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Stochastic Volatility Analysis using the
Generalised Kolmogorov-Feller Equation

Jonathan Blackledge, Marc Lamphiere, Kieran Murphy, Shaun Overton and Afshin Panahi

Abstract—We consider an approach to analysing the Stochas-
tic Volatility of a financial time series using the Generalised
Kolmogorov-Feller Equation (GKFE). After reviewing the com-
putation of the Stochastic Volatility using a phase only con-
dition, a Green’s function solution to the GKFE equation is
derived which depends upon the ‘memory function’ used to
construct the GKFE. Using the Mittag-Leffler memory function,
we derive an expression for the Impulse Response Function
associated with a short time window of data which is then
used to derive an algorithm for computing a new index using a
standard moving window process. It is shown that application of
this index to both a financial time series and its corresponding
Stochastic Volatility provides a correlation between the start,
direction and end of a trend depending on the sampling rate
of the time series and the look-back window that is used.

Index Terms—stochastic volatility, generalised Kolmogorov-
Feller equation, memory function, trend analysis.

I. INTRODUCTION

PRICE models involve the derivation and solution of a
variety of stochastic differential and partial differential

equations. A standard model for the price of a stock as a
function of time s(t) is [1]

d

dt
s(t) = µs(t) + σs(t)u(t) (1)

where µ is the ‘Drift’, σ is the ‘Volatility’ and u(t) is a
stochastic function. This model is based on the idea that
prices appear to be the previous price plus some random
change and that these price changes are independent, i.e.
asset price changes appear to be random and independent,
prices being taken to follow some random walk-type be-
haviour. This is the basis for including a stochastic function
u(t). However the size of price movements also depends on
the size of the price itself. The model is therefore revised to
include this effect, the stochastic term u(t) being replaced by
u(t)s(t) where σ determines the degree of randomness taken
to influence a price change. In general, µ and σ vary with
time, and, in the context of equation (1), σ(t) is referred
to as the ‘Stochastic Volatility’, e.g. [2], [3] and [4]. The
drift function µ(t) tends to vary over longer periods of time
reflecting the long term trends associated with a price index.

In principle, u(t) could be any stochastic function with
statistical behaviour conforming to a range of Probability
Density Functions. A conventional model is to assume that
the log price changes are Gaussian distributed so that u(t)
is taken to be a zero-mean Gaussian distributed function.
If this function is taken to have a fixed standard deviation
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of 1, then the volatility becomes a measure of the standard
deviation, at least, for a (zero-mean) Gaussian model. The
stock price model given by equation (1) then provides a
method for estimating the volatility σ in terms of a lower
bound as shown in Section II.

In this paper, we consider a solution to the Generalised
Kolomogorov-Feller Equation to model the stochastic be-
haviour of a financial time series and its corresponding
Stochastic Volatility. By defining an Impulse Response Func-
tion which is based on a parameter associated with the
Mittag-Leffler memory function used to construct the KFE,
we consider an algorithm for analysing the trends of the time
series.

II. EVALUATION OF THE STOCHASTIC VOLATILITY

Let
f(t) = µ+ σu(t)

where
f(t) =

1
s(t)

d

dt
s(t) =

d

dt
ln s(t)

and µ and σ are taken to be constant. We first obtain an
estimate of the Drift by noting that, if the mean of u(t) is
approximately zero over t ∈ [0, T ], then

T∫
0

f(t)dt =

T∫
0

µdt+ σ

T∫
0

u(t)dt ∼ µT

so that

µ ∼ 1
T

T∫
0

f(t)dt (2)

To obtain an estimate for the volatility, we now consider
the case when the stochastic function u(t) is a phase only
function, i.e. given that

ũ(ω) =

∞∫
−∞

u(t) exp(−iωt)dt

where ω is the (angular) frequency, we consider

ũ(ω) = A exp[iθ(ω)] (3)

where the amplitude spectrum A is taken to be a constant for
all values of ω. We also consider u(t) to be a band-limited
function ω ∈ [−Ω/2,Ω/2] with bandwidth Ω and a function
of compact support t ∈ [−T/2, T/2]. Using Minkowski’s
identity for Euclidean norms,

‖f(t)‖2 ≤ ‖µ‖2 + ‖σu(t)‖2
where

‖x(t)‖2 :=
(∫

| x(t) |2 dx
) 1

2



so that we can write

σ‖u(t)‖2 ≥ ‖f(t)‖2 − µ
√
T

where µ is given by equation (2). Using Parseval’s Theorem
(Rayleigh’s Energy Theorem), the condition expressed by
equation (3) allows us to write

T/2∫
−T/2

| u(t) |2 dt =
1

2π

Ω/2∫
−Ω/2

| ũ(ω) |2 dω =
ΩA2

2π

We can therefore consider the equation

σmin =
1
A

√
2π
Ω

(‖f(t)‖2 − µ
√
T ) (4)

which yields an expression for the lower bound of the
volatility.

III. NUMERICAL COMPUTATION OF THE STOCHASTIC
VOLATILITY

Consider a discrete signal denoted by the array fn, n =
1, 2, 3, ..., N where a uniform sampling interval of ∆t is
assumed. In this case, the discrete version of equation (4)
becomes

σmin =
1
A

√
2π
Ω

(
√

∆t‖fn‖2 − µ
√
T )

where we invoke the usual definition for a vector (Euclidean)
norm, i.e.

‖fn‖2 :=

(
N∑
n=1

| fn |2
) 1

2

, µ =
∆t
T

N∑
n=1

fn

The sampling interval ∆t of fn is related to the sampling
interval ∆ω of the Discrete Fourier Transform of fn by the
equation

∆t∆ω =
2π
N

and since the bandwidth of the discrete spectrum of fn is
N∆ω is is clear that ∆t = 2π/Ω. Thus, given that the
support of the signal is T = N∆t, we note that

T =
2πN

Ω
and therefore obtain

σmin =
2π
AΩ

(‖fn‖2 −
√
Nµ), µ =

1
N

N∑
n=1

fn

The scaling constant 2π/(AΩ) can then be used to define a
re-scaled Stochastic Volatility given by

σ̂ := σmin
AΩ
2π

thereby yielding the expression

σ̂ = ‖fn‖2 −
√
Nµ

Writing this result explicitly in terms of the price value sn
we obtain the equation

σ̂ =

(
N−1∑
n=1

∣∣∣∣ln(sn+1

sn

)∣∣∣∣2
) 1

2

− 1√
N − 1

N−1∑
n=1

ln
(
sn+1

sn

)
(5)

To compute the ‘Stochastic Volatility’ σm, N is taken to
determine the size of the data sampling window or ‘look-
back’ window which is moved along the time series one
element at a time so that we can write

σ̂m =

(
N−1∑
n=1

∣∣∣∣ln(sm+n+1

sm+n

)∣∣∣∣2
) 1

2

− 1√
N − 1

N−1∑
n=1

ln
(
sm+n+1

sm+n

)
(6)

Equation (5) may be compared with other estimates for the
Stochastic Volatility such as the Maximum Likelihood (ML)
estimate given by [5]

σ̂2
ML =

1
N − 1

N−1∑
n=1

[
ln
(
sn+1

sn

)]2

− 1
(N − 1)2

[
ln
(
sN
s1

)]2

The phase only condition used to derive equations (5) and
(6) is equivalent to modelling the stochastic function u(t)
in terms of a random walk in the (complex) Fourier domain
where the amplitude of each step is the same.

IV. DERIVATION OF THE GENERALISED
KOLMOGOROV-FELLER EQUATION

For an arbitrary Characteristic Function P (k) with Prob-
ability Density Function (PDF) p(x), Einstein’s evolution
equation is [6]

u(x, t+ τ) = u(x, t)⊗x p(x)

where u(x, t) is a ‘density function’ representing the con-
centration of a canonical ensemble of particles undergoing
elastic collisions. Consider a Taylor series for the function
u(x, t+ τ), i.e.

u(x, t+ τ) = u(x, t) + τ
∂

∂t
u(x, t) +

τ2

2!
∂2

∂t2
u(x, t) + ...

For τ << 1

u(x, t+ τ) = u(x, t) + τ
∂

∂t
u(x, t)

and we obtain the ‘Classical KFE’ [7], [8]

τ
∂

∂t
u(x, t) = −u(x, t) + u(x, t)⊗x p(x) (7)

Equation (7) is based on a critical assumption which is that
the time evolution of the field u(x, t) is influenced only by
short term events and that longer term (historical) events have
no influence on the behaviour of the field, i.e. the ‘system’
described by equation (7) has no ‘memory’. This statement
is the physical basis upon which we introduce the condition
τ << 1 thereby allowing the Taylor series expansion of the
u(x, t+τ) to be made to first order. The question then arises
as to how longer term temporal influences can be modelled,
other than by taking an increasingly larger number of terms
in the Taylor expansion of u(x, t + tau) which is not of
practical analytical value. For arbitrary values of τ ,

τ
∂

∂t
u(x, t)+

τ2

2!
∂2

∂t2
u(x, t)+ ... = −u(x, t)+u(x, t)⊗xp(x)



We can model the effect on a solution for u(x, t) of the series
on the left hand side of this equation in terms of a ‘memory
function’ m(t) and write

τm(t)⊗t
∂

∂t
u(x, t) = −u(x, t) + u(x, t)⊗x p(x) (8)

where ⊗t is taken to denote the causal convolution integral
over t. This is the Generalised KFE (GKFE) which reduces
to the Classical KFE when

m(t) = δ(t)

Note that for any memory function for which there exists a
function or class of functions of the type n(t), say, such that

n(t)⊗t m(t) = δ(t)

then we can write equation (8) in the form

τ
∂

∂t
u(x, t) = −n(t)⊗tu(x, t)+n̂(t)⊗tu(x, t)⊗xp(x) (9)

where the Classical KFE is recovered when n(t) = δ(t).
Any solution obtained to the GKFE will be dependent

upon the choice of memory function m(t) used. There are a
number of choices that can be considered, each or which is
taken to be a ‘best characteristic’ of the stochastic system in
terms of the influence of its time history. However, it may
be expected that the time history of physically significant
random systems is relatively localised in time. This includes
memory functions such as the Mittag-Leffler function [9]

m(t) =
1

Γ(1− β)tβ
, 0 < β < 1

where
n(t) =

1
Γ(β − 1)t2−β

given that
∞∫

0

exp(−st)
Γ(β)t1−β

dt =
1
sβ

and

∞∫
0

δ(t) exp(−st)dt = 1

V. SOLUTION TO THE GKFE USING THE GREEN’S
FUNCTION METHOD

Consider equation (9) which can be written in the form

τ
∂

∂t
u(x, t) + u(x, t) = u(x, t)− n(t)⊗t u(x, t)

+n(t)⊗t u(x, t)⊗x p(x)

so that the Green’s function solution is given by

u(x, t) = g(t)⊗t u(x, t)− g(t)⊗t n(t)⊗t u(x, t)

+g(t)⊗t n(t)⊗t u(x, t)⊗x p(x) (10)

where the Green’s function is given by

g(t) =
1
τ

exp(−t/τ), t > 0

which is the solution to

τ
∂

∂t
g(t− t0) + g(t− t0) = δ(t− t0)

and we assume the initial conditions u(x, t = 0) = 0
and g(t = t0) = 0. We can now analyse this solution
in Fourier-Laplace space by taking the Fourier transform
and the Laplace transform of equation (10) and using the

convolution theorems for the Fourier and Laplace transform,
respectively, to obtain

¯̃u(k, s) = ḡ(s)¯̃u(k, s)−ḡ(s)n̄(s)¯̃u(x, t)+ḡ(s)n̄(s)¯̃u(k, s)p̃(k)
(11)

where

¯̃u(k, s) =

∞∫
0

∞∫
−∞

u(x, t) exp(−ikx)dx exp(−st)dt

ḡ(s) =

∞∫
0

g(t) exp(−st)dt, n̄(s) =

∞∫
0

n(t) exp(−st)dt

and

p̃(k) =

∞∫
−∞

p(x) exp(−ikx)dx

From equation (11) it is clear that we can write

¯̃u(k, s) = − ḡ(s)
1− ḡ(s)

n̄(s)¯̃u(x, t) +
ḡ(s)

1− ḡ(s)
n̄(s)¯̃u(k, s)p̃(k)

= − n̄(s)
τs

¯̃u(x, t) +
n̄(s)
τs

¯̃u(k, s)p̃(k)

given that ḡ(s) = (1+τs)−1 and thus we obtain the equation

¯̃u(k, s) = h̄(s)¯̃u(k, s)p̃(k) (12)

where
h̄(s) =

n̄(s)
τs+ n̄(s)

or, upon inverse transformations

u(x, t) = h(t)⊗t u(x, t)⊗x p(x) (13)

with
h(t)↔ n̄(s)

τs+ n̄(s)

where ↔ denotes the Laplce transformation, i.e. mutual
transformation from t-space to s-space.

Consider the iteration of equation (13) defined by

un+1(x, t) = h(t)⊗t un(x, t)⊗x p(x) (14)

for an initial solution u0(x, t) where n = 1, 2, ..., N The
equivalent iteration in Fourier-Laplace space is, from equa-
tion (12)

¯̃un+1(k, s) = h̄(s)¯̃un(k, s)p̃(k) (15)

with initial solution ¯̃u0(k, s). From equation (15) it is clear
that, after N iterations, we can write

¯̃uN (k, s) = [h̄(s)]N [p̃(k)]N ¯̃u0(k, s)

so that upon inverse Fourier-Laplace transformation, equation
(14) becomes

uN (x, t) =
N∏
j=1

⊗ p(x)
N∏
k=1

⊗ h(t)⊗x ⊗tu0(x, t) (16)

where
N∏
j=1

⊗ f(t) ≡ f(t)⊗t f(t)⊗t f(t)⊗t ...

denoting the N th convolution of f(t) The convergence
criterion required for the iteration defined by equation (14)
is given in the Appendix A.



VI. MITTAG-LEFFLER IMPULSE RESPONSE FUNCTION

Form equation (16), if the initial solution is an impulse
(i.e. u0(x, t) = δ(x)δ(t) then the Impulse Response Function
(IRF), denoted by r(x, t), is given by

r(x, t) =
N∏
j=1

⊗ p(x)
N∏
k=1

⊗ h(t)

with ‘transfer function’

¯̃r(k, s) = [h̄(s)p̃(k)]N

For a memory function m(t) modelled by the Mittag-Leffler
function (for 0 < β < 1)

m(t)↔ 1
s1−β , h̄(s) =

1
1 + τsβ

∼ 1
τsβ

so that
h(t) ∼ 1

τΓ(β)t1−β

Similarly, suppose we consider a Mittag-Leffler PDF of the
form

p(x) =
1

Γ(1− γ) | x |γ
, 0 < γ < 1

then
p̃(k) =

1
| k |1−γ

and the IRF becomes

r(x, t) ∼
N∏
j=1

⊗
1

Γ(1− γ) | x |γ
N∏
k=1

⊗
1

τΓ(β)t1−β

Figure 1 shows the evolution of the function u(x, t) for an
initial solution u0(x, t) composed of a uniformly distributed
stochastic field. The result is based on a discretisation of the
equation

uN (x, t) = r(x, t)⊗x ⊗tu0(x, t) (17)

and shows grey-level images of the field uN (x, t) for
N = 1, 2, 3, 4. The computation of the field is undertaken
by multiple filtering the Fourier transform of u0(x, t) with
the transfer function | k |γ−1| s |−β and shows how the
field acquires structure from a uniformly distributed random
space-time process.

Note that, from Appendix A, if ‖h(t)‖ × ‖p(x)‖ << 1
then r(x, t) ∼ p(x)h(t), and, in the case of the Mittag-Leffler
function used here, this will occur when τ >> 1. Also, note
that r(x, t)→ 0 as γ → 1 and as β → 0.

VII. STOCHASTIC VOLATILITY ANALYSIS

On the basis of the results discussed in the previous
section, we consider a short time series model given by (for
an arbitrary PDF p)

û(t) ≡
∞∫
−∞

p(x)h(t)dx =
a

t1−β
, β > 0

where a is a scaling constant. This model represents the IRF
associated with a random scaling fractal signal u(t) [1]. For
the discrete case when ûn ≡ û(tn) (for n = 1, 2, ..., N ) is
taken to represent a window of data taken from an input data
steam,

ûn = atαn, tn > 0

Fig. 1. Evolution of the field uN (x, t) for N = 1, 2, 3, 4 (top-left, top-
right, bottom-left and bottom-right, respectively) based on application of
equation (17) with γ = 0.5 and β = 0.5 computed using a 256×256
rectangular grid.

where α = β − 1. Estimates of the parameters a and α are
then chosen to minimise the error function

e(a, α) = ‖ ln ûn − lnun‖22 ≡
N∑
n=1

(ln ûn − lnun)2

where un is data which is taken to be normalised, i.e.
‖un‖∞ = 1. Differentiating with respect to A = ln a and
α, it is trivial to show that

α =

N∑
n=1

lnun
N∑
n=1

ln tn −N
N∑
n=1

lnun ln tn(
N∑
n=1

ln tn

)2

−N
N∑
n=1

(ln tn)2

(18)

and

a = exp


N∑
n=1

lnun − α
N∑
n=1

ln tn

N


given that

∂e

∂α
= 0 and

∂e

∂A
= 0

Note that in general, α = β − 1) may be greater than (for
β > 1) or less than (for 0 < β < 1) zero thereby providing a
measure of any (long term) ascending or descending trends
in the data un, respectively.

An example of computing the index α for a financial times
series and for the Stochastic Volatility of the same time
series is given in Figure 2. This figure shows the results
of computing the Stochastic Volatility for FTSE (close-of-
day) data (obtained from [11]) on a moving window basis
using equation (6) with a look-back window of 100 elements.
Figure 2 also shows the ‘α-signatures’ for the same FTSE
data (denoted by αData) and for the Stochastic Volatility



Fig. 2. Normalised FTSE index (close-of-day) from 13-03-1996 to 13-01-
2012 (Black), the (normalised) Stochastic Volatility (Red) computed using
equation (6) for a look-back window of 100, the (normalised) αData-index
for the FTSE data (Blue) and the αSV-index for the Stochastic Volatility
(Green) using equation (18) for a look-back window of 200.

(denoted by αSV) using a look-back window consisting of
200 elements.

The results given in Figure 2 are informative in terms of
the interpretation of the financial data, and, in particular,
long term trend analysis. A closer inspection of Figure 2
shows a clear correlation between the upward and downward
(long term) trends of the FTSE (close-of-day) data, the
Stochastic Volatility and the polarity of the respective ‘α-
indices’, albeit with a lag determined by the size of the
look-back window. For example, the upward trend observed
between (approximately) days 1500 and 2500 in Figure 2
is characterised by αData > 0 and values for αSV that
are predominantly < 0. This result is repeated in the time
series between data points >3000 and 3500 (approximately).
The behaviour is reversed in the downward trends that
occur approximately between days 1000-1500 and 2500-
3000. There is also a clear indication of the ‘turning points’
that occur at positions ∼1400 and ∼3000 in the time series
when transitions occur between the downward and upward
trends. These example results indicate the potential value of
the approach in identifying the start, direction and end of a
trend in a financial times series depending on the sampling
rate of the data and the look-back window that is applied.

VIII. CONCLUSION

Compared to equations such as the Classical Diffusion
and Fractional Diffusion Equations [10], the GKFE derived
in Section IV and given by equation (8) represents a more
accurate model for a density function describing random
motion that conforms to Einstein’s evolution equation. We
have considered the Green’s function solution of the GKFE
given in Section V as a model for a financial time series
(or a derived index). The time dependence of this solution
depends upon the memory function used to model the
higher order terms in the Taylor series expansion of the
evolution equation, and, in this paper, we have used the
Mittag-Leffler memory function. It has been shown that this
choice provides a temporal solution that scales at tα where

α = β − 1, 0 < β < 1. For β > 0 the parameter α has
been used to generate α-indices for both a financial time
series and its Stochastic Volatility using a standard moving
window process. The sample results given in Section VII
appear to have the potential to identify the start, direction
and end of a trend of a signal.

It is noted that the behaviour of the α-indices for the
data beyond 3500 days given in Figure 2 shows increasing
volatility αSV > 0 associated with a continuing downward
trend αData < 0 and it should therefore be expected that,
at the time of writing this paper (i.e. January 2012), the
FTSE may be expected to continue on a downward trend
thereby forecasting further recessive behaviour. The m-code
used to compute the results given in Figure 2 is provided in
Appendix B for interested readers to reproduce the results
and to analyse other financial time series and/or derived
indices.

APPENDIX A
CONDITION FOR CONVERGENCE OF EQUATION (14)

Consider the error function εn(x, t) at any iteration n so
that un(x, t) = u(x, t)+ εn(x, t) From equation (15) we can
then write

¯̃εn+1(k, s) = h̄(s)p̃(k)¯̃εn(k, s)

so that
¯̃εn(k, s) = [h̄(s)p̃(k)]n¯̃ε0(k, s)

and it is clear that, since we require ¯̃εn → 0 and n → ∞,
[h̄(s)p̃(k)] < 1 ∀(k, s). The condition for convergence
therefore becomes

‖h̄(s)p̃(k)‖ ≤ ‖h̄(s)‖ × ‖p̃(k)‖ < 1

or, for Euclidian norms, and, using Rayleigh’s theorem,

‖h̄(s)‖2 × ‖p(x)‖2 <
1√
2π

In (k, t)-space

ε̃n(k, t) =
n∏
k=1

⊗ h(t)[p̃(k)]n ⊗t ε̃0(k, t)

so that, using Hölder’s inequaility

‖ε̃n(k, t)‖ ≤ ‖
n∏
k=1

⊗ h(t)[p̃(k)]n‖ × ‖ε̃0(k, t)‖

≤ ‖h(t)‖n × ‖p̃(k)‖n × ‖ε̃0(k, t)‖

and the condition for convergence becomes

‖h(t)‖2 × ‖p(x)‖2 <
1√
2π

APPENDIX B
M-CODE USED TO COMPUTE FIGURE 2

clear;%Clear memory.
%Read file from txt file into data array.
fid=fopen(’C:\PATH\DATA.txt’,’r’);
[data n]=fscanf(fid,’%g’,[inf]);
fclose(fid);
%Set length of look-back window for
%computing the stochastic function to



w1=100; %and set length of look-back
%window for computing the index
w2=round(w1+100);
%Normalise the data
data=data./max(data);
%Begin moving window process
%required to compute the
%Stochastic Volatility using
%a working array length of
m=n-w1;
for i=1:m
%Window the data.
for j=1:w1

s(j)=data(i+j-1);
end
s=s./max(s);
%Compute the Stochastic Volatility.
sigma(i)=volatility(s,w1);
end
%Begin the moving window process
%required to compute the alpha
%index using a working array
%length of
n=m-w2;
for i=1:n
%Window the data.
for j=1:w2

vol(j)=sigma(i+j);
sig(j)=data(i+w1+j-1);

end
%Compute the alpha index for
%the volatility and the signal.
indexvol(i)=alpha(vol,w2);
indexsig(i)=alpha(sig,w2);
%End the moving window process.
end
%Prepare the original signal and
%the Stochastic Volatility for a
%a comparative plot.
i=1;
for j=1:n

signal(i)=data(j+w1+w2-1);
stochvol(i)=sigma(j+w2);
x(i)=i; i=i+1;%time element

end
%Normalise the data
signal=signal./max(signal);
indexvol=indexvol./max(indexvol);
indexsig=indexsig./max(indexsig);
stochvol=stochvol./max(stochvol);
%and plot the results.
figure(1);
plot(x,signal,’k-’,x,stochvol,’r-’,...

x,indexvol,’g-’,x,indexsig,’b-’);
grid on;
%
function sigma=volatility(s,n)
%Function to compute the volatility.
%Compute the log price differences.
for i=1:n-1

ds(i)=log(s(i+1)/s(i));

end
ds(n)=ds(n-1);%Set end point value
%Compute first and second terms.
term1=sqrt(sum(abs(ds.*ds)));
term2=sum(ds)/sqrt(n);
%Return the volatility.
sigma=term1-term2;
%
function index=alpha(data,N)
%Computation of the ’alpha-index’
%using the least squares algorithm.
%
%Compute the logarithm of the data.
for i=1:N
ydata(i)=log(data(i));
xdata(i)=log(i);
end
%Compute each term of the
%least squares formula.
term1=sum(ydata).*sum(xdata);
term2=sum(ydata.*xdata);
term3=sum(xdata)ˆ2;
term4=sum(xdata.ˆ2);
%Compute and return the alpha index
index=(term1-(N*term2))/(term3-(N*term4));
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