and game consoles.  When 

compared against the base variable washing machine, appliances with negaitive 

coefficients decrease ELF and correspond with high power devices that are not used 

continiously for long periods of time.  In particular, electric showers (instant), cookers 

and immersions, which are all significant at the 99% level, tended to decrease ELF due 

to their high power requirements and result in a more “peaky” domestic load profile.  
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Dishwashers and stand alone freezers on the other hand had a significant positive effect 

on ELF as they are switched on for longer periods of time. 

 

5.2.4 EToU 

A poor coefficient of determination of 2.6% was recorded for EToU in the DOC method 

shown in Table 5.3.  ToU showed high significance for household composition and 

HoH age.  For HoH age, the older the head of the household the more negative the 

influence on the parameter indicating earlier use of EToU during the evening.  Household 

composition had a positive effect on EToU with adults and children tending to use 

electricity demand later in the evening compared to occupants living alone.  Younger 

and middle aged groups correspond to households with young families and therefore 

tend to have a greater number of occupants.   These groups are inclined to use EToU later 

in the evening, most likely a result of increased number of active occupants later in the 

evening.  Households with older HoH’s tend to have fewer number of occupants, as 

children may have vacated the home and are also closer to retirement age and hence 

tend to be active earlier in the evening possibly due to lighter work commitments or 

retirement.  Hence these groups are more likely to use EToU earlier in the evening.   

 

5.3 Conclusion 

Results were presented linking dwelling and occupant characteristics to electrical 

parameters: ETotal, EMD, ELF and EToU.  Dwelling number of bedrooms, which was used 

as a proxy for dwelling size, was found to strongly influence ETotal.  Apartment 

dwellings, which are proportionally smaller and have less occupants and appliances, 

consumed the least electricity when compared to other dwelling types.  HoH age group 
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36 – 55 were found to be the largest consumers of electricity, probably due to the 

prevalence of children living at home among this age group.  Social class was used as 

proxy for household income due to unreliable data recorded for this variable within the 

survey.  Household social class was significant with Higher Professionals consuming 

more electricity than middle or lower classes, reflecting a possible income effect.  

Dwellings that used electricity for water heating and cooking also used a larger amount 

of electricity as would be expected.   An efficiency variable also indicated the potential 

for reducing household electricity demand which showed significant positive correlation 

with the parameter, possibly indicating that larger electricity consumers are more 

wasteful of electricity than those who consumed less.  Appliances that consumed the 

most electricity were tumble dryers and dishwashers. 

 

Household composition, number of bedrooms, water heating and cooking type were the 

most significant variables to influence EMD.  It was also shown that the majority of 

common household electrical appliances included in the survey influenced EMD.  

However, three appliances in particular: tumble dryer, dishwasher and electric cooker, 

contributed significantly more than the base variable washing machine.  The 

introduction of ToU tariffs should discourage the use of non-high priority household 

tasks such as clothes and dish washing at peak times.  ELF was influenced by 

independent variables dwelling type and number of bedrooms.  HoH age was also 

significant, with younger HoH’s having a smaller ELF representing a more “peaky” load 

profile shape.  Water heating and cooking by electricity had the effect of lowering the 

overall ELF as these appliances tend to consume large amounts of electricity for 

relatively short periods of time.  This was also apparent from the EA model where the 
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three most significant appliances to reduce ELF were: electric shower (instant), cooker 

and immersion.  

 

EToU was influenced more by occupant rather than dwelling characteristics as one would 

expect.  Older head of households are more likely to use EToU earlier in the day.  This 

was also reflected in the household composition variable where adults and children, 

which correspond with younger HoH’s, tending to use EToU later in the day.  Appliances 

that influenced ToU were dishwashers, electric showers, plug in convective heaters, 

televisions and computer desktops.  The appliance that showed the greatest potential for 

shifting demand away from peak time use was the dishwasher due to its high power 

requirement and frequent use.  This suggests the potential for the introduction of ToU 

and/or smart appliances for the domestic sector. 
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CHAPTER 6 

 

AUTOREGRESSIVE (MARKOV CHAIN) 
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6 AUTOREGRESSIVE (MARKOV CHAIN) 

6.1 Introduction 

A Markov chain probabilistic approach to characterise domestic electricity demand load 

profiles is evaluated in this chapter.  The technique has been used in the past to 

characterise various applications such as rainfall [122] and wind speed at specific 

locations [47].  However, to the best of the authors knowledge its application at a 

domestic level has never been done before.  In this chapter Markov chains are applied to 

a small sample of dwellings in order to determine how effective they are for 

characterising domestic electricity demand. 

 

6.2 Discussion and Results 

6.2.1 Electrical Parameters 

Electrical parameters were calculated from Equations 4.1 – 4.4 for each dwelling type 

and results presented in the following tables.  Table 6.1 shows ETotal for original sample 

and characterised profiles as well as percentage error over the six month period.  For 

three out of four cases, the percentage error was less than 5% indicating that the 

parameter was reproduced within a high level of accuracy.  In each case, it is interesting 

to note that the Markov chain process over estimated the parameter.  This is due to 

sampling error and is a result of having too few sample bins at the lower end of the 

electricity load profile.   
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Table 6.1: ETotal for each dwelling type over six month period (July – December 2009) 

        

Dwelling Type Original Characterised 

Percentage 

Error 

Detached 2,163 kWh 2,236 kWh 3.37% 

Semi-detached 2,574 kWh 2,593 kWh 0.74% 

Terraced 2,872 kWh 3,065 kWh 6.72% 

Apartment 616 kWh 634 kWh 2.92% 

 

Table 6.2 presents results for electrical parameter EMD as described by Equation 4.2.  

Standard deviation varies slightly between original and characterised load profiles and 

is a result of using a random number to generate a value between the two bin end points.  

The Minimum value for parameter EMD varies more considerably between original and 

characterised profiles.  This variation can again be attributed to the number of sample 

bins at the lower end of the electricity demand load profile. 

 

Table 6.2: Descriptive statistics for original and characterised profiles by dwelling type 

for EMD over six month period (July – December 2009) 

                

Dwelling Type Mean Median 

Std. 

Dev. Max Min 

Scale 

Parameter 

(η) 

  

Shape 

Parameter 

(α) 

Detach original (kW) 2.71 2.69 0.95 5.98 0.77 2.68 0.54 

Detach characterised (kW) 2.52 2.54 1.15 5.76 0.26 2.51 0.67 

Semi-detach original (kW) 2.73 2.66 1.05 5.44 0.08 2.77 0.55 

Semi-detach characterised (kW) 2.92 2.72 0.82 5.38 0.78 2.87 0.46 

Terraced original (kW) 3.07 3.00 0.72 5.60 0.19 3.04 0.39 

Terraced characterised (kW) 3.13 3.07 0.77 6.10 1.28 3.10 0.44 

Apartment original (kW) 1.03 0.92 0.54 3.70 0.40 0.95 0.28 

Apartment characterised (kW) 1.02 0.82 0.63 3.89 0.21 0.94 0.34 

Weibull Probability Distribution Function 

f�T� � α
η �T

η	
���

e��
�
��

�

 where f�T� � 0, T � 0, α � 0, � � 0 
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A paired sample t-test is shown in Table 6.3 and indicates that there is no significant 

difference between daily EMD for original and characterised profiles for each dwelling 

type. 

 

Table 6.3: Paired sample t-test for EMD for each dwelling type over six month period 

(July – December 2009) 

            

Paired Samples Mean 

Standard 

Deviation 

Std. 

Error 

Mean t 

Sig. (2-

tailed) 

Detached 0.19 1.51 0.11 1.70 0.09 

Semi-detached -0.18 1.29 0.10 -1.89 0.06 

Terraced -0.06 1.02 0.08 -0.78 0.44 

Apartment 0.00 0.85 0.06 0.06 0.95 

 

 

Descriptive statistics for ELF as described by Equation 4.3 is presented in Table 6.4.  ELF 

is a function of EMD and therefore one would expect similar results to those presented in 

Table 6.2.  However, ELF varied slightly between original and characterised time series 

more so than the other two parameters presented in Table 6.1 and Table 6.2.  ELF is a 

ratio of maximum to average electricity demand during a 24 hour (00:30 – 00:00) 

period.  The variation between original and characterised time series can be explained as 

follows.  Firstly, as discussed the number of sample bins at the lower end of the load 

profile influences the average value of electricity demand evaluated across the day.  

Secondly, Markov chains are stochastic processes which are also independent of time.  

As a result, over the course of a 24hour period a typical peak value for EMD like that 

shown in Figure 1.2 may or may not occur.  Similarly, it is possible that two such 
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typical peaks may occur during a single 24 hour period.  This has a bearing on the 

calculated value for ELF. 

 

Table 6.4:  Descriptive statistics for original and characterised profiles by dwelling type 

for ELF over six month period (July – December 2009) 

                

Dwelling Type Mean Median 

Std. 

Dev. Max Min 

Scale 

Parameter 

(η) 

  

Shape 

Parameter 

(α) 

Detach original 19.29 18.69 4.88 35.31 9.58 0.19 0.03 

Detach characterised 21.89 20.87 6.99 46.37 8.04 0.21 0.04 

Semi-detach original 25.77 22.00 14.97 81.46 9.36 0.23 0.06 

Semi-detach characterised 20.21 19.85 5.73 39.25 8.09 0.20 0.03 

Terraced original 21.99 21.88 6.08 79.00 11.66 0.22 0.03 

Terraced characterised 22.73 22.16 5.65 42.29 12.14 0.23 0.03 

Apartment original 15.39 15.08 5.17 30.72 6.22 0.15 0.03 

Apartment characterised 17.47 16.36 7.47 44.68 6.26 0.17 0.04 

Weibull Probability Distribution Function 

f�T� � α
η �T

η	
���

e��
�
��

�

 where f�T� � 0, T � 0, α � 0, � � 0 
 

The difference in mean ELF values is presented in Table 6.5 where a paired sample t-test 

also shows that detached, semi-detached and apartment dwelling types were 

significantly different for parameter ELF when compared against the original data. 

 

Table 6.5: Paired sample t-test for ELF for each dwelling type 

Paired 

Samples Mean 

Standard 

Deviation 

Std. 

Error 

Mean t 

Sig. (2-

tailed) 

Detached -0.03 0.08 0.01 -4.08 0.00 

Semi-detached 0.06 0.16 0.01 5.00 0.00 

Terraced 0.00 0.09 0.01 -0.57 0.57 

Apartment -0.02 0.09 0.01 -3.26 0.00 
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Table 6.6 shows descriptive statistics for EToU.  Maximum and Minimum values were 

not shown below as this would indicate times of 1 and 48 corresponding with 00:30 and 

00:00 respectively.  Significant differences exist between original and characterised 

profiles presented in Table 6.6, indicating the occurrence of EToU at different times of 

day. 

 

Table 6.6: Descriptive statistics for original and characterised profiles by dwelling type 

for EToU (where 1 = 00:00 - 00:30 and 48 = 23:30 - 00:00) over six month period (July – 

December 2009) 

            

Dwelling Type Mean Median 

Std. 

Dev. 

Scale 

Parameter 

(η) 

  

Shape 

Parameter 

(α) 

Detach original 35.21 36.00 8.10 36.09 4.02 

Detach characterised 24.18 23.50 14.13 24.10 8.56 

Semi-detach original 29.20 34.00 10.70 30.26 6.20 

Semi-detach characterised 24.69 26.00 14.77 24.58 9.00 

Terraced original 31.90 35.00 7.15 32.97 3.76 

Terraced characterised 25.37 24.00 14.45 25.21 8.83 

Apartment original 22.38 19.00 7.87 21.35 4.41 

Apartment characterised 25.31 26.50 14.28 25.43 8.68 

Weibull Probability Distribution Function 

f�T� � α
η �T

η	
���

e��
�
��

�

 where f�T� � 0, T � 0, α � 0, � � 0 
 

A paired sample t-test shown in Table 6.7 confirms the results presented in Table 6.6.  

The table shows that EToU is significantly different for each dwelling type.  Therefore 

we can conclude that the temporal characteristics of the original time series were not 

transferred to the characterised time series.  In addition, the Shape parameter fitted to 

EToU shows significantly different values to the original data indicating that the 

distribution for electricity demand across the day was more random than anything else. 
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Table 6.7: Paired sample t-test for EToU for each dwelling type 

            

Paired 

Samples Mean 

Standard 

Deviation 

Std. 

Error 

Mean t 

Sig. (2-

tailed) 

Detached 10.93 15.45 1.14 9.60 0.00 

Semi-detached 3.98 18.00 1.33 3.00 0.00 

Terraced 30.83 6.76 0.50 61.83 0.00 

Apartment -3.13 14.59 1.08 -2.91 0.04 

 

 

6.2.2 Time Series Tests 

The following figures present illustrative results for a single dwelling and therefore 

cannot be considered to be representative for each dwelling.  However, they give a good 

visual representation as to the characterisation performance and build on the results 

presented in Table 6.1 to Table 6.7.  Figure 6.1 shows a time series plot for the detached 

dwelling described above for both original (solid blue line) and characterised profiles 

(dashed red line) across a 24 hour period.  It is apparent from Figure 6.1 that daily peaks 

for original sample and characterised profiles do not coincide on a temporal basis.  For 

example, the original profile produces daily peaks at 17:00 and 00:00 whereas the 

characterised profile shows daily peaks at 04.30 and 21:00.  This confirms what was 

presented in Table 6.6 and Table 6.7 where EToU was shown not to occur at the same 

time between original and characterised profiles. 
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Figure 6.1:  Original and characterised profiles for detached dwelling over a 24 hour 

period (1st July 2009) 

 

Figure 6.2 show a frequency histogram for the same detached dwelling over a one week 

period from 1st – 7th July 2009.  The characterised profile slightly under estimates the 

frequency of smaller values of electricity consumption (< 0.6 kW) within the home and 

over estimates larger values.  This was also indicated in Table 6.1 where the Markov 

chain process resulted in an over estimation for parameter ETotal for the characterised 

time series.  

 

Figure 6.2:  Frequency histogram for original and characterised profiles for detached 

dwelling over a weekly period (1st – 7th July 2009) 



129 

Figure 6.3 shows the autocorrelation function as described by Equation 4.5 for the same 

detached dwelling and period above.  The original profile shows a clear cyclical pattern 

on a daily basis indicating high correlation between electricity consumed at the same 

time interval each day.  In contrast, the characterised profile shows little or no 

correlation with the same time periods for each day as indicated by the autocorrelation 

function.  In addition this figure highlights the attribute that even though domestic 

electricity load profiles can be considered to be stochastic on an intra-daily basis (as was 

shown in Figure 1.4) patterns of use are visible when the autocorrelation function is 

applied.  

 

Figure 6.3:  Autocorrelation function for original and characterised profiles for detached 

dwelling over a weekly period (1st – 7th July 2009) 

 

Figure 6.4 shows PSD periodgram for the detached dwelling as calculated by Equations 

4.6 over a weekly period.  The original and characterised profiles have very different 

frequency components further indicating that the temporal properties are significantly 

different between the time series.  Furthermore, Figure 6.4 indicates that the 

characterised profile reflects non-cyclical patterns of electricity use within the home. 
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Figure 6.4:  PSD function for original and characterised profiles for detached dwelling 

over a weekly period (1st – 7th July 2009) 

 

Figure 6.1 to Figure 6.4 presented similar findings to the Tables presented above.  

Markov chains have shown to be effective at reproducing the magnitude component to 

domestic electricity demand load profiles as indicated by replicating parameters ETotal, 

EMD and to a lesser extent ELF.  This is a result of their ability to model the stochastic 

component which is a common feature of domestic electricity demand load profiles as 

indicated earlier in Figure 1.4 and Figure 1.5. 

 

The disadvantage with Markov chains when applied to characterising domestic 

electricity demand load profiles was their inability to sufficiently capture the temporal 

components.  This was clearly shown by parameter EToU and in Figure 6.1 to Figure 6.4.  

In particular, the time series plot (Figure 6.1) and the autocorrelation function (Figure 

6.3) show the timing of electricity demand not to coincide at similar intervals to the 

original profile.  This is a result of the Markov chain process being independent of time.  

The intention of using Markov chains to characterise domestic loads was to use the 

principle that future values of electricity demand is highly correlated to past and present 
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values.  However, the analysis has shown that even though this is the case it is not 

enough alone to be able to sufficiently characterise individual domestic electricity 

demand load profiles.  Therefore the decision was made to investigate other time series 

methods that could characterise these properties as will be shown in the next chapter. 

 

6.3 Conclusion 

A Markov chain process was used to characterise domestic electricity demand for four 

individual dwelling types chosen at random from Dataset I.  Descriptive statistics, 

alongside electrical parameters were presented and used to compare original and 

characterised profiles.  Time series tests were also used to interrogate the time series 

properties between profiles more rigorously. 

  

Electrical parameters, ETotal, EMD and ELF were all reproduced within a reasonable 

degree of accuracy.  Markov chains proved to be very effective at reproducing the 

magnitude components to domestic electricity load profiles as indicated by low 

percentage errors and small differences between mean values for parameter values in 

the statistical t-tests. 

 

Electrical parameter EToU was not so well reproduced.  The time series tests also showed 

significant differences in timing between ToU of electricity demand.  This was shown 

to be most evident by the autocorrelation function where the cyclical daily pattern of 

electricity demand was not characterised adequately between profiles and similar results 

were obtained from evaluating the PSD function.  
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Markov chains were therefore deemed to be unsuitable to characterise domestic 

electricity demand in their current form.  In addition, it would have proved difficult to 

link transitional probability matrices to dwelling and occupant characteristics as 

discussed in the objectives outlined in Section 1.5.  As a result, it was decided not to 

pursue this approach further and concentrate on methods that could sufficiently 

characterise the temporal properties of domestic electricity demand load profiles 

adequately. 
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CHAPTER 7 

 

TIME SERIES APPROACHES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



135 

7 TIME SERIES APPROACHES 

7.1 Introduction 

Time series approaches to characterising domestic electricity demand have been 

somewhat limited in the past.  However, these methods have been used extensively in 

the electricity supply industry for characterising system demand like that shown earlier 

in Figure 1.1.  This section discusses time series approaches applied to domestic 

electricity demand load profile characterisation by comparing and contrasting each 

method in order to meet the objectives outlined in Section 1.5.  The following 

techniques are discussed Fourier transforms, Neural networks, Gaussian processes, 

Auto-regression, Fuzzy logic, Wavelets and multivariate regression. 

 

7.2 Discussion and Results 

7.2.1 Discussion 

The principal advantage of Fourier transforms over other methods are their ability to 

represent the temporal and magnitude components within the characterisation 

coefficients, with the latter scalable [38].  This means that comparable households that 

show similar patterns of electricity use can be grouped together.  However, the 

disadvantage with Fourier transforms, as will be discussed later, is their difficulty in 

characterising small intervals of large electricity demand [123].   

 

Neural networks are especially good at characterising non-linear relationships and are 

therefore well suited to the variable nature of domestic electricity load profile 

characterisation.  However, they are seen as a black box approach where it is often 
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difficult to visualise a relationship between input and output [50].  In addition, the 

characterisation structure is often quite complex, involving multiple neurons and layers 

that require a significant number of variables to describe the daily load profile 

accurately.  Nor do the variable coefficients reflect the temporal and magnitude 

components of the electricity load profiles; rather they represent the weights and biases 

of input to output for the time series.  In contrast to Neural networks, Fuzzy logic has 

the advantage that the relationship between input and output is clearly defined [50].  

However, the number of variables required to characterise the output is usually large, 

particularly when the load profile shape changes considerably across a daily period. 

 

In contrast to Neural networks, Gaussian processes provide a much simpler 

representation of the load profile shape.  Each profile is characterised by three variables: 

amplitude, centroid and peak width (shown in Equation 2.6) and that describe each 

probability distribution [86].  Compared to Fourier transforms, Gaussian processes can 

sufficiently characterise small intervals of large electricity demand.  However, it must 

be noted that the characterisation order needs careful consideration as if it is too high 

redundant distributions will lead to over fitting and if it is too low the profile peaks will 

not be fully represented.  

 

An autoregressive, Markov chain approach was applied in the last chapter to 

characterise domestic electricity demand.  More common approaches include 

autoregressive moving average (ARMA) and autoregressive integrated moving average 

(ARIMA), however, these have only been used to characterise electricity system 

demand load profiles like that shown in Figure 1.1.  Due to the variable nature of 

individual domestic loads, ARMA and ARIMA find it difficult to characterise without 
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using higher order methods, leading to a large number of variables.  The variable 

coefficients also vary significantly with small changes in load profile shape and this 

makes it difficult to group or compare households [38].   

 

Wavelets are similar to Fourier transforms as they apply the same spectral 

decomposition technique.  However, their advantage over Fourier transforms is the 

separation of the electricity load profile into high and low frequency components before 

applying the transform.  This results in two or more characteristic curves representing 

distinctly different patterns of electricity use for individual households.  The advantage 

in doing this is that certain dwelling and occupant characteristics have different periods 

of influence over electricity consumption in the home [89].  However, the disadvantage 

is that it effectively doubles the number of variables required to characterise the time 

series. 

 

Finally, multivariate linear regression is a technique that has been used extensively in 

electricity load profiling.  Similar to autoregression it is most often applied to 

characterise and forecast system demand.  It is the method of choice for UK grid 

operator, National Grid, to develop standard load profiles for the purposes of electricity 

settlement as discussed earlier [12].  However, a large number of variables are required 

to characterise the standard load profiles which reflect a single average electricity load 

profile across the day, such as that shown in Figure 1.3.  Monte Carlo analysis is the 

most common probabilistic approach to load profile characterisation. The advantage 

with this technique is that it is ideal for generating variable load profiles and therefore is 

well suited to domestic electricity load characterisation.  However, using Monte Carlo 

analysis to characterise domestic electricity demand requires each half hour period to be 
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represented independently with a probability distribution function leading to a large 

number of variables. 

 

Overall, Fourier transforms, wavelets and Gaussian processes all appear to represent the 

temporal and magnitude components within the variable coefficients.  Fuzzy Logic, 

autoregression, neural network and multivariate regression also have this capability but 

require each half hour period to be characterised independently by a minimum of a 

single variable.  This is a disadvantage as a minimum of forty eight variables would be 

required to characterise the temporal and magnitude components sufficiently for each 

household.  Autoregressive approaches such as ARIMA have been used extensively in 

the past to forecast electricity system demand for markets all around the world.  The 

Moving Average (MA) component lends itself well to characterising the smooth 

transitions between half hourly periods which is typical of electricity system demand 

load profiles as shown in Figure 1.1.  However, this component is not as well suited to 

individual residential applications where electricity demand changes very quickly over 

short periods of time.  Regression, probabilistic and fuzzy logic techniques all take a 

descriptive approach and are deemed unsuitable in this instance as too many variables 

would be required to characterise the electricity load profile.  Neural networks are 

notoriously complex requiring a number of variables to represent the weights and biases 

at different layers to characterise the output successfully.  As a result it is difficult to 

compare variable coefficients between households because of this complicated 

architecture.  Wavelets use Fourier transforms to decompose the time series into high 

and low frequency components so therefore there is some overlap between these two 

methodologies with the former requiring double the amount of variables.  Therefore, 

due to the fact that Fourier transforms and Gaussian processes both represent the 
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temporal and magnitude components with a relatively small number of variables, both 

approaches are evaluated in the next section.  A table summarising the principal 

advantages and disadvantages outlined above for each time series technique and the 

time interval at which it has been applied for electricity load profile characterisation is 

given in Appendix C. 

 

7.2.2 Results 

Electrical Parameters 

The following section presents characterisation results for both Fourier transforms and 

Gaussian process time series techniques.  In both cases an eighth order characterisation 

approach was applied which was the highest order accommodated by the Matlab 

toolbox software.  Table 7.1 shows descriptive statistics for mean ETotal for all 

households over the yearly period.  Both Fourier transforms and Gaussian processes 

characterised parameter ETotal with less than 5% percentage error across each descriptive 

statistic in Table 7.1.  Fourier transforms produced accurate results with mean errors 

less than 0.1%.  Gaussian processes on the other hand were less accurate but still within 

acceptable limits overall (<5% percentage error). A Weibull probability distribution 

function was found to be the best fit to the parameter, with scale and shape values also 

included in Table 7.1 below.   

 

Fourier transforms essentially apply a data integration process to the time series.  As 

parameter ETotal is a summation of the total amount of electricity consumed over a 

period of time this resulted in the Fourier based approach characterising the parameter 

with a high degree of accuracy.  In contrast, Gaussian Processes characterise by 
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applying a series of probability distribution functions to the time series which resulted 

in a slightly higher percentage error for the parameter. 

 

Table 7.1:  Descriptive statistics for mean ETotal  

                

Characterisation 

Method Mean Median 

Standard 

Deviation Maximum Minimum 

Scale 

Parameter 

(η) 

  

Shape 

Parameter 

(α) 

Original Time 

Series (kWh) 

              

4,146 4,008 1,870 9,651 414 4,687 2.38 

Fourier 

Transforms 

(kWh) 

4,146 4,008 1,870 9,651 414 4,687 2.38 

(0%) (0%) (0%) (0%) (0%) (0%) (0%) 

Gaussian 

Processes (kWh) 

4,047 3,903 1,835 9,462 413 4,576 2.37 

(-2.4%) (-2.6%) (-1.9%) (-2.0%) (-0.2%) (-2.4%) (-0.4%) 

Weibull Probability Distribution Function 

f�T� � α
η �T

η	
���

e��
�
��

�

 where f�T� � 0, T � 0, α � 0, � � 0 
 

Table 7.2 shows results for a paired sample t-test between the original and characterised 

time series for parameter ETotal.  A 2-tailed significance value of 0.225 for Fourier 

transforms indicates that there is little difference between the original and characterised 

parameters.  This finding is supported by the small differences observed between the 

means and standard deviations in Table 7.1 for Fourier transforms.  In contrast, results 

for Gaussian processes indicate that there is a significant difference between the 

characterised and original time series for the same parameter.   

 

 

 

 

 

 



141 

Table 7.2:  Descriptive statistics for paired sample t-test for ETotal 

            

Paired Samples Mean 

Standard 

Deviation 

Std. 

Error 

Mean t 

Sig. (2-

tailed) 

Original- Fourier 

Time Series 

0.0009 0.0164 0.0007 1.2140 0.2250 

Original-

Gaussian Time 

Series 

98.5679 57.4282 2.5455 38.7230 0.0000 

 

Table 7.3 shows results for mean daily EMD for all households over the year.  Similar to 

parameter ETotal, a Weibull probability distribution function was found to be the best fit 

for the parameter. Fourier transforms were poor at capturing the daily peak demands 

characteristic of almost all individual dwellings.  Descriptive statistics presented in 

Table 7.3 show percentage errors in excess of 20% for Fourier transforms, with the 

largest errors at the extremities for Maximum and Minimum.  In contrast, Gaussian 

processes were better able to characterise this parameter with percentage error of less 

than 5% in most instances.   

 

Table 7.3:  Descriptive statistics for mean daily EMD 

                

Characterisation 

Method Mean Median 

Standard 

Deviation Maximum Minimum 

Scale 

Parameter 

(η) 

  

Shape 

Parameter 

(α) 

Original Time 

Series (kW) 
              

2.34 2.29 0.92 6.18 0.14 2.6293 2.7425 

Fourier 

Transforms (kW) 

1.68 1.66 0.68 3.89 0.09 1.8904 2.6885 

(-28.2%) (-27.5%) (-35.3%) (-58.9%) (-55.6%) (-28.1%) (-2.0%) 

Gaussian 

Processes (kW) 

2.23 2.2 0.88 5.99 0.13 2.5082 2.7394 

(-4.7%) (-3.9%) (-4.4%) (-3.1%) (-7.1%) (-4.6%) (-0.1%) 

Weibull Probability Distribution Function 

f�T� � α
η �T

η	
���

e��
�
��

�

 where f�T� � 0, T � 0, α � 0, � � 0 
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The Fourier Transform characterisation process smoothes out the load profile shape thus 

resulting in large electricity spikes not being characterised adequately.  In contrast 

Gaussian Processes are better able to describe these electricity spikes as indicated by 

smaller percentage errors in Table 7.3 for parameter EMD.  This highlights one of the 

more significant advantages of using Gaussian Processes to characterise domestic 

electricity demand load profiles compared to Fourier transforms, which will be 

discussed again later.   

 

Table 7.4 shows a paired sample t-test for EMD parameter.  As discussed above, 

Gaussian Processes were better at representing the characteristics of this parameter.  

However, the results also show that the EMD for both characterised time series were 

significantly different from that of the original time series at the 95% p-value level. 

 

Table 7.4:  Descriptive statistics for paired sample t-test for EMD 

            

Paired Samples Mean 

Standard 

Deviation 

Std. 

Error 

Mean t 

Sig. (2-

tailed) 

Original- Fourier 

Time Series 

0.6554 0.3094 0.0137 47.7900 0.0000 

Original-Gaussian 

Time Series 
0.1053 0.0680 0.0030 34.9490 0.0000 

 

 

Table 7.5 presents results for mean ELF for all households over the yearly period.  A 

log-logistic probability distribution function was found to be the best fit for the 

parameter with scale and shape values also shown in Table 7.5.  Similar to Table 7.3, 

Fourier transforms were also unable to accurately characterise ELF with percentage 
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errors in excess of 30% in most instances.  However, this is not surprising as ELF is a 

function of EMD as was shown in Equation 4.3.  Gaussian Processes showed much 

smaller characterisation errors for parameter ELF and can be attributed to being better 

able to characterise short electricity spikes in the load profile shape.   

 

Table 7.5:  Descriptive statistics for mean ELF 

                

Characterisation 

Method Mean Median 

Standard 

Deviation Maximum Minimum 

Scale 

Parameter 

(η) 

  

Shape 

Parameter 

(α) 

Original Time 

Series 

              

23.23% 22.35% 5.76% 48.69% 11.29% -1.4935 0.1299 

Fourier 

Transforms 

31.79% 30.76% 6.59% 66.72% 18.05% -1.1703 0.109 

(36.9%) (37.6%) (4.4%) (37.0%) (59.9%) (-21.6%) (-19.2%) 

Gaussian 

Processes 

24.74% 23.74% 6.54% 51.76% 11.89% -1.434 0.138 

(6.5%) (6.2%) (13.5%) (6.3%) (5.3%) (-4.0%) (6.2%) 

Log-logistic Probability Distribution Function 

f�T� � e�
αT�1 � e��	   where z � T
 � η

α , T
 � ln�T�, 0 � � � ∞, �∞ � � � ∞, 0 � � � ∞ 

 

 

Table 7.6 shows results for a paired sample t-test for ELF parameter.  Fourier transforms 

over estimated ELF compared to the original time series more than Gaussian processes.  

The results illustrate that Gaussian processes were better at characterising the time 

series in terms of ELF but the t-test showed that both time series techniques were 

significantly different compared to the original data at the 95% p-value level. 
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Table 7.6:  Descriptive statistics for paired sample t-test for ELF 

            

Paired Samples Mean 

Standard 

Deviation 

Std. 

Error 

Mean t 

Sig. (2-

tailed) 

Original- Fourier 

Time Series 

-0.0829 0.0228 0.0010 -81.9350 0.0000 

Original-Gaussian 

Time Series 
-0.0123 0.0109 0.0005 -25.5020 0.0000 

 

Table 7.7 shows results for mean EToU for all households over the yearly period.  

Fourier transforms performed slightly better when this parameter was evaluated with 

less than 3% percentage error, but tended to overestimate its value indicating later use 

of EToU.  However, the difference is small and EToU on average still occurs within the 

same half hour period (15:30).  Gaussian processes percentage errors were slightly 

greater and on average tended to predict peak time electricity use slightly earlier 

(15:00). The results indicate that both Fourier transforms and Gaussian process 

techniques were able to sufficiently characterise the time series temporal properties 

within a certain degree of accuracy. 

 

Table 7.7:  Descriptive statistics for mean household EToU (where 1 = 00:00 - 00:30 and 

48 = 23:30 - 00:00) 

        

Characterisation 

Method Mean Median 

Standard 

Deviation 

Original Time Series 
      

30.7 31.16 3.52 

Fourier Transforms 
31.44 31.84 3.62 

(2.4%) (2.2%) (2.8%) 

Gaussian Processes 
29.63 29.91 3.3 

(-3.5%) (-4.0%) (-6.3%) 
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The performance of each characterisation technique differed slightly depending upon 

which parameter was evaluated.  Fourier Transforms showed to be adequate when 

household electricity demand was aggregated over a period.  Gaussian Processes were 

better at characterising individual electricity spikes across a day.  However, in contrast 

to the Markov chain method presented in the previous chapter both characterisation 

approaches were able to reproduce the temporal properties of the original time series as 

shown by the ToU parameter.  Similar to the previous chapter a number of time series 

tests will now be applied to graphically illustrate the results presented above in Table 

7.1 to Table 7.7. 

 

Time Series Tests 

A period of one day, 1st July 2009, was chosen for two random households to illustrate 

graphically typical characterising performance for both Fourier transforms and Gaussian 

processes and is shown Figure 7.1.  As stated in the previous chapter the profiles 

presented cannot be considered to be representative as they were chosen at random, 

however, they give an insightful visual representation as to the characterisation 

performance for each method.  Household 1 (shown on top) shows both techniques 

replicating the time series within a reasonable degree of accuracy across a daily period.  

It is interesting to note that Gaussian processes were unable to sufficiently replicate the 

late peak at night at around 11pm.  In contrast, Household 2 (shown on bottom) shows a 

slightly different profile shape with three distinct short periods of electricity demand 

across the day.  Gaussian processes almost identically replicate these peaks with Fourier 

transforms showing a smoother demand load profile at the same times.   
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As shown in Section 2.2.4 Fourier Transforms describe a time series as a combination 

of sinusoids.  Low and high frequency components combine together resulting in a 

smoothing out of the electricity load profile.  This results in sharp electricity peaks not 

being sufficiently characterised by the Fourier Transform process.  Gaussian Processes 

on the other hand apply individual probability density functions, which similar to 

Fourier Transform method, are combined together to characterise the time series.  

However, unlike Fourier Transforms, Gaussian Processes have a location variable 

which enables small periods of electricity demand to be individually characterised.  

These periods are characterised in terms of amplitude and width for each individual 

probability density function at the appropriate time during the day.  This demonstrates 

the main difference between the two characterisation approaches.  Fourier transforms 

tend to be better at characterising profiles where a large amount of electricity is 

consumed over a number of hours in the day.  In contrast Gaussian processes are better 

at characterising short intervals of high electricity consumption (≤1hour) across the day.  

Therefore depending on the household electricity demand load profile each 

characterisation approach has its own advantages.  

 

Figure 7.1:  Time series plot for original and characterised load profiles for the 1st July 

2009 for two random customers 
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Figure 7.2 shows a frequency histogram over a weekly period for a single random 

household.  It is evident that Fourier transforms have difficulty replicating sharp high 

electricity peaks, as already discussed.  However, aside from this both approaches 

replicate the magnitude component of the electricity load profile well.  A disadvantage 

of both techniques is that they show negative values of electricity demand which is 

clearly an unrealistic situation where no on-site generation exists.  The frequency 

occurrence of negative values is small and where it does occur, is very low in 

magnitude.  This is a feature of both approaches and mainly occurs for profiles that use 

very little electricity demand across the daily period. 

 

 

Figure 7.2:  Frequency histogram for original and characterised load profiles for a 

random customer between 1st – 7th July 2009 

 

Figure 7.3 shows the autocorrelation function where both Fourier transforms and 

Gaussian processes follow the original data over the weekly period 1st – 7th July 2009 

for an individual random household.  The first autocorrelation coefficient is excluded in 

Figure 7.3 as this represents perfect correlation when the time series is regressed onto 
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itself with a zero time lag.  Subsequent coefficient values for the weekly period fall 

between ±0.4.  A value of 1 represents perfect correlation of the time series, 0 indicates 

no correlation and -1 represents anti-correlation.  As Figure 7.3 shows, a highly cyclical 

pattern of electricity demand over a twenty four hour period is apparent.  Both Fourier 

transforms and Gaussian processes were able to replicate this pattern, however, both 

approaches tended to either over estimate or underestimate the peak values.  In most 

cases in Figure 7.3 Gaussian Processes were shown to fit closer to the original time 

series for the autocorrelation function peaks and troughs.  This confirms what has been 

presented earlier regarding their superior ability to characterise electricity load profile 

peaks when compared against Fourier Transforms.  

 

 

Figure 7.3:  Autocorrelation coefficients for original and characterised load profiles for 

a random customer between 1st – 7th July 2009 

 

Figure 7.4 shows the PSD periodgram for an individual random household over a 

weekly period 1st – 7th July 2009.  The figure illustrates that both Fourier transforms and 

Gaussian processes can represent the series in the frequency domain, thus confirming 

that the temporal properties are retained between the original and characterised times 
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series.  The cyclical daily electricity demand pattern is typical of all dwellings with 

some households having smaller frequency patterns throughout the day.  

 

 

Figure 7.4: PSD function for original and characterised load profiles for a random 

customer between 1st – 7th July 2009 

 

Fourier transforms - Regression 

A multivariate linear regression was applied to the Fourier transform and Gaussian 

process characterised time series in order to determine the influence of dwelling and 

occupant characteristics on the electricity load profile shape.  Table 7.8 shows 

regression results for Fourier transforms using the same dwelling and occupant 

variables applied in the statistical DOC approach in Chapter 5.  The results show the 

significance (p-value) for each dwelling and occupant characteristic on the Fourier 

coefficients and also the magnitude of its influence indicated by β. 

 

Overall, dwelling and occupant characteristics that were most influential over Fourier 

transform coefficients were number of bedrooms, household composition and whether 

electric water heating and cooking were present in the household.  In particular, 
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coefficient -a0- is a constant and hence does not contain any frequency components.  

Therefore the variable is largely influenced by characteristics that affect the magnitude 

component of the electricity load profile during the day such as number of bedrooms, 

household composition, presence of electric water heating and cooking and household 

efficiency indicator.  The characteristics that influenced the smaller frequency 

components (such as a1, b1, a2, b2, a3 and b3) tended to be greater in number, 

particularly at the 99% significance level compared to the larger frequency components.  

As the coefficients increase (i.e. a4 to b8) the dwelling and occupant characteristics 

become less influential as the load profile becomes less deterministic over shorter time 

intervals.   
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Table 7.8:  Regression results for dwelling and occupant characteristics on 

Fourier transform coefficients 
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Figure 7.5 shows two individual load profiles for typical low and high electricity 

consumption households as described by their characteristics.  Each coefficient value 

was calculated based on the presence or absence of particular household characteristics. 

The coefficient values were used to derive the load profile by applying the inverse FFT.  

Household 1 is a typical two bedroom apartment with adults only, HoH age less than 36 

years and of social class C with electric water heating and cooking and an efficiency 

indicator variable of less than 10%.  In contrast, Household 2 is a five bedroom 

detached dwelling with adults and children, HoH age between 36 to 55 years and of 

social class AB with both electric water heating and cooking and an efficiency indicator 

variable of greater than 30%.  The figure shows the difference between the two profiles 

with Household 1 using much less electricity across the day compared to Household 2, 

however, the general shape of the two profiles are similar. 

 

 

Figure 7.5:  Household 1 and 2 electricity load profiles as calculated by regression of 

dwelling and occupant characteristics on Fourier transform coefficients respectively 

(low and high electricity user) 
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Figure 7.6 shows the influence of changing HoH age on electricity demand across the 

day with all other characteristics held constant at their base variable.  Younger head of 

households use less electricity during the day and more in the evening times.  This 

group also tend to use electricity earlier in the morning and later in the evening time.  In 

contrast, older head of households use more electricity during the day and less in the 

evening time.  These results are consistent with those presented earlier for the statistical 

characterisation approach shown in Chapter 5. 

 

Figure 7.6:  Load profiles by HoH age as calculated by regression of dwelling and 

occupant characteristics on Fourier transform coefficients 

 

Figure 7.7 shows the influence of household composition on the daily load profile with 

all other variables held constant at their base category.  The difference between the 

profiles is almost linear between the groups with adults and children almost consuming 

double that of a person living alone.  These results are also consistent with those 

presented in Chapter 5. 
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Figure 7.7:  Load profiles by household composition as calculated by regression of 

dwelling and occupant characteristics on Fourier transform coefficients 

 

Although the Fourier method of characterisation was able to quantify the dwelling and 

occupant variables as a function of the load profile shape across the day, the process 

resulted in a highly averaged profile similar to that presented earlier in Figure 1.3 for the 

standard load profile.  This is the result of two factors.  Firstly, a longitudinal averaging 

process was applied to each household before the regression was carried out.  Secondly, 

the application of multivariate regression results in a smoothing out of the electricity 

load profile shape as individual characteristics are regressed against the Fourier 

coefficients as was shown in Figure 7.5 to Figure 7.7. 

 

The same multivariate linear regression applied to electrical appliances (EA) approach 

in Section 5.2 is now carried out and results presented in Table 7.9.  The appliances that 

influenced the -a0- Fourier coefficient term, at 95% or higher significance level were: 

tumble dryer, dishwasher, cooker, freezer (stand alone), televisions greater and smaller 

than 21 inch’s, desktop computer and game consoles.  These appliances all served to 

increase the constant value of the load profile.  Similar to the results presented in Table 
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7.8, the number of appliances that significantly influenced frequency components of the 

electricity load profile is greater for the smaller coefficient values (a1 – b3).  Therefore, 

this also suggests that it is the smaller, more deterministic components of the electricity 

load profile shape that are better characterised by appliance type. 
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Table 7.9:  Regression results for appliance type on Fourier transform coefficients 
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Figure 7.8 shows load profiles for four common household appliance types: electric 

cooker, dishwasher, freezer (stand alone) and electric shower.  Similar to the dwelling 

and occupant characteristics investigated earlier, the load profiles reflect highly 

averaged electricity use by appliance type.  The dishwasher profile shows the greatest 

amount of electricity use, particularly at peak times.  As discussed earlier in Section 5.2, 

this is an appliance that shows potential for shifting domestic electricity demand away 

from peak time use. 

 

 

Figure 7.8:  Load profiles by appliance type as calculated by regression of appliance 

characteristics on Fourier transform coefficients 

 

Regression – Gaussian processes 

The same multivariate linear regression was applied to the Gaussian process 

characterised time series.  Similar to Fourier transforms, median values of Gaussian 

processes coefficients over the yearly period are used in the regression.  Table 7.10 

shows results for each Gaussian process coefficient and dwelling and occupant 

characteristics. 
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Table 7.10:  Regression results for dwelling and occupant characteristics on Gaussian 

process coefficients 
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Similar to the Fourier transform characterisation, dwelling and occupant characteristics 

that had a significant influence over the Gaussian process coefficients were household 

composition, electric cooking and to a lesser extent number of bedrooms and electric 

water heating.  The Gaussian process coefficient terms a1 - a8 had the most significant 

influence over the characteristics which is not surprising as they correlate with the 

magnitude component for the electricity load profile. 

 

Figure 7.9 shows an electricity load profile for the same typical low and high electricity 

households presented in Figure 7.5, as characterised with Gaussian processes.  The 

profile shape is quite different to that presented in Figure 7.5 and looks less like the 

standard load profile presented in Figure 1.3 and more like that of an individual 

dwelling electricity load profile shown in Figure 1.2. 

 

 

Figure 7.9:  Household 1 and 2 electricity load profiles as calculated by regression of 

dwelling and occupant characteristics on Gaussian process coefficients respectively 

(low and high electricity user) 
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Figure 7.10 shows the influence of HoH age while keeping all other parameters constant 

at their base category.  Consistent with results presented earlier in Figure 7.6 younger 

HoH’s (less than 36 years old) use less electricity in the morning but significantly more 

in the evening time.  Also older (HoH age 56 years old plus) use more electricity across 

the day and the least amount in the evening time. 

 

 

Figure 7.10: Load profiles by HoH age as calculated by regression of dwelling and 

occupant characteristics on Gaussian process coefficients 

 

Figure 7.11 shows the influence of household composition on the daily load profile 

shape with all other independent variables held constant at their base category.  Similar 

to Figure 7.7 the difference between profiles is almost linear between the different 

household composition groups.  However, it is interesting to note the small lunch time 

peak for persons living alone compared to the other groups which was not identified by 

the Fourier transforms characterisation process.  This is most probably due to a smaller 

probability of a person being home at this time for this category. 
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Figure 7.11:  Load profiles by household composition as calculated by regression of 

dwelling and occupant characteristics on Gaussian processes coefficients 

 

The same multivariate linear regression EA approach applied above with Fourier 

transforms is now used with Gaussian process coefficients and results presented in 

Table 7.11.  In contrast to the Fourier transform approach there wasn’t a single or group 

of electrical appliances that dominated significantly in the multivariate regression for 

Gaussian processes.  However, the constant term in the regression was nearly always 

significant at the 99% level suggesting that appliances not included in the survey may 

also be significantly influencing the load profile shape throughout the day. 
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Table 7.11:  Regression results for appliance type on Gaussian process coefficients 
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Figure 7.12 shows individual electricity load profiles by common household appliance 

types: electric cooker, dishwasher, stand alone freezer and electric shower.  Each 

individual profile is similar in shape, however, it is interesting to note a number of 

differences.  Firstly, for appliance type (cooker) there is large surge in electricity 

demand in the early evening which typically corresponds with dinnertime in most 

households.  Secondly, the appliance identified which uses the most electricity at peak 

times (i.e. morning 6.30am – 9.00am and late evening 19:30 – 20:30) is the dishwasher.  

This was already mentioned earlier, where in particular the dishwasher, offers good 

potential to shift electricity demand away from peak time use.  Lastly, electric shower 

contributes significantly to morning and lunch time electricity use.  

 

 

Figure 7.12:  Load profiles by appliance type as calculated by regression of appliance 

characteristics on Gaussian process coefficients  
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7.3 Conclusion 

A number of time series approaches to electricity load profile characterisation at an 

individual dwelling level were presented.  Fourier transforms and Gaussian processes 

showed the greatest potential for domestic electricity load profile characterisation in 

order to meet the objectives outlined in Section 1.5 and hence these techniques were 

investigated further.  Similar to the previous approaches, each technique was assessed 

based on evaluating and comparing electrical parameters between original and 

characterised profiles as well as carrying out a number of time series tests. 

 

When assessing each characterisation technique in terms of electrical parameters, there 

were differing results.  ETotal was successfully characterised using Fourier transforms, 

with a very small percentage error.  Fourier transforms were less successful at 

characterising parameter EMD where a significant percentage error was recorded.  In 

contrast, Gaussian processes were able to sufficiently replicate parameter EMD and less 

able to re-produce parameter ETotal.  Fourier transforms performed slightly better than 

Gaussian processes when compared against parameter EToU, with the former over-

estimating the time (i.e. later in the day) and the latter underestimating (i.e. earlier in the 

day).  The time series tests showed similar results to those calculated by evaluating each 

electrical parameter.  Depending upon the electricity demand load profile within the 

household, each approach had individual strengths.  Fourier transforms were better able 

to characterise households who consumed larger amounts of electricity over longer 

intervals of time (>1hr), whereas Gaussian processes characterised households 

consuming higher amounts of electricity over shorter time intervals.   
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A multivariate linear regression was used to associate the influence of dwelling and 

occupant characteristics to the characterised electricity load profile shapes.  The two 

statistical approaches, DOC and EA already used in Section 5.2 were applied to the 

characterised time series and results presented.  The results showed that it was possible 

to associate dwelling and occupant characteristics to both Fourier and Gaussian process 

coefficients through multivariate regression and extract load profiles by applying the 

associated inverse transforms.  A number of electricity load profiles were evaluated 

based on different dwelling and occupant characteristics. However, profiles tended to 

represent highly averaged load profile shapes (particular for Fourier transforms), which 

changed only marginally between varying dwelling and occupant characteristics and 

hence did not reflect the variation between household’s and how they consumed 

electricity differently.  This was a result of two factors: the longitudinal averaging 

applied and the regression process.  Therefore a method of reducing the data first before 

any averaging is applied was sought and will be addressed in the next chapter. 

 

The results presented in this chapter have shown that both methods; Fourier Transforms 

and Gaussian Processes are an effective method to characterise domestic electricity 

demand.  It also showed that by applying both of these methods leads to a reduction in 

the number of variables required (18 values for Fourier Transforms and 24 for Gaussian 

Processes compared to the original time series consisting of 48) to sufficiently 

characterise a domestic electricity demand load profile.  This reduces the amount of data 

required to describe electricity demand for individual households.  Finally,  

investigating the influence of dwelling and occupant characteristics on specific 

electricity demand load profile patterns (described by characterisation coefficients) 
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through multivariate regression although possible proved not to be an accurate 

reflection as to the manner with which electricity is consumed within the home. 
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CHAPTER 8 

 

CLUSTERING
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8 CLUSTERING 

8.1 Introduction 

Clustering (referred to as ‘data mining’ in the information services sector) is a useful 

tool for analysing large amounts of data.  It is used to group data that show certain 

characteristic similarities together.  Its use of late is becoming ever more prevalent, 

especially with the increasing number of new devices connecting to the internet on a 

daily basis, delivering large amounts of data.  However, the availably of what has been 

described as a ‘data tsunami’ also poses its own problems.  The collection of such a 

detailed amount of specific data means that traditional ways of analysing information 

such as statistical analysis has become increasingly more difficult, mainly due to their 

computationally intensive requirements and interpretation of the data.  In addition, 

specific characteristics within the data often become lost, particularly when averages are 

applied.  Therefore a method of filtering, to extract the most relevant pieces of 

information from the data, before such statistical analysis is applied is sometimes a 

necessary step.  This not only simplifies the analysis but also diminishes the chances of 

losing vital characteristic information. 

 

The application of clustering in the electricity industry is not a new concept.  

Historically, it has been used for customer segmentation, mainly for the purposes of 

tariff design [53].  However, its use at a domestic level has been somewhat limited to 

date.  This chapter investigates three of the most widely used partitional clustering 

methods: k-means, k-medoid and Self Organising Maps (SOM).  The best performing 

technique is evaluated in order to segment individual households into clusters based on 

their pattern of electricity use across the day.  The process is repeated for each day over 



170 

a six month period in order to characterise the diurnal, intra-daily and seasonal 

variations of domestic electricity demand.  Finally a multi-nominal logistic regression is 

used to associate and determine the probability of a household with certain 

characteristics using a particular profile group.  In addition a number of graphs are 

presented showing the percentage penetration of each characteristic for each profile 

group. 

 

8.2 Discussion and Results 

8.2.1 Evaluation of clustering techniques and number of clusters 

The DB index was presented in Equation 4.9 and is used to evaluate an appropriate 

clustering technique and number of clusters.  Smaller values of DB index indicate 

compact clusters with cluster centres further apart.  In choosing a clustering method 

associated with a low DB index, this ensures that the characterisation process optimises 

the following two properties for the sample: 

 

o firstly it ensures that the clustering method segmented households that used 

electricity most similarly into the same cluster; and 

o secondly households that use electricity most differently were assigned to 

different clusters 

 

Figure 8.1 shows the DB index for each clustering technique and varying number of 

clusters.  K-medoid showed a comparatively larger DB index when compared to the 

other two methods.  K-mean and SOM had similar results, however, SOM had a 
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consistently lower DB index overall and hence was evaluated in the next section.  

Figure 8.1 also shows eight to ten clusters to be a good choice for segmenting the 

dataset.  After this point the decrease in DB index is marginal for any further increase in 

the number of clusters.  The levelling off in DB index indicates that the sample has been 

divided into an optimum number of disparate clusters. 

 

 

Figure 8.1:  Davies-Bouldin index for partitional clustering methods k-means, k-

medoid, and SOM 

 

8.2.2 Characterising domestic electricity demand load profiles 

Each cluster is defined by a weight vector which consists of 48 different dimensions, 

representing half hourly time intervals across a day. The mapping process is started by 

initialising weight vectors with random values at each cluster centre. As the network 

progresses each input vector is compared with the weights of each cluster centre and the 

one with the greatest similarity (called the Best Matching Unit) is assigned that 

particular vector. The weights are then adjusted at the cluster centre based on the input 

vector. The process is repeated until all input vectors have been assigned to clusters for 
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an entire day.  This procedure is repeated over the six month period until each daily 

electricity load profile for each household has been clustered. 

 

Each daily profile for each household from Dataset I was segmented using SOM into 

nine different clusters (indicated by c1, c2, etc) based on a 3x3 hexagonal lattice 

structure.  The number of clusters and structure was chosen based on the results from 

the DB index and in order for each cluster centre to be separated by a maximum of one 

cluster as is shown in Figure 8.2.  This limited the potential for creating clusters with 

very small sample sizes which represented very uncommon patterns of electricity 

consumption throughout the day. 

 

 

 

Figure 8.2: Hexagonal (3x3 lattice structure) for SOM clusters 

 

Figure 8.2 shows the 3x3 hexagonal lattice structure for the nine different clusters.  The 

cluster centres are shown to be visually separated by Euclidean distance which is also 

the metric used to compare individual electricity load profiles to the weight vectors of 

each cluster.  The Euclidean distance was described earlier in Equation 2.13.  The 

brighter colours in Figure 8.2 show clusters that are close together whereas the darker 

C1 C2 C3 

C4 C5 C6 

C7 C8 C9 
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colours indicate cluster centres that are further apart. It can be seen that clusters c6 and 

c9 are similar to each other compared to any other cluster pair. 

 

As discussed earlier, when applied to the entire dataset this produced two very large 

clusters, representing approximately two thirds of the entire sample.  Therefore sub-

clustering was used to divide clusters 6 and 9 into four clusters each.  Figure 8.3 and 

Figure 8.4 shows the relative Euclidean distances (with brighter colours representing 

smaller and darker colours larger) for each of the two sub-clusters (c6 and c9).    

 

Figure 8.3: Sub-clustered hexagonal (2x2 lattice structure) for cluster 6 

 

 

Figure 8.4: Sub-clustered hexagonal (2x2 lattice structure) for cluster 9 

 

Ten profile groups in total were produced based on DB index results presented in Figure 

8.1 and by combining profiles that differed only slightly in terms of magnitude and 

C10 C11 

C12 C13 

C14 C15 

C16 C17 



174 

timing of electricity use within the home.  The rational in doing this was to have a 

number of profiles that represented distinctly different patterns of electricity use within 

the home either in terms of timing or magnitude of electricity consumption throughout 

the day  

 

Figure 8.5 shows the diurnal patterns of electricity use by day type for the ten profile 

groups (P1 – P10) where longitudinal averaging over the six month period was applied.  

A detailed description of each electricity load profile group is provided in Appendix A.  

A distinction between weekdays, Saturdays and Sundays is apparent.  As one would 

anticipate, for the majority of profiles, there is an earlier morning peak for weekdays 

compared to weekends, as on average dwelling occupants get up earlier for work and 

school commitments.  Similarly, less electricity is used throughout late morning to late 

afternoon during the weekdays as the majority of dwelling occupants are less likely to 

be at home at these times compared to the weekend.  Finally, over the entire day 

dwelling occupants tend to use more electricity on Sundays compared to Saturdays or 

weekdays. 

 

Figure 8.5:  Mean electricity load profiles by day type over the six month period. 
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Table 8.1 shows the percentage Household Mode (HMode) as calculated by Equation 

4.10.   As stated earlier this reflects the percentage number of households that used a 

particular profile group most often over the six month period.  Profile group P4 is the 

largest representing just less than one third of the entire sample. 

 

Table 8.1:  Percentage Household Mode (HMode) for the sample over the six month 

period 

                        

Profiles P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Total 

Percentage HMode (%) 6.5% 8.2% 5.0% 31.1% 4.9% 13.0% 4.5% 12.1% 10.5% 4.2% 100% 

 

 

As was shown earlier in Figure 1.4, patterns of electricity use within the home can 

change considerably on an intra-daily basis.  Therefore, a particular household often 

uses more than one profile group across a period of time depending upon various factors 

within the home.  This is shown in detail in Table 8.2 where Average Percentage Profile 

Time (APPT) over the six month period is calculated from Equation 4.11.  However, 

each household on average will use a single profile group for the majority of time (as 

indicated by the diagonal in Table 8.2), with the remainder spread across a number of 

different profile groups.  For example, a household that uses electricity within the home 

in a similar manner to Profile 1 (46.4% of the time) will also use Profile 4 (20.3% of the 

time).  More detailed tables where a Gaussian probability distribution function is fitted 

to APPT for weekday, Saturday and Sunday are shown in Appendix B. 
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Table 8.2:  Average Percentage Profile Time (APPT) over the six month period 

                      

  Average Percentage Profile Time (APPT - %) 

Profile P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

HMode (P1) 46.4% 12.7% 6.5% 20.3% 8.3% 2.7% 0.7% 1.2% 1.0% 0.2% 

HMode (P2) 11.4% 35.4% 8.9% 18.7% 5.8% 8.9% 5.6% 2.2% 2.2% 1.1% 

HMode (P3) 4.1% 8.7% 36.6% 16.8% 2.8% 9.5% 4.8% 6.4% 6.2% 3.9% 

HMode (P4) 7.4% 10.1% 6.8% 43.0% 6.8% 12.3% 3.7% 3.4% 5.0% 1.5% 

HMode (P5) 10.6% 7.1% 3.1% 24.0% 37.5% 9.1% 1.5% 3.0% 3.4% 0.6% 

HMode (P6) 1.5% 5.3% 4.8% 18.9% 5.1% 38.9% 7.3% 3.4% 11.3% 3.5% 

HMode (P7) 1.4% 9.7% 4.6% 11.3% 0.8% 13.8% 36.8% 4.7% 8.3% 8.6% 

HMode (P8) 0.6% 1.4% 3.0% 6.2% 1.1% 4.6% 2.1% 57.9% 16.5% 6.6% 

HMode (P9) 0.3% 1.2% 3.3% 10.6% 1.2% 13.4% 3.8% 16.2% 42.0% 7.9% 

HMode (P10) 0.3% 2.2% 7.4% 6.8% 0.6% 10.7% 8.6% 15.5% 13.8% 34.1% 

 

Electrical Parameters 

The electrical parameters discussed in the methodology Chapter 4 were calculated by 

combining the CPI with each profile group for each day over the six month period.  A 

paired sample t-test was used to compare the characterised profiles shown earlier in 

Table 5.1 to that of the original sample data with the results presented in  

Table 8.3.   

 

Table 8.3:  Paired sample t-test for electrical parameters for original sample and 

characterised profiles 

            

Paired Samples Mean 

Standard 

Deviation 

Std. 

Error 

Mean t 

Sig. (2-

tailed) 

ETOTAL (kWh) 8.13 387.97 6.18 1.32 0.1880 

EMD (kW) 1.33 0.64 0.01 130.47 0.0000 

ELF (%) -0.244 0.0797 0.0013 -192.32 0.0000 

EToU 
* 

-4.61 3.73 0.06 -77.72 0.0000 
*EToU (where 1 = 00:00 - 00:30 and 48 = 23:30 - 00:00) 
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Table 8.4 presents electrical parameter characterisation results and can be compared 

against the original sample data presented earlier in Table 5.1.  A Weibull and a Log-

logistic probability distribution were fitted to the parameters. 

 

Table 8.4:  Descriptive statistics for electrical parameters for characterised profiles 

                

Parameter Mean Median 

Std 

Dev. Max Min 

Scale 

Parameter 

(η) 

  

Shape 

Parameter 

(α) 

ETOTAL (kWh) 2,269 2,292 864 5,497 498 2,546 2.85 

EMD (kW) 1.30 1.36 0.52 2.70 0.17 1.45 2.75 

ELF (%) 44.04% 42.03% 6.23% 66.86% 34.15% -0.8464* 0.0701* 

EToU

** 

35.66 35.66 3.13 n/a n/a n/a n/a 

Weibull Probability Distribution Function 

f�T� � α
η �T

η	
���

e��
�
��

�

 where f�T� � 0, T � 0, α � 0, � � 0 
* Log-logistic Probability Distribution Function 

f�T� � e�
αT�1 � e��	   where z � T
 � η

α , T
 � ln�T�, 0 � � � ∞, �∞ � � � ∞, 0 � � � ∞ 

**EToU (where 1 = 00:00 - 00:30 and 48 = 23:30 - 00:00) 
 

 

ETotal  

The results presented in Table 8.3 show that for parameter ETotal there was no significant 

difference between the original and characterised profiles.  However, standard deviation 

differed substantially to that reported in Table 5.1 for the parameter which is a result of 

reducing the number of possible electricity load profiles from the sample size (3,941) to 

just ten profiles in total.  The reduction in standard deviation to 864 kWh in Table 8.4 

(from 1,108 kWh in Table 5.1) is indicative of this as there is less variation between 

individual households electricity demand for the characterised profiles.   
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EMD 

Table 8.3 showed that there was a significant difference for parameter EMD (1.33 kW) 

between original and characterised profiles.  When compared against Table 5.1 shown 

earlier the difference was about half that of the original sample data.  This was a result 

of the cross-sectional averaging process applied which inevitably reduces the peak 

demand for large electricity users and increases the minimum for low electricity 

households. 

 

ELF 

Similarly, as ELF is a ratio of EMD to average electricity consumption across a 24 hour 

period, results were comparable to those presented for EMD.  As EMD decreases and 

assuming average electricity consumption remains the same across a 24 hour period, 

ELF will increase.  The results presented in Table 8.3 show that mean ELF was 

significantly different to the original data shown in Table 5.1.  The figures also showed 

that it was nearly double that presented in Table 5.1.  This can be explained by the loss 

in variation by replacing the original sample data with a limited number of characterised 

profiles. 

 

EToU 

Finally, results presented for EToU in Table 8.3 showed that there was a significant 

difference between original and characterised profiles.  In particular Table 8.4 shows 

that the characterised profiles estimated this parameter later in the evening compared to 

the original sample data in Table 5.1 (18:00 instead of 15:30).  However, even though 

the characterised value is significantly different to that of the original sample data it is a 

more realistic value to that presented in Table 5.1.  This may be perceived as odd but 



179 

due to the variable nature of domestic electricity demand a certain amount of 

information is lost when the data is averaged across a six month period in order to 

calculate the electrical parameters.  For example an individual household may 

predominantly use EToU in the evening time.  However, every so often an infrequent 

event may occur such as a dwelling occupant being home sick from work during the day 

may cause electricity to be consumed much earlier in the day.  This results in the mean 

value showing an earlier EToU than might be expected.  This problem is overcome by 

comparing modal values between the original and characterised profiles for this 

parameter; when this is done, ToU is found to occur at the same time of 18:00.   

 

Time Series Tests 

Figure 8.6 shows an electricity load profile for a random household taken across a 

weekly period.  Both original sample data and characterised profiles (obtained from the 

CPI) for the same household are shown.  As one would expect there are differences 

between the original sample and characterised profiles.  However, in general the two 

time series are similar in terms of their timing and magnitude of electricity use.  The 

main notable differences between the two profiles are at the extremities such as daily 

EMD and the minimum use of electricity over the night time period.  The figure 

graphically shows the findings presented in Table 5.1 and Table 8.3 - Table 8.4 in 

relation to the characterised profiles often underestimating EMD and over estimating 

minimum values such as at the night time period and the loss of variability (standard 

deviation) in the profile shape over a 24 hour period. 
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Figure 8.6: Original sample and characterised profile time series for a random 

household across a weekly period 

 

Figure 8.7 shows a frequency histogram for the same household presented above.   As 

discussed, the main differences between the characterised profile and the original 

sample relate to the under estimation of Maximum and Minimum values.  This is clearly 

shown in the below figure and shows graphically the reduction in Maximum and 

standard deviation and increase in Minimum values of electricity demand. 

 

Figure 8.7: Frequency histogram for profile characterised and original data for a random 

household across a weekly period 
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Figure 8.8 shows the autocorrelation function for both profile characterised and original 

sample data over a weekly period for the same household above.  The two 

autocorrelation functions are similar over the period shown indicating that the temporal 

properties remain between each time series.  The main difference between the two 

autocorrelation functions is that the characterised profile is slightly smoother than the 

original data, indicating less variation within the former as discussed earlier.  In contrast 

there is more variation on an intra-daily basis with the original sample data as electricity 

is used more unpredictably and hence the autocorrelation function appears less smooth 

as the time lag increases. 

 

Figure 8.8: Autocorrelation coefficient for profile characterised and original data for a 

random household across a weekly period 

 

Figure 8.9 shows PSD periodgram for the same household presented above over the 

weekly period as calculated by the FFT.  The large spectral component near the origin is 

the daily period.  The characterised profile has less frequency components particularly 

at high frequencies on account of the smoother profile shape compared to the original 

sample data. 
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Figure 8.9: PSD function for profile characterised and original sample data for a random 

household across a weekly period 

 

8.2.3 Profile classification by dwelling and occupant characteristics 

A multi-nominal logistic regression was used to associate dwelling and occupant 

characteristics to each profile group based on the Household Mode (HMode).  Table 8.5 

provides a brief explanation highlighting the main characteristic traits for each profile 

group.  As stated earlier, detailed descriptions for each electricity load profile group and 

the factors influencing its use are presented in Appendix A.  As the difference between 

weekdays, Saturdays and Sundays profiles were shown to be marginally different in 

terms of the magnitude and timing of electricity use across the day, only regression 

results for weekdays are presented in the following sections so as to avoid repetition.   
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Table 8.5  Electricity load profile groups main characteristics description 

Profile Number Profile Shape (kW) Main Characteristic Secondary Characteristic (if any)

Profile 1 Large evening peak Small morning peak

Profile 2 Large lunchtime peak Small evening peak

Profile 3 Large morning peak Small evening peak

Profile 4 Evening peak Small morning peak

Profile 5 Late evening peak Small demand across the day

Profile 6

Profile 7 Late morning peak Small evening peak

Profile 8

Profile 9 Small late evening peak

Profile 10 Small late morning peak

Small average load profile 

across the day

Very small average load profile 

across the day

 

 

Table 8.6 shows the results for the multi-nominal logistic regression applied to the 

Dwelling and Occupant Characteristics (DOC) and the profile groups.  Profile group P4 

was used as the reference category as it represented over 30% of households within the 

sample as was shown in Table 8.1. 
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Table 8.6: Multi-nominal logistic regression results for DOC model 
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Detached dwellings typically represent larger dwellings while terraced and apartments 

are usually smaller in size.  Semi-detached usually fall somewhere between the two in 

terms of size.  Detached dwelling was used for the base variable and hence is not shown 

in Table 8.6.  However, Figure 8.10 shows that profile groups P1, P2 and P5 have the 

largest penetration of detached dwellings with over 70% on average of households.  The 

remaining profile groups are made up of a mixture of semi-detached, terraced and 

apartments.  Apartments are predominantly characterised within profile groups P3, P6, 

P8 and P9 with a minimum odds ratio of 1.3 for these groups. This means that people 

living in apartment dwellings are 1.3 times more likely to use electricity in a way 

similar to that of these profile groups.  Occupants living in semi-detached dwellings are 

1.3 times more likely to use electricity similar to that of profile group P3 and P10.  

Finally terraced dwelling owners are most likely to use electricity in a manner similar to 

that of profile groups P3 and P10. 

 

 

Figure 8.10: Percentage penetration of dwelling type by profile groups 
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The number of bedrooms is also a good indication of dwelling size and should 

correspond with the results presented in Figure 8.10.  Five plus bedrooms was used as 

the base variable and hence is not shown in Table 8.6.  Figure 8.11 shows profile groups 

P1, P2, P4 and P5 are characteristic of four and five plus bedroom dwellings, which 

make up over 50% of households within these groups.  Profile groups P6 and P7 consist 

of more mid-size dwellings with three and four bedrooms.  This is also reflected in the 

odds ratio which shows that occupants in 3 and 4 bedroom dwellings are 1.5 and 3 times 

respectively more likely to use electricity in this way compared to the other profile 

groups.  Lastly, smaller dwellings of one, two and three bedrooms are most likely to use 

electricity similar to that of profile groups P8, P9 and P10 as indicated by high odds 

ratios in Table 8.6. 

 

 

Figure 8.11: Percentage penetration of dwelling number of bedrooms by profile groups 

 

Profile group P1 is mostly characteristic of dwellings with a HoH of between 36 and 55 

years with a very high relative odds ratio of 1.786.  Similarly Figure 8.12 shows that 
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These categories also correspond with larger dwellings as already shown in Figure 8.10 

and Figure 8.11.  Older HoH’s are most likely to use electricity in manner similar to that 

of profile groups P6, P7 and P10 compared to the base category. 

 

 

Figure 8.12:  Percentage penetration of HoH age by profile groups 

 

Figure 8.13 shows that profile groups P8, P9 and P10 have the highest percentage for 

occupants living alone which was used as the base variable and hence is not shown in 

Table 8.6.  In contrast, profile groups P2 and P7 are more likely to characterise 

electricity consumption patterns for adults living together.  Adults and children living 

together are most likely use electricity in a manner similar manner to that of profile 

groups P1, P4 and P5, which also correspond with the largest dwelling types.   
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Figure 8.13: Percentage penetration of household composition by profile groups 

 

Figure 8.14 shows that the higher social classes of AB (which was used as the base 
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earlier.  Figure 8.14 also shows that profile groups P1 and P4 are largely characteristic 

in the manner with which the middle class C use electricity in the home.  The lower 
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P10 which is also reflected in higher odds ratios for these groups.  Social class F is most 

closely associated with profile groups P2, P7, P8 and P10 with a minimum odds ratio of 

3 shown for these groups in Table 8.6.   
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Figure 8.14:  Percentage penetration of HoH social class by profile groups 

 

Households that use electricity to heat water are most likely to use electricity as 

characterised by profile groups P1 – P3, indicated by a comparative high odds ratio 

within this category.  Profile groups P2 and P7 are mostly characteristic of households 

who use electricity to cook in the home.  This is also shown in Figure 8.15, with electric 

cooking showing an unusually high penetration for profile group P7.  Electric space 
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Figure 8.15: Percentage penetration of electric cooking, water and space heating by 

profile groups 

 

Finally, Figure 8.16 shows the Efficiently Indicator which shows the percentage at 

which customers believe they can cut their household electricity consumption by 

making changes to the manner with which they use it in the home.  An efficiency 

Indicator <10% was used as the base variable and hence is not shown in Table 8.6.  

Dwelling occupants who used electricity in a similar manner to profile groups P1 – P5 

were less efficient, with the majority of these householders believing that they could cut 

10% or more off their electricity bill.  In contrast the majority of householders who used 

electricity in a similar manner to profile groups P6 – P10 believed they could only cut 

10% or less off their electricity bill. 
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Figure 8.16: Percentage penetration of Efficiency indicator by profile groups 

 

The results presented in Table 8.6 and Figure 8.10 to Figure 8.16 are summarised in one 

Table 8.7.  The table shows the most common dwelling and occupant characteristics 

associated with each electricity load profile group.  Water heating and cooking is 
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Efficiency Indicator is characterised by high, medium and low and indicates the level of 

savings a household believes they can achieve by cutting their household electricity bill.   
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Table 8.7:  Profile group descriptions by dwelling and occupant characteristics 

                      

  Profile Group 

Dwelling & Occupant 

Characteristics 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Dwell_type_detached * *     *   *       

Dwell_type_semi_d     * *   *         

Dwell_type_terr     *       *   * * 

Dwell_type_apt               * * * 

No. bedrooms - 1               * * * 

No. bedrooms - 2                   * 

No. bedrooms - 3     * *   * *     * 

No. bedrooms - 4 * * * * * * *       

No. bedrooms - 5+ * *     *           

HoH_age_less_36         *     * *   

HoH_age_36_55 *   * *             

HoH_age_56_plus   * *     * * * * * 

HH_comp_live_alone     *         * * * 

HH_comp_with_adults   * * * * * *       

HH_comp_with_adults_children *     * *           

Social_class_AB *       *           

Social_class_C   * * *   *   * *   

Social_class_DE   * *     * * * * * 

Social_class_F   *         *     * 

Water_heat_electric 
High High High Med Low Low High Med Low Med 

Cooking_type_electric 

Efficiency_less_10 

High Med Med Med High Med Low Low Low Low 
Efficiency_betw_10_20 

Efficiency_betw_20_30 

Efficiency_more_30 

 

 

Table 8.8 presents results for the Electrical Appliance (EA) with odds ratio Exp(B) and 

significance levels presented.  The table shows the likelihood of each profile group 

containing a particular type of electrical appliance.  Therefore in the following analysis 

the dependent variable is the profile group number and the explanatory variables are the 

appliance types. 
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Table 8.8: Multi-nominal logistic regression results for EA model 
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The high penetration of washing machines throughout all homes in Ireland means that it 

makes it a good choice as the base appliance category.  Households which own a tumble 

dryer are 1.8 and 1.4 times more likely to use electricity in a similar manner to profile 

groups P1 and P2 respectively than the base profile group.  Similarly by owning 

appliance type dishwasher, households are twice as likely to use electricity in a manner 

similar to that of profile group P1 compared to the base profile group.   

 

Figure 8.17 shows percentage penetrations for the same appliances discussed above 

with similar results presented.  All three appliances have high penetrations in profile 

groups P1, P2, P4 and P5.  Conversely, percentage penetrations of these appliances is 

lowest within profile groups P8, P9 and P10.   

 

 

Figure 8.17:  Percentage penetration of washing m/c, tumble dryer and dishwasher by 

profile group 

 

Households who use electricity in a similar manner to profile groups P2, P4 and P5 

were most likely to own an instant electrical shower.  Profile group P5 households were 

most likely to own a pumped shower compared to any other profiles, however, 

0%

20%

40%

60%

80%

100%

120%

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P
e

rc
e

n
ta

g
e

 P
e

n
e

tr
a

ti
o

n
 (

%
)

Profile Group

Washing m/c

Tumble dryer

Dishwasher



195 

penetration of this type of appliance in Irish households is much lower than that of 

instant showers as indicated in Figure 8.18.  The likelihood of households who used 

electricity in a similar manner to profile group P3 was most likely to own an immersion 

compared to any other profile group.  Profile groups P1 and P2 were more likely to own 

appliance type water pump (used in low water pressure residential environments). 

 

Figure 8.18 shows percentage penetration of appliances; instant electric and pumped 

showers, water pumps and immersions used to heat water.  Electric showers and 

immersion percentage penetration is highest for profile groups P1 – P4.  Pumped 

showers have their highest penetration in for profile groups P1 and P5, with water 

pumps highest for profile groups P1 and P2. 

 

 

Figure 8.18:  Percentage penetration of electric shower, pumped shower, water pump 

and immersion by profile group 
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cooker.  The likelihood of owning a plug in electric heater was more likely for profile 

groups P3 and P7 but in general the odds ratio for this appliance type was evenly spread 

across all profile groups.  This is most likely down to the smaller percentage penetration 

for this particular appliance type.  The likelihood of owning a stand-alone freezer was 

relatively high for profile groups P1 – P7. 

 

Figure 8.19 shows percentage penetration for appliances electrical cooker, stand alone 

freezer and plug in heater for each profile.  Penetration of electric cookers is notably 

less for profile groups P6, P8, P9 and P10, with these households more likely to use 

natural gas instead of electricity for cooking.  Stand alone freezers have a relatively high 

penetration for profile groups P1 – P7.  Plug in electric heaters used for space heating 

have a relatively low penetration across all groups, however,  is slightly higher for 

profile groups P3, P7 and P10.  

 

 

Figure 8.19:  Percentage penetration of electric cooker, plug in heaters, and stand alone 

freezer by profile group 
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The likelihood of owning a television of less than 21 inches is higher for profile groups 

P1 and P2 compared to the other groups.  However, households with televisions greater 

than 21 inches showed that they are more likely to use electricity in a similar manner to 

profile group P5.  Households that owned desktop and laptop computers showed the 

greatest likelihood of using electricity in a similar manner to that of profile groups P1 

and P5.  Similarly, profile group P1 showed a high level of likelihood of households 

owning appliance type game console, with profile group P5 also likely but to a lesser 

extent. 

 

Figure 8.20 shows percentage penetration of televisions greater and smaller than 21 

inches, desktop and laptop computers and game console for each profile group.  Large 

televisions (greater than 21 inches) have the highest penetration for profile group P5.  

Smaller televisions (less than 21 inches) have slightly less penetration for profile groups 

P8, P9 and P10 but are relatively constant across all groups.  This trend is similar for 

computers (desktop and laptops) and game consoles.  Profile group P5, has a 

comparatively high penetration of all appliances shown in Figure 8.20 whereas profile 

group P7 has the lowest penetration for laptop computers and game consoles between 

all groups. 
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Figure 8.20:  Percentage penetration of TV’s (<21 inch, > 21 inch, desktop computer, 

laptop and game console by profile group 
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Table 8.9:  Profile group descriptions by electrical appliance characteristics 

                      

  Profile Group 

Dwelling & Occupant 

Characteristics 
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 

Washing machine * * * * * * *     * 

Tumble dryer * *   * *           

Dishwasher * * * * *           

Shower (instant) * * * * *   *     * 

Shower (pumped) * * * * * * *   * 

 Cooker * * * *     *     * 

Heater (plug in 

convective) 
    *       *       

Freezer (stand alone) * * * * * * *       

Water pump * *   * * *         

Immersion * * * * *   * * * * 

TV's less 21 inches * * * * * *       * 

TV's greater 21 inches * *   * *   *     * 

Desktop Computer * * * * * *         

Laptop computer *   * * * *         

Game console *     * * *         

 

 

8.3 Conclusion  

This chapter presented a methodology using clustering to segment electricity 

households into profile groups based on their pattern of electricity use across the day.  A 

number of clustering techniques such as: k-mean, k-medoid and SOM were investigated 

and compared based on the DB validity index.  SOM performed best, and was used to 

cluster Dataset I on a daily basis over the six month period. 

 

In total, ten daily electricity load profiles were presented that represented common 

patterns of electricity use within the home in Ireland.  Day type variations were also 

shown by weekday, Saturday and Sunday and as well as the seasonal variations between 

Summer–Autumn–Winter.  On a daily basis, individual households tended to use 
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different profile groups.  Therefore, the mode (HMode) was calculated in order to 

determine the profile group that each household used for the majority of the time over 

the six month period.  The APPT parameter then quantified the propensity for 

households to switch between profiles on a day-to-day basis.  This was shown to be 

higher for some profile groups as opposed to others. 

 

A number of electrical parameters, presented in Chapter 4, were calculated and 

compared against the original sample data.  The results for mean ETotal matched the 

original sample dataset closely.  However, descriptive statistics for Standard Deviation, 

Maximum and Minimum values for the same parameter were significantly different.  

This was a result of replacing the original 3,941 customer electricity demand load 

profiles with just ten in total on a single day and therefore resulted in a loss of 

variability.  This was also true of parameters EMD and ELF.  EToU tended to be later for 

the characterised profiles compared to the original data.  This was largely due to the 

removal of the stochastic component of the original data and replacement with a more 

deterministic pattern of electricity use generated by the characterised profiles.  The 

mean value for this parameter showed a EToU of 15:30 for original sample data and 

18:00 for characterised profiles.  However, when the mode was compared between 

original sample data and characterised profiles the results showed both peak electricity 

demands occurring at 18:00.   

 

The paired sample t-tests showed that parameter ETotal was found not to be significantly 

different, however, the remaining three parameters were found to be significantly 

different at the 0.05 p-value level.  The time series tests showed that small and large 

values of electricity demand were not fully represented by the characterised profiles and 
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that this was also due to the loss in variability mentioned above.  This was also visible 

in the time series plot across a weekly period.  The autocorrelation function showed that 

for the majority of the time, electricity peaks were consistent with the original sample 

data.  Similarly, the PSD periodgram showed similar frequencies for original sample 

and characterised time series.  However, the characterised profiles did not show the 

same high frequency components again due to the loss of variability between original 

sample data and the newly characterised profiles.   

 

The final part of the chapter presented results for associating dwelling and occupant 

characteristics to the ten electricity load profile groups.  The results showed that in 

general, the ten electricity load profile groups can be broken down into three broad 

categories.  The first category, consisting of profile groups P1, P2, P4 and P5 are 

characteristic of high electricity users.  These profile groups correspond with large 

dwelling types (detached) with a greater number of bedrooms, with HoH age between 

36 and 55 and families living with children and from a high social class.  These 

households usually have a large stock of electrical appliances, with tumble dryers and 

dishwashers being more prevalent compared to the other profile groups.   

 

The second category, consisting of profile groups P3, P6, P7 were generally associated 

with medium electricity users and are associated with mid-sized dwelling types such as 

small detached, semi-detached and terraced dwellings.  The profile groups correspond 

with three and four bedrooms and usually have an older HoH from a middle social class 

of C and DE with no children living at home.  These households have a medium stock 

of electrical appliances but differ from the larger electricity category in that tumble 

dryers and dishwashers are less prevalent within the homes.  Lastly profile groups P8, 
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P9 and P10 correspond with low electricity users and are associated with smaller 

dwelling types such as semi-detached, terraced and apartments and mainly comprise of 

one, two and three bedrooms. The dwelling is usually occupied by an older HoH age of 

56 plus, usually lives alone and from a middle to lower social class of C and DE.  These 

households are less likely to have a large stock of electrical appliances compared to the 

previous two categories. 
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Chapter 9 

 

Conclusions and Recommendations 
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9 CONCLUSIONS AND RECOMMENDATIONS 

9.1  Introduction 

To date, research has focussed on either developing highly averaged demand load 

profiles or using probabilistic methods to characterise domestic electricity consumption.  

In terms of the former, these profiles do not reflect the true nature of electricity 

consumption patterns within the home, however, they generally can be considered to be 

representative.  Conversely, probabilistic methods reflect more realistic patterns of 

electricity use within the home but often cannot be considered to be representative.  

This research addresses these issues and provides a series of domestic electricity 

demand load profiles that are both representative and reflect common patterns of daily 

electricity use in the home.  The research also provides a method of linking domestic 

electricity load profiles to dwelling and occupant characteristics.  This means that 

electricity load profiles can be assigned to particular households based on information 

relating to the dwelling, occupant or electrical appliance characteristics.  In effect, no 

prior knowledge of a dwellings electricity demand is required to assign a particular 

electricity profile to a household; however, where this does exist it may also be used. 

 

9.2  Conclusions 

The relatively recent availability of smart metering data has meant that methods of 

characterising electricity consumption, which have traditionally been applied to other 

sectors, can now be applied to domestic use.  The literature describing these methods as 

well as existing domestic electricity characterisation approaches were categorised based 

on the level at which the data was collected (i.e. at an aggregate or individual dwelling) 
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and the interval period.  A number of different characterisation approaches were 

evaluated throughout the research in order to meet the objectives outlined in Section 

1.5, each one building upon the next.   

 

Firstly a statistical regression approach was used to characterise electricity consumption 

within the home.  Domestic electricity use was described as a function of key electrical 

parameters.  This proved to be an effective approach to characterise key domestic 

electricity load profile features within a small number of parameters (ETotal, EMD, ELF 

and EToU) and therefore was subsequently used for validation purposes throughout the 

remaining part of the research.  However, a disadvantage with this characterisation 

technique was that by describing electricity use within the home as a function of 

parameters a certain amount of information was lost in the process.  As a result 

individual electricity load profiles cannot be extracted based solely on these parameter 

values alone.  However, this did not affect the validation approach and the analysis also 

identified the main influential dwelling, occupant and appliance characteristics that 

influenced electricity consumption within the home which were also subsequently used 

throughout the research. 

 

The next method used was an autoregressive approach where Markov chains 

characterised the probabilities of using electricity based on previous values within a 

household.  Markov chains proved to be a very effective technique to characterise the 

magnitude component of electricity load profiles.   Parameters: ETotal, EMD and ELF were 

all successfully reproduced within a reasonable degree of accuracy between original 

sample and characterised profiles.  However, the Markov chain process was unable to 

characterise the temporal properties of the load profiles.  This was most obvious when 
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comparing profiles across a 24 hour period where unusual patterns of electricity use 

(normally during the night time period) were evident.  This subsequently led to the 

introduction of a number of time series tests to interrogate the temporal properties of the 

load profiles more rigorously.  Autoregression and spectral density functions were 

calculated for the original and characterised profiles and was useful for determining the 

performance of the characterisation process in the time and frequency domains. 

 

The drawbacks with this technique included the computation time required to 

characterise each individual household and the temporal difficulties associated with 

characterising the magnitude component of electricity load profiles at appropriate times 

of the day.  These disadvantages along with the fact that it would have been difficult to 

link dwelling and occupant characteristics to the transitional probability matrix meant 

that this approach was not pursued further.  However, it still remains a good method for 

characterising domestic electricity use and it may be possible to divide the diurnal 

electricity load profile into segments and have three or four transitional probability 

matrices across a daily period. 

 

Other time series approaches were considered next, particularly those that could 

specifically characterise the temporal properties of an electricity load profile.  Two 

methods which showed the greatest potential were: Fourier transforms and Gaussian 

processes and therefore were evaluated further.  Depending upon the electricity load 

profile shape each characterisation method had advantages and disadvantages and 

tended to be complementary to each other.  Gaussian processes were better at 

characterising households which consumed a large amount of electricity relative to the 

rest of the day and for short time intervals.  In contrast, Fourier transforms were better at 
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characterising households that consumed electricity more evenly across the day.  The 

two techniques are important as both patterns of electricity use are common within 

domestic households.   

 

In addition Fourier transforms were shown to be very accurate when evaluated against 

parameter ETotal where as Gaussian processes performed better when evaluated against 

EMD.  The temporal properties were shown to remain for both autocorrelation and 

spectral density functions showing similar results between original and characterised 

time series.  The application of multivariate linear regression between the characterised 

time series and dwelling and occupant characteristics proved unsuccessful, resulting in 

highly averaged electricity load profile shapes.  This can be explained by the 

longitudinal averaging process applied to the dataset as well as the application of 

regression as a whole which tended to smooth out the characteristic shape of the 

individual domestic electricity demand load profile.   

 

Finally, a clustering based approach was used to characterise domestic electricity load 

profiles.  This technique was different to previous methods in so far as it was used to 

reduce the data first by segmenting similar patterns of electricity use into clusters.  As 

each cluster represented a similar pattern of electricity use each profile was able to be 

combined without losing the characteristic shape for each profile.  Ten profile groups 

were produced in total, representing common patterns of electricity use within the home 

in Ireland.  Seasonality and intra-daily variations were accounted for by clustering each 

day separately.  Intra-daily differences for day types: weekdays, Saturdays and Sundays 

were shown to exist and separated in order to illustrate different patterns of electricity 

use for different day types.  Similarly, seasonality patterns were shown to exist on 



208 

electricity consumption patterns which could be attributed to the effects of temperature 

(for cold appliances) and sunrise and sunset times (for lighting). 

 

The application of a multi-nominal logistic regression was used to associate each profile 

group with household characteristics. As a result this meant that individual dwellings 

and the manner with which their occupants use electricity could be completely 

distinguished from their dwelling, occupant and appliance characteristics.  Appendix A 

contains a complete library of electricity load profiles for each profile group (P1 to P10) 

representing diurnal, intra daily and seasonal patterns of electricity use.  

 

The profiles can be broadly categorised into three main groups.  The first group, high 

electricity users were characterised by profile groups P1, P2, P4 and P5.  These were 

largely made up of detached dwellings of four and five bedrooms.  They were mainly 

occupied by adults and children and with a mixture of middle aged to older HoH ages 

and from a higher social class.  They also had a high penetration of household electrical 

appliances, particularly tumble dryers and dishwashers. 

 

The second group were characterised by medium electricity users and correspond with 

profile groups P3, P6, and P7.  These mainly comprised of a mixture of detached and 

semi detached and terraced dwellings of three and four bedrooms.  The dwellings were 

mainly occupied by adults only and again had a mixture of middle aged to older HoH 

ages but from a lower social class than the last group.  These households also owned 

what could be considered to be an average number of common household electrical 

appliances.   
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Finally profile groups P8, P9 and P10 represent the lowest electricity users.  These were 

typically characterised by apartments and terraced dwelling types of one to three 

bedrooms.  The dwellings were mainly occupied by people living alone and from a 

mixture of younger and older HoH ages and from a lower Social class than the previous 

two groups.  They also had the lowest penetration of common household appliances. 

 

9.3  Recommendations for Further Research 

The research presented here used a number of different mathematical techniques to 

characterise domestic electricity demand.  Each method applied built upon the strengths 

and weaknesses of the next with the purpose of achieving the objectives set out in 

Section 1.5. 

 

The statistical method presented in Chapter 5 provided an analysis of the characteristics 

that were most influential in determining electricity demand within the home.  Four 

electrical parameters were used to characterise diurnal domestic electricity demand, 

however, there is scope for investigating more.  A multivariate linear regression was 

applied between the electrical parameters and dwelling and occupant characteristics.  

There is also further scope for carrying out a principal components analysis to include a 

larger number of characteristics and possibly improve the overall predictive power of 

using parameters to describe household electricity consumption.  However, by 

combining dwelling and occupant characteristics the meaning of the characteristics will 

be lost. 

 

The autoregressive Markov chain process provided a method of characterising the 

variable nature of domestic electricity load profiles.  However, as discussed, it failed to 
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capture the temporal components within the characterisation process.  In addition, the 

ability to link transitional probability matrices and dwelling and occupant characteristics 

for a large number of households proved problematic.  There is potential for further 

work in the area by splitting a diurnal electricity load profile up into a number of 

sections like that discussed in Chapter 1 (i.e. night time, morning, daily and evening 

periods).  A method of linking dwelling and occupant characteristics to the transitional 

probability matrix would still need to be found but this could possibly be done through a 

combination of clustering and regression. 

 

Fourier transforms and Gaussian processes provided a method of characterising the 

temporal components of domestic electricity load profiles within the descriptive 

coefficients.  However, it would be interesting to investigate the performance of both 

these techniques at characterising at smaller time intervals of less than 30 minutes.  A 

clustering based approach could also be applied where instead of clustering the actual 

data, Fourier transforms and Gaussian process coefficients could be segmented into 

groups. 

 

Data mining, of which clustering is a part, is a dominant area of engineering and 

computer science in today’s data-rich world.  This research applied the most widely 

adopted clustering techniques and algorithms alongside a systematic engineering 

approach to produce a set of representative electricity load profiles.  However, there are 

many different methods that can be used for data classification as well as various 

different algorithms within each technique to calculate cluster points.  Therefore there is 

further scope to carry out additional work in the area, by applying different data mining 
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techniques and algorithms as well as applying different methodologies to the area of 

domestic electricity load profiling. 
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Appendix A: Domestic Electricity Demand Load 

Profile Groups 

 

The following figures present each individual electricity load profile group over the six 

month period for weekdays, Saturdays and Sundays.  Each load profile is discussed in 

terms of its pattern of electricity use and possible factors driving its use are discussed.  

 

Profile Group 1 

Figure A.1 to Figure A.3 show electricity use for profile group 1 for weekdays, 

Saturdays and Sundays across the six month period.    Figure A.1 shows profile group 1 

for weekdays where each individual line corresponds to mean electricity demand for a 

particular day over the six month period for that group.  In total there are 132 diurnal 

periods shown, excluding Saturdays and Sundays which are shown in Figure A.2 and 

Figure A.3.  A clear seasonality effect is observed from July to December, with the 

brighter colours representing mid/late summer through to the darker colours indicating 

mid/late winter.  In terms of school and work holidays in Ireland, the beginning of July 

is associated with the beginning of the summer period.  Similarly, the end of December 

is associated with the Christmas holiday period.  Hence it is an appropriate time span as 

it tells us a lot about household occupant behaviour across the calendar season’s 

summer, autumn and winter and significant holiday periods.   
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Figure A.1:  Weekday profile group 1 over the six month period (July – Dec 2009) 

 

Figure A.1 also shows an increase in electricity demand between the early morning 

hours of 00:30 to 06:30 during the summer months.  The difference is only small, 

approximately 10-15 Watts, and is almost certainly a result of cold appliances such as 

fridges and freezers cycling more frequently and hence consuming more electricity 

during the summer. This effect is noticeable in the early morning period as there is little 

or no activity within the household at these times compared to other times of the day 

where the effect is lost to general electricity consumption throughout the household. 

 

The occurrence of a morning peak in the winter time much earlier and more pronounced 

than in summer is also evident from Figure A.1.  This would suggest that lighting is a 

significant contributor to the morning peak as electric central heating penetration in 

Irish households is reasonably small (<5%).  Daytime electricity use is approximately 

the same between summer and winter months with possibly slightly more electricity 

being used during the former.  This is most likely related to increased occupancy rates 

during the day over the summer period due to school holidays or vacation days from 
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work.  The evening peak changes by approximately 75 Watts between summer and 

winter.  It is interesting to note the difference between the reduction in electricity 

demand after the evening peak for summer and winter periods.  The variation is most 

likely attributed to lighting as indicated by each diurnal profile shape decreasing earlier 

during the summer months before returning to the overall trend of night time electricity 

use. 

 

Figure A.2 and Figure A.3 show profile group 1 for Saturdays and Sundays 

respectively.   

 

Figure A.2: Saturday profile group 1 over the six month period (July – Dec 2009) 

 

Figure A.3:  Sunday profile group 1 over the six month period (July – Dec 2009) 
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As one might anticipate, there is not the same characteristic sharp morning peak shown 

in Figure A.2 and Figure A.3 for both Saturdays and Sundays.  Electricity use in most 

households increases gradually as occupants get up at different times due to lower work 

or schooling commitments for these days.  In addition, there is less of a seasonality 

effect to the profile shape for weekends as it may already be daylight when occupants 

are getting out of bed and are generally home during the day in both summer and 

winter.  A similar amount of electricity is used at peak evening times to the same times 

on weekdays.  A steeper evening peak is apparent for Saturday compared to Sunday, 

suggesting a more gradual increase in evening electricity consumption for the latter.  

The seasonality component is still evident in the evening time as occupants switch on 

lights. 

 

Profile Group 2 

Figure A.4 to Figure A.6 show electricity use for profile group 2 for weekdays, 

Saturdays and Sundays across the six month period.  Figure A.4 shows a later and lower 

use of electricity demand in the morning time compared to the previous profile.  The 

most significant characteristic of this profile is the large electricity peak centred at 1pm 

(lunch time).  There is little change in the peak due to seasonality, with a similar amount 

of electricity being used in summer and winter time periods.  This profile is 

characteristic of a household which uses electricity intensely at lunch time instead of the 

more common evening time peak.  This could correspond to households which tend to 

have their main meal for the day at lunch time as opposed to the evening time.  The 

seasonality component between summer and winter is clearly evident between the hours 

of 16:30 to 22:30, which most likely relate to the change in lighting up times in Ireland 

throughout the year. 



230 

 

Figure A.4:  Weekday profile group 2 over the six month period (July – Dec 2009) 

 

Figure A.5 and Figure A.6 show profile group 2 for Saturdays and Sundays over the six 

month period.  The main difference between weekday and weekend is the absence of 

the small morning peak.   

 

 

Figure A.5:  Saturday profile group 2 over the six month period (July – Dec 2009) 
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Figure A.6:  Sunday profile group 2 over the six month period (July – Dec 2009) 

 

Profile Group 3 

Figure A.7 to Figure A.9 show profile group 3 for weekdays, Saturdays and Sundays 

over the six month period.  Figure A.7 shows a large morning peak between the hours 

07:00 and 10:30.  There is very little electricity used across the later morning and 

afternoon periods before the evening peak starts at 16:30 which is mostly contributed to 

by lighting as evidenced by the strong seasonality effect.  A significant amount of 

outliers are also apparent for this particular profile, all corresponding to the winter 

period.  Some of these relate to holidays (such as Christmas and New Year’s) and others 

may possibly be related to occupant vacation days. 

 

Figure A.7:  Weekday profile group 3 over the six month period (July – Dec 2009) 
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Figure A.8 and Figure A.9 shows profile group 3 for Saturdays and Sundays over the 

six month period.  Sundays tend to consume more electricity during the morning peak 

when compared against Saturday suggesting slightly more household activity at this 

time for the former. 

 

Figure A.8: Saturday profile group 3 over the six month period (July – Dec 2009) 

 

Figure A.9: Sunday profile group 3 over the six month period (July – Dec 2009) 

 

Profile Group 4 

Figure A.10 to Figure A.12 shows profile group 4 electricity use for weekdays, 

Saturdays and Sundays over the six month period.  Figure A.10 shows the weekday 

profile which is similar in shape to profile group 1 presented earlier but significantly 

less in magnitude.  Both a morning and evening peak are apparent, with a much smaller 
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peak at lunch time.  The morning peak starts at 06:30 and lasts until 09:00.  It is likely 

that this is mainly composed of lighting as evidenced by the strong seasonality 

component.  The evening peak starts at 16:00, with maximum occurring at 18:30.  After 

the evening peak the difference between the decrease in electricity demand between 

summer and winter is clearly seen as lights do not need to be switched on till much later 

in the evening for the latter.    

 

Figure A.10:  Weekday profile group 4 over the six month period (July – Dec 2009) 

 

Figure A.11 and Figure A.12 shows Saturdays and Sundays for profile group 4 over the 

six month period.  The same morning peak shown in the weekday profile does not exist 

for Saturdays and Sundays.  This again may suggest that this is most likely composed of 

lighting as occupants get up later at the weekends.  More electricity is used over the late 

morning and early afternoon on Saturday as opposed to Sunday suggesting that 

occupants get out of bed a little earlier on the former compared to the latter. 
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Figure A.11:  Saturday profile group 4 over the six month period (July – Dec 2009) 

 

Profile A.12: Sunday profile group 4 over the six month period (July – Dec 2009) 

 

Profile Group 5 

Figure A.13 to Figure A.15 shows electricity use for weekdays, Saturdays and Sundays 

for profile group 5.  Figure A.13 shows a morning peak and a double evening peak with 

the first occurring at 16:30 and the second at 20:30.  The difference between the two 

evening peaks is highly seasonal suggesting that a large part of the first evening peak is 

composed of lighting.  The later evening peak does not have any seasonality component 

associated with it at all and is characteristic of households who tend to consume 

electricity late at night. 
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Figure A.13: Weekday profile group 5 over the six month period (July – Dec 2009) 

 

Figure A.14 and Figure A.15 shows electricity profile group 5 for Saturdays and 

Sundays over the six month period.  A seasonality component also exists in these 

figures, similar to that shown for profile group 4 indicating that it is not related to 

occupancy patterns and most likely a result of lighting as discussed above.  The 

morning peak is smoother compared to the weekdays with no seasonal component 

suggesting later activity times in the household for the morning periods at the 

weekends.   

 

 

Figure A.14: Saturday profile group 5 over the six month period (July – Dec 2009) 
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Figure A.15: Sunday profile group 5 over the six month period (July – Dec 2009) 

 

Profile Group 6 

Figure A.16 to Figure A.18 shows electricity use for profile group 6 for weekdays, 

Saturdays and Sundays over the six month period.  Figure A.16 shows three distinct 

peaks indicating morning, lunch and evening time electricity use.  The seasonal 

influence on the load profile shows more electricity being consumed over the late 

morning and early afternoon periods during the summer time.  This is most likely 

related to increased occupancy over the day time period during the summer months but 

also could be due to increased cycling of cold appliances.  As profile group 6 magnitude 

of electricity consumption is less compared to those presented previous, the contribution 

of cold appliances to overall electricity consumption (which are always left switched 

on) becomes more. Again the seasonality effect of lighting switching on and off in the 

evening time is apparent. 
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Figure A.16:  Weekday profile group 6 over the six month period (July – Dec 2009) 

 

Figure A.17 and Figure A.18 shows electricity profile group 6 for Saturdays and 

Sundays over the six month period.  A greater use of electricity at the evening peak is 

apparent on the Saturday than on the Sunday which suggests a more gradual use of 

electricity on the latter. 

 

 

Figure A.17: Saturday profile group 6 over the six month period (July – Dec 2009) 
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Figure A.18: Sunday profile group 6 over the six month period (July – Dec 2009) 

 

Profile Group 7 

Figure A.19 to Figure A.20 shows electricity profile group 7 for weekdays, Saturdays 

and Sundays over the six month period.  Figure A.19 shows a weekday profile, similar 

to that shown for profile group 2, however, with two important differences.  Profile 

group 7 shows an earlier lunch time peak at 12:00, as opposed to 13:00, and is 

significantly less in magnitude with a peak time electricity use of 1.5 kW as opposed to 

2.4 kW.  There is also less of a morning peak with profile group 7 compared to profile 

group  2.  Again the seasonality component can be seen between the hours of 16:30 to 

22:30 corresponding with changes in lighting up time as one goes toward the winter 

period. 
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Figure A.19: Weekday profile group 7 over the six month period (July – Dec 2009) 

 

Figure A.20 and Figure A.21 show electricity profile group 7 for Saturdays and 

Sundays.  There is little difference between these two profiles except for a more 

prolonged use of electricity in the evening time on the Saturday compared to the Sunday 

for the winter months only. 

 

 

Figure A.20: Saturday profile group 7 over the six month period (July – Dec 2009) 
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Figure A.21: Sunday profile group 7 over the six month period (July – Dec 2009) 

 

Profile Group 8 

Figure A.22 to Figure A.24 shows electricity profile group 8 for weekdays, Saturdays 

and Sundays over a six month period.  Figure A.22 is different to any other profile 

group shown in previous figures, mainly because the magnitude component of the 

electricity load profile is very small, with a peak value of just 200 Watts.  Therefore 

profile group 8 most probably represents a dwelling where there is little or no activity 

throughout the day and could possibly be classed as a vacant dwelling.  The only 

significant contributors to electricity demand throughout the day almost undoubtedly 

come from one or more cold appliances and a possibly a small lighting component in 

the evening time.  The strong seasonality component throughout the entire day 

highlights the influence of the increased cycling of cold appliances in the summertime 

due to an increase in external temperature.   
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Figure A.22:  Weekday profile group 8 over the six month period (July – Dec 2009) 

 

Figure A.23 and Figure A.24 shows electricity profile group 8 for Saturdays and 

Sundays.  Electricity consumption is marginally smaller at the weekend than during the 

week and tends to be larger in the evening time on Sunday compared to Saturday. 

 

 

Figure A.23: Saturday profile group 8 over the six month period (July – Dec 2009) 
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Figure A.24: Sunday profile group 8 over the six month period (July – Dec 2009) 

 

Profile Group 9 

Figure A.25 to Figure A.26 shows electricity profile group 9 for Saturdays and Sundays 

across the six month period.  Profile group 9 is similar in shape to profile group 1 and 4 

already shown but differs with a significantly less magnitude component to electricity 

consumption across the day.  The increased activity of the cold appliances across the 

day is apparent as indicated by a strong seasonality component across the day and into 

the evening where lighting most likely becomes the dominant factor contributing to 

electricity consumption. 

 

Figure A.25: Weekday profile group 9 over the six month period (July – Dec 2009) 
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Figure A.26 and Figure A.27 shows electricity profile group 9 for Saturdays and 

Sundays across the six month period.  Both figures have the same seasonality 

component as the weekday with more electricity being consumed in the summer than in 

the winter time. Slightly more electricity is used over a longer time period on the 

Saturday compared to the Sunday suggesting more occupant activity in the home during 

these times on the former. 

 

 

Figure A.26: Saturday profile group 9 over the six month period (July – Dec 2009) 

 

 

Figure A.27: Sunday profile group 9 over the six month period (July – Dec 2009) 
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Profile Group 10 

Finally Figure A.28 to Figure A.30 shows electricity profile group 10 for weekdays, 

Saturdays and Sundays over the six month period.  A late morning peak starting at 

08:00 and ending at 10:30 with maximum electricity consumption of 700 Watts 

(excluding outlier) is apparent, in Figure A.28.  This is followed by a period of smaller 

electricity consumption between the hours of 10:30 to 13:00.  The seasonality 

component shows that largest amount of electricity is being used between the months 

July to October. 

 

Figure A.28: Weekday profile group 10 over the six month period (July – Dec 2009) 

 

Figure A.29 and Figure A.30 shows electricity profile group 10 for Saturdays and 

Sundays.  The profiles show that electricity is used more continuously over the period 

of 14:30 to 23:30 for the Saturday whereas for the Sunday a small peak is apparent 

between the hours of 18:30 to 22:30. 
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Figure A.29: Saturday profile group 10 over the six month period (July – Dec 2009) 

 

Figure A.30: Sunday profile group 10 over the six month period (July – Dec 2009) 
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Appendix B:  Descriptive statistics for Average 

Percentage Profile Time (APPT) 
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Appendix C:  Advantages and disadvantages of time 

series approaches to electricity load profile 

characterisation 
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Characterisation 

Type 

Applied to 

Aggregate 

Demand 

Applied to 

Individual Dwelling 

Demand 

Time 

Resolution – 

High (≤ 1hr) 

Time 

Resolution – 

Low (> 1hr) 

Advantages Disadvantages 

Fourier Series Yes [38][35][37] No Yes [38][35]  Yes [37] Temporal and magnitude 

components represented in the 

variable coefficients with the latter 

scalable. 

Fourier transforms are poor at 

characterising small ‘sharp’ intervals of 

electricity demand. 

Neural 

Networks 

Yes [84][124][7]  Yes [32][33][19] Yes 

[84][124][7] 

Yes 

[32][33][19] 

Good at characterising highly non-

linear relationships such as 

domestic electricity load profiles. 

Black box approach.  Variable 

coefficients do not represent the 

temporal and magnitude components of 

an electricity load profile. 

Gaussian 

Processes 

Yes [86][41][8] No Yes 

[86][41][8] 

No Good at approximating small 

intervals of ‘sharp’ electricity 

demand. 

Less good at approximating ‘smother’ 

average electricity demand profiles. 

Autoregressive 

(incl. Markov 

chain) 

Yes 

[9][21][39][43] 

Yes [125][46] Yes 

[9][39][125][4

6][43] 

Yes [21] Widely used in aggregate 

electricity system demand load 

profiling.  Markov chains are able 

to characterise the variable 

component of domestic electricity 

load profiles. 

Variable coefficients vary unpredictably 

with small changes in profile shape and 

don’t represent temporal and magnitude 

components.  Markov chains unable to 

characterise the temporal component 

unless a minimum of forty eight 

variables used (i.e. each half hourly 

period characterised separately). 

Fuzzy Logic Yes [48][49][50] No Yes 

[48][49][50] 

No Cause and effect clearly defined 

between input and output. 

A minimum of forty eight variables 

required (i.e. each half hour period 

characterised separately).  

Wavelets Yes 

[87][88][89][90] 

No Yes 

[87][88][89][9

0] 

No High and low frequency 

components represented by two 

different series analogous to base 

load and peak load for electricity 

load profiling. 

The time series is effectively split in half, 

with each section characterised 

separately thus doubling the number of 

variables required. 

Multiple 

Regression/ 

Probabilistic 

Yes [91][95] Yes 

[12][92][93][94][96][

97][98][66] 

Yes 

[91][12][92][9

3][94][95][96]

Yes[66] Widely used for generating 

standard load profiles (as shown in 

Figure 2) 

Load profiles tend to be average rather 

than variable unless each half hourly 

period is characterised separately. 
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[97][98] 
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Appendix D: Smart metering survey questions 

 

1 
 I would like to start by asking you a few questions about 

yourself.  Are you the person in your home who is responsible or 

jointly responsible for paying the electricity bill?   

2  And are you the person who opted to sign up for the trial?   

3  May I ask your name please? NAME   

4  PLEASE RECORD SEX FROM VOICE   

5 

 May I ask what age you were on your last birthday? INT 

 IF NECCESSARY, 

PROMPT WITH AGE 

BANDS 

6  What is the employment status of the chief income earner in 

your household, is he/she   

7  SOCIAL CLASS Interviewer, Respondent said that occupation 

of chief income earner was.... <CLASS> Please code   

8  Do you have internet access in your home?   

9  Do you have broadband in your home?   

10  Do you use the internet regularly yourself?   

11  Are there other people in your household that use the internet 

regularly?   

12  What best describes the people you live with? READ OUT   

13  How many people over 15 years of age live in your home?   

14  And how many of these are typically in the house during the 

day (for example for 5-6 hours during the day)   

15  How many people under 15 years of age live in your home?   

16  And how many of these are typically in the house during the 

day (for exanmple for 5-6 hours during the day)   

17  I/we am/are interested in changing the way I/we use electricity 

if it reduces the bill   

18  I/we am/are interested in changing the way I/we use electricity 

if it helps the environment   

19  I/we can reduce my electricity bill by changing the way the 

people I/we live with use electricity   

20  I/we have already done a lot to reduce the amount of electricity 

I/we use   

21  I/we have already made changes to the way I/we live my life in 

order to reduce the amount of electricity we use.   

22  I/we would like to do more to reduce electricity usage   

23  I/we know what I/we need to do in order to reduce electricity 

usage   

24  I/we have already done a lot to reduce the amount of electricity 

I/we use   

25  I/we have already made changes to the way I/we live my life in 

order to reduce the amount of electricity we use.   

26  I/we would like to do more to reduce electricity usage   

27  I/we know what I/we need to do in order to reduce electricity 

usage   
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28 
 Thinking about the energy reduction activities undertaken by 

you or your family/household, in the last year, did your efforts 

reduce your bills?   

29  Approximately what % savings on average did you achieve on 

the average bill?   

30  It is too inconvenient to reduce our usage of electricity   

31  I do not know enough about how much electricity different 

appliances use in order to reduce my usage   

32  I am not be able to get the people I live with to reduce their 

electricity usage   

33  I do not have enough time to reduce my electricity usage   

34  I do not want to be told how much electricity I can use   

35  Reducing my usage would not make enough of a difference to 

my bill   

36 
 If you were to make changes to the way you and people you live 

with use electricity, how much do you believe you could reduce 

your usage by?   

37  I would now like to ask some questions about your home.  

Which best describes your home?   

38  Do you own or rent your home?   

39 
 What year was your house built INT ENTER FOR EXAMPLE 

 1981- CAPTURE THE 

FOUR DIGITS 

40  Approximately how old is your home?   

41  What is the approximate floor area of your home?   

42  Is that   

43  How many bedrooms are there in your home   

44 
 Which of the following best describes how you heat your 

 Electricity (electric central 

heating/storage heating) 

45  Which of the following best describes how you heat your  Electricity (plug in heaters) 

46  Which of the following best describes how you heat your  Gas 

47  Which of the following best describes how you heat your  Oil 

48  Which of the following best describes how you heat your  Solid fuel 

49  Which of the following best describes how you heat your  Renewable (e.g. solar) 

50  Which of the following best describes how you heat your  Other 

51  Do you have a timer to control when your heating comes on and 

goes off?   

52  Which of the following best describes how you heat water in  Central heating system 

53  Which of the following best describes how you heat water in  Electric (immersion) 

54 
 Which of the following best describes how you heat water in 

 Electric (instantaneous 

heater) 

55  Which of the following best describes how you heat water in  Gas 

56  Which of the following best describes how you heat water in  Oil 

57  Which of the following best describes how you heat water in  Solid fuel boiler 

58  Which of the following best describes how you heat water in  Renewable (e.g. solar) 

59  Which of the following best describes how you heat water in  Other 

60  Do you have a timer to control when your hot water/immersion 

heater comes on and goes off?   

61  Do you use your immersion when your heating is not switched 

on?   
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62  Which of the following best describes how you cook in your 

home   

63  Returning to heating your home, in your opinion, is your home 

kept adequately warm?   

64  Do any of the following reasons apply?  I prefer cooler temperature 

65 

 Do any of the following reasons apply? 

 I cannot afford to have the 

home as warm as I would 

like 

66 

 Do any of the following reasons apply? 

 It is hard to keep the home 

warm because it is not well 

insulated 

67  Do any of the following reasons apply?  None of these 

68  Have you had to go without heating during the last 12 months 

through lack of money?   

69 
 Have any of the following ever applied to you? 

 I had to go without heat on a 

cold day 

70 
 Have any of the following ever applied to you? 

 I had to go to bed to keep 

warm 

71 

 Have any of the following ever applied to you? 

 I lit the fire late or switched 

on the heat late because I did 

not have enough fuel or 

money for fuel 

72  Have any of the following ever applied to you?  None of these 

73  Washing machine   

74  Tumble dryer   

75  Dishwasher   

76  Electric shower (instant)   

77  Electric shower (electric pumped from hot tank)   

78  Electric cooker   

79  Electric heater (plug-in convector heaters)   

80  Stand alone freezer   

81  A water pump or electric well pump or pressurised water system   

82  Immersion   

83  Washing machine   

84  Tumble dryer   

85  Dishwasher   

86  Electric shower (instant)   

87  Electric shower (electric pumped from hot tank)   

88  Electric cooker   

89  Electric heater (plug-in convector heaters)   

90  Stand alone freezer   

91  A water pump or electric well pump or pressurised water system   

92  Immersion   

93  TV’s less  than 21 inch   

94  TV’s greater  than 21 inch   

95  Desk-top computers   

96  Lap-top computers   

97  Games consoles, such as xbox, playstation or Wii   

98  TV’s less than 21 inch   
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99  TV’s greater than 21 inch   

100  Desk-top computers   

101  Lap-top computers   

102  Games consoles, such as xbox, playstation or Wii   

103  Washing machine  INT   

104  Tumble dryer  INT   

105  Dishwasher  INT   

106  Electric shower (instant)  INT   

107  Electric shower (pumped from hot tank)  INT   

108  Electric cooker  INT   

109  Electric heater (plug-in)  INT   

110  Water pump   INT   

111  Immersion water  INT   

112  Stand alone Freezer  INT   

113  TV’s less than 21 inch  INT   

114  TV’s greater than 21 inch  INT   

115  Desk-top computers  INT   

116  Lap-top computers  INT   

117  Games consoles, such as xbox, playstation or Wii  INT   

118 
 Does your home have a Building Energy Rating (BER) - a 

recently introduced scheme for rating the energy efficiency of 

your home?   

119  What rating did your house achieve?   

120 
 And now considering energy reduction in your home please 

indicate the approximate proportion of light bulbs which are 

energy saving (or CFL)?  INT READ OUT 

121  Please indicate the approximate proportion of windows in your 

home which are double glazed?  INT READ OUT 

122  Does your hot water tank have a lagging jacket?   

123  Is your attic insulated and if so when was the insulation fitted?  

INT PROBE TO PRECODES 

124  Are the external walls of your home insulated?   

125 
 I would now like to ask you about your expectations about 

 Learn how to reduce my 

energy usage 

126 
 I would now like to ask you about your expectations about 

 Learn how to reduce my 

electricity bill 

127 

 I would now like to ask you about your expectations about 

 Do my part to help the 

environment by my 

participation 

128 
 I would now like to ask you about your expectations about 

 Do my part to make Ireland 

become more up to date 

129  My household may decide to make minor changes to the way 

we use electricity   

130  My household may decide to make major changes to the way 

we use electricity   

131  My household may decide to be more aware of the amount of 

electricity used by appliances we own or buy.   

132  In future, when replacing an appliance, my household may 

decide to choose one with a better energy rating   
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133  How do you think that your electricity bills will change as part 

of the trial?   

134  By what amount?   

135  By what amount?   

136  Moving on to education, which of the following best describes 

the level of education of the chief income earner   

137 

 And considering income, what is the approximate income of 

your household - this should be before tax, you should include 

the income of all adults in the household? Please note that this 

figure will remain completely confidential and will not   

138  Can you state which of the following broad categories best 

represents the yearly household income BEFORE TAX?   

139  Is that figure   

140  Can I just double check is that figure..   

141  The number of suppliers competing in the market   

142  The percentage of electricity being generated from renewable 

sources   

143  The overall cost of electricity   

144  The number of estimated bills received by customers   

145  The opportunity to sell back extra electricity you may generate 

(from solar panels etc) to your electricity supplier   

146  The environmental damage associated with the amount of 

electricity used   
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Appendix E:  Social Class Categories [113] 

 

Social class of Chief Income Earner (CIE) 

 

 

Social Class Description 

A High managerial, administrative or 

professional 

B Intermediate managerial, administrative or  

professional 

C1 Supervisory, clerical and junior 

managerial, administrative or professional 

C2 Skilled manual workers 

D Semi and unskilled manual workers 

E State pensioners, casual or lowest grade 

workers, unemployed with state benefits 

only 

F Farmers 
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