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Simulation procedure for the co-optimization
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Abstract: Photovoltaic (PV)-powered centrifugal water pumping systems have been modelled
based on field experience and analysis of long-term measured performance of several installed
PV-powered water pumping systems. This paper presents detailed modelling of a PV array, an
inverter, a three-phase induction motor, a centrifugal pump, a well, a storage tank, an overflow
controller, and an integrated reverse osmosis desalination unit. The component models were
validated using both laboratory measurements and long-term monitored data. All system com-
ponents have been modelled separately, and the system was modelled in TRNSYS. The models
are capable of simulating grid-connected, diesel-powered, and PV-powered water pumping sys-
tems, and can consider the following design and operational variables: constant voltage tracking,
voltage frequency modulation, and maximum power point tracking algorithms; variable inverter
frequency with variable motor efficiency, variable inverter frequency with constant motor effi-
ciency, and constant inverter frequency with variable motor efficiency algorithms; and variation
in PV temperature.

Keywords: photovoltaic water pumping, TRNSYS, modelling, photovoltaic array, inverter

1 INTRODUCTION

The influence of pumping head, insolation, and pho-
tovoltaic (PV) array size on the performance of PV
water pumping systems and their economic viabi-
lity have been investigated and reported previously
[1, 2]. Abdolzadeh et al. [3] investigated the possibility
of improving the performance of a PV water pump-
ing system and have shown that when the operating
head is fixed, the calculated array power should not
be more than the power of the motor pump at maxi-
mum speed, because the array and system efficiencies
decrease and the remaining array power is not utilized.
The investigation by Vilela and Fraidenraich [4] of the
relationship between water pumping capacity, storage
tank size, and water demand for a given water deficit
has shown that these systems yield iso-deficit lines

∗Corresponding author: Centre for Sustainable Technologies,

School of the Built Environment, University of Ulster, Shore Road,

Jordanstown, Newtownabbey, Northern Ireland BT37 0QB, UK.

email: yg.yohanis@ulster.ac.uk

(curves of equal water deficit) if their critical levels
(radiation at which pumping begins). These iso-deficit
lines allow the calculation of water pumping systems
for meeting specified demands. Similar other design
tools [5, 6] and a system of design based on exper-
imental work have been proposed [7, 8]. A similar
tool that can consider rapid performance variations
of a PV pumping system has also been developed [9].
Software programs previously developed for design
and simulation of PV-water pumping systems such as
WATSUN-PV [10], PVPUMP [11], DASTPVPS [12, 13],
INSEL [14], and SOLAG [15], in general, have not been
validated with adequate experimental data [16]. They
also do not provide the daily load profile, the storage
capacity, and true mismatch losses [17].

A ‘practical’ model may be defined as using input
data easily acquired from standard manufactur-
ers’ data sheets or through simple laboratory tests,
whereas a ‘good’ model predicts outputs to within
the error associated with their experimental measure-
ment when both use the same input data. To achieve
the accuracy of the latter with the simplicity of the
former, a model has been developed and validated
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Fig. 1 System components and power supply options

using both laboratory measurements and long-term
field data. In addition to the PV pumping system, the
model includes a water storage tank and an overflow
protection device to enable the investigations of the
effect of the mismatch of water demand and supply
patterns and system over-sizing owing to site require-
ments and type of consumers. The model also includes
a basic reverse osmosis desalination system to utilize
unused PV power.

2 SYSTEM MODELLED

The system considered in the study consists of the
following:

(a) a power supply;
(b) a direct current (DC)/alternating current (AC)

inverter;
(c) an AC induction motor;
(d) a centrifugal pump;
(e) a well;

(f) a water storage tank;
(g) an overflow protection device;
(h) a water desalination system.

as shown in Fig. 1. Each component has been modelled
separately and interconnected with other components
of the system via a series of inputs and outputs. The
model simulates water pumping and water desalina-
tion systems powered by PV via a DC/AC inverter.
Based on the DC control algorithm of the inverter
used, the model simulates constant voltage tracking,
voltage frequency modulation, and maximum power
point tracking (MPPT). For the AC control algorithm
of the inverter used, the model simulates the follow-
ing: variable inverter frequency with variable motor
efficiency, variable inverter frequency with constant
motor efficiency, and constant inverter frequency with
variable motor efficiency. The model also simulates
grid-connected and diesel-powered water pumping
and water desalination systems. Systems coupled with
a variable speed drive can also be simulated.

Proc. IMechE Vol. 224 Part A: J. Power and Energy JPE844
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3 SYSTEM MODELLING

TRNSYS [18] was selected to:

(a) enable all simulation options to be undertaken;
(b) consider transient and steady-state conditions;
(c) to easily update the simulation program for any

further system development.

A TRNSYS component (submodel) consists of fixed
parameters, variable inputs (which may be outputs
of other components), and outputs. The submodels
or components are referred to as types. A system is
structured using a set of components interconnected
in such a manner to execute a specific task. A deck file
is prepared by the user, in which all the parameters
of components are entered and controlled during the
simulation.

Type 94 is a PV array submodel, which includes a
new correlation for PV temperature and is also capa-
ble of simulating different types of inverter algorithms.
Type 101 is a water pumping submodel, Type 103 is a
water storage tank submodel, and Type 104 is a water
desalination unit submodel. The remaining models
are standard TRNSYS components used for data input,
radiation data processing, and printing. Using these
types, a new system model has been developed to sim-
ulate a PV-powered water pumping system. In total,

the model has 44 parameters and 19 inputs and 65
outputs.

4 DESCRIPTION OF COMPONENTS AND THEIR
MODELLING

4.1 PV array

The PV array component, Type 94, provided in the
TRNSYS library, models the PV power output using the
parameters of the PV module. Type 16, the Radiation
Processor component, was used to process insolation
data on a horizontal plane into beam, diffuse, and
in-plane (i.e. inclined plane) insolation. When in-
plane insolation data are available, it can be used
directly by Component Type 94. Ambient temperature
and in-plane insolation data are used to predict cell
temperature. Based on module characteristics, num-
ber of modules used in parallel and series, and type
of inverter used in the system, Component Type 94
gives voltage, current, maximum power point voltage,
maximum power point current, open circuit voltage,
short-circuit current, and cell temperature outputs.
Parameters, inputs, and outputs of this component are
shown in Table 1 [18].

A new correlation for cell temperature (equation (1))
was obtained on the basis of long-term field data [19].
This correlation has been used as an alternative to that

Table 1 Parameters, inputs, and outputs of PV array component (Type 94)

Parameters Module short-circuit current at reference conditions (A) Insolation at nominal operating cell temperature
(NOCT) (W/m2)

Module open-circuit voltage at reference conditions (V) Individual module area (m2)

Reference temperature (usually 298 K) τα at normal incidence; >0, given value used for all angles
of incidence; <0, use given for normal incidence and
incidence angle modifier correlation will be used for all
other angles

Reference insolation (usually 1000W/m2) Semiconductor band gap (1.12 eV for silicon PV modules)
Module voltage at maximum power point at reference

conditions (V)
Module series resistance: >0, Rs known value; <0, Rs to be

calculated
Module current at maximum power point, reference

conditions (A)
Slope of I –V curve at short circuit; <0, 5-parameter, thin

film model; >0, 4-parameter single/polycrystalline
model (A/V)

Temperature coefficient of short-circuit current, reference
conditions (A/K)

Parameter referring to DC side; 1 for constant voltage
tracking; 2 for voltage frequency modulation

Temperature coefficient of open-circuit voltage, reference
conditions (V/K)

Minimum inverter voltage for V = V0 + V1f (V )

Number of cells wired in series in module First-order coefficient for V = V0 + V1f (V Hz−1)
Number of modules in series in array Ambient temperature at NOCT (K)
Number of modules in parallel in array Module temperature at NOCT (K)

Inputs Total incident insolation on inclined plane (kJ/m2/h) Beam insolation (kJ/m2/h)
Ambient temperature (◦C) Diffuse insolation (kJ/m2/h)
Load voltage (V) Angle of incidence for beam insolation (degrees)
Flag for convergence in direct-coupled systems: 0 to disable

or �=0 to activate algorithm
System frequency (Hz)

Slope of PV array (degrees)

Output Array voltage (V) Current at maximum power point (A)
Array current (A) Open-circuit voltage (V)
Power at voltage tracking operation (W) Short-circuit current (A)
Power at maximum point along power–voltage curve (W) Array fill factor
Fraction of maximum power utilized (no MPPT) Cell temperature (K)
Voltage at maximum power point (V)
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implemented in Component Type 94 in TRNSYS

TC = 0.988Ta + 0.027 78I − 1.18 (1)

4.2 Inverter

Inverters convert DC power produced by the PV
array into AC power fed to the motor. In terms
of power control in the DC side of the inverter,
three different types of voltage-source inverters, dom-
inant in PV water pumping, are available: MPPT
inverters, constant voltage tracking inverters, and
voltage/frequency modulation inverters. In MPPT
inverters, a searching methodology is implemented
electronically, in which DC and DC-voltage values
are sensed and PV power is calculated. The power
resulting from a certain search step is compared with
other power values resulting from other steps, and
the highest value is selected as the maximum power
point. This search methodology is a continuous loop
as input parameters (insolation and ambient temper-
ature) vary over the course of the day. In constant
voltage tracking inverters, the working principle is
simpler than that of the MPPT inverters. The PV array
is operated at a fixed voltage corresponding normally
to the average range of the MPP voltage values, without
considering the effects of insolation and temperature
on the maximum power point location on the PV array
I –V curve. In voltage/frequency modulation invert-
ers, the DC voltage of the PV array is controlled by the
inverter based on the output frequency value, consid-
ering constant voltage/frequency algorithm. The user
can set certain parameters in the site [20].

Algorithms for all three inverter types were included
in the Water Pumping Subsystem component, Type
101, and the PV Array component, Type 94. As shown

in Fig. 2, the user can select an inverter simula-
tion algorithm; if parameter number 14 (‘INVTYPE’
in Component Type 101) is set to 1, then MPPT
inverter algorithm is used in the simulation; if set to
2, then voltage tracking algorithm is used. Two algo-
rithms for voltage tracking inverters can be applied.
One is for constant voltage tracking inverters and the
other is for voltage/frequency modulation inverters.
The following three parameters were added to the
standard Type 94 component to simulate constant
voltage tracking and voltage/frequency modulation
algorithms: INVMODE, which is used to indicate the
voltage tracking algorithm applied in the system, such
that INVMODE = 1 is for constant voltage tracking and
INVMODE = 2 is for voltage/frequency modulation;
and coefficients V0 and V1 for equation (2). The voltage
in voltage/frequency modulation inverters is defined
as follows [20]

Vinv = V0 + V1f (2)

where V0 and V1 are constants and f is the working fre-
quency of the system. Typically, these inverters are of
parameterized type, where the user can set the para-
meters V0 and V1 in the field. Pump frequency, an
output from Component Type 101, is used as input
to Component Type 94 to determine inverter voltage
as defined by equation (2).

Normalized power is calculated as the ratio between
measured output power and nominal inverter power.
Laboratory test results of inverter efficiency as a
function of normalized power for two inverters by
Baumeister et al. [13] have shown that inverter effi-
ciency is low at low input power and then increases
up to a certain limit beyond which it remains con-
stant (Fig. 3). In PV water pumping, the operating
region where input power is too low is insignificant

Type 101
Parameter 14

Use MPPT
inverter

Voltage is
calculated

internally by the
Type 94

Type 94
Parameter 20

Use constant
voltage tracking

inverter

For
Type 94

Input No.3
=voltage

Use voltage/
frequency
modulation

inverter

V = V0 + f V1

For
Type 94

Parameter 21=V0
Parameter 22=V1

For
Type 101

Output No.1 =
frequency (f)

=1 =2

=2=1

Fig. 2 Flowchart for inverter simulation algorithms
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as the system requires a threshold power to start deliv-
ering water to the surface. The user can usually set
a lowest frequency at which the inverter switches off
automatically [20, 21] in order to increase the inverter
lifetime. However, inverter efficiency is considered
constant over the operating range in this work. In
Component Type 101, inverter efficiency is given as
parameter number 10. Considering that PV power is
determined by Component Type 94, inverter output
power is therefore determined by

Pinv = ηinvPpv (3)

Parameters, inputs, and outputs of this component
(Type 101) are shown in Table 2. Most inverters used
in PV water pumping are equipped with a controller
in the AC side to increase motor efficiency at part-load
conditions.

4.3 Motors

Stator and rotor ohmic resistance, stator and rotor
leakage reactance, magnetizing reactance, and iron
and friction losses are neither available in the standard
manufacturers’ data sheets nor readily obtained
experimentally. Manufacturers’ performance curves
were therefore used to model the motors. The model
was developed to simulate constant or variable motor
efficiency and different power supply algorithms. A
parameter referred to as‘power supply’ is used in Com-
ponent Type 101 to refer to the power supply used.
Constant motor efficiency was assumed and parame-
ter number 16 is set to 1.0 when, as shown in Fig. 4, the
following conditions apply:

(a) the system is supplied directly from the electric
grid;

(b) the system is supplied directly from a diesel
generator;

(c) a variable speed drive that leads to almost constant
motor efficiency is connected between the sys-
tem and the power supply (electric grid or diesel
generator);

(d) a DC/AC inverter equipped with V /f controller
that leads to constant motor efficiency is con-
nected between the motor-pump set and a PV
array.

Variable motor efficiency was assumed and param-
eter number 16 is set to 2.0 when (Fig. 4):

(a) a variable speed drive that leads to variable motor
efficiency is connected between the motor-pump
set and the power supply (electric grid or diesel
generator);

(b) a DC/AC inverter equipped with V /f controller
that leads to variable motor efficiency is connected
between the motor-pump set and a PV array.

Medium- and large-scale PV water pumping
systems use submersible centrifugal pumps with
commonly three-phase AC motors and DC/AC invert-
ers. For this configuration:

(a) a wide range of pumps are available in the mar-
ket that can match demand quantity and well
characteristics;

(b) good overall system efficiency can be achieved;
(c) inverters of different sizes are available;
(d) durable and reliable motors and pumps can be

used.

In DC systems, most available DC motors are
equipped with carbon brushes for commutation of
the direct current, which have to be replaced regularly,

JPE844 Proc. IMechE Vol. 224 Part A: J. Power and Energy
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Table 2 Parameters, inputs, and outputs for water pumping system component (Type 101)

Parameters Well static head (m) Water storage tank size (m3)

Second-order coefficient of head–flowrate,
H = hst + C4Q2(s2/m5)

Inverter efficiency

Reference frequency at which head–flow and efficiency–flow
data files are given (Hz)

Zero-order coefficient for motor, Pm–out = f (Pinv) (W)

Maximum system frequency (Hz) First-order coefficient for motor equation
Pm–out = f (Pinv)

Shaft power at shut off condition at reference speed (W) Second-order coefficient for motor equation,
Pm–out = f (PINV ) (W−1)

Nominal design flowrate of the pump (m3/h) Inverter type (1 = MPPT, 2 =VT)
Total area of PV array (m2) A compensation factor for PV losses
Motor efficiency at maximum system frequency (%) Power supply: 1 = grid and diesel (constant motor

efficiency), 2 = PV (variable motor efficiency)

Inputs Motor efficiency at rated power (%) Maximum PV power (output 4) of Type 94 (W)
Rated motor input power (W) In-plane insolation (output 7), Type 16 (kJ/m2/h)
Motor output power (only when extern) (W) Water volume in tank (output 1) of Type 103 (m3)
Inverter output power (only when extern) (W) Voltage tracking power (output 3) of Type 94 (W)

Outputs Pump speed (Hz) PV efficiency (%)
Motor output power (W) System efficiency (%)
Pump flowrate (m3/h) Motor power when grid is used (W)
Total pumping head (m) Zero-order coefficient for EP = f (Q) (%)
Pump efficiency (%) First-order coefficient for EP = f (Q) (%s/m3)

Hydraulic power (W) Second-order coefficient for EP = f (Q) (%s2/m6)

Mechanical motor power used by the pump (W) Third-order coefficient for EP = f (Q) (%s3/m9)

Error and/or warning messages (0, 1, 2, 3, 4) PV power (W)
Zero-order coefficient for H = A0 + A2Q2 (m) Power required to start water delivery (W)
Second-order coefficient of H = A0 + A2Q2(s2/m5) Water volume in the tank (m3)

Shaft power, shut off at reference speed (W) Surplus PV power when NMAX is reached (W)
Motor output power when maximum frequency is

exceeded (W)
Unused PV power when tank is full (W)

Inverter output power when maximum frequency is
exceeded (W)

Un-pumped water flowrate for full tank (m3/h)

PV power when maximum frequency is exceeded (W) Accumulated PNMAX (MJ)
Subsystem efficiency, maximum frequency exceeded (%) Accumulated PLOSS (MJ)
Inverter output power (W) PV output power that is used by the inverter (W)
Subsystem efficiency (%) Accumulated QLOSS (m3)

Motor efficiency (%) In-plane insolation (W/m2)

Motor efficiency, maximum frequency exceeded (%)

Component
 Type 101

Parameter 16

Electric grid or
diesel

generator

=1 =2

PV array coupled to DC/AC
inverter with a V/f controller
leading to constant motor

efficiency
or

Electric grid coupled to variable
speed drive leading to constant

motor efficiency

PV array coupled to DC/AC
inverter with a V/f controller

leading to variable motor
efficiency

or
Electric grid coupled to variable
speed drive leading to variable

motor efficiency

Parameter 17 of
Component Type 101
and inverter/controller

power are used for motor
output power calculations

Parameters 11, 12, 13 of
Component Type 101 and
inverter/controller power
are used for motor output

power calculations

Parameters 17 and 18
of Component Type 101

are used for motor
output power
calculations

Both

Fig. 4 Power supply selection procedure and corresponding simulation algorithm
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thereby increasing operating cost and decreasing sys-
tem reliability [22, 23]. The advantage of brushless
DC motors that have been introduced as an alterna-
tive to conventional motors is that no replacement of
wearing parts is necessary; the electronic commuta-
tor (similar to an inverter) is integral to the motor. The
disadvantages of brushless motors include high cost,
few manufacturers, and limited range of sizes [22].

Depending on whether power is supplied by the
electric grid, a diesel generator, or a PV array and
considering the control algorithm equipped in the
inverter, the following different algorithms are avail-
able in the model.

1. The first algorithm assumes constant motor effi-
ciency. It is applied when using inverters equipped
with V /f controllers are capable of maintaining
constant motor efficiency over the operating range
of the systems [24, 25]. It is also applied when con-
stant power is supplied from the electric grid or a
diesel generator. The value of this efficiency can
be obtained from manufacturers’ data sheets and
is given as parameter number 17 (ηm) in Compo-
nent Type 101. Given inverter power (motor input
power, Pm–inp) from equation (3), motor power is
calculated as follows

Pm–out = ηmPm–inp (4)

when the grid or a diesel generator is used, input
motor power can be assumed to be constant. Rated
motor input power is given as parameter number
18 of Component Type 101 and used in equation (4)
to determine motor output power.

2. The second algorithm uses a parabolic correlation
for motor output as a function of motor input.
This algorithm is applied when the power supply
does not lead to constant efficiency operation. As

can be seen in Fig. 5, laboratory tests and manu-
facturers’ data sheets indicate that a second-order
polynomial (equation (5)) is sufficiently accurate to
represent the relationship between output motor
power and input motor power. The coefficients
of the equation are used as parameters for Com-
ponent Type 101 as follows: mo is the zero-order
coefficient, m1 is the first-order coefficient, and m2

is the second-order coefficient. It is also shown in
Fig. 5 that manufacturers’ data are well matched
with laboratory measurements [21]. Either manu-
facturers’ data or laboratory measurements can be
used to determine parameters mo, m1, and m2 using
the following equation

Pm–out = m0 + m1Pm–inp + m2P2
m–inp (5)

3. The third algorithm assumes constant frequency
and variable motor efficiency. This algorithm is
applied when standard inverters are used in the
system. These types of inverters are not recom-
mended in PV water pumping applications. How-
ever, the algorithm applied in the model is the
same as that used in the second algorithm. The
equation of output power as a function of input
power can be obtained by processing manufactur-
ers’ performance curves provided in data sheets at
standard frequency. Parameters, inputs, and out-
puts of the motor are included in Component Type
101as shown in Table 2.

4.4 Pumps

The pump characteristics are defined as the variation
of the pumping head with flowrate at constant pump
speed. Standard manufacturers’ data sheets include
the head–flowrate curve at nominal operating speed,
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which normally corresponds to the electric grid fre-
quency. PV water pumping systems operate at variable
pump speeds with diurnal variation of insolation. A
multi-stage centrifugal pump, the normal pump type
used in deep well water pumping applications, oper-
ates at high efficiency for a limited range of pump
speeds and pumping heads. Typical values at nominal
speed are in the range of 60–70 per cent [26]. As values
very different from the actual nominal pumping head
reduce a pump’s efficiency, head–flowrate curves were
defined for the whole working speed range.

4.5 Well system

The total well system head consists of three compo-
nents: static head, friction head in the piping system,
and well drawdown head. It can be written as follows

h = hst + hf + hd (6)

Well static head can be determined by measuring the
water level in the well at no flow conditions. Fric-
tion and drawdown heads can be determined either
theoretically or experimentally. The Darcy–Weisbach
equation combined with the supplementary Moody
diagram [27] gives friction losses in the water pipe.
The form of the equation used widely is

hf = fdLp

Dp

V 2
W

2g
(7)

For all fittings, e.g. elbows, valves, and flow meters,
friction losses are defined as an equivalent value of
Lp/Dp for a straight pipe. Equation (7) can be rewritten
as follows

hf = V 2
W

2g

∑ fdLp

Dp
(8)

where
∑

fdLp/Dp can be determined from manufac-
turers’ literature.

Velocity, VW , can be expressed in terms of flowrate
as follows

VW = Q
Ap

(9)

Substituting for Vw from equation (9) into equation
(8), the latter becomes

hf = Q2 1
2gA2

p

∑ fdLp

Dp
(10)

The Darcy friction factor, fd, can be found from
Moody diagram [27].

From equations (5) and (10), the pumping head
required to overcome the static head and friction

losses can be written as follows [28–30]

hs–f = hst + FQ2 (11)

where F is defined as follows

F = 1
2gA2

p

∑ fdLp

Dp
(12)

Well drawdown is defined as the difference between
the water level during pumping and the initial static
water level. Well drawdown, caused primarily by loss
of head in the aquifer and loss of head in the well itself,
is measured usually as the difference between the
dynamic and the static water levels during pumping.
In this work, static and dynamic heads were deter-
mined experimentally, and thus the total system well
head is defined as

h = hst + C4Q2 (13)

Static head hst and coefficient C4 are used by the
model for parameters 1 and 2, respectively, in Compo-
nent Type 101.

4.5.1 Combination of pump and well system
characteristics

At any point during the course of the day, the head–
flow curve of the system should intersect with one of
the head–flow curves of the pump as shown in Fig. 6.
Equation (13) can be rewritten as follows

A0−1

[
N2

N1

]2

+ A2−1Q2
2 − hst − C4Q2

2 = 0 (14)

The following relationship can also be written as

E0−1 + E1−1
N1

N2
Q2 + E2−1

N 2
1

N 2
2

Q2
2 + E3−1

N 3
1

N 3
2

Q3
2

−
{

ρgQ2

[
A0−1(N2/N1)

2 + A2−1Q2
2

]
Pm–out,2

}
= 0 (15)

Equations (14) and (15) are solved numerically
in Component Type 103 to give pump speeds and
flowrates by means of Newton’s method [20, 31].

4.6 Water storage tank and overflow protection
device

TheWater Storage Tank component, Type 103, is devel-
oped to simulate a storage tank equipped with an
overflow protection device. The size of the storage tank
and the threshold minimum water limit are used as
parameters in Component Type 103. An hourly water
demand profile is given in the model as a separate
data file. When the storage tank is full, the simulated
overflow protection device instructs Component Type

Proc. IMechE Vol. 224 Part A: J. Power and Energy JPE844

 at Dublin Institute of Technology on April 17, 2013pia.sagepub.comDownloaded from 

http://pia.sagepub.com/


Simulation procedure for the co-optimization of PV water pumping systems 637

0

6

12

18

24

30

36

42

48

54

60

66

0 2 4 6 8 10 12 14 16 18 20 22

Flow rate (m3hr-1)

T
o

ta
l p

re
ss

u
re

 h
ea

d
 (

m
)

55 Hz

40 Hz 45 Hz

50 Hz
35 Hz

pump
characteristics

well system variation of head 
with flow rate 

pump frequencies

Operating points

Fig. 6 Work points of pump and well system characteristics

Table 3 Parameters, inputs, and outputs for water stor-
age tank component (Type 103)

Parameters Storage tank maximum capacity (m3)

Lowest permitted storage capacity in the tank
(threshold) (m3)

Inputs Water flowrate of the pump entering the storage
tank (m3/h)

Water flowrate used by the demand side (m3/h)

Outputs Hourly water volume status in the tank (m3)

Potential surplus water flowrate when the tank is
full (m3/h)

Deficit water flowrate (m3/h)
Accumulated surplus water volume (m3)

Accumulated water deficit volume (m3)

101 to turn off the pump. Predicted surplus water
flowrate and the accumulated water volume during
the shut off period are determined by Component
Type 103, assuming infinite storage capacity. When
the predefined threshold limit of water in the tank
is reached, no water will be delivered to the demand
side. Water demanded at such times is considered
as deficit. Component Type 103 calculates instanta-
neous water volume in the tank, instantaneous deficit,
accumulated deficit, instantaneous surplus, and accu-
mulated surplus. The parameters, inputs, and outputs
of Component Type 103 are shown in Table 3.

4.7 Water desalination system

A water desalination unit may use surplus solar
PV energy when the pumping system is turned off
because the storage tank is full (i.e. all the PV power
is then available for other uses) and when the pump
maximum speed is exceeded (i.e. surplus unused PV
power is then available for other uses). The Water

Desalination Unit component, Type 104, is devel-
oped to simulate a water desalination system con-
sidering a defined value for energy requirement (per
cubic metre of permeate). Multiplying surplus/unused
energy (concluded from Component Type 101 ‘Water
Pumping Subsystem’) by the energy requirement value
(taken from desalination unit manufacturers’ data
sheets) results in permeate output quantity. However,
the aim of this work is not to model a water desali-
nation system, but just to give a general indication
for the feasibility of using a reverse osmosis desali-
nation unit to utilize the surplus unused energy by the
water pumping system in desalinating water. Type 104
calculates instantaneous and accumulated permeate
and brine water. The component may be used with
a constant power source such as an electric grid or a
variable power source such as a PV array. It can also be
used in conjunction with a PV water pumping system,
in which it uses the full PV power when the storage
tank of the pumping system is full and the surplus
power when the maximum pump speed is exceeded.
The unutilized PV power by the water pumping system,
the predicted corresponding un-pumped water quan-
tities when the system is shut off (i.e. when the storage
tank is full), and the surplus unused PV power when
the pump exceeds its maximum speed are determined
by Component Type 101. The parameters, inputs,
and outputs, respectively, for Type 104 are shown
in Table 4.

5 DATA FILES REQUIRED

The user can enter the data files relevant to a specific
location. The data files required by the system model
described below are summarized in Fig. 7 as follows.
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Table 4 Parameters, inputs, and outputs for water desali-
nation unit component (Type 104)

Parameters Recovery ratio (%)
Energy consumption per cubic metre of

permeate (MJ/m3)

Inputs Surplus part of PV power not used by the system
when maximum speed of pump is exceeded (W)

PV power not used by system when storage tank is
full and pump is turned off (W)

Outputs Permeate flowrate when PNMAX is used as the
input power (m3/h)

Brine flowrate when PNMAX is used as the input
power (m3/h)

Required raw water flowrate input to the
desalination unit when PNMAX is used as the
input power (m3/h)

Permeate flowrate when PLOSS is used as the input
power (m3/h)

Brine flowrate when PLOSS is used as the input
power (m3/h)

Required raw water flowrate when PLOSS is the
input power (m3/h)

Permeate flowrate from both QPLOSS and QPNMAX
(m3/h)

Brine flowrate from both QBLOSS and QBNMAX
(m3/h)

Required raw water flowrate to produce
QPLOSS + QPNMAX (m3/h)

Accumulated QPNMAX (m3)

Accumulated QPLOSS (m3)

Accumulated QP (QPNMAX,A + QPLOSS,A) (m3)

1. Head–flowrate characteristics of the pump at refer-
ence speed: Type 101 (Water Pumping Subsystem)
requires this file. Data points can be obtained from
manufacturers’ data sheets or from laboratory tests.

2. Efficiency–flowrate characteristics of the pump at
reference speed: this file is required by Type 101
(Water Pumping Subsystem). Data points can be
obtained from manufacturers’ data sheets or from
laboratory tests.

3. Insolation and ambient temperature data: insola-
tion is used as input for Type 16 (Radiation Proces-
sor) via Type 9 (Card Reader). Outputs of Type 16
are used as inputs to Type 94 (PV Array). Ambient
temperature data are used by Type 94 (PV Array)
via Type 9 (Card Reader). Demand data file con-
taining hourly flowrate over the day: it is used as
input to Type 103 (Water Storage Tank) via Type 9
(Card Reader). No particular demand profile can be
defined in rural applications in which the PV pump-
ing systems were installed or in general application.
When two demand profiles having the same volume
per day, an 8 h profile from 08 to 16 h and a 24 h pro-
file, were considered for a 1-day autonomy tank and
different over-sizing factors, the difference in deficit
between the two demand patterns was insignificant
at all over-sizing factors [13].

Type 101 Water Pumping Subsystem

Insolation and ambient
temperature data

(hourly)

Unit 1 Type 9 Card
Reader

Type 16 Solar
Radiation
Processor

Type 94 PV Array Type 103 Water Storage
Tank

Hourly water demand
flow rates

Water demand data
(hourly flow rates)

Head and flow
rate data of the

pump at nominal
speed from
laboratory

measurements or
manufacturer’s

datasheets

Efficiency and
flow rate data of

the pump at
nominal speed
from laboratory
measurements

or
manufacturer’s

datasheets
InsolationTemperature

Unit 2 Type 9 Card
Reader

Output data

Fig. 7 Data files structure for simulation
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The validation of this model via comparison of
predicted performance with long-term field data is
reported in a companion paper [32].

6 CONCLUSIONS

New TRNSYS models to simulate the water pumping
subsystem were developed. The models simulate the
following:

(a) grid-connected, diesel-powered, and PV-powered
water pumping systems;

(b) constant voltage tracking, voltage frequency mod-
ulation, and MPPT algorithms;

(c) variable inverter frequency with variable motor
efficiency, variable inverter frequency with con-
stant motor efficiency, and constant inverter fre-
quency with variable motor efficiency algorithms.

A previously developed model for PV array was mod-
ified to include a new correlation for PV temperature
and to simulate different inverter algorithms. For sim-
plicity, manufacturers’ performance curves for motors
and pumps can be used for obtaining data required by
the model instead of the theoretical motor parame-
ters (implemented in other models) that are neither
available in standard manufacturers’ data sheets nor
readily obtained experimentally.
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APPENDIX

Notation

A current (amperes)
A0−1, A2−1, A2, Ao coefficients
Ap cross-sectional area (m2)

C4 coefficient
DP pipe diameter (m)
E0−1, E1−1, coefficients

E2−1, E3−1

f frequency
fd Darcy friction factor
F defined as equation (12)

g acceleration due to gravity
(m/s2)

h total head of the wall system (m)
hd, hf , hs−f , hst head of drawn well, friction

head, pump head, and static
head, respectively (m)

hr hour
Hz frequency
In, I insolation at normal incidence

and insolation at incidence
angle, respectively (kJ/m2/h)

Lp/Dp equivalent friction loss (m)
m0, m1, m2 coefficients
N1, N2 pump speed
Nmax maximum pump frequency (Hz)
Pinv, Pm–inp, inverter power output,

Pm–out, PPV motor power input, motor
power output, and PV power
output, respectively (W)

PLoss unused PV power when storage
tank is full and pump is turned
off (W)

PNMax surplus part of PV power not
used by system when maximum
pump frequency is exceeded

Q, Q1, Q2 flowrates (m3/s)
QBLoss brine flowrate when PLoss is used

(m3/h)
QBNMax brine flowrate when PNMax is

used (m3/h)
QP permeate flowrate from both

PLoss and QPNMax (m3/h)
QPLoss permeate flowrate when PLoss is

used (m3/h)
QPLoss,A accumulated QPLoss (m3)

QPNMax permeate flowrate when PNMax is
used (m3/h)

QPNMax,A accumulated QPNMax (m3)

Rs module series resistance (ohms)
Ta ambient temperature (◦C)
Tc PV cell temperature
V , Vinv voltage (V)
V0, V1 coefficients
Vw velocity (m/s)

ηinv efficiency of inverter (per cent)
ηm efficiency of motor (per cent)
ρ density of water (kg/m3)

τα transmittance absorptance
product
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