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Abstract 

Haemopoietic stem cells (HSCs) possess the unique capacity to self-renew and give rise to 

the entirety of the haematopoietic and immune systems throughout a lifetime (Dexter 1977).  

Patients with cancer are typically treated with high dose chemotherapy and/or radiation 

therapy which cause profound toxicity to the hematopoietic system resulting in high 

susceptibility to infection (Weiden 1973).  Extensive research has been performed to identify 

genes/proteins which regulate hematopoietic self-renewal and repair in an attempt to develop 

therapies to mediate hematopoietic recovery from these therapies (Moore 1987, McNiece 

2000, Holyoake 1996).  To date there has been no soluble growth factor identified that acts 

on the HSC that may be used clinically. Therapeutic agents currently used clinically include 

erythropoietin (EPO) (Sieff, 1986) and Granulocyte-monocyte colony stimulating factor 

(GM-CSF) (Monroy 1987) which act on lineage progenitors to mediate a recovery response.   

The Chute laboratory in Duke University, North Carolina, U.S.A, hypothesise that 

Pleiotrophin (PTN) is a novel growth factor for the HSC, and are currently working to 

understand the mechanism of this process.  

In this research project we examined the effect of Pleiotrophin (PTN) on HSC 

regeneration both in vitro and in vivo post radiation injury.  Mice treated with rPTN after a 

myelotoxic dose of radiation displayed increased short and long term haemopoetic 

progenitors indicating PTN can induce HSC regeneration in vivo. To determine if this 

induction of HSC regeneration was transferable clinically, two survival studies were 

performed, PTN treatment however did not prolong survival due to a failure to augment 

simultaneous mature blood cell reconstitution. PTN, through this research project is indicated 

as a regenerative factor for the HSC in vivo however its activity is localized to the HSC 

progenitor compartment. 



 

 

III 

Declaration 

 

I certify that this thesis which I now submit for examination for the award of 

_______________, is entirely my own work and has not been taken from the work of others, 

save and to the extent that such work has been cited and acknowledged within the text of my 

work.  

This thesis was prepared according to the regulations for postgraduate study by research of 

the Dublin Institute of Technology and has not been submitted in whole or in part for another 

award in any Institute. 

The work reported on in this thesis conforms to the principles and requirements of the 

Institute's guidelines for ethics in research. 

The Institute has permission to keep, lend or copy this thesis in whole or in part, on condition 

that any such use of the material of the thesis be duly acknowledged. 

 

Signature __________________________________ Date ________    

 

 

 

 

 



 

 

IV 

Acknowledgements 

I would firstly like to thank my supervisor Mr. Joe Vaughan for all of his input and patience 

in putting this project together. I would also like to thank Dr. Fergus Ryan for his input into 

this project and I would with this, like to thank D.I.T for the opportunity to do this M.Phil 

with them. 

I would also like to thank John Chute M.D for allowing me carry out my research in his 

laboratory. I would like to thank him for his guidance, support and encouragement 

throughout the six months in Duke. 

I would really like to thank everyone in the Chute laboratory Garrett Muramoto, Sarah 

Meadows, Pamela Daher, Lauren Russell, Phoung Doan and in particular Dr. Heather 

Himburg whose help, guidance, humour and unrelenting support made the experience 

wonderful. 

I would like to thank Fas for the opportunity to take part in the Fas Science Challenge 

program. It was truly terrific. 

I would also like to thank Dr. Donald Mc Donnell and Mary Mc Donnell. To know they were 

a phone call away was very comforting. The dinners, the trips to the orthodontist, the practice 

presentations, appointments, the input, guidance and support remained faultless. A huge 

thanks. 

I would like to thank my family and boyfriend for their support throughout the six months, 

for all of the molly coddling at Christmas, the tea bags, tayto and chocolate in the post. I 

really really appreciated it. 

I would finally like to thank Michelle and Aine. I couldn’t have done it without you. 

 

 

 

 

 



 

 

V 

Abbreviations 

• AGM (Aorta, gonads and mesonephrons) 

• ALK (Anaplastic lymphoma kinase) 

• Ang-1 (Angiopoieitin-1) 

• APC (adenomatosis) 

• B.M (Bone Marrow) 

• BFU-E (Burst forming unit-erythroid) 

• CB (Cord Blood) 

• CCIF (Cancer Centre Isolation Facility) 

• CD (Cluster differentiation) 

• cDNA (complementary DNA). 

• cGy (Centigray units) 

• CFC (Colony forming cell) 

• CFDA-SE (Carboxy-fluorescein diacetate succinimidyl ester) 

• CFU (Colony Forming Unit) 

• CFU-GM (Colony Forming Unit Granulocyte Monocyte) 

• CFU-GEMM (Colony Forming Unit-Granulocyte erythroid monocytic 

megakaryocyte) 

• CLP (Common lymphoid progenitor) 

• CMP (Common myeloid progenitor) 

• CO2 (Carbon Dioxide) 

• DMSO (Dimethyl Sulfoxide) 

• DNA (deoxyribonucleic acid) 

• D-PBS (Dulbecco’s Phosphate buffered Saline) 

• EC (Endothelial cell) 

• ECCM (Endothelial cell culture medium) 

• EDTA (ethylenediaminetetraacetic acid) 

• EPO (erythropoietin) 

• FACS (Fluorescent activated cell sorting) 

• FBS (Fetal Bovine Serum) 

• FITC (Fluorescein isothiocyanate) 



 

 

VI 

• GAPDH (Glyceraldehyde 3 phosphate dehydrogenase) 

• G-CSF (Granulocyte Colony Stimulating Factor) 

• GM-CSF (Granulocyte Monocyte Colony Stimulating Factor). 

• GM-CSFR (Granulocyte Monocyte Colony Stimulating Factor Receptor) 

• GR-1 (Granulocyte Receptor 1) 

• GSK-3B (glycogen synthase kinase 3 beta) 

• GVHD (Graft versus host disease) 

• HB (haemoglobin) 

• H&E (Haematoxylin and Eosin) 

• hG-CSF (human Granulocyte Colony Stimulating Factor). 

• HSC (Hematopoeitic stem cell) 

• HSCT (Hematopoeitic stem cell Transplant) 

• HUBEC (Human Brain Endothelial Cells). 

• IMDM (Iscove’s Modified Dulbecco’s medium) 

• IP (Intraperitonial) 

• IR (Irradiated) 

• KSL (c-Kit positive, Sca-1 positive, Lineage negative) 

• KTLS (c-Kit positive, Thy1.1, Sca-1 positive, Lineage negative) 

• LDL (Low density lipoprotein) 

• LEF (lymphoid enhancer binding factor) 

• LFA-1 (lymphocyte function associated antigen-1). 

• LIN
- 
(Lineage negative) 

• LT-HSCs (Long-term Haemopoietic Stem Cells) 

• Ly6A/E (Lymphocyte activation protein 6A) 

• MACS (Magnetic cell sorting kit) 

• MMP9 (Matrix metallopeptidae 9) 

• mL (Millilitre) 

• mm (millimeter) 

• MNC (Mononuclear cells) 

• NC (North Carolina) 

• NK (Natural Killer) 

• NMR (nuclear magnetic resonance) 



 

 

VII 

• NOD/SCID (non-obese diabetic severe combined immunodeficient) 

• OCT (Optimum cutting temperature) 

• PAS (paraaortic splanchnopleura) 

• PBS (Phosphate buffered saline) 

• PCR (Polymerase chain reaction) 

• PDGF (Platelet derived growth factor) 

• PDGFR (Platelet derived growth factor receptor) 

• PE (Phycoerythrin) 

• PEN (Penicillan) 

• PI3K (phosphoinositide 3 kinase) 

• PTH (Parathyroid Hormone) 

• PTHr (Parathyroid Hormone receptor) 

• PTN (Pleiotrophin) 

• ptn (pleiotrophin gene) 

• RNA (Ribonucleic acid) 

• RPM (revolutions per minute) 

• rPTN (recombinant Pleiotrophin) 

• RPTP βζ (receptor proteinase thyrosine phosphatase beta zeta. 

• RT (Reverse Transcription) 

• R.T. (Room Temperature) 

• RT-PCR (Real-Time Polymerase Chain Reaction). 

• SDF (Stromal derived Factor) 

• SRC (SCID repopulating cells) 

• SNO (spindle shaped N-Cadherin
+ 

CD45
- 
osteoblastic cells). 

• STREP (Streptomycin)  

• TCF (T-cell factor family) 

• TCR (T cell receptor) 

• TSF (Thrombopoietin, stem cell factor and Flt-3 ligand) 

• VE-Cadherin (Vascular Endothelail Cadherin). 

• VLA-4 (Very Late Antigen 4) 

• 7-AAD (7-Amino-Actinomycin D) 

• O
C (degrees celcius) 



 

 

VIII 

Table of contents 

Abstract………………………………………………………………………………………….II 

Declaration……………………….……………………………………………………………...III 

Acknowledgements……………………………………………………………………………...IV 

Abbreviations…………………………………………………………………………………….V 

1.0 Introduction         

1.1 Haemopoietic stem cell (HSC)………….................................................................................1 

1.2 HSC origin………………………………………………………………………….................2  

1.3 HSC niche………………………………………………………………………………….....4 

1.3.1 Osteoblastic niche…………………………………………………………………..........5 

1.3.2 Vascular niche……………………………………………………………………...…….6 

1.4 HSC regulation…………………………………………………………………………...7 

1.4.1 Stem cell quiescence……………………………………………………………….…......8 

1.4.2 Stem cell self renewal…………………………………………………………………….8 

1.5 Stem cell adhesion homing and migration……………………………………………...........10 

1.5.1 Homing…………………………………………………………………………………..10 

1.5.2 Migration…………………………………………………………………………...........12 

1.6 Stem cell phenotype …………………………………………………………………….........14  

1.6.1 Human stem cell phenotype……………………………………………………………...14 

1.6.2 Murine stem cell phenotype……………………………………………………………...15 

1.7 Stem cell lineage selection………………………………………………………….……......16 

1.8 Clinical applications of stem cells…………………………………………………….….......17 

1.9 Radiation……………………………………………………………………………………...18 

1.10 Pleiotrophin……………………………………………………………………………....19 

1.10.1 Pleiotrophin structure…………………………………………………………....20 

1.10.2 Mitogenesis……………………………………………………………………...20 

1.10.3 Angiogenesis……………………………………………………….....................20 

1.10.4 Proto-oncogene ………………………………………………………….............21 

1.10.5 Growth factor………………………………………………………………….....22 

1.11 Mouse strains……………………………………………………………………………..25 

1.11.1 C57BL/6………………………………………………………………………….25 

1.11.2 Balb/c…………………………………………………………………………….25 

1.12 KSL cells…………………………………………………………………………………26 

1.11.1 Lineage negative cells………………………………………………………………..…26 



 

 

IX 

1.11.2 c-Kit……………………………………………………………………………………...27 

1.11.3 Stem cell antigen-1……………………………………………………………………....27 

1.12 Murine KSL isolation flow chart……………………………………………………………..28 

1.13 KSL isolation………………………………………………………………………………....29 

 

Aims……………………………………………………………………………………………….30

  

Experimental design……………………………………………………………………………...31

          

2.0 Materials and methods        

2.1 Murine MNC cell isolation………………………………………............................................33 

2.1.1 Mouse treatment………………………………………………………………………….33 

2.1.2 Murine euthanasia………………………………………………………………………...33 

2.1.3 Femur and tibia dissection………………………………………………………………..34 

2.1.4 Murine bone marrow harvest……………………………………………………………..35 

2.1.5 Murine MNC isolation……………………………………………………………………35 

2.2 MNC viability and purification……………………………………………………………….36 

2.2.1 Cell counting……………………………………………………………………………...36 

2.2.2 Cell viability………………………………………………………………………………37 

2.2.3 Column purification of murine lineage negative cells……………………………………37 

2.3 MNC RNA isolation…………………………………………………………………………..39 

2.3.1 MNC isolation lymphoprep technique……………………………………………………39 

2.3.2 MNC RNA isolation………………………………………………………………………39 

2.3.3 MNC RNA quantitation method ………………………………………………………….40 

2.3.4 Real time PCR………………………………………………………………………….…40 

2.3.5 cDNA generation………………………………………………………………………….40 

2.3.6 Real time PCR…………………………………………………………………………….41 

2.4 Murine MNC separation by flow cytometry………………………………………………….42 

2.4.1 Murine FACS sorting for c-Kit, Sca-1 expressing Lineage negative cells……………….42 

2.5 HUBEC isolation and culture…………………………………………………………………44 

2.5.1 Endothelial cell culture……………………………………………………………………44 

2.6 Cultured KSL cells and progeny flow cytometric staining and analysis……………………...45 

2.6.1 Flow cytometric staining………………………………………………………………….46 

2.6.2 CFDA-SE staining………………………………………………………………………...48 

2.6.3 Flow cytometry analysis…………………………………………………………………..49 

2.7 Murine Colony forming cell assay…………………………………………………………….49

  



 

 

X 

2.7.1 Colony forming cell assay………………………………………………………………..49 

2.7.2 Long-term culture initiating cell assay…………………………………………………...49 

2.8 Murine bone marrow histology………………………………………………………………50  

2.8.1 Bone marrow slide preparation…………………………………………………………..50  

2.8.2 Bone marrow staining……………………………………………………………………51  

2.9 Murine in vivo and murine KSL cell in vitro radiation………………………………………51 

2.9.1 Irradiation………………………………………………………………………………...51  

2.10 Murine intraperitoneal and intravenous injections……………………………………….53 

2.10.1 Murine intraperitoneal injections………………………………………………..53 

2.10.2 Murine intravenous injections…………………………………………………...53 

2.11 Murine peripheral blood collection and analysis………………………………………...54 

2.11.1 Submandibular bleed…………………………………………………………….54 

2.11.2 Full blood count analysis………………………………………………………..55 

2.12 Ki-67 proliferation assay…………………………………………………………………56 

2.13 Statistical analysis………………………………………………………………………..56 

 

     

3.0 Results          

3.1 rPTN in vitro irradiation study…………………………………………….………………….59

   

3.1.1 Addition of rPTN to HSCs in vitro post radiation injury………………………………...59 

   3.1.2 rPTN in vitro signalling study…………………………………………………………......73 

3.1.3 rPTN in vitro cell cycle analysis study………………………………………………….....86 

3.2 rPTN in vivo irradiation study………………………………………………………………...91

  

3.2.1 Homing effect of rPTN on HSCs………………………………………………………....91

  

3.2.2 To determine if rPTN can induce HSC regeneration post radiation injury in vivo by 

examining mature blood  cell reconstitution and mouse survival………………………………97 

3.2.2.1 HSC regeneration post myelotoxic radiation injury study……………………….97 

3.2.2.2 rPTN as a radioprotector to HSCs in vivo prior to ionizing radiation exposure..107 

3.2.2.3 rPTN as a reparative factor for HSCs in vivo following ionizing  

radiation exposure………………………………………………………………………109 

3.2.2.4 rPTN as a reparative factor for HSCs in vivo following ionizing  

radiation exposure via mature blood cell repopulation…………………………………111 

3.2.3 PTN induced toxicity……………………………………………………………………112 

3.2.4 ptn gene expression in response to radiation injury …………………………………….116 

 

        



 

 

XI 

4.0 Discussion………………………………………………………………………………119  

5.0 References………………………………………………………………………………128 

Appendicies………………………………………………………………….....……………….146 

        

      

      



 

 

 

 

 

 

 

 

 

1.0 Introduction





 

 

1 

1.1 Haemopoeitic stem cell (HSC) 

HSCs are cells that have the capacity to self renew, proliferate and differentiate, providing 

cells of the mature blood system throughout a lifetime.  The concept of such a cell was first 

considered in 1961 subsequent to the injection of healthy marrow into a lethally irradiated 

recipient mouse which mediated the reconstitution of mature blood cells in the irradiated host 

(Till and Mc Culloch, 1961). This finding provided preliminary experimental evidence that 

all of the blood cells were derived from a single type of progenitor cell, also known as HSC. 

The majority of mature blood cells have a limited life span, red blood cells survive for 120 

days and some white cells just hours, thus requiring their continuous replacement to sustain 

life. Replenishment of the mature blood cells does not occur as a direct single step but is in 

fact achieved through the production of progenitor cells that display diminished self-renewal 

capabilities with increased maturity and the assembly of HSC hierarchy.   HSCs differentiate 

to multi-potent progenitors (Allen.D, 1984). These multi-potent progenitors have the ability 

to differentiate into either myeloid or lymphoid progenitor cells. Lymphoid progenitor cells 

give rise to T, B and Natural Killer (NK) cells while the myeloid progenitor cell gives rise to 

neutrophils, basophils, eosinophils, red cells, platelets and monocytes/macrophages (figure 1) 

all of which require constant replenishment to keep circulating blood levels constant. This 

method of mature blood cell production allows a large number of mature cells to be derived 

from a small population of HSCs. (Lajtha, 1979) 
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Figure 1: Haemopoetic stem cell (HSC) differentiation to mature blood cells.  HSCs have the ability to self 

renew, proliferate and differentiate giving rise to all of the mature elements of the blood and immune systems 

throughout life. THE HSC differentiates to a less primitive multi-potent progenitor cell and which differentiates 

into either a lymphoid or myeloid progenitor and is said to be lineage committed as these that have 

differentiated to a lymphoid progenitor will give rise to B,T and natural killer (NK) cells whereas those multi-

potent progenitor cells that have differentiated to a myeloid progenitor cell will give rise to neutrophils, 

basophils, platelets, red cells and monocytes/macrophages. 

 

1.2 HSC origin 

During foetal development haemopoietic activity begins in the yolk sac with the appearance of 

embryonic blood islands. The blood islands are primitive blood cells that are surrounded by 

endothelial cells, both of which are thought to originate from a common precursor or haemangioblast 

(Oberlin et al, 2002). These blood cells are generated through a process that is known as primitive 

haemopoesis. HSCs originate in the aorta, gonads and mesonephrons (AGM) and paraaortic 

splanchnopleura (PAS) regions of the embryo proper which following the development of the 

circulatory system migrate to the liver of the embryo (Godin et al, 1995, Dzierzak.E, 1995). 

Subsequently the HSCs migrate to the spleen and lastly to the major site of haemopoesis, the bone 

marrow.  There are large numbers of stem cells within the foetal circulation but also in the umbilical 

cord (Wang, 1997). Haemopoetic activity at birth is widely distributed throughout the skeleton, 
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however this retreats with age so that haemopoiesis occurs in sternum, pelvis, skull and vertebrae in 

adulthood (Figure 2).  

 

 

Figure 2: Sites of Haemopoeisis during development. Haemopoeitic activity begins in the yolk sac with the 

formation of blood islands followed by the development of HSCs in the mesonephrons (AGM) and paraaortic 

splanchnopleura (PAS) regions of the embryo proper. With the development of the circulatory system stem cells 

transmigrate to the fetal liver. At the time of birth the primary site of haemopoesis is the marrow and is widely 

distributed throughout the skeleton. In adults haemopoesis is limited to marrow of the sternum, the skull , the 

vertebre and the pelvis. 

 

Murine embryoinc development is quite comparable to human embryonic development, however sites 

of haemopoesis in the adult mouse differs from the adult human. Primary sites for murine 

haemopoesis include the spleen, femur and tibia. 
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1.3 HSC niche 

The stem cell niche or microenviornment, first hypothesised by Schofiled, 1978 is the site at which 

HSCs reside and the process by which haemopoesis occurs in vivo. The notion that a niche provided 

support to the HSC was further supported by in vitro co-culture experiments where increased HSC 

growth was noted (Dexter, 1977, Rios, 1990). The niche itself is composed of numerous cell types 

such as endothelial cells, fibroblasts, adipocytes and ostoblasts and displays both anatomical and 

functional properties.  The anatomical structure provided by the cells and their products imparts 

physical support to the marrow which houses and protects the multi-potent stem cells. Functionally, 

the cells within the niche act to regulate stem cell proliferation, differentiation, survival and self-

renewal which is achieved either directly or indirectly (Moore 1987). Figure 3 

 

Figure 3: Haemopoietic stem cell niche. The niche is composed of numerous cell types such as endothelial 

cells, fibroblasts, adipocytes and ostoblasts which provide structural, trophic, topographical and physiological 

cues to the HSC.   

 

The individual regulatory function performed by the cells of the niche are difficult to discern  

however research conducted over recent years has identified two diverse niches that support the bone 

marrow, the osteoblastic and vascular niche.  
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1.3.1 Osteoblastic niche 

Early investigations into the role of osteoblasts indicated that they were an important component in 

skeletal development through bone generation and remodelling. The role of osteoblasts in HSC 

maintenance however is less well recognised. Mesenchymal stem cells which reside in the marrow 

give rise to a number of cells such as the chondrocytes, adipocytes, endothelial cells and osteoblasts in 

the marrow (Short, 2003 Murguruma, 2006) . Osteoblasts were thought to play a role in HSC 

maintenance initially through anatomical arrangement or location as HSCs reside along the endosteal 

surface of trabecular bone in close proximity to osteoblasts (Lord 1975). Also during embryogenesis 

primitive haemopoesis occurs in the bone resorption centres suggesting perhaps osteoblast association 

was involved in HSC maintenance (Patt, 1972). In vitro co-cultures with osteoblasts supported the 

growth of HSCs (Tacihman 1994, Tachiman, 2000). Zhang et al outlined in vivo experiments 

whereby an increase in a particular sub-population of osteoblastic cells, spindle shaped N-cadherin 
+
 

CD45- osteoblastic cells (SNO) that lined the bone increased the number of HSCs indicating this sub-

population of osteoblasts as key components of the niche environment in vivo (Zhang, 2003). In 

addition to this, Calvi et al, performed a study whereby an increase in Parathyroid hormone (PTH) 

and activating Parathyroid hormone receptor (PTHr) in stroma cultures in vitro resulted in an increase 

in osteoblasts in turn increasing the number of long-term HSCs (Calvi,2003). Along with this study 

Calvi et al performed an in vivo study whereby the mice were genetically modified to produce 

activated parathyroid and parathyroid hormone related protein specific to osteoblasts which displayed 

an increase in long-term Haemopoietic stem cells (LT-HSCs) in vivo (Calvi, 2003). To further 

endorse this hypothesis Visnijic et al, 2004 investigated the depletion of osteoblasts and the effect this 

had on HSCs and the haemopoeitic system. In order to perform this study a transgenic mouse was 

created whereby developing osteoblasts specifically expressed the herpes virus thyrosine kinase gene 

that was under the control of a collagen promoter. The advantage of this mouse was that treatment 

with Gangciclovir, which activates thyrosine kinase function, resulted in the eradication of the 

osteoblasts (Visnijic, 2004). The result observed was a decrease in marrow cellularity, a decrease in 

myeloid, lymphoid and erythroid progenitors and a decrease in the absolute numbers of HSCs.  The 

discontinuance of Gangciclovir resulted in the re-emergence of osteoblasts and marrow cellularity 
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indicating quite strongly that osteoblats play an important role in regulating haemopoiesis and HSCs 

in the marrow. 

 

1.3.2 Vascular niche 

HSCs not only localise along the endosteal surface of trabecular bone in close proximity to osteoblasts 

but also with the vascular endothelial cells from the earliest stages of embryogenesis through to HSC 

migration to the fetal liver (Oberlin, 2002). HSCs and progenitors also reside in close proximity to the 

BM sinusoidal vessels in the adult (Avecilla, 2004) and as the HSC and endothelial cells (EC) are 

derived from the same precursor or haemangioblast (Choi, 2002), investigations into a possible 

regulatory relationship between the HSC and ECs could be considered justifiable. HSCs when 

cultured in vivo with primary ECs maintained the HSC number and its repopulating ability in vivo 

(Yin, 2006). These findings are consistent with other studies including the experiment performed by 

Chute et al whereby human CD34+ CD38- haemopoetic stem cells when cultured in vitro with 

Human Brain Endothelial cells (HUBECs) (Chute et al, 2005). They found this increased the number 

of repopulating cells in non-obese diabetic Severe combined immune deficient (NOD/SCID) 

identifying the success of their engraftment. NOD/ SCID mice are a cross-breed of mice that have a 

genetic disorder whereby mice homozygous for the mutation display  no mature T and B lymphocytes 

(SCID)  (Bosma,1991) and mice that develop autoimmune T cell mediated insulin dependent diabetes 

mellitus (NOD) (Kataoka, 1983). The cross breeding results in a mouse which lacks T cells but that 

does not develop insulin dependent diabetes mellitus. These NOD/SCID mice are widely used to 

study human haemopoetic stem cell engraftment. (Greiner, 1998).The SCID repopulating cells are 

those that represent the long-term haemopoetic stem cells and their quantification is used as a 

technique to assess the reconstitution ability of in-vitro expanded haemopoetic stem cells (Larochelle, 

1996, Bhatia, 1998). Co-culture of the CD34+ CD38- HSCs with HUBECs when transplanted into 

SCID mice displayed myeloid and B-lymphoid differentiation indicating a primitive haemopoietic 

stem cell was preserved during culture. Interestingly with this study Chute et al in 2002 outlines 

comparable SRC increases with both contact non-contact HUBEC cultures, indicating the regulation 
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of the HSC did not require direct contact (Chute, 2005).  To further support the hypothesis Avecilla et 

al in 2004 demonstrated that administration of an antibody to vascular endothelium cadherin (VE-

cadherin) caused endothelial cell removal resulting in haemopoetic failure. VE-cadherin is an 

adhesion molecule expressed on the surface of vascular endothelium (Lampugnani, 1995). 

The vascular and osteoblastic niches although appear self governing do not exist independently. It is 

thought that the osteoblastic niche maintains the HSC in a quiescent state and that the vascular niche 

promotes differentiation and proliferation of HSCs through increased oxygen and growth factor 

availability accompanied by a loss of self-renewal capabilities (Kopp, 2005). This hypothesis is 

supported by a Thrombopoetin mutant mice study (Avecilla et al, 2004) whereby under stress 

thrombopoesis was accomplished through the movement of HSCs from the osteoblastic niche to the 

sinusoidal endothelial cells where they differentiated into megakaryocyte progenitors and continued to 

mature to platelets.  

 

1.4 HSC regulation 

The majority of cells within the stem cell pool are quiescent, (G0, phase of cell cycle) (Lajtha, 1979, 

Ogawa, 1993). A possible motive for this is to maintain a genetically pure pool of cells that can 

persist throughout life providing adequate mature blood cells. These quiescent cells however can 

respond to stress whereby they enter the cell cycle and differentiate to mature cells of the peripheral 

blood after which they return to a quiescent state. This observation implies HSCs must be responsive 

to positive and negative control factors. Stem cell regulation is a tightly controlled process that is 

achieved through complex intrinsic and extrinsic signals that are controlled by the surrounding 

environment. External signals in the form of adhesion molecules or secreted factors communicate to 

the HSC internal machinery to control HSC fate, be that self-renewal, differentiation or apoptosis.  

HSC quiescence in the laboratory may be investigated through the use of Ki-67 antibody which 

recognises the Ki-67 antigen expressed in all active stages of the cell cycle therefore acting as an 

indicator for proliferation (Kubbutat, 1994). 
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1.4.1 Stem cell quiescence 

Osteoblasts located at the endosteal surface of the trabecular bone regulate HSC using both adhesion 

molecules and secreted factors which act co-operatively to suppress HSC cell cycle (Arai, 2005). 

Adhesion molecules expressed by osteoblasts include N-cadherin and β1-integrin, both of which act 

to anchor the HSC to the osteoblastic niche (Potocnik, 2000) maintaining them in an environment that 

promotes HSC quiescence (Arai, 2004).  Angeopoeitin-1 (Ang-1), secreted by the osteoblasts acts as a 

ligand for Tie 2 receptor expressed on the surface of HSCs. Ang-1 when secreted by the osteoblasts 

binds Tie 2 it activates β1 integrin promoting adhesion of the HSCs to the osteoblastic niche and 

maintaines the cell as a quiescent HSC (Arai, 2004). To support this hypothesis, mice deficient in Tie 

2 failed to survive due to abnormal interaction of the HSC and osteoblastic niche (Suri, 1996).  

 

1.4.2 Stem cell self renewal 

The Wnt signalling pathway has been identified as an important pathway for HSC self-renewal (Reya, 

2003). Wnt proteins are a family of signalling molecules that are defined by amino acid sequence as 

opposed to function (Nusse, 1992). The Wnt proteins bind one of two Wnt receptors, a seven 

transmembrane protein member of the frizzled family (Bhanot, 1996) and the low density lipo-protein 

(LDL) receptor related proteins (Duncan, 2005). The binding of the Wnt proteins to their receptors 

results in a cascade of signalling events that is transduced to β-cadenin, a cyctoplasmic 

phosphoprotein. β-cadenin in the HSC is bound to a degradation complex composed of glycogen 

synthase kinase 3 beta (GSK-3B) and adenomatosis polyposis coli (APC). In the absence of Wnt 

protein attachment the degradation complex acts to degrade β-catenin (Cadigan, 1997). Wnt 

attachment to its receptor dissociates the degradation complex ceasing β-catenin degradation resulting 

in the accumulation of undegraded β-catenin in the cytosol (Willert, 1998). The β-catenin relocates to 

the nucleus where it binds transcription factors of the lymphoid enhancer binding factor (LEF) and T-

cell factor (TCF) family. This binding to the transcription factors activates them resulting in the active 

transcription of target genes myc and cyclin D which are involved in promoting self-renewal (Willert, 

2003). The addition of Wnt3A in vitro promotes HSC self-renewal (Willert, 2003), indicating Wnt 
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signalling as a significant signalling pathway for HSCs. In contrast and conflicting to this finding is 

mice deficient in β-catenin displayed regular HSC self-renewal capabilities (Cobas, 2004) suggesting 

Wnt signalling is not a necessary pathway for HSC self-renewal regulation. 

Notch signalling is also described as a regulatory pathway involved in HSC self-renewal (Domen, 

1999). Notch a cell surface receptor expressed on HSCs, is cleaved and released into the cytosol when 

its ligand Jagged 1 is bound. The intracellular domain of the receptor relocates to the nucleus where it 

binds to the transcriptional repressor CSL transforming it to a transcriptional activator which acts to 

actively transcribe target genes. Supporting the hypothesis that Notch signalling is important in HSC 

self-renewal regulation is the observation that HSC differentiation and depletion accelerated with the 

addition of a notch signalling inhibitor (Duncan, 2005).  

Although WNT and Notch signalling promote HSC self renewal in vitro (Reya, 2003, Willert, 2003), 

It appears these signalling pathways individually are not required for HSC self-renewal as in vivo 

deletion of the notch receptor and ligand (Mancini, 2005) and B-catenin (Koch, 2008) did not affect 

HSC maintenance.  A possible explanation for this was provided by Morrison, 2008 where they 

express that maintenance of the HSC pool is so crucial for survival dependence on a single pathway 

would not be favourable for fear of a flaw. Signalling overlap would ensure no signalling pathway is 

solely responsible for HSC self-renewal imparting a more robust and adaptable method of HSC self-

renewal regulation. 
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1.5 Stem Cell adhesion homing and migration 

HSCs have the ability to move from one location to another in vivo demonstrated by the relocation of 

HSCs from the fetal liver to the marrow during development and also through the movement of 

transplanted HSCs to the bone marrow. This movement however is not a random process but is in fact 

a tightly regulated process that strikes a balance between HSC migration and retention, a process that 

is greatly influenced and mediated by the activities of adhesion and chemotactic molecules. 

HSC movement from the peripheral blood through the vascular endothelium, into the marrow where it 

is retained and acts as a functional stem cell is termed homing. In contrast HSCs movement from the 

marrow, where retention has ceased, through the vascular endothelium to the peripheral blood is 

termed migration.  

Adhesion molecules are expressed on the surface of the HSC, the vascular endothelium and stroma 

cells within the marrow. The adhesion molecules act to mediate entry and exit of HSC to and from the 

marrow and also to anchor HSCs to the niche to ensure quiescence and maintenance. 

 

1.5.1 Homing 

Homing of HSCS to the marrow involves a series of events which include adhesion, disengagement, 

trans-endothelial migration and engraftment into the niche (Mazo, 1999).  The HSCs express a variety 

of adhesion molecules such as VLA-4, which is member of integrin superfamily, CD34 a member of 

the sialomucin family, CD31 and CD 50 members of the immunoglobulin superfamily and E and P 

selectins. Recognition and tethering of the HSC is achieved through the E and P selectins subsequent 

to which firm adhesion is achieved through VLA-4 and LFA-1. Once firm attachment of the HSC is 

achieved it squeezes through the endothelium and enters the marrow. A chemokine stromal derived 

factor 1 (SDF-1) expressed on human and murine marrow endothelial cells (Imai, 1999) and 

osteoblasts in the endosteal region of the marrow (Ponomaryov, 2000) acts to chemo-attract the 

HSCs which express CXCR4, the receptor for SDF-1 ligand, This attraction is not through kinetics 

but through the generation of a concentration gradient (Askenasy,2002). Providing support to this 
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hypothesis is an in vitro study where CD34+ and a FDCP stem cell line, both of which express 

CXCR4, moved in response to SCF-1 exposure (Aiuti, 1997). Further highlighting the importance of 

SDF-1 and CXCR4 in stem cell retention and maintenance was a knockout study where the mice died 

due to gross bone marrow failure (Tachibana, 1998, Zou, 1998). SDF-1deficient mice highlight the 

requirement of SDF-1 ligand in homing, a requirement for effective myelopoiesis in the bone marrow. 

The SDF-1 deficient mice as embryos displayed typical myelopoiesis, however the SDF-1 deficient 

neonatal mice which require movement of HSCs from the fetal liver to the bone marrow with 

development, displayed incomplete bone marrow myelopoeisis. The movement of haemopoietic 

progenitors in the embryo and fetus from the aorta, gonads and mesonephrons (AGM) to the fetal 

liver was successful indicated by successful myelopoiesis. The impaired bone marrow myeolopoiesis 

observed within the neonatal mice was due to impaired stem cell migration from the fetal liver to the 

marrow. 

 

Figure 4: HSC homing. Movement of HSCs (purple) through the vessel is induced by a SDF-1 gradient 

whereby CXCR4 expressing HSCs are attracted to its receptor SDF-1 expressed on stromal cells (green) and 

endosteal niche cells (pink).  

 

SDF-1 not only acts as a chemotactic factor for the homing of HSCs but also indirectly acts to 

maintain HSC quiescence in the marrow when they arrive, through immobility signals (Petit, 2005) 

HSC 
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and stroma niche 
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Endosteal 
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emitted from the osteoblastic niche. The study of HSC homing can be investigated in the laboratory 

using a dye that fluorescently stains the HSCs such Carboxy-fluorescein diacetate, succinimidyl ester 

(CFDA-SE). This dye diffuses into the cells where it is retained and permits the ability of the stained 

cells to home to the marrow when transplanted and can be examined.  

 

1.5.2 Migration 

HSC movement from the marrow to the peripheral blood is termed mobilisation and it too is a tightly 

controlled process involving termination of stem cell anchorage and adhesion molecule activities. It is 

postulated that HSC mobilisation is involved in HSC homeostasis.  It is thought the release of HSC to 

the peripheral blood is a regulatory mechanism in vivo whereby the amount of progenitors in the 

marrow is controlled so that excess amounts are removed due to the limited number of stem cell 

niches (Abkowitz, 2003). Bradford et al also demonstrated mobilisation of murine stem cells into the 

peripheral blood every 30 days is a requirement for cycling and stem cell turnover (Bradford, 1997). 

Mobilisation in vivo occurs in response to stress signals such as the cytokine G-CSF or chemotherapy. 

These signals act to stimulate neutrophils and osteoblasts to release of membrane bound SCF-1 

(Heissig, 2002) and trigger a transient increase of SDF-1 in the marrow (Petit, 2002). The increase in 

SDF-1 concentration results in the upregulation of proteolytic enzyme secretion such as cathespin G, 

neutrophil elastase and MMP-9 in the marrow (Hessig, 2002, Levesque, 2003 and Petit, 2002). These 

proteolytic enzymes act to degrade SDF-1 through the cleavage of its NH2 terminal sequence 

(McQuibban, 2001) resulting in increased CXCR4 expression (Petit, 2002) and extensive mobilisation 

of stem and progenitor cells to the peripheral blood.   
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Figure 5: HSC migration. G-CSF activates the neutrophil to release proteolytic enzymes such as G, neutrophil 

elastase and MMP-9 in the marrow. These proteolytic enzymes then cleave the NH2 terminal sequence of SDF-

1 resulting its degredation and subsequent upregulation of CXCR4 and mobilisation of stem/progenitor cells to 

the peripheral blood. (Image: Physiology review Kopp, 2005)  

  

Natural recruitment of HSC from the marrow to the peripheral blood through mobilisation is exploited 

clinically through the administration of hG-CSF (Welte et al 1987). This is widely used stem cell 

mobilising agent, used to mobilise stem cells to the peripheral blood where they are harvested and 

used as a major source of stem cells for autologous or allogeneic transplants. Similarly AMD3100 a 

CXCR4 antagonist is also used clinically as a stem cell mobilisation method in mice and humans 

(Broxmeyer, 2005). 
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1.6 Stem cell phenotype 

Elucidatation of a particular stem cell phenotype would provide a straightforward method of stem cell 

isolation, identification and quantification, useful both clinically and experimentally. A conclusive 

way to assess potential stem cell phenotypes is to examine the capability of the cell to engraft the 

marrow and repopulate the marrow and peripheral blood of an irradiated recipient after transplantation 

(Kamel-Reid 1998). Cell surface markers and the ability to exclude DNA binding dyes have lead to 

the discovery of a panel of markers or surface antigens on the stem cells. The approach undertaken to 

identify the particular stem phenotypes in mice and humans have been quite similar, (competitive 

repopulation assays) (Spangrude, 1988), however the surface markers that identify human from 

murine haemopoeitic stem cells differ. 

 

1.6.1 Human stem cell phenotype 

Adult human HSCs do not express many surface markers that are characteristic of differentiated or 

lineage committed haemopoeitic cells (Muller- Sieburg, 1986). These surface antigens are termed 

lineage markers and are expressed on T and B cells, granulocytes, monocytes, macrophages, erythroid 

and natural killer cells, thus removal of these cells through negative selection results in the isolation of 

an immature population of haemopoeitic cells that are said to be Lineage negative (Lin-). A 

sialomucin, CD34 was discovered to be expressed on the surface of haemopoetic progenitors with 

surface expression decreasing with differentiation to more mature cells (Civin, 1990) highlighting it 

as a potential marker for stem cells. In vitro studies demonstrated the ability of CD34+ cells to 

differentiate into various haemopoeitic progenitor and lineage committed cells in long term culture 

provided support to this concept as well as in vivo repopulation studies. However not all stem cells 

express CD34 as highlighted by Zanjani et al, where Lin- CD34- cells transplanted into recipient 

sheep displayed long-term and multi-lineage differentiation. These cells however were incapable of 

providing short-term stem cells and repopulation capabilities. Interestingly however Zanjani observed 
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a high number of CD34+ cells in the marrow of these sheep suggesting the Lin- CD34- cells are more 

primitive than the CD34+ cells (Zanjani, 1998). One may use other markers with CD34 to determine a 

more primitive cell such as CD38. CD34
+
CD38

-
 cells displayed an increase in engraftment through 

the number of repopulating cells when compared to CD34+CD38low cells (Bhatia, 1997) in 

NOD/SCID mice. Co-expression of CD10 or CD7 on CD34+ cells defines early lymphoid progenitors 

(Hao et al, 2001) while expression of IL-3Rα
lo

 on CD34
+
CD38

+
 cells defines early myeloid 

progenitors (Manz, 2002). 

 

1.6.2 Murine stem cell phenotype. 

Similar to the Human HSCs, the adult mouse HSCs do not express surface markers that are 

characteristic of differentiated or lineage committed haemopoietic cells.  As outlined above these 

surface antigens are termed lineage markers and are expressed on T and B cells, granulocytes, 

monocytes, macrophages, erythroid and natural killer cells thus removal of these cells through 

negative selection results in the isolation of an immature population of haemopoietic cells that are said 

to be lineage negative (Lin
-
). 

Murine haemopoietic progenitors were also found to express two cell surface glycophosphatidyl 

inositol linked immunoglobulin superfamilies, Thy-1.1 and stem cell antigen (SCA-1) (Spangrude et 

al, 1988). Aihara et al, 1986 produced monoclonal antibodies to pre-T hybridomas, one of which was 

directed against the cell surface antigen Sca-1 or stem cell antigen 1. The murine HSCs were deemed 

c-Kit+ and Thy1.1+ Lin- Sca-1+ (KTLS). In contrast it has been shown that KTLS cells are not the 

only cells to radioprotect and reconstitute blood cell lineage in lethally irradiated mice as the Thy1.1lo, 

Lin- and Sca-1+ (TloLS) population of cells are capable of radioprotection and mature blood cell 

reconstitution in the C57BL/Ka-Thy-1.1 mouse (Uchida, Weissman, 1992). Co-expression of 

granulocyte monocyte colony stimulating factor receptor (GM-CSFR) and IL-7 receptor αγ defines 

the common myeloid progenitor (CMP) from the common lymphoid progenitor (CLP) (Kondo, 1997). 

The common myeloid progenitor expresses the GM-CSFR however it lacks IL-7R αγ and the 

common lymphoid progenitor expresses the IL-7R αγ and lacks the GM-CSFR (Kondo, 1997).  
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In human and mouse HSCs, markers expressed on the surface of the stem cell to date have been 

highlighted to be expressed on other cells types suggesting antigen expression may not correlate to 

stem cell function or potential. For example CD34 expressed on human HSCs (Bereson, 1991) is also 

expressed on vascular ECs (Fina, 1990) and some fibroblasts (Brown, 1991) suggesting its function 

may lie outside haemopoeisis. Isolation of stem cells, although rigorous nonetheless yields a 

heterogenous population of cells such that further efforts are required to determine a distinctive and 

unique phenotype from the most primitive stem cells throughout stem cell hierarchy to the least 

primitive stem cell within the stem cell pool.   

 

1.7 Stem cell lineage selection 

Stem cell division can be symmetric or asymmetric. Symmetric division is where a parent stem cell 

divides to produce two daughter cells or two parent cells. Asymmetric division describes the 

production of one parent and one daughter cell. Two theories exist as to the mechanism of asymmetric 

division, that being cell divisional and environmental asymmetry as outlined by Wilson and Thrumpp, 

2006. Divisional asymmetry describes the unequal distribution of stem cell fate determinants in the 

cytoplasm of a cell before it enters mitosis whereby subsequent to cell division the result is two non-

identical daughter cells. One daughter cell receives the cell fate determinants retaining it as a stem cell 

while the other cell fails to receive any cell fate determinants and proceeds to cell differentiation. 

Enviornmental asymmetry describes the division of the parent cell to produce two identical daughter 

cells however, the exposure of these daughter cells differ. One daughter cell remains in the HSC niche 

conserving it as a HSC and the other daughter is exposed to a different niche promoting its 

differentiation. Divisional and environmental division although different result in the same net effect.  

Symmetric versus asymmetric division aims to promote HSC homeostasis and regulates HSC 

numbers.   
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1.8 Clinical applications of stem cells 

Patients with haematological malignancies such as Multiple Myeloma or leukaemia have 

malignant cells in the marrow that have arisen from normal healthy haemopoietic tissue. 

These malignant cells, often with altered internal pathways proliferate rapidly independent of 

normal regulation. Treatment aimed at eliminating these malignant cells, include cytotoxic 

drugs and radiation which as an aside, destroy healthy cells of the marrow. The patient as a 

result is often left pancytopenic with low platelets and low red and white cells and very 

susceptible to infection. One therapy to reconstitute the marrow after radiation or cytotoxic 

injury is a haemopoietic stem cell transplant (HSCT). An autologous HSCT is one where the 

patients’ own cells are harvested prior to myeloblative therapy and are re-infused afterwards. 

Autologous transplants are used in the treatment of myeloma (Tricot, 1996 Barlogie, 2004 

Child, 2003) and Hodgkins and non-Hodgkins Lymphoma (Pettengell, 2002 Reiser, 2002). 

Difficulties often encountered with the autologous HSCT are the failure to eradicate the 

disease in the harvested cells and the re-introduction of these cells to the marrow. The 

allogenic HSCT is the use of donor cells which have the advantage of being free from disease 

and may aid elimination of malignant cells with a graft versus tumour response. However one 

limitation of the allogeneic HSCT is Graft Versus Host Disease (GVHD) whereby the 

transplanted cells begin to attack the host seeing it as foreign. 
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1.9 Radiation 

Radiation is a process whereby energy is released from one source permeates through a 

medium and is absorbed by another. At a cellular level radiation exposure can cause damage 

to DNA and has been shown to be directly related to the level and dose of exposure (Muller, 

1954).  Damage occurs through both direct and indirect methods resulting in DNA breakage 

or damage (Michaels et al, 1978), (Schulte-Frohlinde, 1986). Direct injury is where radiation 

enters the cell and acts on the DNA itself resulting in mutations within the DNA, DNA strand 

breaks both single and double resulting sometimes in permanent and irreversible damage 

(Lea et al, 1942) finally resulting in cell death (Leenhouts et al, 1974) of both parent and 

progeny cells (Catcheside, 1946). Indirect damage caused by radiation is achieved through 

the hydrolysis of water contained within the cell resulting in the formation of free radical 

hydroxyl molecules (Dainton, 1948). These hydroxyl molecules can come together to form 

hydrogen peroxide and binds other molecules such as essential enzymes required for DNA 

damage repair within the cell with ease (Imlay et al, 1988). The result of this is the 

unavailability of these essential enzymes leading eventually to cell death. Interestingly, 

different cells within the body react differently to radiation with some cells being more 

sensitive while others are more resistant as first hypothesised by Bergonie and Tribondeau in 

1906. Bergonie and Tribondeau were the first to suggest that cells that were actively dividing 

such as cells of the Gastrointestinal tract (Potten, 1998), reproductive organs (Stanford, 1955) 

and cells of the bone marrow (Till et al 1961) were more radiosensitive when compared to 

cells that were not dividing so rapidly such as cells of the nervous system and muscle cells 

(Rubin, 1984). Further supporting this concept is the observation that cells within the M 

phase of the cell cycle are more radio-sensitive when compared to when the cell is in the G0, 

G1 or S phase of the cell cycle and is thought to be due to the fact that the DNA is condensed 

to a single region available for injury (Chapman, 1999). 
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This knowledge of radiation and its effects were consequently exploited for therapeautic 

purposes.  

Currently radiation is used to target and ablate rapidly dividing malignant, cancerous cells 

within tumours and treatment is associated with a wide range of cancers which include breast 

(Fisher, 1998) and prostate cancer (Reboul, 1965) for example. 

Haematologically speaking radiation is used to treat malignacies of the bone marrow. It is 

used to ablate the patients’ marrow which includes healthy cells, transformed malignant cells 

and immuno-competent cells. Subsequent to the removal of cells from the marrow the patient 

receives a Bone Marrow Transplant where donor cells enter the marrow and arrange 

themselves within the niche in a bid to repopulate the marrow with cells free from 

malignancy (Thomas, 1959), (Blume, 1980) (Powles 1980).  

 

1.10 Pleiotrophin  

Pleiotrophin (PTN) is a 17kDa protein which was first isolated from a bovine uterus and 

found to be a member of the heparin binding growth factor family due to its high affinity for 

heparin (Milner, 1989). It is encoded by the ptn gene and is highly expressed during 

embryogeneis (Bloch, 1992) however expression is limited in healthy adults to axons (Silos-

Santiago, 1996) and endothelial cells (Yeh, 1998). 

ptn gene expression is upregulated in cells stimulated by PDGF making it a member of the 

PDGF inducible gene family (Li, 1992). Yeh et al demonstrated that ptn expression in 

macrophages, endothelial cells and activated astrocytes in the brain of a rat was increased 

following ischemic injury. The PDGF A chain was also up regulated in these cells post injury 

in a time sequence that preceded PTN up regulation suggesting PTN signalling is a 

downstream consequence of PDGF signalling (Yeh et al, 1998). ptn gene expression has also 
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been shown to be hormone responsive (Vacherot, 1995) and is highly expressed in neural 

stem progenitor cells in mice (Jung, 2004). 

 

1.10.1 Pleiotrophin structure 

The structure of PTN was determined using the NMR technique and found to have two β-

sheet domains, each of which have three anti-parallel β-strands connected by a flexible linker 

(Kilpeläinen, 2000). The N and C termini have lysine rich sequences but lack detectable 

structure and appeared to form random coils (Kilpeläinen, 2000). Binding of heparin to PTN 

is believed to induce a conformational change to the structure of PTN. 

 

1.10.2 Mitogenesis. 

PTN is a ligand for the receptor protein tyrosine phosphatase beta zeta (RPTP βζ) (Meng, 

2000), Anaplastic lymphoma kinase (ALK) (Stoica, 2001) and Syndecan 3 (Landgraf, 2008). 

RPTP βζ is an intrinsically activated thyrosine phosphatase whereby the binding of PTN to 

the RPTP βζ results in its inactivation and the phosphorylation of a number of intracellular 

substrates such as AKT, β-Catenin (Meng, 2000) and β-adducin (Pariser, 2005) which remain 

un-phosphorylated through an active  RPTP βζ when PTN is not bound. 

 

PTN has a diverse range of functions one of which is the promotion of mitogeneis in 

endothelial cells (Courty, 1991) and fibroblasts (Milner, 1989 , Fang, 1992), the mitogenesis 

is thought to be achieved through the activation of the PI3K pathway (Souttou, 1997). There 

are however conflicting studies that challenge PTN as a mitogenic factor. Raulo et al indicate 

rPTN in insects and bacterial cells lack mitogenic activity, however it is noted that PTN 
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supported the outgrowth of dendrites and axons in culture termed neurite outgrowth. Neurite 

outgrowth support from rPTN was also observed in cultures neuronal cells that were of 

embryonic and neuroblastoma origins and also in the neonatal rat brain (Rauvala, 1989). 

 

1.10.3 Angiogenesis 

Another important function for PTN is angiogenesis, or the formation of new vessels. PTN 

was first indicated as having angiogenic properties in a study where PTN expression was 

monitored in a rat brain for 14 days after ischaemic injury (Yeh, 1998). PTN levels increased 

moderately on day 1 and quite significantly on days 2 and 3, after which the levels began to 

decrease by day 14. What was noted in this study was the location of ptn upregulation as 

being at the sites of intense neovascularisation, suggesting PTN as having angiogenic 

properties. PTN may elicit an angiogenic response directly on the endothelial cells promoting 

proliferation or indirectly through the recruitment of pro-angiogenic cells to the site of 

angiogeneisis. New vessel formation depends on the growth of existing vessels through the 

proliferation of resident cells but also on the recruitment of endothelial progenitor cells from 

the peripheral blood (Asahara, 1997). Heiss et al suggest PTN mediates angiogenesis through 

the induction of chemo-attraction of these endothelial progenitor cells and activates resident 

human vein endothelial cells (HUVECs) to proliferate in a manner which is dependent on 

nitric oxide (Heiss, 2008). PTN as an angiogenic factor has also been highlighted to play a 

role in the invasion of blood vessels into hypertrophic cartilage (Petersen, 2001) and is highly 

expressed in fetal and juvenile cartilage (Tapp, 1999). 
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1.10.4 Proto-oncogene 

PTN is expressed at low levels in the healthy adult however, ptn when deregulated, can act as 

an oncogene promoting the transformation of healthy cells to those that display cancerous 

properties. Cells constructed to constitutively express ptn, when implanted into nude mice 

resulted in the formation of highly vascularised tumours (Chauchan, 1993). Further 

supporting this theory is the high level of ptn expression in a variety of malignant tumours 

such as prostate, neuroblastoma (Nakagawara, 1995), lung (Garver, 1993), melanoma (Chen, 

2007) breast (Garver, 1994). This is also seen in the cell lines derived from these tumours 

(Fang, 1992).  

 

1.10.5 Growth factor 

Muramoto et al when examining cells of the stem cells niche found endothelial cells provided 

support to the stem cells post radiation injury (Muramoto 2006). In particular Human Brain 

Endothelial cells (HUBECs) were found to be supportive to the HSC resulting in 1-2 log 

expansion of human and murine stem cells in contact and non-contact cultures (Chute, 2005). 

To determine the HUBEC secreted factor that was responsible for the HUBEC mediated 

expansion of the HSCs in the non-contact cultures microarray analyses was performed 

(Himburg, accepted for publication Nature Medicine 2010). This analysis identified genes 

that were highly expressed in the supportive HUBECs that was lacking in endothelial cells 

that did not support HSC expansion when co-cultured. This micro-array analysis provided 

thirteen candidate genes, however PTN was found to be 25 fold higher in HUBECs than the 

non-supportive ECs (Himburg, accepted for publication Nature Medicine 2010). This finding 

and the previous literature indicating PTN as a growth factor for human embryonic stem cells 

(Soh, 2007) highlighted PTN as a candidate factor responsible for the expansion of 
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haemopoietic stem cells when in culture with HUBECs.  Further to this PTN was found to 

induce HSC self-renewal in vitro in the absence of HUBECs, this was determined using a 

competitive repopulating assay which examines homing, engraftment and repopulating 

abilities of the transplanted cells (CD45.1) and found increased engraftment of cells treated in 

culture with recombinant PTN in the absence of HUBECs (Himburg, accepted for publication 

Nature Medicine 2010) in lethally irradiated recipients (CD45.2). Figure 6 

 

Further to this Anti-PTN when added to HUBECs and KSL cells was found to reduce HSC 

self-renewal in vitro in the absence of HUBECs, this was determined using a competitive 

repopulating assay which examines homing, engraftment and repopulating abilities of the 

transplanted cells (CD45.1) and found decreased engraftment of cells treated with in culture 

with HUBECs and Anti-PTN (Himburg, Accepted for publication Nature Medicine 2010) in 

lethally irradiated recipients (CD45.2). Figure 7 

Figure 6: KSL cells were isolated from the femurs of a congenic donor mouse (CD45.1) 

were then transplanted into a lethally irradiated congenic recipient mouse (CD45.2) either un-

manipulated on Day 0 or set up in culture for 7 days with TSF or TSF and 100ng/mL rPTN. 

After 12 weeks, peripheral blood from these mice was collected, stained with fluorescent 

antibodies and examined using flow cytometry. Increased engraftment of the PTN treated 

KSL cells compared to TSF treated alone was observed. The engrafted cells differentiated as 

normal as donor CD45.1 Macrophages, B and T cells were observed in the peripheral blood 

of the lethally irradiated recipient mouse CD45.2. This indicates that treatment with rPTN 

resulted in the replication of a multi-potent progenitor that has the capacity to differentiate 

into multiple lineages.  
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This research indicates rPTN as a growth factor for murine HSCs. 

 

 

 

 

 

 

 

 

Figure 7: KSL cells isolated from the femurs of a congenic mouse (CD45.1), were 

transplanted into a recipient mouse either un-manipulated, with TSF and HUBEC for 7 

days or with HUBECs and Anti-PTN for 7 days, after which the cells were transplanted. 

12 weeks post transplantation peripheral blood from the recipient mice were collected 

and analysed using flow cytometry for donor engraftment (CD45.1). A decrease in 

engrafment was noted in those treated with HUBECs and Anti-PTN. 
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1.11 Mouse strains  

The mouse strains used in this study were the C5BL/6 and Balb/c. 

1.11.1 C57BL/6  

C57BL/6 mice are currently the most widely used inbred strain of mice in research. This is 

due to the fact that they are easy breeders, are long-lived and congenic strains are widely 

available. They also display delayed Haemopoetic stem cell (HSC) scenescence compared to 

other strains including Balb/c (Dykstra B,2008). The disadvantages associated with the 

C5BL/6 mice is that they have a reduced incidence of tumors (Kripke M.L, 1977) to examine 

and  are easily irritable, making working with them difficult.  

 

Figure 8: C57BL/6 mouse. 

1.11.2 Balb/c 

The Balb/c mice are an inbred strain of albino mice that are known to produce 

plasmacytomas when injected with mineral oil (Potter, M., and C. Boyce. 1962.) The 

plasmacytomas are often manipulated to be advantageous in a laboratory setting as they can 

produce a large number of monoclonal antibodies to a particular antigen. The Balb/c mice are 

both docile and small in size making working with them quite manageable. 

 

Figure 9: Balb/c mouse 
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1.12 KSL cells 

The identification and isolation of HSCs relies on surface protein expression. As discussed in 

section 1.6, no unique phenotype exists for human or murine HSCs although several 

combinations of surface proteins have been developed and new combinations of 

identification factors are continuously emerging. Challen et al, 2009 outline the numerous 

phenotypes and antigenic markers determined to highlight and isolate cells within the HSC 

pool of hierarchy. For this study the cells employed were the KSL population of cells. The 

KSL population of cells are those that are Lineage negative and that express both c-Kit and 

Sca-1 antigens. 10% of KSL cells are the most primitive long-term HSCs, the other 90% 

includes short-term HSCs and progenitor cells covering all stages of progenitor HSC 

hierarchy (Challen, 2009). KSL purification therefore allows the isolation of a heterogeneous 

population of cells that are highly enriched for HSCs.  

 

1.12.1 Lineage negative cells 

Lineage negative cells are cells that do not express antigens associated with cell maturity. 

Isolation of these cells requires the removal of mature haemopoetic cells such as B cells,T 

cells, monocytes, macrophages, granulocytes, erythrocytes in addition to their committed 

precursors all of which express antigens indicating them as lineage committed. Surface 

antigens associated with lineage commitment and mature cells include CD5 B220 CD11b Gr-

1 and Ter 119. CD5 is a glycoprotein expressed on the surface of lineage committed T cells 

and a subset B cells (Huang, 1987) which acts as a negative regulator of T-Cell Receptor 

(TCR) signalling (Azzam, 1998).  B220 is an antigen expressed on all cells committed to the 

B cell lineage (Coffman, 1981). CD11b is expressed on the surface of phagocytes (Springer, 

1979) which includes macrophages and neutrophils. Granulocyte receptor 1 (Gr-1) is 
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expressed on granulocytes (Hestdal, 1991) while Ter119 is a monoclonal antibody directed 

against a glycophorin on the surface of erythroid cells (Kina, 2000). The removal of mature 

cells expressing these surface antigens yields an immature population of marrow cells that are 

termed lineage negative (Lin
-
).  

 

1.12.2 c-Kit 

c-Kit or CD117 is a 145kDa transmembrane thyrosine kinase receptor (Ikuta, 1992) encoded 

by the proto-oncogne Kit (Chabot, 1988). It shares structural similarities to the receptor 

tyrosine kinases CSF-IR and PDGFR (Qui, 1988) and is expressed on mast cells (Mayrhofer, 

1987), melanocytes (Nocha, 1989) and haemopoeitic progenitor cells (Cambareri, 1988). The 

c-Kit ligand, stem cell factor (Zsebo, 1990) is a mitogenic factor for haemopoeitic stem cells 

(Dexter, 1977), myeloid and erythroid progenitors (McNiece 1991) and mast cells (Tsai, 

1991). 

 

1.12.3 Stem cell antigen-1 (sca-1) 

Sca-1 or Lymphocyte activation protein 6A (Ly6A/E), is an 18kDa phosphatidylinositol 

anchored protein, (Spangrude 1988) and is a member of the Ly-6 antigen family (Van de 

Run, 1989). It is encoded by two strain specific alleles of the Ly6 gene family (LeClair, 

1986) where expression was determined initially on activated lymphocytes where activation 

resulted in upregulation (Yutoku, 1974). Expression of sca-1 has since extended to the HSC 

(Spangrude, 1988), stem and progenitor cells of other tissues and organs such as the heart 

(Matsuura, 2004), the prostate (Burger, 2005) and skin (Torna, 2001). 
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1.13 Murine KSL isolation 

 

C57BL/6 or Balb/c Mice 

 

                                                         Femur 

 

                                              Bone Marrow harvest 

 

                                        Red Cell Lysis 

 

                                   Cell count and viability 

 

                                                   Lineage
pos

 cell depletion 

  

                                                    Cell count and viability            

                                                          

                                                           FACS staining 

 

                                                              FACS Sort 

 

                                    Cell count and viability 

 

                                                            c-Kit
pos 

sca-1
pos

 

                                                      Lineage negative cells 

 

Figure 10: Flow chart of processing involved in murine stem cell isolation. 
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1.14 KSL isolation 

The KSL cells are isolated from the femurs and tibias of the mice. The mice are sacrificed 

and the femurs and tibias removed and flushed for marrow contents. The red cells are 

removed using red cell lysis solution after which the cells are stained with antibodies labelled 

with magnetic beads directed against antigens associated with lineage specificity. The cells 

are passed through a magnetic field where cells labelled magnetic beads directed against 

lineage are retained. Cells that do not express lineage antigens are passed through the 

magnetic field resulting in the isolation of an immature population of cells. The lineage 

negative cells are stained by fluorescent labelled antibodies directed against c-Kit and Sca-1 

allowing the immature cells to be separated into cells that express both c-Kit and Sca-1 and 

those that do not. The antibody directed against Sca-1 is a Fluorescein isothiocyanate (FITC) 

labelled anti-mouse Sca-1 antibody (BD Biosciences Pharmingen™). FITC is fluorescent dye 

that has an excitation wavelength of 488nm which is emitted of 530nm. The antibody 

directed against c-Kit is a Phycoerythrin (PE) labelled anti-mouse c-Kit antibody (BD 

Biosciences Pharmingen™). PE is excited at a wavelength of 488nm and is emitted at a 

wavelength of 628nm. Cells expressing both Sca-1 and c-Kit can be physically separated 

from those that do not using a FACS cell sorter. The lineage negative cells, when stained for 

Sca-1 and c-Kit are also stained with 7 Amino-Actinomycin D (7AAD). 7AAD is a DNA dye 

that can be used for cell viability. It is a specific G-C base intercalator (Cowden, 1981) 

allowing cells with intact cell membranes be distinguished from those with a degraded or 

damaged cell membranes. Intact cell membranes exclude the dye while damaged cell 

membranes are permeable to the dye. Upon entry into the cell, the dye forms a fluorescent 

complex with the DNA which can be excited and observed in the red portion of the spectrum 

at a wavelength of 488nm (Zelenin, 1984). The cells when isolated represent a live 

population of cells that are highly enriched for HSCs.  
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Aims 

1. To investigate if Pleiotrophin causes expansion of Haemopoetic Stem Cells in vitro 

and at what stage of haemopoetic progenitor does it effect. 

2. To investigate whether PTN signalling is necessary for HUBEC-mediated expansion 

and recovery of HSCs post radiation injury in vitro. 

3. To examine if PTN arrests cells in the G0 phase of the cell cycle. 

4. To examine the homing effect of PTN on Haemopoeitic Stem Cells. 

5. To determine if PTN can induce Haemopoeitic Stem cell regeneration post radiation 

injury in vivo, by examining mature cell reconstitution and survival.  

6. To examine histologically damage caused to the marrow spaces with PTN treatment. 

7. To investigate if ptn gene in response to radiation injury is up-regulated in marrow 

mononuclear cells.  
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Experimental Design 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

2.23.1 In vivo experiments; 

 

 

In vitro experiments. 

• Examination of HSC 

expansion with the addition of 

100 ng/mL and 500ng/mL                       

rPTN to radiated KSL cells in 

culture. 

 

• Investigation intoPTN 

signalling as a requirement for 

HUBEC mediated recovery of 

radiated KSL cells. 

 

 

• Examination of rPTN as a 

possible arresting factor for 

KSL  cells using Ki-67 

antibody cell cycle staining. 

 

In vivo experiments. 

• Examination of the homing 

effect of rPTN on KSL cells. 

• Examination of rPTN as a 

regenerative factor for HSCs 

in the marrow following 

radiation injury using MNC 

and KSL content with CFC 

assays. 

• Survival studies. 

• Mature blood cell 

reconstitution study. 

• Examination of possible 

histological damage to 

marrow due to rPTN 

treatment. 

• Investigation of ptn up-

regulation in response to 

radiation injury. 
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2.1 Murine MNC Isolation 

2.1.1 Mouse treatment 

The strains used for this research project were the C57BL/6 and Balb/c, all of which were obtained 

from the Jackson Laboratory (Bar Harbor Maine, U.S.A) and weighed between 20-30g. All mice were 

housed in the Cancer Centre Isolation Facility (CCIF) of Duke University, Durham, North Carolina. 

The mice were housed in an environment with filtered air, were on a sixteen hour light, eight hour 

dark schedule and had an endless supply of food (Labchow) and antibiotic treated water. All 

experiments were approved by the Duke University Institutional Animal Care and Use Committee. 

 

 

2.1.2 Murine Euthanasia 

Carbon dioxide inhalation was achieved by placing the mice in a top opening CO2 chamber. A slow 

flow of CO2 was introduced into the chamber to achieve a high concentration of CO2 at the base. 

After breathing ceased and the animal appeared unconscious, euthanasia was completed using cervical 

dislocation or dislocation of the neck. To perform cervical dislocation the animal was held by the tail. 

Fingers were placed at the back of the neck where a sharp pull at the base of the tail resulted in 

dislocation. 
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2.1.3 Femur and Tibia dissection 

For sterile femur and tibia dissection the mice were set up in a sterile fume hood and sprayed with 

70% ethanol. To fully ensure a sterile environment for BM collection, the dissection equipment 

(forceps and scissors) was also sprayed with 70% Ethanol.  

To begin, a single incision was made at the lower abdomen of the mouse. An additional 

incision was made at the side of the leg leading to femur exposure. A further incision was made above 

the femur which was directed towards the abdomen thus removing excess muscle. Following this the 

scissors were placed underneath the femur at a right angle to the knee and an incision was made. The 

scissors was placed into the new incision and also on the outside of the knee (still at a right angle to 

the knee) where a cut is made through the knee. Following this the femur was detached from the hip 

joint using the scissors. Subsequent to femural removal, tibia removal commenced. The skin 

remaining on the lower leg was pulled to the ankle where an incision was made through the ankle. 

The tibia was then turned upside down so that the remaining knee joint was resting on the bench, 

allowing excess muscle to be removed. A final incision was made above the knee detaching the tibia 

from it. 
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2.1.4 Murine Bone Marrow harvest 

The bone marrow from the femur and tibia was harvested using sterile techniques and was performed 

in the sterile environment of the fume hood. The ends of the femur and tibias were cut off just below 

the end of the marrow cavity using sterile scissors and forceps. A 5mL syringe filled with 10% Fetal 

Bovine Serum (FBS) (appendix) was then inserted into the spongy bone exposed by removal of the 

bone ends. The contents of the syringe were flushed through the bone marrow with reasonable force 

into a 50mL tube below containing 25mLs of 10% FBS diluted in Phosphate buffered serum (PBS). 

This process was repeated a number of times from each end of the femur and tibia allowing for 

maximum haemopoeitic stem cell (HSC) collection. The approximate total cell yield per mouse is 

20x106 cells.   

 

2.1.5 Murine MNC isolation 

Following bone marrow isolation, the contents were centrifuged at 1400rpm for 5 minutes resulting in 

the formation of a pellet of cells. The supernatant was aspirated and 10mL red cell lysis buffer 

(Sigma-Aldrich Chemical company Ltd St. Louis, MO) added to the cells, mixed using a vortex and 

left sitting for 5 minutes. The red cell lysis buffer removes contaminating red cells from the cell 

suspension by mediating the generation of a hypotonic environment. To return the solution to one that 

was isotonic, 40mL 10% FBS was added to bring the volume up to 50mL. Again the cells were spun 

and the supernatant aspirated. 20mLs of 10 % FBS was added to the cells to generate a dilute 

concentration of cells whereby an accurate cell count could be performed.  
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2.2 MNC viability and purification.  

2.2.1 Cell counting  

A cell count was performed using a haemocytometer and Nikon microscope to determine the 

concentration of cells in the cell suspension while the viability count determined the number of viable 

cells. The cell count and viability were determined simultaneously with the use of Trypan Blue 

(Sigma-Aldrich Chemical company Ltd.) and a haemocytometer. Cells were diluted to the desired 

concentration which was usually a 1 in 5. 10µl of this suspension was added to the haemocytometer 

and examined under the microscope (10x) where a cell count was determined. The Nuebauer 

haemocytometer was used and has a grid which is divided into 9 squares. Each of the nine squares is 

1mm x 1mm x 0.1mm (depth under the coverslip). The cells in a single square would therefore equal 

the number of cells in 0.1µl, with 1µl equalling 1mm
3
 (taking the dilution factor into account) or if 

multiplied by 10,000 than the number of cells in 1ml. 

 

 

 

A           B 

Figure 11: Haemocytometer 

A: Looking down on haemocytometer.  

B: Head on view of haemocytometer with coverslip attached. 

www.ruf.rice.edu~bioslabsmethodsmicroscopycellcounting.html 

 

 



 

 

37 

2.2.2 Cell Viability 

Trypan Blue dye was added to the cells to determine cell viability. Degraded cells are permeable to 

the dye due to cell membrane damage, the viable cells however have intact cell membranes and as a 

result, exclude dye entry. 

 

2.2.3 Column purification of Murine Lineage negative cells 

To isolate a population of immature cells from the mononuclear cell (MNC) population the MACS 

magnetic cell sorting kit (Miltenyi Biotec Ltd. Bisley, United Kingdom) was used following the 

protocol suggested by the manufacturers. Murine HSCs are do not express surface antigens associated 

with lineage or maturity, the MACS magnetic cell sorting kit allows selection of these cells, that do 

not express antigens associated with lineage or maturity, be isolated. The cells once counted as 

outlined in section 2.6, were re-suspended in a volume of 40uL of 10% FBS per 10
7 

cells. For every 

107 cells 10uL of a Biotin-Antibody cocktail was added and incubated for 10 minutes at 4-8OC.  The 

antibody cocktail includes antibodies directed against antigens associated with lineage and is the 

primary labeling reagent. The antibodies in the cocktail included Mac-1 Gr-1 Ter 119, B220 and CD5. 

Subsequent to this 30uL of 10% FBS was added per 107 cells. After which 20uL of anti-Biotin 

MicroBeads per 10
7 

cells were added and incubated for 15 minutes at 4-8
o
C. The anti-Biotin 

Microbeads are the secondary labeling reagents which recognise the Biotin labeled primary antibody 

attached to lineage antigens resulting in the indirect magnetic labeling of lineage positive cells. To 

remove these lineage positive cells from the cell suspension, the cells were washed twice by adding 1-

2mL of 10% FBS per 107 cells and spinning them for 10 minutes at 300g. The supernatant was 

removed and the cells bound and unbound (up to108 cells) were re suspended in 500uL of 10% FBS 

and added to the magnetic column for separation. However before the cells could be added to the 

column, it was primed firstly. Priming was achieved through the addition and passage of 3mls 10% 

FBS through the column. When passing through the column, magnetically labeled lineage positive 

cells were retained at the magnetic field, allowing lineage negative, unlabeled cells pass through the 
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column resulting in the formation and isolation of a pure suspension of lineage negative or immature 

cells, in which the HSCs are contained. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Magnetic cell sorting of Lineage negative cells. 

 

 

 

 

Magnetic labeling 

Cells to be removed, Lineage positive 

cells are magnetically labelled with 

MACS microbeads directed against 

antigens associated with lineage. 

Magnetic Separation 

Cells are separated when placed in the 

MACS separator (strong magnetic field) 

whereby magnetic labeled cells are 

retained at the magnetic field while the 

cells free from labeling elute through the 

column.  

The cells eluted from the column are 

unlabelled lineage negative cells. 
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2.3 MNC RNA isolation 

2.3.1 MNC isolation Lymphoprep technique. 

To isolate a population of MNCs from marrow cells 15mL of Lymphoprep™ was added to a 15mL 

tube. The contents of the marrow when flushed into 10% FBS as outlined in section 2.1.4 was spun at 

1500rpm for 35 minutes. The the marrow contents were placed in on top of the Lymphoprep™, which 

has a density of 1.077g/mL, the red cell and granulocytes sink to the bottom while the MNC’s remain 

at the sample medium interface. The MNC layer was then collected and diluted to 40mL with 10% 

FBS and spun at 1500rpm for 10 minutes. After centrifugation the MNC’s formed a pellet at the base 

of the tube. In this pellet however some red cells remained so in order to isolate a pure polymorph 

suspension the contaminating red cells were removed as outlined in section 2.1.5. 

2.3.2 MNC RNA isolation 

MNC RNA isolation was achieved using the RNeasy Mini-Kit (Qiagen, Ambion Inc, Austin, Texas). 

The MNCs when isolated were lysed through the addition of 350µl of cell lysis solution RLT (<5x106 

cells) or 600uL RLT for cells that are 5x106 - 1x 106. To remove cell debris the cell solution was 

added to a tube which passed the cells through a filter unit when spun at 8000g for 2 minutes into a 

collecting tube. The filtered solution was then transferred to a RNeasy spin column, placed in a 2mL 

collection tube and centrifuged for 15 seconds at 8000g which mediates RNA binding. The RNA and 

DNA were then bound to the column while the protein passed through into the collecting tube. The 

flow through was discarded. The Rneasy spin column containing bound RNA and DNA was added to 

a 2mL collection tube and 700uL of RW1 buffer was added to the column and centrifudged at 8000g 

for 15 seconds in order to desalt the column membrane and result in more efficient DNase 1 digestion. 

500uL RPE was added to the column and spun at 10,000rpm for 2 minutes to wash the column 

membrane. This washing step was performed twice. After this the column was added to a 1.5mL 

collection tube where 30-50uL of RNase free H2O was added to the column and spun at 8000g for 1 

minute, to elute highly pure RNA.  
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2.3.3 MNC RNA quantitation method. 

Quantitation of RNA was achieved using the nanodrop® ND-1000 spectrophotometer. The nanodrop 

system is an electric spectrophotometer linked to a computer system, which provides RNA 

concentration and purity results from a sample in seconds. 1µl of sample was added to the nanodrop 

and closed after which the machine reports results via the computer screen. 

 

2.3.4 Real-Time PCR 

Real- time PCR performed was a two step reaction whereby cDNA was generated from RNA and 

amplified. The newly generated cDNA was used in the Real-time PCR analysis. 

 

2.3.5 cDNA generation 

cDNA was generated from the recently isolated RNA outlined in section 2.3.2 using the high capacity 

cDNA Reverse Transcription kit (Applied Biosystems, California, USA). A 2x master mix was 

prepared on ice. The mix contains Kit reverse transcription products 2.0uL 10X RT buffer, 0.8uL 25X 

dNTP mix 100mM, 2.0uL 10x RT random primers, 1.0uL multiScribe™ Reverse Transcriptase and 

4.2uL nuclease free H2O. The mix was mixed gently and placed on ice. 10uL of this master mix was 

added to the required wells of a 96 well plate. 10uL of RNA sample was added to each well 

containing 10uLmix in the 96 well plate and pipetted up and down a few times to mix. The plate was 

sealed using cling film and centrifuged at 10,000 rpm for 10 minutes to spin the contents to the base 

of the well and to remove any bubbles. The plate was placed on ice until ready to load onto the 

thermocycler (2720 Thermocycler, Applied Biosystems).  The Thermocycler was set up to run at 

25OC for 10 minutes firstly 37OC for 120 minutes, 85OC for 5 seconds and to remain at 4OC when 

completed until ready to be removed from the cycler. The plate was loaded onto the thermocycler and 

the reaction started. 
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2.3.6 Real-Time Polymerase Chain Reaction (PCR). 

To perform a Real-time PCR reaction on the recently generated cDNA a master-mix containing 

reagents supplied in the Taqman Gene expression Assay Kit specific for the ptn gene was added to 

1.5mL microcentrifudge tubes for each sample. For each sample 1.0uL of 20X Taqman Gene 

expression Assay, 9.0uL cDNA template diluted to the desired concentration (1-100ng) in Rnase free 

H2O and 10uL 2X Taqman gene expression Mastermix, containing primers directed at the ptn gene 

were added. The tube was capped and centrifuged at 8,000g for 2 minutes. 20uL of the PCR reaction 

mix was added to the desired wells of a 96 well plate. The plate was sealed and centrifuged at 

10000rpm to remove any bubbles within the wells. The plate was loaded onto the 7300 RT-PCR 

system, (Applied biosystems) and was set up to run at 50OC for 2 minutes, 95OC for 10 minutes and 

40 cycles of 95
O
C for 15 seconds and 60

O
C for 1 minute. The 2

-∆∆
Ct method was used to analyse gene 

expression in each sample relative to the housekeeping gene GAPDH.  
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2.4 Murine MNC separation by Flow Cytomery 

2.4.1 Murine FACS sorting for c-Kit expressing, Sca-1 expressing, Lineage negative cells (KSL). 

In order to purify the immature lineage negative cell population to a population of cells that are 

known to contain stem cells, flow cytometric sorting was employed. Flow cytometric sorting allows 

cells expressing particular surface antigens be physically separated from cells that do not using 

fluorescently labelled antibodies directed against the surface antigens of interest. The flow tubes were 

set up as outlined below in table 1. 20,000 cells were added to each of the compensation tubes (1-4). 

Compensation allows any spill over fluorescence to be detected and removed. 20,000 cells were also 

added to the isotype control (5) (Becton Dikinson and company Ltd.) ensuring no non-specific 

binding of the antibodies to the cells occurred providing false positive staining. The Lineage negative 

cells that were to be separated were added to tube (6) as were all of the fluorescently labelled 

antibodies.  
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Staining was as follows: 

TUBE FITC PE PE-CY5 

1 --- --- --- 

2 Sca-1 (2) (Becton, 

Dikinson and Company 

Ltd. Lot: 40174 

--- --- 

3 --- c-Kit (2) (Becton, 

Dikinson and Company 

Ltd.  Lot:74612 

--- 

4 --- --- 7 AAD (5) (Becton, 

Dikinson and Company 

Ltd. Lot: 93823 

5 Rat IgG (1) (Becton, 

Dikinson and Company 

Ltd. Lot: 52205) 

 

IgG (1) (Becton, 

Dikinson and Company 

Ltd. Lot: 21237 

--- 

6 Sca-1 (2) (Becton, 

Dikinson and Company 

Ltd. Lot: 40174 

c-Kit (2) (Becton, 

Dikinson and Company 

Ltd.  Lot:74612 

7 AAD (5) (Becton, 

Dikinson and Company 

Ltd. Lot: 93823 

Table 1: Staining of Lineage negative cells for c-Kit and Sca-1 antigens for FACS sorting. 

*Number in brackets ( ) indicates the amount in uL added per 1 million cells. 

 

The cells were stained at 4-8OC for 20-30 minutes in the dark.  7 AAD, which stains degraded cells, 

was not added at this point. During the 30 minute incubation two 15mL tubes were set up with 2ml 

10% FBS to allow for the collection of cells that express c-Kit and Sca-1 into one tube and those that 

do not into the other tube. Following the 30 minute incubation the flow tubes were washed with the 

addition of 2ml PBS to each of the tubes, centrifuged at 1400rpm for 5minutes to pellet the cells and 

the supernatant aspirated. The compensation tubes were resuspended in 200µl PBS and the sort tube 

(tube 6) was resuspended in 500-1000 µl PBS. The PE-CY5 labelled 7AAD antibody (Becton, 

Dikinson and company Ltd) was added to the tubes outlined above in table 1. The flow tubes were 

then placed on ice and transported to the FACS cell sorter facility, Duke University, Durham, NC.  

The cell sorter employed was the Becton Dickinson FACSVantage SE cell sorter. When passed 

through the cell sorter a pure population of cells that were viable, Lineage negative (immature) and 

expressed the surface antigens c-Kit and Sca-1 was obtained.  
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2.5 HUBEC isolation and culture.  

2.5.1 Endothelial cell culture  

To examine the effect Human brain endothelial cells (HUBECs) had on irradiated KSL cells in vitro, 

the 1 million HUBECs were placed in a flask and incubated at 37OC with 5% CO2  for two or three 

days thus ensuring sufficient numbers were generated so as to conduct the experiment.  The 30mL cell 

culture flask was gelatinized by adding enough 10% Gelatin (Sigma-Aldrich Chemical company 

Ltd.), solution (appendix) to sufficiently coat the base and incubated at RT for one hour. This gelatin 

allows attachment of the HUBECs to the flask surface promoting endothelial cell growth. While the 

gelatin was coating the flask the Endothelial Cell Culture Medium (ECCM), (appendix) was heated in 

the water bath (37oC) after which the endothelial cells were thawed or trypsinized. 

To thaw the Human Brain Endothelial cells (HUBECs) that had been stored in liquid nitrogen 

without causing damage to them they were thawed quickly to remove all ice crystals. In order to 

achieve this, the cells were kept on dry ice pellets until they were ready to be placed into the water 

bath, maintained at 37
O
C, where they remained until the ice crystals disappeared. Following this the 

cells were added to 5mL 10% FBS, pelleted, counted and resuspended in 5mL ECCM. 

Alternatively to trypsinize cells that are ready for passage, the media was aspirated and the 

flask washed twice with sterile PBS. Sufficient trypsin was added to coat the bottom of the flask 

which detached the cells from the surface of the flask. The flask was incubated at 37OC for three 

minutes in the humidified CO2 incubator. Following three minutes incubation the trypsin was 

inactivated through the addition of 5mL 10% FBS. The trypsin must be inactivated soon after this 

time as it can be toxic to the cells. Following this treatment the cells were collected and washed twice 

with 5mL ECCM. The cells were pelleted, counted and resuspended in 5mL ECCM. 

When the HUBECs were thawed or trypsinized they were counted and viability was 

determined via Trypan Blue exclusion as outlined in previous section 2.2. Concurrently to this the 

gelatin coating the flask (above) was aspirated and the flask washed once with phosphate buffered 

Saline (PBS) and was subsequently aspirated. Endothelial cell culture medium (ECCM) was added to 
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the flask, 12mL for a flask that supports 75cm2 of growth (T75) and 25mL for a flask that supports 

175cm2 of growth (T175). The endothelial cells were added to the flask whereby 1-5x105 cells were 

added to the T75 flask and 0.5-1x10
6
 cells were added to the T175 flask. The cells were incubated in 

the humidified CO2 incubator at a temperature of 37OC for up to seven days where they grow attached 

to the flask. Following seven days in culture the endothelial cells were re-passed. 
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2.6 KSL cell and progeny flow cytometry staining and analysis. 

2.6.1 Flow cytometric staining. 

Isolated KSL cells were added to the wells of a 12 well plate under different conditions and incubated 

for 7 days at 37
O
C with 5% CO2. The wells after seven days contained a heterogenous population of 

cells such as KSL cells, their progeny and fully mature cells. The cells were collected into tubes 

containing 5mLs 10% FBS, spun down and resuspended in 200µl 10% FBS for cell count and 

viability staining using Trypan blue (Sigma-Aldrich Chemical company Ltd). In order to quantify the 

KSL cells within the heterogenous population of cells flow cytometry was performed. This does not 

separate the cells based on phenotypes but analyses the quantity of particular cells within a mixed 

population based on surface antigen expression.  Compensation performed was identical to that 

outlined in section 2.4.1. Flow cytometry sorting as and 7ADD staining both of which follow the 

same principle. In order to identify the immature population of cells within the mixed population APC 

fluorescently labeled antibodies directed against lineage were employed instead of MACS cell sorting, 

as cells do not need to be separated for analysis.  20,000 cells from each treatment well was stained 

with an isotype antibody (5) which ensures no non-specific binding of the antibody to the cells 

resulting in false positive staining. The remainder of the cells from each well were added to seperate 

tubes (6) for analysis and each of the antibodies (Anti-Sca-1, Anti-c-Kit and Anti-Lin) and DNA dye 

7 AAD added to each tube. Table 2 below summarises the staining protocol. 
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TUBE FITC PE PE-CY5 APC 

1 --- --- --- --- 

2 Sca-1 (2) 
Becton, 

Dikinson and 

Company Ltd 

 Lot : 40174 

--- --- --- 

3 --- c-Kit (2) 

Becton, 

Dikinson and 

Company Ltd 

Lot: 74612 

--- --- 

4 --- --- 7 AAD (5) 
Becton, 

Dikinson and 

Company Ltd 

Lot: 93823 

--- 

5 Rat IgG (1) 

Becton, 

Dikinson and 

Company Ltd 

Lot : 21237 

IgG (1) Becton, 

Dikinson and 

Company Ltd 

Lot : 52205 

--- LIN (20) 

Becton, 

Dikinson and 

Company Ltd 

Lot : 19744 

6 Sca-1 (2) 
Becton, 

Dikinson and 

Company Ltd 

Lot : 40174 

c-Kit (2) 
Becton, 

Dikinson and 

Company Ltd 

Lot: 74612 

7AAD (5) 
Becton, 

Dikinson and 

Company Ltd 

Lot: 93823 

LIN (20) 
Becton, 

Dikinson and 

Company Ltd 

Lot : 19744 

 

Table 2: Staining for c-Kit and Sca-1 antigens on Lineage negative cells for FACS analysis following 

incubation for 7 days. Numbers in brackets indicate volume in µl per 1 million cells. 

  

Staining duration, incubation and washing of the cells was identical to the staining procedure outlined 

in section 2.2.5 for flow sorting, one difference is that all of the tubes are resuspended in 200uL PBS 

for analysis. The cells were analysed on the FACSCanto II as outlined in section 2.6.1 and the % KSL 

content between the treatment groups determined 
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2.6.2 CFDA-SE staining 

The staining of KSL and MNCs was achieved using a Vybrant® CFDA SE Cell Tracer Kit 

(Molecular Probes™, Invitrogen detection technologies, Eugene, Oregon, USA).  Staining was 

performed as per manufacturers’ instructions. The kit provided vials of 10mM CFDA-SE stock 

solution (Component A) and DMSO (Component B) which are stored at -20OC. Prior to the staining 

of cells the reagent must be prepared whereby 1 vial of Component A and Component B are 

defrosted. Into the 10mM CFDA-SE stock solution, 90uL of DMSO or Component B was added. The 

solution was then diluted to 0.1uM using Phosphate Buffered Saline (PBS). In order to label cells with 

the CFDA-SE dye in suspension, the cells were centrifuged at 1400rpm for 5minutes and a pellet 

formed. The supernatant was aspirated from the cells which were re-suspended in 1mL pre-warmed 

10% FBS containing the probe prepared previously. The cells and labeling reagent were incubated in 

a water bath at 37
O
C for 15 minutes after which they were centfiruged at 1400rpm for 5minutes and 

re-suspended in 1mL fresh pre warmed 10% FBS. The cells were incubated for 30 minutes in a water 

bath at 37
O
C to ensure  complete staining of the cells. The cells were centrifuged at 1400rpm for 

5minutes and resuspended in 800uL 10% FBS.  

 

2.6.3 Flow cytometry analysis 

2.6.3.1 FACS set up 

When start up of the FACS CantoII (Becton, Dikinson and company Ltd.) was completed, cytometer 

set up and tracking beads (Becton, Dickinson and company Ltd.) were run on the machine to ensure it 

was working correctly and met quality control requirements. One drop of beads (stored at 4OC) was 

added to 250uL PBS in a flow tube, vortexed and loaded manually onto the cytometer. When the 

beads had passed quality control requirements the cytometer was then prepared for sample analysis. 

Preparations include the generation of a new workfile and compensation of the fluorescent labeled 

antibodies. Samples for analysis are then vortexted and loaded manually or in a rack.  
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2.7 Murine Colony-Forming Cell Assays 

2.7.1 Colony forming cell assay (Short-term). 

In order to generate a medium that promotes colony formation 400uL of a mix containing 356uL 

IMDM (Iscove’s Modified Dulbecco’s medium) 40uL FBS and 4uL Pen/Strep is added to a 15mL 

tube. To this mix 4mL Methocult (Stem cell technologies Inc. Vancover Canada) is added. To this 

tube containing the mix and 4mL Methocult, 2,000 cells were added and mixed vigorously. The 

number of cells added allow for four dishes to be prepared with approximately 500 cells per dish, 

although the required amount was three. The extra cells allow for those lost due to the viscosity of the 

methocult mixture. 1.2mL of mix containing IMDM, FBS, Pen/Strep Methocult and cells was added 

to each of the 35mm gridded colony forming cell (CFC) dishes (Thermo Fisher Scientific MA, U.S.A) 

where complete coating of the entire dish was ensured. All of the 35mm CFC dishes were added to a 

single large cell culture dish, to which a single CFC dish filled with sterile water was added. This was 

to prevent drying out of the cultures during the 14 day incubation at 37
O
C in 5% CO2. After two 

weeks, the hematopoietic colonies in each plate were counted and scored  

 

2.7.2 Long-term culture initiating cell Assay.   

Murine M2-10B4 (ATCC CRL-1972) bone marrow stromal cells were plated in a 24 well 

dish and irradiated with 1500 cGy (Cs-137 source) as outlined in section 2.9.1. 45,000, 

90,000, and 180,000 of bone marrow mononuclear cells isolated from the femurs of mice as 

outlined in section 2.1 and were added to the stromal cell layers. 20,000 stromal cells were 

added to the wells and incubated at 37
O
C with 5% CO2 in 1mL long term culture medium for 

two days prior to MNC addition. The MNCs, when added to the stromal layer were incubated 

at 37
O
C with 5%CO2 in 1mL long term culture medium (StemCell Technologies) with 

weekly half-medium changes for 4 weeks. 
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Following four weeks in incubation the cells from each well were collected counted using the 

procedure outlined in section 2.2 and the MNCs, progeny and stromal cells in each well 

divided between three 35mm methocellulose dishes (MethoCult, StemCell Technologies) as 

outlined in section 2.7.1.   

 

2.8 Murine Bone Marrow Histology 

2.8.1 Bone Marrow slide preparation 

Murine femurs were dissected from recently euthanized mice outlined in section 2.1 and collected into 

a 15mL tube containing 5mLs 10% FBS solution. Excess tissue was removed from the femurs by 

means of gauze. Subsequent to this the femurs were placed in 5ml Cal-Ex Decalcifying solution 

(Thermo Fisher Scientific Inc. MA, U.S.A) on ice for 30 minutes. This step aims to decalcify the 

bones to allow for successful sectioning. The femurs were placed in increasing sucrose gradients of 

1mL of 10% 15% and 20% solutions (appendix) each for three minutes. Following this each of the 

femurs was placed in 1mL 1:1 Optimum cutting temperature (OCT) medium (Sakura Finetek Ltd.): 

20% sucrose solution (appendix) and incubated overnight at 4
O
C. The following day the femurs were 

removed and placed in a labeled Tissue-Tek cryomould (Sakura Finetek Ltd Chicago IL U.S.A) and 

OCT (Sakura Finetek Ltd.) is added to cover the femur. Freeze embedding of the femur was achieved 

by placing the cryomould on dry ice until frozen. Samples were stored at -80OC until required for 

sectioning. The sections were cut using the cryostat (Leica Ltd. Solms Germany) following which 

they were fixed in cold (-20
O
C) acetone for 5-10 minutes. The slides were stored at -80

O
C until 

required for staining. 
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2.8.2 Bone Marrow staining 

The sections were fixed in 10% Formalin solution (appendix) and washed under running tap water. To 

stain with Haematoxylin the slides were immersed into a container filled with Harris Haematoxylin 

(Sigma-Aldrich chemical company Ltd.) for 3 seconds. The slides were rinsed in running H2O. To 

differentiate the slides were added to a 0.5% acid water solution for five seconds and rinsed in 

running H2O. The slides were added to Scotts tap water substitute concentrate (Sigma-Aldrich 

chemical company Ltd), an alkaline solution, to blue and again rinsed with running H2O. To 

counterstain the sections, the slides were added to an acidified Eosin stain (Sigma-Aldrich chemical 

company Ltd.) for two minutes and rinsed in running H2O. To dehydrate the sections they were added 

to three grades of alcohols 80% first, 95% and 100% alcohol with one minute per solution. Following 

this the slides were added to three xylene solutions in sequence with 90 seconds per solution. To 

mount the slides cryoseal was added to the slides and a coverslip placed on top. 

 

2.9 Murine in vivo and Murine KSL cell in vitro radiation 

2.9.1 Irradiation 

Radiation exposure of the KSL cells ex vivo or the mice was achieved through the use of the Cesium 

137 irradiator (MDS Nordion, Ottowa, Ontario, Canada), which is a small gamma irradiator. The mice 

were placed into circular containers (4 or 5 mice per container). Filter paper was added to the slots to 

allow air flow into the containers and an elastic band was placed around the container to keep it 

closed and the filter paper in position. The circular containers were added to a rectangular carrying 

case (4 containers per carrying case). The carrying case was placed into three plastic bags and 

transported to the irradiator room. The three bag wrap-up aims to ensure no air exchange between the 

external environment and the mice and vice versa occurs. On entry into the irradiator room the 

containers were removed from the carrying case and placed inside the unlocked irradiator. The timer 

was set to achieve the desired radiation dose and ‘reset’ was pressed. The irradiator door was closed 
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and ‘source raise’ pressed. When radiation was complete the mice were wrapped up in plastic bags 

and transported back to the mouse housing facility. 

 

 

 

 

Figure 13: Illustration of the Cesium 137 gamma irradiator displaying the control panel, the handle and the 

irradiation chamber. 

http://ehs.columbia.edu/Images/CsI37Irradiator.gif 
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2.10 Murine inteaperitoneal and intravenous injections. 

2.10.1 Murine intraperitoneal injections (IP) 

To begin IP injections the working area on the mouse was firstly cleaned down with ethanol and an 

extra cage obtained to house mice following injection. The syringe was unwrapped and loaded with 

the appropriate volume for injection. The volume for injection was 200uL with a concentration of 

100ng/mL rPTN or saline. The mouse was picked up by the tail with the right hand and scruffed 

behind the neck with the left hand. Once a secure grip was achieved the mouse was turned so the 

abdomen directed upwards. The mouse was tilted back so that the head was directed downwards. The 

abdomen was sprayed with ethanol and the contents of the syringe injected into the peritoneal cavity. 

 

2.10.2 Murine intravenous tail vein injections 

To begin tail vein injections the mice were placed under a heat lamp to increase blood flow to the tail 

vein and dilate the vessels, aiding vein injections. The mice were placed into a plastic cylindrical 

restriction device whereby the body was restrained but their tail is free at one end. The tail was 

cleaned with an alcohol wipe and the lateral veins located. Injections occurred at the top of the tail 

(nearest the body) and pressure applied to the site for a few seconds to stop the bleeding. The mice 

were returned to their cages.  
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2.11 Murine peripheral blood collection and analysis. 

2.11.1 Submandibular bleed 

The method used for submandibular bleeding was that which is outlined by Golde et al, 2005. 5uL 

EDTA (BD) was added to Eppendorf tubes which were labeled appropriately. The lancet was 

removed from sterile packaging ready for use. Subsequent to this the mouse was picked up by the tail 

with the right hand and scruffed with the left hand with the abdomen facing downwards. According to 

Golde et al, 2005 the lancet is directed towards the jugular vein where the retro-orbital and 

submandibular veins, which drain the face, meet (Figure 14). 

 

Figure 14: Bleeding from the mouse targets the Jugular vein where the retro-orbital and submandibular veins 

originate. (Golde et al., Technique 2005) 

The lancet was directed into the cheek of the mouse with a small amount of force to create a hole 

from which the blood was discharged in droplets (Figure 15). The droplets were collected into an 

eppendorf tube which contained 5uL EDTA and mixed vigorously to prevent clot formation. To stop 

bleeding from the cheek, sterile gauze was applied with some pressure to the source. The mice self 

groomed shortly afterwards and no evidence of the puncture existed subsequently. 
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Figure 15: Blood collection using Submandibular bleed method. 

A: Incision of the cheek with Lancet 

B: Collection of blood from the cheek 

Golde et al., Technique 2005 

 

2.11.2 Full blood count analysis. 

Full blood counts were performed on the HEMAVET 950FS haematology analyzer (Drew Scientific 

Inc., Oxford CT, U.S.A). The machine was standardised using mouse control (Drew Scientific Inc.) 

prior to sample analysis. Once sample analysis was complete the Hemavet produced a report 

containing a variety of parameters including white cell count, red cell count and platelet count. On 

completion of required tests the HEMAVET was cleaned and powered off.  
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2.12 Ki-67 Proliferation assay. 

2.12.1 Ki-67 7AAD Assay 

The Ki-67 7AAD assay is one that is performed over two days. 

Day 1 

KSL cells when isolated as outlined in previous section (2.1) were added to wells under different 

conditions and incubated for 7 days at 37
O
C with 5% CO2. On day seven the cultures were collected 

and added to 2.5mL eppendorf tubes. The cells were spun down at 1000rpm for 10 minutes to form a 

pellet. The supernatant was removed and the pellet resuspended in 2mL 10% FBS. The cells were 

centrifuged and resuspended in 100uL 10% FBS where a cell count was performed and cell viability 

examined for each well using Trypan Blue exclusion. The cells were stained using fluorescently 

labeled antibodies, a PE labeled antibody directed against c-Kit, a PE Cy7 labelled antibody directed 

against Sca-1 and Lineage APC directed against antigens associated with lineage as outlined in 

section. The cells when stained were resuspended in 2mL Phosphate Buffered Saline, centrifuged at 

1000 rpm for 10 minutes. The supernatant was removed and the cells were resuspended in 400uL 

4.0% Formaldehyde (Appendix). The cells were put on ice for 1 hour after which 400uL of 0.2% 

triton X-100 was added to the cells on top of the 400uL 4.0% Formaldehyde the Triton-X 

permeabilises the cells. The cells were incubated overnight at 4
O
C covered in tinfoil, to prevent 

photobleaching. 

 

Day 2 

1.2mL 1% FBS (appendix) was added to the cells and centrifuged at 1000rpm for 10 minutes. The 

supernatant was removed and the cells resuspended in 100uL 1% FBS. 10uL of FITC labeled IgG 

antibody was added to the isotype tubes. The isotype tubes are used to control any non-specific 

binding. 20uL of FITC labelled Ki-67 antibody is added to the tubes containing the cells of interest. 

The cells were incubated for 20-30 minutes at room temperature (covered in foil). Following this 

incubation 2mL 1% FBS is added to the tubes and spun at 1000 rpm for 10 minutes. The supernatant 
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was removed and the cells were resuspended in 500uL 1% FBS and incubated at 4OC for one hour 

allowing Ki-67 to diffuse into the cells. The cells after one hour were centrifuged at 1000rpm for 10 

minutes after which the supernatant was removed and the cells resuspended in 150uL 1% FBS. To 

this 150uL 1.5uL 7AAD was added. The tubes were then loaded onto the Flow cytometer and 

analysed as outlined in previous section (2.6.3). 

 

2.13  Statistical analysis. 

The statistical analysis method employed for this thesis was the T-Test method. This method looks to 

examine the mean of two groups of data to determine if they are significantly different. Significance 

applies where p< 0.05.  
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3.0 Results 
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3.1 PTN in vitro irradiation study 

3.1.1 This experiment was to assess whether the addition of rPTN was sufficient for the 

ex vivo expansion of HSCs in liquid suspension cultures. 

Mice 

20 C5BL/6 mice (8-9 weeks old) from the Jackson Laboratory (Bar Harbor Maine, U.S.A) were used. 

Bone Marrow collection 

The mice were sacrificed by CO2 euthanasia and cervical dislocation The femurs and tibia from each 

of the mice were dissected and flushed as outlined in section 2.1. 

KSL isolation 

The contents of the bone marrow underwent red cell lysis to achieve a mononuclear cell (MNC) 

population. Lineage positive cells were removed from the MNC population by means of magnetic cell 

sorting as outlined in section 2.2.3. This resulted in a pure Lineage negative population. This 

population of cells underwent further processing by means of Flow cytometry whereby cells that 

positively expressed c-Kit and sca-1 were collected to achieve a population of cells that were negative 

for antigens associated with maturity/lineage (Lineage negative), c-kit and sca-1 positive (KSL) and 

enriched for stem cells outlined in section 2.4. 

 

Radiation 

The c-kit
pos

 Sca-1
pos

 Lin
-
 cells, once isolated were exposed to 300cGy of radiation at a rate of 0.56 

cGy per minute as outlined in section 2.9. 

 

 

Cell culture 
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5000 c-kitpos Sca-1pos Lin- cells were plated in a 12-well plate with 1mL of TSF (appendix), 100ng/mL 

rPTN in TSF (Appendix) or 500ng/mL rPTN in TSF (Appendix). The KSL number per well in a 12-

well plate varies from 1000 cells (Varnum-Finney, 2003) to 10,000 cells (DeHart, 2005) ensuring 

adequate cell contact that is supportive to growth. The Chute laboratory however has determined an 

in-house optimum range of 5000-20,000 KSL cells per well in a 12 well plate.  The experiment layout 

was as follows each of which were performed in triplicate: 

 

Table 3: Experiment set up to test whether the addition of rPTN is sufficient for the ex vivo expansion of HSCs 

in liquid suspension cultures 

 

IR: Irradiated cells. 

NI: Non-irradiated cells 

TSF: Thrombopoeitin, stem cell factor and Flt 3 ligand (cytokine reagent). 

rPTN: Recombinant Pleiotrophin. 

The cells were cultured for seven days in 5% CO2 at 37oC. 

 

Seven day culture 

Following seven days in culture the cells were collected from the wells into 15mL tubes. The wells 

were washed to ensure maximum cell collection and a cell count and viability analysis was performed 

as outlined in section 2.2. The cultures were analysed individually for cell count, KSL content using 

flow cytometry and quantification of lineage committed progenitors using a colony forming cell 

assay. 

 

IR KSL + TSF 

 

IR KSL + TSF 100ng/mL rPTN 

 

IR KSL + TSF 500ng/ml rPTN  
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Figure 16: The average cell counts of KSL cells and progeny both mature and immature after 7 days in culture 

with TSF, TSF and 100ng/mL rPTN or TSF plus 500ng/mL rPTN, each of which were performed in triplicate. 

The cell count reflects the entire cell population in the well including the stem cells, stem cell progeny, lineage 

committed progenitors and cells at all stages of differentiation including those that have fully matured.  There is 

no significant difference in cell counts between the treated cultures with a p value of 0.3 for TSF against 

100ng/mL rPTN and a p value of 0.34 for TSF against 500ng/mL rPTN.  

 

To identify the specific stem cell enriched population within the cultures the KSL cells of the cultures 

were stained with antibodies labelled with fluorescent probes and analysed using flow cytometry. 

100,000 cells from each well was analysed initially through forward and side scatter allowing the 

population be centred around a live population of cells where the KSL population exists, denoted P1 

in figures 17,18 and 19. Subsequently this population was narrowed further when the cells expressing 

antigens associated with lineage or maturity were excluded, allowing the Lineage negative (Lin-) 

population to be analysed, denoted in Figures 17,18 and 19 as P2. This Lineage negative population 

was further categorised into a population of cells that were positive for both sca-1 and c-Kit denoted 

as P3 in Figures 17, 18 and 19. The content of cells that displayed a phenotype that was negative for 

lineage markers and positive for the sca-1 and c-Kit antigens could be compared between the cultures 

treated with TSF (Figure 17), 100ng/mL (Figure 18) or 500ng/mL rPTN (Figure 19). 
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TSF treated KSL cells. 

 

Figure 17: Flow cytometry report to determine the KSL population in a TSF treated culture. 18,000 purified 

KSL cells were irradiated with 200cGy radiation and added to a 12 well plate and suspended in TSF. The 

culture was incubated for seven days with 5% CO2 at 37OC. On day seven 100,000 cells were stained with 

fluorescent labeled probes directed against antigens associated with maturity (Lineage) and Sca-1 and c-Kit. P1 

denotes a live population of cells where the KSL cells reside. P2 denotes immature cells within the culture as 

these represent the cells that are negative for antigens associated with maturity or lineage. P3 denotes a 

population of cells within the lineage negative or immature population that display the antigens sca-1 and c-Kit 

as the haemopoetic stem cells are known to express these antigens. The KSL cell percentage within the Lineage 

negative population was 1.5%. 
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rPTN (100ng/mL) + TSF treated KSL cells. 

 

Figure 18: Flow cytometry report to determine the KSL population in a rPTN treated culture. 18,000 purified 

KSL cells were irradiated with 200cGy radiation and added to a 12 well plate and suspended in 100ng/mL rPTN 

and TSF. The culture was incubated for seven days with 5% CO2 at 37OC. On day seven the cells were stained 

with fluorescent labeled probes directed against antigens associated with maturity (Lineage) and Sca-1 and c-

Kit. P1 denotes a live population of cells where the KSL cells reside. P2 denotes immature cells within the 

culture as these represent the cells that are negative for antigens associated with maturity or lineage. P3 denotes 

a population of cells within the lineage negative or immature population that display the antigens sca-1 and c-

Kit as the haemopoetic stem cells are known to express these antigens. The KSL cell percentage within the 

Lineage negative population was 3.5%. 
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rPTN (500ng/mL) + TSF treated KSL cells. 

 

Figure 19: Flow cytometry report to determine the KSL population in a rPTN treated culture. 18,000 purified 

KSL cells were irradiated with 200cGy radiation and added to a 12 well plate and suspended in 500ng/mL rPTN 

and TSF. The culture was incubated for seven days with 5% CO2 at 37OC. On day seven the cells were stained 

with fluorescent labeled probes directed against antigens associated with maturity (Lineage) and Sca-1 and c-

Kit. P1 denotes a live population of cells where the KSL cells reside. P2 denotes immature cells within the 

culture as these represent the cells that are negative for antigens associated with maturity or lineage. P3 denotes 

a population of cells within the lineage negative or immature population that display the antigens sca-1 and c-

Kit as the haemopoetic stem cells are known to express these antigens. The KSL cell percentage within the 

Lineage negative population was 1.9%. 
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KSL population percentages were determined using Flow cytometry within the TSF, TSF and 

100ng/mL rPTN and TSF and 500ng/mL rPTN cultures, each of which were performed in triplicate. 

In Figure 20 the % Sca-1 c-Kit Lin- is the percentage of cells that express both c-Kit and Sca-1 within 

the population of cells that are negative for antigens associated with Lineage or maturity. The Lineage 

negative percentage is the percentage of cells within the 100,000 analysed cells that are negative for 

lineage antigens. The % KSL is the number of cells within the 100,000 cells analyzed that are 

negative for antigens associated with Lineage and are c-Kit positive and Sca-1 positive. 

 

Condition % sca c-kit+ Lin- Lin- % % KSL 

TSF 1.5 37.2 0.558 

TSF 1.4 38.8 0.5432 

TSF 1.6 38.7 0.6192 

100ng/ml rPTN + TSF 3.5 28.3 0.9905 

100ng/ml rPTN + TSF 1.7 38.5 0.6545 

100ng/ml rPTN + TSF 1.2 40.1 0.4812 

500ng/ml rPTN + TSF 1.9 36.6 0.6954 

500ng/ml rPTN + TSF 1.5 37.6 0.564 

500ng/ml rPTN +TSF 1.6 38.8 0.6208 

 

Table 4: Table of results obtained from Flow cytometric report acquired from the analysis of 18,000 irradiated 

KSL cells added to a well containing either TSF, TSF and 100ng/mL rPTN or TSF and 500ng/mL rPTN in 

1mL. The cultures were incubated at 37
O
C with 5% CO2 after which 100,000 cells from each well was stained 

with Fluorescent labeled antibodies directed against the antigens Sca-1 and c-Kit and those associated with 

lineage. The % Sca-1 c-Kit Lin- is the percentage of cells that express both c-Kit and Sca-1 within the 

population of cells that are negative for antigens associated with Lineage or maturity. The Lineage negative 

percentage is the percentage of cells within the 100,000 analyzed cells that are negative for lineage antigens. 

The % KSL is the number of cells within the 100,000 cells analyzed that are negative for antigens associated 

with Lineage, are c-Kit positive and Sca-1 positive. 
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The KSL data outlined in Table 4 when complied into a bar graph, Figure 20 displayed no significant 

difference between all of the cultures. There was however a modest increase in the % KSL in cultures 

treated with PTN, in particular 100ng/mL rPTN, suggesting an increase in the stem cell enriched 

population within this culture. 

 

 

Figure 20: Percentage KSL cells of the total cell count after 7 days in culture with TSF, TSF and 100ng/mL 

rPTN or TSF plus 500ng/mL rPTN. There is no significant difference in KSL percentage between the treated 

cultures with a P value of 0.2 for TSF against 100ng/mL rPTN and 0.15 for TSF against 500ng/mL rPTN.  

There does however appear to be a modest trend in the KSL percentage with the cultures treated with 100ng/mL 

rPTN. 

 

To examine the self-renewal activity of the KSL cells within the cultures one may observe the fold 

expansion of KSL cells between the TSF, TSF and 100ng/mL rPTN and the TSF and 500ng/mL rPTN 

cultures. The input of KSL cells to each culture was 18,000 cells. The total number of KSL cells was 

determined from the % KSL figures from Table 4 divided by 100 multiplied by the total cell count for 

each culture. This KSL number is then divided by the input cells (18,000) to determine fold 

expansion. 
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Condition Total cell count % KSL KSL no. Fold Expansion 

TSF 1387500 0.558 7742.25 0.430125 

TSF 2050000 0.5432 11135.6 0.618644444 

TSF 2475000 0.6192 15325.2 0.8514 

100ng/ml rPTN + TSF 2025000 0.9905 19484.55 1.082475 

100ng/ml rPTN + TSF 1575000 0.6545 10308.38 0.572687778 

100ng/ml rPTN + TSF 1712500 0.4812 8240.55 0.457808333 

500ng/ml rPTN + TSF 1862500 0.6954 12951.83 0.719546111 

500ng/ml rPTN + TSF 2425000 0.564 13677 0.759833333 

500ng/ml rPTN +TSF 937500 0.6208 5820 0.323333333 

Table 5: Table of data outlining deduction of KSL fold expansion from cell count and Flow cytometric analysis. 

Cell count was performed using Trypan blue exclusion method. The %KSL is provided by Flow cytometric 

analysis and is outlined in Figure 5. The total number of KSL cells was determined from the % KSL figures 

from Figure 5 divided by 100 multiplied by the total cell count for each culture. This KSL number is then 

divided by the input cells (18,000) to determine fold expansion. 

 

The KSL fold expansion data outlined in Table 5 when compiled into a bar graph, Figure 21 displayed 

no significance between all of the cultures with a p value of 0.3 for TSF versus 100ng/mL rPTN and 

0.4 for TSF versus 500ng/mL rPTN when examined statistically. 
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Figure 21: KSL fold expansion after 7 days in culture with TSF, TSF and 100ng/mL rPTN or TSF plus 

500ng/mL rPTN relative to the input of KSL cells on Day 0. There is no significant difference in KSL fold 

expansion between the treated cultures, a modest increase is noted however with 100ng/ml rPTN. 



 

 

68 

To identify the lineage committed progenitors in the cultures a colony forming cell assay was set up. 

Stem cell progeny that enter a particular lineage, myeloid or erythroid can be quantitated when placed 

on a methocellulose medium that promotes differentiation and proliferation of stem cells to form 

progenitor cells that have short-term repopulating capabilities but have lost long-term repopulating 

abilities.  

    

Figure 22: CFU-GM (Colony forming unit-granulocyte monocyte). Monocytic colonies are oval/round in shape 

often have grey/granulocytic centre while granulocytic colonies are bright round, smaller and more uniform in 

size. 

 

          

Figure 23: BFU-E (Burst forming unit-erythrocyte). These colonies contain erythroid clusters and individually 

appear tiny, irregular in shape and size, appear fused together and have a reddish/brown tint. 
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Figure 24: CFU-GEMM: Colony forming unit-granulocyte erythoid monocytic and megakaryocytic lineage. 

These colonies are often quite large, have indistinct boarders and a reddish/brown tint.  

 

  

Figure 25: CFU-GM and BFU-E morphology contrast. CFU-GM with oval to round colonies that are bright and 

uniform in size compared to a BFU-E which is small, irregular, appear fused together and with a reddish/brown 

tint. 

 

Each CFC assay was performed in triplicate for each treatment group where 500 cells were added to 

each CFC dish containing methocellulose medium which was incubated at 37
O
C with 5% CO2 for 14 

days. Colony formation was examined microscopically and quantitated for each treatment group, TSF, 

TSF plus 100ng/mL rPTN and TSF plus 500ng/mL rPTN whereby a colony is deemed to have 40 or 

more cells. The colony quantitation was divided into those that form Granulocyte Mononcyte (GM) 

colonies or those that have entered myeloid lineage, those that form Burst Forming Units-Erythroid 

CFU-GM BFU-E 
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(BFU-E) or are of erythroid lineage, and those that are mixed or of mixed lineage.  Table 6 outlines 

the average number of total colonies from the 500 cells added to each dish for each treatment group. 

 

Condition GM BFU-E 

Mixed (CFU-

GEMM) Total colonies/500 cells 

TSF 33 0 0 33 

TSF 22 1 0 23 

TSF 13 0 0 13 

100ng/ml rPTN + TSF 12 0 0 12 

100ng/ml rPTN + TSF 7 0 0 7 

100ng/ml rPTN + TSF 8 0 0 8 

500ng/ml rPTN + TSF 12 0 0 12 

500ng/ml rPTN + TSF 11 1 1 13 

500ng/ml rPTN +TSF 10 1 0 11 

 

Table 6: Raw data from Colony Forming Cell Assay. Granulocyte/Monocyte (GM) indicates the cells of 

myeloid Lineage. Burst Forming Unit-Erythrocyte (BFU-E) indicates those of erythoid lineage and Mixed 

indicates those that are of mixed myeloid lineage (CFU-GEMM). 18,000 KSL cells were added to a well with 

TSF, TSF and 100ng/mL rPTN and TSF with 500ng/mL rPTN and incubated at 37
O
C with 5% CO2.. On day 7 

the cultures were collected and counted by Trypan Blue exclusion. 500 cells from each culture (each in 

triplicate) were added to a methocelluolose medium and incubated for 14 days at 37OC with 5% CO2. On day 14 

the colonies were quantified microscopically. The total number of colonies per 500 cells was the number of 

colonies present on the dish on day 14. 

 

The raw data in table 6 when compiled into a bar graph (Figure 26) displays boarderline significance 

in colony number between the TSF and 100ng/ml rPTN treatment groups with a p value of 0.05.  
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Figure 26: Colony Forming cell assay where 500 cells from the three samples per treatment group were added 

to a methocellulose medium for two weeks and incubated at 37
O
C with 5% CO2, after which the colonies 

formed are quantified and averaged for each treatment group. The number of colony forming cells in the TSF 

and the 100ng/mL rPTN group is boarderline significant with a p value of 0.05. This result indicates a of a 

number of possibilities, one being there are less lineage committed progenitors in the PTN treated groups, which 

may be explained by either a stop in differentiation of the KSL cells or that they have entered self renewal or 

both. Another explanation for this result is those treated with rPTN may have differentiated so far that more 

cells have matured and are passed the colony forming stage.  

 

Colony forming cell count may also be analysed when the total cell count is taken into consideration 

whereby the number of colonies formed from 500 cells is translated to the number of potential 

colonies from the total cell count, Table 7. 

 

 

 

 

 

 

 

* 

P=0.05 
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Table 7: Raw data from Colony Forming Cell Assay. Granulocyte/Monocyte (GM) indicates the cells of 

myeloid Lineage. Burst Forming Unit-Erythrocyte (BFU-E) indicates those of erythoid Lineage and Mixed 

indicates those that are of mixed myeloid lineage (CFU-GEMM). 18,000 KSL cells were added to a well with 

TSF, TSF and 100ng/mL rPTN and TSF with 500ng/mL rPTN and incubated at 37OC with 5% CO2.. On day 7 

the cultures were collected and counted by Trypan Blue exclusion. 500 cells from each culture (each in 

triplicate) were added to a methocelluolose medium and incubated for 14 days at 37
O
C with 5% CO2. On day 14 

the colonies were quantified microscopically. The total number of colonies per 500 cells was the number of 

colonies present on the dish on day 14. The total number of colonies takes into account the total cell count of the 

cultures on day 7. 

 

The results as outlined in table 7 are achieved through the multiplication of the number of colonies per 

500 cells and taking into to account the actual number of cells isolated for each treatment group 

outlined in figure 1. When the total cell count is taken into consideration and the total colony number 

normalised, the number of colonies in the PTN treated groups versus the TSF treated group is 

significant in that the pvalue is < 0.05 for both the rPTN 100ng/mL (where p =0.0081) and 500ng/mL 

(where p = 0.0315) versus TSF as outlined and highlighted in Figure 26.     

The total cell count in the cultures treated with 100ng/mL rPTN was although not significant 

displayed a trend of being moderately increased over those treated with 500ng/mL rPTN. A trend of  

increase was also noted in the KSL content of the cells in the 100ng/mL rPTN over the 500ng/mL 

rPTN and TSF alone treated cultures. Less lineage committed progenitors displayed in the cultures 

treated with 100ng/mL rPTN when compared to 500ng/Ml rPTN or TSF through the colony forming 

cell assay. This experiment as a whole broadly suggests 100ng/ml rPTN treatment of irradiated KSL 

cells results in the increase of KSL cells. 

Condition GM BFU-E Mixed 

Total colonies/500 

cells 

Total cell 

count 

Total no. 

colonies 

TSF 33 0 0 33 1387500 63825 

TSF 22 1 0 23 2050000 53300 

TSF 13 0 0 13 2475000 59400 

100ng/ml rPTN + TSF 12 0 0 12 2025000 28350 

100ng/ml rPTN + TSF 7 0 0 7 1575000 25200 

100ng/ml rPTN + TSF 8 0 0 8 1712500 41100 

500ng/ml rPTN + TSF 12 0 0 12 1862500 48425 

500ng/ml rPTN + TSF 11 1 1 13 2425000 53350 

500ng/ml rPTN +TSF 10 1 0 11 937500 20625 
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3.1.2 To test whether PTN signaling was necessary for HUBEC-mediated expansion of 

HSCs in vitro. The technique was similar to that outlined in section 3.1.1.  

HUBEC 

Human brain endothelial cells were passed as outlined in section 2.5. 10,000 HUBECs were added to 

the required wells in a 12-well plate and allowed to settle for three days before the KSL cells were 

added. 

The experiment layout was as follows: 

 

Table 8: Experiment lay-out to test whether PTN signaling is necessary for HUBEC-mediated expansion of 

HSCs in vitro. IgG antibody directed against goat was added to the HUBECs to control for any effects seen with 

the addition of the Anti-PTN antibody, which was goat anti-human to the cultures. 

Input of HUBECs 10,000/well 

Input of KSL cells 8000/well 

ECCM: Endothelial cell culture medium. 

TSF: Thrombopoeitin, stem cell factor and Flt-3 ligand (Cytokine reagent) 

HUBEC: Human brain endothelial cells 

KSL: c-Kit +, sca-1+ lineage negative cells. 

Note: The HUBECS and KSL cells are not in direct contact in culture. They are set up in transwell 

plates whereby the EC act indirectly on the radiated KSL cells. 

 

IR KSL TSF (1mL) 

 

IR KSL HUBEC + ECCM + 

IgG (1mL) 

 

 

IR HUBEC (ECCM 1mL) + Anti-PTN 

in TSF (100ug/mL) (1mL) 

Anti-PTN final conc. 50ug/mL 
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Figure 27: Transwell plate set-up for HUBEC (at the base), KSL (in the inserted well) and Anti-PTN antibody 

added to the ECCM mixture that flows between the HUBECs and KSL cells. 

 

The cells were cultured for seven days (5% CO2 at 37oC). 

 

Seven day culture 

Following seven days in culture the cells were collected from the wells into 15mL tubes. The wells 

were washed to ensure maximum cell collection and a cell count and viability analysis was performed 

as outlined in section 2.2. Flow cytometry (section 2.4.1) and Colony Forming cell assays (Section 

2.7) were also performed. 
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Figure 28: The average cell counts of KSL cells and progeny after 7 days in culture with TSF, HUBECs and 

HUBECs with 50ng/mL Anti-PTN, each of which were performed in triplicate. There is a significant increase in 

the total cell number of the cultures with HUBECs alone where p<0.05 when compared to TSF alone. Anti-PTN 

although not statistically significant is border-line with a P value of 0.050 when compared to TSF alone.  

 

To examine the specific stem cell enriched population within the cultures the KSL cells of the cultures 

were stained with antibodies labeled with fluorescent probes and analysed using flow cytometry. 

100,000 cells from each well was analysed initially through forward and side scatter allowing the 

population be centered around a live population of cells where the KSL population exists, denoted P1 

in figures 29,30 and 31.  Subsequent to this the population was further characterised into live cells 

denoted as P2 in figures 29, 30 and 31. Following this the live population of cells was further 

classified by identifying the cells expressing antigens associated with lineage or maturity and 

excluding them. This allowed the immature cells that are Lineage negative be analysed, denoted in 

Figures 29, 30 and 31 as P3. This Lineage negative population was then further categorised into a 

population of cells that were positive for both sca-1 and c-Kit denoted as P4 in Figures 29, 30 and 31. 

The content of cells that displayed a phenotype which was negative for lineage markers and positive 

for the sca-1 and c-Kit antigens could be compared between the cultures treated with TSF (Figure 29), 

HUBECs (Figure 30) or HUBECs and 50ng/mL Anti-PTN (Figure 31). 

 

 

* 
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TSF treated KSL cells. 

 

Figure 29: Flow cytometry report to determine the KSL population in a TSF treated culture. 8,000 purified KSL 

cells were irradiated with 200cGy radiation and added to a 12 well plate and suspended in 1mL TSF. The 

culture was incubated for seven days with 5% CO2 at 37OC. On day seven the cells were stained with 

fluorescent labeled probes directed against antigens associated with maturity (Lineage) and Sca-1 and c-Kit. P1 

denotes a population of cells where the KSL cells reside. P2 denotes live cells within the P1 population. P3 

denotes immature cells within the culture as these represent the cells that are negative for antigens associated 

with maturity or lineage. P4 denotes a population of cells within the lineage negative or immature population 

that display the antigens sca-1 and c-Kit as the haemopoetic stem cells are known to express these antigens. The 

percentage KSL cell percentage within the Lineage negative population was 0.4%. 

 



 

 

77 

HUBEC and IgG antibody treated KSL cells. 

 

Figure 30: Flow cytometry report to determine the KSL population in a HUBEC treated culture. 8,000 purified 

KSL cells were irradiated with 200cGy radiation and added to a 12 well plate containing 10,000 HUBECs and 

suspended in 1mL ECCM. The culture was incubated for seven days with 5% CO2 at 37OC. On day seven the 

cells were stained with fluorescent labeled probes directed against antigens associated with maturity (Lineage) 

and Sca-1 and c-Kit. P1 denotes a population of cells where the KSL cells reside. P2 denotes live cells within 

the P1 population. P3 denotes immature cells within the P2 population as these represent the cells that are 

negative for antigens associated with maturity or lineage. P4 denotes a population of cells within the lineage 

negative or immature population that display the antigens sca-1 and c-Kit as the haemopoetic stem cells are 

known to express these antigens. The percentage KSL cell percentage within the Lineage negative population 

was 4.6%. 
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HUBEC and Anti-PTN (50ng/mL) treated KSL cells. 

 

Figure 31: Flow cytometry report to determine the KSL population in a HUBEC and Anti-PTN treated culture. 

8,000 purified KSL cells were irradiated with 200cGy radiation and added to a 12 well plate containing 10,000 

HUBECs and 50ng/mL Anti-PTN and suspended in 1mL ECCM. The culture was incubated for seven days with 

5% CO2 at 37OC. On day seven the cells were stained with fluorescent labeled probes directed against antigens 

associated with maturity (Lineage) and Sca-1 and c-Kit. P1 denotes a population of cells where the KSL cells 

reside. P2 denotes live cells within the P1 population. P3 denotes immature cells within the P2 population as 

these represent the cells that are negative for antigens associated with maturity or lineage. P4 denotes a 

population of cells within the lineage negative or immature population that display the antigens sca-1 and c-Kit 

as the haemopoetic stem cells are known to express these antigens. The percentage KSL cell percentage within 

the Lineage negative population was 21.1%. 
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KSL population percentages were determined using Flow cytometry within the TSF, HUBEC and 

HUBEC plus 50ng/mL Anti-PTN100ng/mL rPTN cultures, each of which were performed in 

triplicate are outlined in Table 9.  

Condition %sca c-kit+ /lin- Lin - % % KSL 

TSF 0.4 44.5 0.178 

TSF 0.4 43.8 0.1752 

TSF 0.3 48 0.144 

HUBEC 4.6 36.4 1.6744 

HUBEC 5.3 31.2 1.6536 

HUBEC 4.3 31.1 1.3373 

Anti-PTN (50ng/mL) + 

HUBEC 21.1 55.1 11.6261 

Anti-PTN  (50ng/mL)+ 

HUBEC 22.5 66.2 14.895 

Anti-PTN (50ng/mL)+ 

HUBEC 17.7 56.2 9.9474 

 

Table 9: Table of raw data obtained from Flow cytometric report acquired from the analysis of 18,000 irradiated 

KSL cells added to a well containing either TSF, HUBECs and HUBECs plus 50ng/mL Anti-PTN 50ng/mL in 

1mL ECCM. The cultures were incubated at 37
O
C with 5% CO2 after which 100,000 cells from each well was 

stained with Fluorescent labeled antibodies directed against the antigens Sca-1 and c-Kit and those associated 

with lineage. The % Sca-1 c-Kit Lin- is the percentage of cells that express both c-Kit and Sca-1 within the 

population of cells that are negative for antigens associated with Lineage or maturity. The Lineage negative 

percentage is the percentage of cells within the 100,000 analyzed cells that are negative for lineage antigens. 

The % KSL is the number of cells within the 100,000 cells analyzed that are negative for antigens associated 

with Lineage, are c-Kit positive and Sca-1 positive. 
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The KSL data outlined in Table 9 when compiled into a bar graph, Figure 32 demonstrated there was 

a significant difference in KSL percentage between the treated cultures after 7 days incubation.  
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Figure 32: Percentage KSL cells of the total cell count after 7 days in culture with TSF, HUBECs alone and 

HUBECs with Anti-PTN (50ng/mL). There is a significant difference in KSL percentage between the treated 

cultures. Firstly there are more KSL cells within the HUBEC alone treated group when compared to TSF alone 

(p=0.0028). Secondly there are many more KSL cells in the HUBEC and Anti-PTN treated group when 

compared to TSF (p=0.0072). Lastly, when one compares the KSL content within the HUBEC treated group 

versus the HUBEC and Anti-PTN group there is also significance (p=0.009). This data suggest that when KSL 

cells are set up in culture with HUBECs and PTN is blocked using Anti-PTN that there is an increase in the KSL 

content within the cultures, therefore suggesting that PTN is not required for HUBEC mediated expansion of 

stem cells in culture. 

 

To examine the self-renewal activity of the KSL cells within the cultures one may observe the fold 

expansion of KSL cells between the TSF, HUBEC and HUBECs and Anti-PTN (50ng/mL) cultures.  

The cell fold expansion was examined and normalised for each of the culture conditions as outline in 

Figure 33. 

 

 

 

 

* 

* * 
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Conditions Cell count % KSL KSL no. 

Fold 

Expansion 

TSF 1150000 0.178 2047 0.225875 

TSF 787500 0.1752 1379.7 0.1724625 

TSF 1362500 0.144 1962 0.24525 

HUBEC 1887500 1.6744 31604.3 3.9505375 

HUBEC 3025000 1.6536 50021.4 6.252675 

HUBEC 2000000 1.3373 26746 3.34325 

Anti-PTN (50ng/mL) + 

HUBEC 1862500 11.6261 26536.1 27.06701 

Anti-PTN  (50ng/mL)+ 

HUBEC 1475000 14.895 219701.3 27.4626625 

Anti-PTN (50ng/mL)+ 

HUBEC 1387500 9.9474 138020.2 17.252519 

 

Table 10: Table of data outlining deduction of KSL fold expansion from cell count and Flow cytometric 

analysis. Cell count was performed using Trypan blue exclusion method. The %KSL is provided by flow 

cytometric analysis and is outlined in Figure 21. The total number of KSL cells was determined from the % 

KSL figures from Figure 18 divided by 100 multiplied by the total cell count for each culture. This KSL number 

is divided by the input cells (8,000) to determine fold expansion. 
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Figure 33: The KSL fold expansion between different treatment groups is statistically significant (p<0.05) and 

indicated with the asterix. The HUBEC alone treated group when compared to TSF alone has a p value of 0.02 

indicating a difference in KSL fold expansion between these treatment groups. The Anti-PTN and HUBEC 

treated group is significantly higher when compared to TSF alone (p=0.009) and to the HUBEC alone treated 

group (p=0.011) indicating a difference in KSL fold expansion between these treatment groups.  

 

* 

* * 
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To identify the lineage committed progenitors in the cultures a colony forming cell assay was set up. 

500 cells from the treated cultures TSF, HUBEC and IgG and HUBEC and Anti-PTN (50ng/mL), 

when collected on Day 7 were added to the methocellulose medium to allow for analysis of lineage 

committed progenitors after treatment. Each CFC assay was performed in triplicate for each treatment 

group. The 500 cells were added to each CFC dish containing methocellulose medium which was 

incubated at 37
O
C with 5% CO2 for 14 days. Colony formation was examined microscopically and 

quantitated for each treatment group, TSF, HUBECs and HUBECs plus 50ng/mL Anti-PTN whereby 

a colony is deemed to have 40 or more cells. The colony quantitation was divided into those that form 

Granulocyte Monocyte (GM) colonies indicating those that have entered myeloid lineage, those that 

form Burst Forming Units-Erythroid (BFU-E) or are of erythroid lineage, and those that are CFU-

GEMM are of granulocyte, erythroid, monocyte and megakaryocyte lineage.  Table 11 outlines the 

average number of total colonies from the 500 cells added to each dish for each treatment group. 

Conditions GM BFU GEMM Total colonies/500 cells 

TSF 5 0 0 5 

TSF 7 0 0 7 

TSF 5 0 0 5 

HUBEC 1 0 0 1 

HUBEC 4 0 0 4 

HUBEC 2 0 0 2 

Anti-PTN (50ng/mL) + 

HUBEC 6 0 0 6 

Anti-PTN  (50ng/mL)+ 

HUBEC 10 0 0 10 

Anti-PTN (50ng/mL)+ 

HUBEC 13 0 0 13 

 

Table 11: Raw data from Colony Forming Cell Assay. Granulocyte/Monocyte (GM) indicates the cells of 

myeloid Lineage. Burst Forming Unit-Erythrocyte (BFU-E) indicates those of erythoid lineage and Mixed 

indicates those that are of mixed myeloid lineage (CFU-GEMM). 18,000 KSL cells were added to a well with 

TSF, HUBECs and and HUBECs plus 50ng/mL Anti-PTN and incubated at 37OC with 5% CO2. On day 7 the 

cultures were collected and counted by Trypan Blue exclusion. 500 cells from each culture (each in triplicate) 

were added to a methocelluolose medium and incubated for 14 days at 37
O
C with 5% CO2. On day 14 the 

colonies were quantified microscopically. The total number of colonies per 500 cells was the number of colonies 

present on the dish on day 14. 
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The raw data in Table 11 when compiled into a bar graph (Figure 34) displays a significant difference 

in the number of colony forming cells between the different treatment groups.  

 

 

Figure 34: Colony Forming cell assay where 500 cells from the three samples per treatment group were added 

to methocellulose medium for two weeks and incubated at 37
O
C with 5% CO2, after which the colonies formed 

are quantified and averaged for each treatment group. The number of colony forming cells in the different 

treatment groups is significantly different with significance indicated with a p value <0.05. TSF versus HUBEC 

and Anti-PTN (p=0.022) and HUBEC versus HUBEC and Anti-PTN (P=0.02). 

 

 

Colony forming cell count may also be analysed when the total cell count is taken into consideration 

whereby the number of colonies formed from 500 cells is translated to the number of potential 

colonies from the total cell count, Table 12. 

 

 

 

 

 

 

 

 

* * 
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Table 12: Raw data from Colony Forming Cell Assay. Granulocyte/Monocyte (GM) indicates the cells of 

myeloid Lineage. Burst Forming Unit-Erythrocyte (BFU-E) indicates those of erythoid Lineage and mixed 

indicates those that are of granulocyte erythroid monocytic and megakaryocytic lineage (CFU-GEMM). 8,000 

KSL cells were added to a well with TSF, HUBECs alone and HUBECs plus 50ng/mL Anti-PTN and incubated 

at 37
O
C with 5% CO2.. On day 7 the cultures were collected and counted by Trypan Blue exclusion. 500 cells 

from each culture (each in triplicate) were added to a methocelluolose medium and incubated for 14 days at 

37
O
C with 5% CO2. On day 14 the colonies were quantified microscopically. The total number of colonies per 

500 cells was the number of colonies present on the dish on day 14. In order to normalise for the difference in 

cell count in each of the wells the colony number is also presented as the total number of colonies. 

 

When the total cell count is taken into consideration statistical difference exists in the number of 

colonies between the treated groups (Table 12). When PTN released from the HUBECs was blocked 

with Anti-PTN a significant increase in the number of colonies relative to both TSF (p= 0.022) and 

the HUBEC treated groups (p= 0.045) was noted. Highlighting further the findings previously 

outlined with regards to Figure 34. 

 

 

 

Conditions GM BFU GEMM Total colonies/500 cells 

Total cell 

count 

Total no. 

colonies 

TSF 5 0 0 5 1150000 11500 

TSF 7 0 0 7 787500 11025 

TSF 5 0 0 5 1362500 13625 

HUBEC 1 0 0 1 1887500 3775 

HUBEC 4 0 0 4 3025000 24200 

HUBEC 2 0 0 2 2000000 8000 

Anti-PTN (50ng/mL) + 

HUBEC 6 0 0 6 1862500 22350 

Anti-PTN  (50ng/mL)+ 

HUBEC 10 0 0 10 1475000 29500 

Anti-PTN (50ng/mL)+ 

HUBEC 13 0 0 13 1387500 36075 
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Figure 35: When the total cell count is taken into consideration statistical difference exists in the number of 

colonies between the treated groups. When PTN released from the HUBECs is blocked there is a significant 

increase in the number of colonies relative to both TSF (p= 0.022) and the HUBEC treated groups (p= 0.045). 

 

 

This experiment indicates PTN signalling is not required for HUBEC-mediated expansion 

and recovery of HSCs post radiation injury 

 

 

 

 

 

 

 

 

* * 
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3.1.3 This experiment was to investigate if PTN arrested cells in the G0 phase of the cell 

cycle in culture. 

KSL cells were isolated and plated in a similar manner to that outlined in section 3.1.1.The cells for 

this experiment however were not exposed to any radiation prior to incubation with 5% CO2 at 37
O
C 

for seven days. On day seven the cell population within the wells including stem cells, stem cell 

progeny, lineage committed progenitors and cells at all stages of differentiation including those that 

had fully matured were collected and counted. The cells were then stained for those that were negative 

for antigens associated with lineage or maturity, and that expressed c-Kit and Sca-1 antigens on their 

surface (KSL). The cells were subsequently subjected to a two-day Ki-67 antibody staining schedule 

outlined in section 2.12 and examined using flow cytometry using the Ki-67 antibody to allow for cell 

cycle analysis within the Lineage negative and KSL populations in the TSF treated group (Figure 36) 

and the rPTN treated group (Figure 37). 

100,000 cells from each well was analysed initially through forward and side scatter allowing the 

population be centered around a live population of cells where the KSL population exists, denoted P1 

in figures 36 and 37. Subsequently this population was narrowed further for the cells expressing 

antigens associated with lineage or maturity were excluded, allowing the Lineage negative population 

be analysed, denoted in Figures 36 and 37 as P2. The staining with Ki-67 allowed the analysis of cell 

cycle status of these cells. P6 represents cells within the lineage negative population (P2) that are in 

the G0 phase of the cell cycle. P7 indicates cells within the lineage negative population that are in the 

G1 phase of the cell cycle. P8 indicates cell within this population that have entered the G2/S/M 

phases of the cell cycle.  

This Lineage negative population was then further categorised into a population of cells that 

were positive for both Sca-1 and c-Kit denoted as Q1, Q2, Q3 and Q4. The amount of live cells in G0 

stage within this population is represented by P3. P4 represents cells within the KSL population that 

have entered the G1 phase. P5 denotes live cells within the KSL population that are in the G2/S/M 

stages of the cell cycle in figure 36 and 37.  
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Cell cycle analysis of cells incubated with TSF. 

 

Image 36: Flow cytometry report to determine the cell cycle status of cells within the Lineage negative and 

KSL cell populations. 20,000 purified KSL cells were irradiated with 200cGy radiation and added to a 12 well 

plate containing 1mL TSF. The culture was incubated for seven days with 5% CO2 at 37OC. On day seven the 

cells were stained with fluorescent labeled probes directed against antigens associated with maturity (Lineage) 

and Sca-1 and c-Kit. P1 denotes a population of cells where the KSL cells reside. P2 denotes immature cells 

within the P1 population as these represent the cells that are negative for antigens associated with maturity or 

lineage.  P6 denotes cells within the lineage negative population that are in the quiescent or G0 phase of cell 

cycle. P7 denotes cells within the lineage negative population that are in the G1 phase of the cell cycle while P8 

denotes cells within the lineage negative population that are  in the G/S/M phase of cell cycle. Q1 Q2 Q3 Q4 

indicates the cells within the Lineage negative population that are positive for c-Kit and Sca-1 expression 

(KSL). P3 denotes live cells within the KSL population that are in the G0 phase of cell cycle (6.3%). P4 

indicates live cells within the KSL population that are in the G1 phase of cell cycle (81.1%). P5 indicates live 

cells within the KSL population that are in the G2/S/M phase of cell cycle (13%).  
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Cell cycle analysis of cells incubated with 100ng/mL rPTN 

 

Image 37: Flow cytometry report to determine the cell cycle status of cells within the Lineage negative and 

KSL cell populations. 20,000 purified KSL cells were irradiated with 200cGy radiation and added to a 12 well 

plate containing 100ng/mL rPTN. The culture was incubated for seven days with 5% CO2 at 37O
C
. On day 

seven the cells were stained with fluorescent labeled probes directed against antigens associated with maturity 

(Lineage) and Sca-1 and c-Kit. P1 denotes a population of cells where the KSL cells reside. P2 denotes 

immature cells within the P1 population as these represent the cells that are negative for antigens associated with 

maturity or lineage.  P6 denotes cells within the lineage negative population that are in the quiescent or G0 

phase of cell cycle. P7 denotes cells within the lineage negative population that are in the G1 phase of the cell 

cycle while P8 denotes cells within the lineage negative population that are  in the G/S/M phase of cell cycle. 

Q1 Q2 Q3 Q4 indicates the cells within the Lineage negative population that are positive for c-Kit and Sca-1 

expression (KSL). P3 denotes live cells within the KSL population that are in the G0 phase of cell cycle (6.3%). 

P4 indicates live cells within the KSL population that are in the G1 phase of cell cycle (81.1%). P5 indicates live 

cells within the KSL population that are in the G2/S/M phase of cell cycle (13%).  
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The flow cytometry data obtained for the TSF and 100ng/mL rPTN and TSF treated cultures are               

outlined in Table 13 below. 

 

 Lineage negative   KSL   

Condition %G0 %G1 %G2/S/M %G0 %G1 %G2/S/M 

TSF + KSL 16.9 78.6 5.4 3.4 78.8 16.5 

TSF +KSL 9.6 87.8 2.8 2.3 84.6 11 

TSF +KSL 17 79.3 4.6 6.3 81.1 13 

KSL + 100ng/mL rPTN +TSF  25.1 71.4 5.2 5.5 83.2 11 

KSL + 100ng/mL rPTN +TSF 21.4 77.9 2.1 5.1 90.1 5.1 

KSL + 100ng/mL rPTN +TSF 16.2 80.9 3.8 6.6 82.7 10.7 

 

Table 13: Raw data obtained from Flow cytometric reports acquired from the analysis of 20,000 irradiated KSL 

cells added to a well containing 1mL TSF or 1mL 100ng/mL rPTN and TSF. There is no significant difference 

in the cell cycle analysis between the treated cultures, however it does appear that there is a modest increase in 

the percentage lineage negative cells in the G0 or quiescent stage of the cell cycle in those that were treated with 

rPTN when compared to TSF alone. There is also a very modest increase in the percentage KSL cells in the G0 

stage of the cell cycle in the rPTN treated groups.  

 

 

              The raw data outlined in Table 13 when compiled into a bar chart appears as follows in figure 38. 

 



 

 

90 

 

Figure 38: Cell cycle analysis. 20,000 KSL cells were added to a well plate containing TSF or 100ng/mL rPTN 

plus TSF and incubated for 7 days at 37
O
C with 5% CO2. 

A: Cell cycle analysis of the lineage negative population of cells. The lineage negative cells are those that lack 

antigens associated with maturity and represent an immature population of cells. These findings primarily indicate 

that most cells within the Lineage negative population are in the G1 phae of the cell cycle. There is no significant 

difference between the rPTN and the TSF treated groups in the G0, G1, G2/S and M stages of the cell cycle where 

p=0.07, p=0.13 and p=0.136 respectively. 

B: Cell cycle analysis of the KSL population of cells. The KSL cell population of cells are a population of cells 

that are highly enriched for stem cells. These findings primarily indicate that most cells within the KSL 

population are also in the G1 phase of the cell cycle. No significant difference between the rPTN and the TSF 

treated groups exists in the G0, G1 G2/S and M phases of the cell cycle with a p values of p=1.4, p= 1.3 and p= 

0.07 respectively. 

 

  

These results indicate no difference in the number of cells that are quiescent or in G0 between the 

TSF and rPTN treated groups within the KSL population indicating no stop in differentiation within 

the Lineage negative of KSL populations between the TSF and rPTN treated groups. These results 

indicate that rPTN treatment does not induce cell quiescence within the Lineage negative or KSL 

populations.  

 

 

 

A B 
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3.2 PTN in vivo irradiation study. 

3.2.1 This experiment was to examine the homing effect of PTN on HSCs to the marrow. 

To begin the homing experiment a trial experiment to was performed whereby CFDA-SE staining of 

MNCs occurred, this tested the ability of the dye to enter the cells and be detected using flow 

cytometry. Recently isolated cells from the marrow of a murine femur which underwent red cells lysis 

was stained with CFDA-SE dye as per manufacturer’s protocol. The cells were run on the flow 

cytometer at a wavelength of 450nm to test for positive cells. Figure 38 represents the negative 

control or a population of cells not stained with CFDA-SE dye where fluorescent emittance is 

negative. Figure 39 represents the experimental cells or those stained with CFDA-SE dye where 

fluorescent emittance is positive. 

 

 

 

 

 

 

 

 

 

 

 



 

 

92 

Negative control used for the optimisation of CFDA-SE staining in marrow MNCs.  

 

Figure 39: Negative control for carboxy-fluorescein succinimidyl ester (CFDA-SE) staining test.   The peak  to 

the left and entering P2 represents the population of test cells. FITC-A represents a wavelength of 450nm, where 

CFDA-SE positive cells are visible. As the cell population (red peak) is to the left these cells are negative.  
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Positive control used for the optimisation of CFDA-SE staining in marrow MNCs. 

 

Figure 40: Positive control for CFDA-SE staining test. Peaks in P2 represent population of test cells. Two peaks 

represent different cell generations with the far right peak representing the parent cells with the left peak representing 

the daughter cells. FITC-A represents a wavelength of 450nm, where CFDA-SE positive cells are visible. As the cell 

population (red peak) is to the right these stained cells are positive for CFDA-SE staining indicating staining was 

successful.  
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As the optimisation of the CFDA staining proved successful it could be applied to the following 

study. 

Mice 

30 male C5BL/6 mice (8-9 weeks old) from the Jackson Laboratory (Bar Harbor Maine, U.S.A). 

KSL isolation 

KSL cells were isolated from donor mice using a similar method outlined in previous section 2.1. The 

KSL were set up in a 12 well transwell plate with 20,000 KSL/well and 20,000 HUBECs/well in a 

similar method to that outlined in section 3.1.2. 

 The experiment was set up in triplicate as follows; 

Table 14: Experiment lay-out to examine the homing effect of PTN on HSCs. 

TSF: Thrombopoeitin, stem cell factor and Flt 3 ligand (cytokine reagent). 

rPTN: Recombinant Pleiotrophin. 

HUBECs: Human Brain Endothelial cells. 

 

KSL and progeny staining 

Following seven days in culture the cells were collected from the wells into 15mL tubes. The wells 

were washed to ensure maximum cell collection and a cell count and viability analysis was performed 

as outlined in section 2.2. The cells were stained with CFDA-SE staining dye outlined in section 

2.6.2. 

 

KSL + TSF 

(1mL) 

 

KSL+ HUBEC + ECCM 

(1mL) 

 

KSL + HUBEC 

(ECCM 1mL) + 

100ng/mL rPTN in 

TSF (1mL) 

 

 

KSL + HUBEC (ECCM 1mL) + 

Anti-PTN in TSF (100ug/mL) 

(1mL) Anti-PTN final conc. 

50ug/mL 
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Radiation 

16 recipient C5BL/6 mice were exposed to a single fraction lethal dose of 850cGy using Cesium 137 

irradiator as outlined in section 2.9.1. 

 

Injections 

Each lethally irradiated recipient mouse (n=4 per group) received 20,000 CFDA-SE stained treated 

KSL and progeny cells via tail vein injections (2.10.2).  

 

Marrow collection 

The recipient mice, injected with stained KSL and progeny cells were sacrificed 16 hours after 

transplantation and their marrows harvested. The mice were sacrificed using a similar method to that 

outlined in previous section 3.1.1. The femurs from these mice were flushed using 10% FBS and the 

bone marrow contents isolated. Following red cell lysis the cells were filtered and examined for 

CFDA positive cells within the marrow using Flow cytometry.  

 

The CFDA positive cell percentage was determined for each mouse taking variabilities in cell counts 

from each mouse into account. The % CFDA positive cells were averaged for each group and there 

relative values outlined in Figure 41. 
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Figure 41: 20,000 KSL cells were cultured with TSF, 100ng/mL rPTN, HUBEC and HUBEC plus 50ng/mL 

Anti-PTN. Following 7 days in culture the cells were collected and stained with CFDA dye that fluoresces at 

450nm. The cells and progeny were transplanted into lethally irradiated recipient mice. 16 hours consequent to 

this the mice were sacrificed and the bone marrow harvested. Following a red cell lysis, the marrow cells were 

filtered and run directly on the flow cytometer. The % CFDA positive cells homed to the marrow is outlined 

above. There is no significant difference in homing with those treated with TSF or rPTN. There is however a 

significant difference in homing between those that were treated with HUBECs and HUBECs plus Anti-PTN 

(p= 0.001). 

 

 

 

 

 

 

 

 

 

 

 

* 
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3.2.2 To determine if rPTN can induce HSC regeneration post radiation 

injury in vivo by examining mature blood cell reconstitution and mouse 

survival. 

 3.2.2.1 This experiment was to examine if PTN could induce HSC regeneration post 

myelotoxic radiation injury  

Mice 

10 male C5BL/6 mice (8-9 weeks old) were from the Jackson Laboratory (Bar Harbor Maine, U.S.A). 

 

Radiation 

Radiation was achieved using Cesium 137 irradiator. 20 mice were exposed to a single fraction 

myelotoxic dose of 700cGy as outlined in section 2.9. 

 

Injections 

5 C5BL/6 mice were injected intraperitoneal (IP) with 100ng/g body weight or 2ug rPTN (appendix) 

for 7 consecutive days as 8-9 week old C5BL/6 mice weigh approximately 20g. 5 control mice were 

injected intraperioneal (IP) with saline for 7 consecutive days as outlined in section 2.10.1 

 

MNC 

On day seven the mice were sacrificed firstly by CO2 euthanasia followed by cervical dislocation. The 

femurs from these mice were flushed using 10% FBS and the bone marrow contents isolated. 

Following red cell lysis the cells were MNCs were counted using Trypan Blue exclusion as outlined 

in section 2.2. The MNC content would give an indication as to whole BM recovery. 
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KSL 

A portion of the MNC cells were stained for KSL content and analysed using Flow cytometry 

outlined in section 2.6.1. The KSL content in the femurs represents haemopoetic progenitor recovery 

post radiation injury. 

 

CFC 

A colony forming cell assay was set up with MNCs isolated from the femurs of the rPTN and Saline 

treated mice. The CFC was set up using the procedure outlined in previous section 2.7.1. The CFC 

would indicate quantity of lineage committed progenitors between the rPTN and Saline treated 

groups. 

 

LT-CIC 

A long term colony initiating cell assay was set up with MNCs isolated from the femurs of the rPTN 

and Saline treated mice. The LT-CIC was set up using the procedure outlined in previous section 

2.7.2. The LT-CIC would indicate the quantity of more primitive long-term haemopoeitic lineage 

committed progenitors in the rPTN and Saline treated groups. 
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On day 7 of injections the femurs from these mice were collected and analysis for stem cell 

regeneration performed. To identify bone marrow recovery as a whole MNC counts were performed 

Table 15 and Figure 42. The MNC counts were performed by flushing the marrow from the femurs of 

the treated mice and separated them using the Lymphoprep technique. Trypan blue exclusion was the 

method by which the MNC count and viability was determined (Table 15). 

Condition MNC count/mouse 

Saline 75,000 

Saline 145,000 

Saline 375,000 

Saline 205,000 

Saline 122,500 

Average 184,500 

  

100ng/g PTN 520,000 

100ng/g PTN 415,000 

100ng/g PTN 700,000 

100ng/g PTN 300,000 

100ng/g PTN 182,500 

Average 423500 

 

Table 15: MNC count. Irradiated mice were injected (IP) for seven consecutive days with Saline or 100ng/g 

body weight rPTN. The marrow from the femurs was flushed and the MNCs isolated using the Lymphoprep 

technique. The MNC count was achieved using Trypan Blue exclusion. Healthy mice have MNC counts of 

approximately 1x106. The diminished MNC counts in these mice are a result of the myelotoxic dose of 

radiation. The results show that mice treated with 100ng/g PTN had a 2/3 fold higher MNC recovery when 

compared to Saline. 

 

These results Table 15 when compiled into a bar graph appear as follows (Figure 42). 
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Figure 42:.Mononuclear cell count in the femurs of mice that were exposed to a myelotoxic dose of radiation 

(700cGy) subsequent to which they received 100ng/g body weight rPTN or saline for seven consecutive days 

after which the MNC count was performed. (N=5/group) 

 

To examine a possible difference in stem cell enriched population in the femurs of the mice in the 

saline treated and rPTN treated groups the KSL counts for each mouse was determined using Flow 

Cytometry.   

Cells from each femur was analysed initially through forward and side scatter allowing the population 

be centered around a live population of cells where it was  thought the KSL population exists, denoted 

P1 (not displayed in figures 43 or 44). Subsequently this population was narrowed further when the 

cells expressing antigens associated with lineage or maturity were excluded, allowing the Lineage 

negative population be analyzed, denoted in Figures 43 and 44 as P2. This Lineage negative 

population was then further categorized into a population of cells that were positive for both sca-1 and 

c-Kit denoted as P3 in Figures 43 and 44. The content of cells that displayed a phenotype that was 

negative for lineage markers and positive for the sca-1 and c-Kit antigens could be compared between 

the cultures treated with TSF (Figure 43) or rPTN (Figure 44) 

 

 

 

P=0.02 
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KSL content in a lethally irradiated mouse treated with Saline for 7 consecutive days. 

 

 

Figure 43: Flow cytometry report to determine the KSL population in an irradiated mouse treated for 7 

consecutive days with saline. On day seven cells isolated from the femurs of these mice were stained with 

fluorescent labelled probes directed against antigens associated with maturity (Lineage) and Sca-1 and c-Kit. P2 

denotes a population of immature cells as these represent the cells that are negative for antigens associated with 

maturity or lineage. P3 denotes a population of cells within the lineage negative or immature population that 

display the antigens sca-1 and c-Kit as the haemopoetic stem cells are known to express these antigens. The 

KSL cell percentage within the Lineage negative population was 0.4 %. 
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KSL content in a lethally irradiated mouse treated with 100ng/g body weight rPTN for 

7 consecutive days. 

 

 

Figure 44: Flow cytometry report to determine the KSL population in an irradiated (700cGy) mouse treated for 

7 consecutive days with 100ng/g body weight rPTN. On day seven cells were isolated from the femurs of these 

mice and stained with fluorescent labelled probes directed against antigens associated with maturity (Lineage) 

and Sca-1 and c-Kit. P2 denotes a population of immature cells as these represent the cells that are negative for 

antigens associated with maturity or lineage. P3 denotes a population of cells within the lineage negative or 

immature population that display the antigens sca-1 and c-Kit as the haemopoetic stem cells are known to 

express these antigens. The KSL cell percentage within the Lineage negative population was 1.1%. 
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KSL population percentages were determined using Flow cytometry within the TSF and rPTN treated 

groups (n=5 per group).  

 

Condition Cell count % Lineage - % Sca-1 + c-Kit % KSL # KSL 

Saline 75,000 36.2 0.4 0.144 108.6 

Saline 145,000 21.6 0.3 0.0648 93.96 

Saline 375,000 5.3 0 0 0 

Saline 205,000 6.2 0.5 0.031 63.55 

Saline 122,500 9 0.7 0.063 77.18 

PTN 520,000 8.9 1.1 0.0979 509.08 

PTN 415,000 10.4 0 0 0 

PTN 700,000 15.6 0.7 0.1092 764.4 

PTN 300,000 7.2 1.8 0.1296 388.8 

PTN 182,500 9.6 1.5 0.1344 245.28 

 

Table 16: Table of raw data obtained from Flow cytometric report acquired from the analysis of mice injected 

for 7 days with Saline of 100ng/mL rPTN. The marrow cells were stained with Fluorescent labelled antibodies 

directed against the antigens Sca-1 and c-Kit and those associated with lineage. The % lineage negative 

represents the percentage lineage negative cells within the population of cells analysed that are negative for 

antigens associated with maturity. The % Sca-1 c-Kit is the percentage of cells that express both c-Kit and Sca-1 

within the population of cells that are negative for antigens associated with Lineage or maturity. The % KSL is 

the number of cells within the cells analyzed that are negative for antigens associated with Lineage, are c-Kit 

positive and Sca-1 positive. 

 

 

The KSL content within the marrow indicates haemopoeitic progenitor recovery post radiation injury. 

The mice treated with rPTN displayed a 7/8 fold higher KSL count than the control treated group, 

indicating increased progenitor recovery with rPTN treatment. This data when displayed as a bar 

graph, figure 45, highlights the difference in haemopoeitic progenitor recovery in the marrow as a 

whole between the saline and rPTN treated groups. 
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Figure 45: KSL count in the femurs of mice that were exposed to a myelotoxic dose of radiation (700cGy) 

subsequent to which they received 100ng/g body weight rPTN or saline for seven consecutive days after which 

the KSL count was performed.(N=5/group) 

 

 

To determine the difference in lineage committed progenitors between the Saline and 100ng/g body 

weight rPTN treatment groups a Colony Forming Cell assay and a long-term colony initiating cell 

assay were set up on day 7. In the Colony forming cell assay, the MNC’s from the marrow were 

added to a methocellulose medium which promotes proliferation and differentiation of lineage 

committed progenitors into colonies and can be quantified (Figure 46 ). 

 

 

P=0.035 

* 
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Figure 46: Colony forming cell assay from 20,000 MNCs from the femurs of mice that received a myelotoxic 

dose of radiation (700cGy) subsequent to which they received 100ng/g body weight rPTN or saline for seven 

consecutive days. The granulocyte/monocyte (GM) indicates cells that are of myeloid lineage. The burst 

forming unit-erythroid (BFU-E) indicates cells that are of erythroid lineage and Mix indicates a colony of cells 

that are of mixed myeoloid lineage, granuloctic, myeloid and erythroid (CFU-GEMM). CFC assay outlines a 

higher number of lineage committed progenitors in erythroid and myeloid lineages in those that were treated 

with PTN when compared to the saline control indicating preservation of the progenitor cell content. 

(N=5/group) 

 

 

To analyse the effect PTN had on more primitive progenitors, the MNC were added to a layer of 

murine BM stromal cells and incubated at 37OC with 5% CO2 for four weeks. Following this the cells 

were added to the methocellulose medium for two weeks, again promoting proliferation and 

differentiation of lineage committed progenitors that could be quantified microscopically (Figure 47) 

 

* 

P=0.025 
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Figure 47: Long-term colony initiating cell assay of 15,000 MNCs from the femurs of mice that received a 

myelotoxic dose of radiation (700cGy) consequent to which they received 100ng/g body weight rPTN or saline 

for seven consecutive days. The LT-CIC assay outlines a higher number of long term lineage committed 

progenitors in those that were treated with PTN when compared to the saline control indicating an increase in 

the number of long-term colony initiating cells with rPTN. (N=5/group) 

 

 

The six week assay highlighted an 11 fold increase in the long-term primitive progenitors capable of 

initiating colonies four weeks after isolation from the marrow in mice that received rPTN post 

radiation injury. This indicates that indicating PTN is not only a growth factor for stem cells in vitro 

but is a regenerative factor for stem cells in vivo. 

 

 

 

 

 

 

 

* 

P=0.04 
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3.2.2.2 This experiment is to test if rPTN provides radioprotection to HSCs in vivo prior 

to ionizing radiation exposure. 

Mice 

30 female Balb/c mice (8-9 weeks old) were from the Jackson Laboratory (Bar Harbor Maine, U.S.A). 

 

Radiation 

Radiation was achieved using Cesium 137 irradiator. The mice were exposed to a single fraction 

lethal dose of 850cGy (Borsotti, 2009) (Whartenby, 2002), indicated by Day 0.  A lethal dose is one 

that results in 100% death by day 30 (Section 2.9).  

 

Injections 

15 Balb/c mice were injected intraperitoneal (IP) with 100ng/g body weight or 2ug rPTN (appendix) 

for 7 consecutive days as 8-9 week old Balb/c mice weigh approximately 20g. The control mice were 

injected intraperioneal (IP) with saline for 7 consecutive days (Section 2.10.1). For this experiment 

injections were performed for 7 days prior to radiation exposure. 

 

Survival 

The mice were monitored for survival post radiation exposure (Day 0) over a 30 day period. 
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Figure 48 Survival study whereby lethally irradiated mice (850cGy) were injected (IP) with either 100ng/g 

body weight rPTN or saline for 7 days prior to radiation exposure. Survival was monitored from radiation 

exposure on Day 0. (N=15/group) 

 

Treatment with rPTN post radiation injury did not enhance survival in lethally irradiated mice. 

 

 

 

 

 

 

 

P=0.0277 
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3.2.2.3 This experiment was to examine if rPTN is a reparative factor for HSCs in vivo 

following ionizing radiation exposure. 

Mice 

24 female Balb/c mice (8-9 weeks old) from the Jackson Laboratory (Bar Harbor Maine, U.S.A) were 

used. 

 

Radiation 

Radiation was achieved using Cesium 137 irradiator. The mice were exposed to a single fraction 

lethal dose of 850cGy (Borsotti, 2009) (Whartenby, 2002) indicated by Day 0 (Figure 49). A lethal 

dose is one that results in 100% death by day 30 and is outlined in Procedure 2.9.  

 

 

Injections 

12 Balb/c mice were injected intraperitoneal (IP) with 100ng/g body weight or 2ug rPTN (appendix) 

for 14 consecutive days as 8-9 week old Balb/c mice weigh approximately 20g. The control mice 

were injected intraperioneal (IP) with saline for 5 consecutive days as outlined in section 2.10.1. For 

this experiment injections were performed for 5 days after radiation exposure (Day 0). 

 

 

Survival 

The mice were monitored for survival post radiation exposure (Day 0) over a 30 day period. 
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Figure 49: Mice (N=12/group) were injected (IP) for 5 consecutive days with either 100ng/g body weight rPTN 

or saline, exposed to lethal radiation (850cGy) and their survival monitored 

 

Administration of PTN before radiation injury did not enhance survival of lethally irradiated mice 

also. 

 

 

 

 

 

 

P=0.287 
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3.2.2.4 This experiment was to examine whether rPTN is a reparative factor for HSCs 

in vivo following ionizing radiation exposure via mature blood cell repopulation  

 

Mice 

24 female Balb/c mice (8-9 weeks old) were from the Jackson Laboratory (Bar Harbor Maine, U.S.A). 

 

Radiation 

Radiation was achieved using Cesium 137 irradiator. The mice were exposed to a single fraction 

sublethal dose of 550cGy. (Given, 1994), (Gong, 2005). A sub-lethal dose is where 100% of mice 

exposed are alive at day 30. (Section 2.9) 

 

Injections 

12 Balb/c mice were injected intraperitoneal (IP) with 100ng/g body weight or 2ug rPTN (appendix) 

for 14 consecutive days as 8-9 week old Balb/c mice weigh approximately 20g. The control mice 

were injected intraperioneal (IP) with saline for 14 consecutive days as outlined in procedure 2.10.1. 

 

Blood collection 

On days 10, 14, 18, 22, 25 and 29 the 24 mice were bled using the submandibular bleeding technique 

(Golde W. T, 2005) and the blood collected into tubes containing EDTA outlined in section 2.11.1. 

 

Blood analysis 

Full blood counts were performed for each mouse on the Hemavet 950FS as outlined in section 

2.11.2. Parameters measured included White cells (Figure 50), red cells (Figure 51), haemoglobin 

(Figure 52) and platelets (Figure 53). 
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Figure 50: White cell count in sub lethally irradiated (550cGy) balb/c mice (n=12/group), treated fourteen days 

Day 0 – Day 14 with either saline (blue) or 100ng/g bogy weight rPTN (pink).  No significant difference in 

white cell count between treated groups. 
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Figure 51: Red cell count in sub lethally irradiated (550cGy) balb/c mice (n=12/group), treated for fourteen 

days Day 0 – Day 14 with either saline (blue) or 100ng/g bogy weight rPTN (pink).  No significant difference in 

white cell count between treated groups. 

 

p = 0.0226 

* 

P=0.286 
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Figure 52: Haemoglobin values in sub lethally irradiated (550cGy) balb/c mice (n=12/group), treated fourteen 

days Day 0 – Day 14 with either saline (blue) or 100ng/g body weight rPTN (pink).  No significant difference in 

haemoglobin values between experimental groups. 
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Figure 53: Platelet count in sub lethally irradiated (550cGy) balb/c mice (n=12/group), treated fourteen days 

Day 0 – Day 14 with either saline (blue) or 100ng/g body weight rPTN (pink).  No significant difference in 

platelet count between treated groups 

The full blood counts indicate that although there is an increase in stem/progenitor cells in the 

marrow, it is not reflected in the mature blood cells of the peripheral blood.  

 

* 

p = 0.0253 

p = 0.0106 
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3.2.3 This experiment was to examine could PTN induce marrow toxicity with prolonged 

treatment (Experimetnal design). 

 

To investigate if treatment with rPTN resulted in histological damage in the marrow spaces by PTN 

induced toxicity 8-9 week old healthy Balb/c mice were treated with the same dose and injection 

schedule used for the mature blood cell reconstitution study 3.2.2.4. On day 7 and 14 femurs from 

these mice were isolated, paraffin embedded, stained with H&E and examined for marrow structure 

and overall architecture (Figure 54). 
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Figure 54: H&E stained femurs (x5 and x10 magnification) from healthy Balb/c mice (n=2/group) treated for 

either 7/14 days with either rPTN or Saline. 

 

 

The haematoxylin and eosin stained femurs in figure 48 display no significant differences in 

architecture between the saline and the rPTN treated groups indicating that the failure of mature blood 

cell reconstitution with rPTN was not due to PTN induced toxicity.  

Magnification: 

Saline Day 7 
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3.2.4 This experiment is to examine if ptn is up-regulated in the marrow in response to 

radiation injury. 

Mice 

6 female Balb/c mice (8-9 weeks old) from the Jackson Laboratory (Bar Harbor Maine, U.S.A) were 

used. 

 

Radiation 

Radiation was achieved using Cesium 137 irradiator. The mice were exposed to a single fraction 

lethal dose of 850cGy. A lethal dose is where 100% of mice exposed are deceased at day 30. (Section 

2.9)  

 

Bone Marrow collection 

The mice were sacrificed by CO2 euthanasia and cervical dislocation. The femurs and tibia from each 

of the mice were dissected and flushed as outlined in section 2.1. Two mice were sacrificed at 6 and 

24 hours post radiation injury, while two mice received no radiation. 

 

MNC isolation 

MNCs were isolated from the marrow using the lymphoprep technique outlined in section 2.3.1. 

 

Real-Time PCR 

RNA was isolated from the marrow MNCs using the technique outlined in section 2.3.2. The RNA 

was quantified and reverse transcribed to cDNA using the methods outlined in sections 2.3.3 and 

2.3.5. The cDNA was amplified and compared to the house-keeping gene (Section 2.3.6). 
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To determine active transcription of the ptn gene post radiation exposure a two step real-time 

polymerase chain reaction was performed whereby isolated RNA is reverse transcribed to cDNA and 

the cDNA is then amplified using the Real-time PCR method and quantified at 6 and 24 hours post 

injury. The RNA isolated from the marrow MNCs for each mouse at the various time points were 

quantitated using the Nanodrop and are outlined in Table 17. 

 

Condition ng/uL RNA isolated 

Non-irradiated 207.8 

Non-irradiated 101.2 

6 hrs post radiation 81.0 

6 hrs post radiation 138.9 

24 hrs post radiation 58.9 

24 hrs post radiation 62.5 

 

Table 17: RNA quantitation using the Nanodrop. Marrow MNCs isolated from the femurs of mice exposed to 

no radiation, 6hrs post radiation exposure and 24hrs post radiation exposure. 

  

The amount of RNA isolated from the marrow of the treated mice decreases with time post radiation 

injury reflecting marrow destruction and cell damage. After RNA isolation the RNA was reverse 

transcribed to cDNA and amplified to quantifiable levels using real-time PCR. The levels of cDNA 

obtained were quantified using the comparative threshold method against the house-keeping gene 

GAPDH. The results when complied into a bar graph are outlined in Figure 55. 
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Figure 55: PTN mitigation study. One group of mice were exposed to no radiation (indicated 0) (n=2 per group) and 

another 2 groups were exposed to a lethal dose of radiation (850cGy) 6 and 24 hours post radiation injury. To 

determine active transcription of the ptn gene post radiation exposure a two step real-time polymerase chain reaction 

was performed whereby isolated RNA is reverse transcribed to cDNA and the cDNA is then amplified using the Real-

time PCR method. Quantification of ptn expression between the treated groups was determined using the comparative 

threshold method relative to the house keeping gene GAPDH. 

 

 

The Real-time PCR bar graph (Figure 55) highlights PTN as a possible autocrine factor, released by 

MNCs within the marrow to act on the marrow in order to mitigate marrow recovery post radiation 

injury. The ptn gene appears to be down regulated 24 hours post radiation injury suggesting PTN in 

its role as a mitigator post radiation injury is immediate and short-lived. 

 

 

 

 

 

 

P=0.0363 
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Pleiotrophin is a 17kDa protein which is a member of the Heparin Binding Growth Factor Family 

(HBGF) (Milner 1989). It is expressed highly expressed during embryogenesis (Bloch 1992), but is 

however limited in the healthy adult (Yeh, 1998). It has a myriad of functions which include 

mitogenesis (Courty 1991), angiogensis (Yeh, 1998) and promotion of neurite outgrowth (Rauvala, 

1989). PTN has also been described as having oncogenic properties as increased PTN expression is 

noted in various cancers such as lung (Garver 1993), breast (Garver 1994) and melanoma (Chen 

2007).  

 

Endothelial cells, as part of the vascular niche have been shown to provide support to the HSC both in 

vitro (Chute, 2002) and in vivo (Muramoto, 2006 and Salter, 2009). Chute et al describe Human Brain 

Endothelial Cells as providing a supportive role for HSCs compared to endothelial cells of alternative 

origins in both direct and interestingly in-direct contact (Chute 2002) suggesting a factor released 

from the HUBECs is regulating the HSCs in some way. Further to these studies Chute outlines a 

molecular profile for novel endothelial cell derived growth factors released from the HUBECs which 

is lacking in endothelial cells of other origins which regulate haemopoiesis using microarray analysis 

(Chute, 2006). Additional microarray, quantitative real-time PCR and Elisa studies performed in the 

Chute laboratory highlighted Pleiotrophin as candidate growth factor for HSCs (Himburg, accepted 

for publication Nature Medicine 2010). From this Pleiotrophin was investigated as a regulatory factor 

for HSCs in the absence of HUBECs whereby HSCs were cultured with rPTN in vitro and 

transplanted into irradiated recipients and showed to have increased numbers of HSC engraftment to 

the marrow of these cells using competitive repopulating assays (Himburg, accepted for publication 

Nature Medicine 2010). To further support this hypothesis Himburg displayed decreased HSC 

engraftment of HSCs treated with HUBECs and Anti-PTN, thus blocking any PTN signalling from 

the HUBECs further highlighting PTN as a regulatory factor for HSCs. 
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This research project aimed to investigate Pleiotrophin as regenerative factor for HSCs post radiation 

injury using both in vitro and in vivo methods. In order to study this we firstly examined the ability of 

Pleiotrophin to cause the expansion of HSCs in vitro post radiation injury. This was followed by a 

study which examined PTN signalling as a requirement for HUBEC-mediated expansion and recovery 

of HSCs post radiation injury in vitro. We also examined the ability of Pleiotrophin to cause the 

expansion of HSCs in vivo post radiation injury by examining MNC content, KSL cell content and 

Lineage committed cell content. We examined the effect of PTN on mature blood cell reconstitution 

and overall survival of the mice pre and post radiation exposure. The homing effect of PTN on HSCs 

was also investigated as too was cell cycle analysis of marrow cells post PTN exposure. The ptn gene 

was also examined to determine its regulation in the marrow immediately post radiation exposure. 

In order to investigate the ability of Pleiotrophin to cause the expansion of HSCs in vitro post 

radiation injury rPTN was added to irradiated HSCs at two concentrations, 100 and 500ng/mL and 

incubated at 37OC for seven days. On day seven the wells containing cells at all stages of 

differentiation including stem cells, stem cell progeny, lineage committed progenitors and those that 

had fully matured were counted. The cell count in the culture treated with 100ng/mL rPTN was 

modestly increased over those treated with 500ng/ml despite there being no statistical significance. To 

identify the stem cell enriched population within the cultures Flow cytometry was used and again a 

modest increase in the KSL content within the 100ng/ml rPTN treated group was noted over the 

500ng/ml rPTN and TSF treated groups, suggesting KSL self-renewal. To identify cells within these 

cultures that may have committed to a particular lineage with differentiation, colony forming cell 

assays were performed. The colony forming cell assay outlined less lineage committed progenitors in 

cultures treated with 100ng/ml rPTN when compared to cultures treated with 500ng/ml rPTN or TSF, 

the decrease in lineage committed progenitors may be due to KSL self-renewal or a stop in 

differentiation. The decrease found in CFC colonies may also be due to the HSC differentiation 

promotion through the colony forming stage to fully mature blood cell. The increase in KSL content 

within the 100ng/ml rPTN treated groups however suggests one of the former theories. The 

experiment suggests 100ng/ml rPTN treatment of radiated KSL cells results in the increase of KSL 

cells. 
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To determine if PTN signalling was necessary for HUBEC mediated expansion and recovery of HSCs 

in vitro radiated KSL cells were exposed to HUBECs and Anti-PTN. The Anti-PTN aimed to block 

PTN signalling from the HUBECs to the KSL cells to answer this question.  

The cell count reflected the entire cell population in the well including differentiated and 

undifferentiated cell types. These include the stem cells, stem cell progeny, lineage committed 

progenitors and cells at all stages of differentiation including those that have fully matured. There was 

a significant difference in the total cell counts between the different treatment conditions with more 

cells in the HUBEC alone treated cells (p=0.0307) when compared to TSF alone. Treatment with 

HUBECs and Anti-PTN, although not statistically significant, is border-line with a P value of 0.050 

when compared to TSF alone. To identify the specific stem cell enriched population within the 

cultures, the KSL content was determined using flow cytometry. The results however are conflicting 

as one may anticipate that with increased KSL that there is increased self-renewal and therefore less 

differentiation.  

 There were many more KSL cells in the HUBEC and Anti-PTN treated group when compared to TSF 

(p=0.0072) and the HUBECs alone (p=0.009). This data suggests that when KSL cells are set up in 

culture with HUBECs and PTN is blocked using Anti-PTN that there is an increase in the KSL 

content within the cultures, therefore indicating that PTN is not required for HUBEC mediated 

expansion of stem cells in culture. To identify the lineage committed progenitors in the colonies, a 

colony forming cell assay was performed. The HUBEC alone treated group has significantly less 

colonies/500 cells when compared to TSF (p=0.021).  Cells treated with HUBEC and 50ng/mL Anti-

PTN has significantly higher colony forming cells when compared to HUBEC alone (p=0.025). TSF 

versus the HUBECs is however not significant (p= 0.08). This result suggests the KSL cells that were 

treated with the HUBECs have less lineage committed progenitors as there are less colonies formed.  

The less colonies is suggestive of a number of possibilities, one being there are less lineage committed 

progenitors in the HUBEC treated groups, which may be explained by either a stop in differentiation 

of the KSL cells or that they have entered self renewal or both. Another explanation for this result is 
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those treated with HUBECs alone may have differentiated so far that more mature cells exist and are 

passed the colony forming stage. The results also suggested that when PTN (thought to be released 

from HUBECs as a soluble factor) is blocked through Anti-PTN that there are more lineage 

committed progenitors suggesting the cells are progressing in development to the lineage committed 

cells and are therefore no longer multi-potent cells. This CFC result agrees with previous studies with 

PTN acting as a self-renewal factor, the cells when treated with HUBECs and PTN signalling blocked 

multi-potent progenitors are fewer and lineage committed progenitors greater. The increased KSL 

content within the HUBEC and Anti-PTN treated cultures remains a cause for investigation.  Perhaps 

when PTN is blocked another gene within the HUBECs is upregulated in response to the blocking, 

that the HUBECs are themselves responding, perhaps through the up-regulation of another gene, the 

protein of which is a potential HSC growth factor resulting in an increase in stem/progenitor cells. 

Also KSL cells, although highly enriched for HSCs are not a pure population of stem cells, that 

perhaps the increase of cells within the cultures is due to a cell that has the KSL phenotype, but is not 

a stem cell. Previous experiments in the Chute lab noted a similar response when non-irradiated KSL 

cells were set up in culture with HUBECs, TSF and HUBECs with Anti-PTN (50ng/mL), that being a 

significant increase in the KSL% in the cultures where PTN activity of HUBECs was blocked and 

also an increase in lineage committed progenitors, determined though the Colony forming Cell Assay 

 

To investigate if PTN arrests HSC differentiation cell cycle analysis using flow cytometry was 

performed. The cells were treated with TSF and 100ng rPTN in vitro and any differences in cell cycle 

investigated in the KSL population and Lineage negative populations within the cultures. No 

significant difference existed between the rPTN and the TSF treated groups in the percentage of cells 

in the G2/S/M phases of the cell cycle in the lineage negative population. The lineage negative 

population examines a broad population of immature cells, however to examine a population enriched 

for stem cells, cells that are within the lineage negative population were classified into those that 

express c-Kit and Sca-1 antigens was performed. There was no significant difference in the KSL 

percentage of cells in the different phases of the cell cycle in the treated cultures however there is a 

very modest increase in the percentage of cells within the G0 phase of the cell cycle in the cultures 
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treated with 100ng/mL rPTN. There is a modest increase in the percentage KSL cells within the G1 

phase of the cell cycle in cultures treated with rPTN when compared to TSF treated cultures. There is 

also a moderate decrease in the percentage of KSL cells in the G2/S/M phases of the cell cycle 

between the rPTN and the TSF treated groups. These results indicate no difference in the number of 

cells that are quiescent or in G0 between the TSF and rPTN treated groups within the KSL population 

indicating no stop in differentiation within this population between the TSF and rPTN treated groups. 

Interestingly however there is a difference in the amount of cells that are in the G0 phase of the cells 

cycle between the TSF and rPTN treated cells within the lineage negative population indicating rPTN 

induces modest amounts of cell quiescence within the lineage negative or immature population.  

 

The first in vivo experiment performed investigated the homing effect of rPTN on KSL cells. This 

experiment hoped to provide support to previous studies in the Chute laboaratory indicating PTN as a 

growth factor capable of inducing stem cell self renewal. It also aimed to provide some answers as to 

the capabilities of the KSL cells within the HUBEC and Anti-PTN treated cultures. The homing study 

results indicated two things, firstly, when KSL cells were treated with HUBECs plus Anti-PTN 

(50ng/mL), there was a decrease in homing to the marrow. This may lend itself as an explanation 

therefore as to why Dr. Himburg noted a decrease in engraftment with these cells when transplanted 

into lethally irradiated mice. That perhaps there may be an increase in multi-potent progenitors when 

PTN released from the HUBECs is blocked but that they do not home to the marrow efficiently thus 

resulting in a failure of these cells to engraft and re-populate the irradiated mice in the initial 

Competitive re-populating study, which examines homing, engraftment and cell repopulation. 

Secondly, when KSL cells are treated with TSF and TSF plus 100ng/mL rPTN there was no 

increase in homing to the marrow with one over the other. This indicates the increased engraftment 

observed with the addition of rPTN to the KSL cultures is due in fact to an increase in multi-potent 

progenitors, and not due to an increased ability to home. Some may argue that the increased 

engraftment observed by Dr. Himburg may have been due to an increase in homing perhaps through 

the addition of an adhesion molecule such as CXCR4 and not necessarily due to an increase in multi-
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potent cells with the abilty to home, engraft and repopulate. This study provides further evidence to 

the hypothesis of PTN as a novel growth factor for HSCs.  

 

The next study aimed to determine if PTN could induce HSC regeneration post myelotoxic injury in 

vivo, in light of the encouraging in vitro results. Mice received a myelotoxic dose of radiation, after 

which they were treated with either 100ng/g body weight rPTN or Saline. The marrow from these 

mice were then collected and examined for mononuclear and KSL cell content. The MNC count 

indicates broadly whole bone marrow recovery. The mice treated with rPTN, post a myelotoxic dose 

of radiation displayed a 2/3 fold higher MNC count than the control treated group, indicating 

increased marrow recovery with rPTN treatment highlighting the difference in BM cellularity as a 

whole between the saline and rPTN treated groups. To examine haemopoietic progenitor recovery 

post radiation injury in the mice the KSL content was examined using Flow cytometry.  The mice 

treated with rPTN displayed a 7/8 fold higher KSL count that the control group indicating PTN was 

responsible for haemopoeitc progenitor recovery post radiation injury.  To determine the lineage 

committed progenitors between the rPTN and saline treated groups a CFC assay was performed. The 

CFC assay outlines a higher number of lineage committed progenitors in erythroid, myeloid and 

mixed lineages in those that were treated with PTN when compared to the saline control group 

indicating preservation of the lineage progenitors in the rPTN treated group post radiation injury.  To 

analyse the effect of rPTN on more primitive long term progenitors a long-term colony initiating cell 

assay was performed. This assay highlighted an 11 fold increase in the long-term primitive 

progenitors post radiation injury in mice that received rPTN compared to the control group. This 

study indicates that PTN is not only a growth factor for stem cells in vitro but is a regenerative factor 

for stem cells in vivo. 

To investigate if this increase in primitive long and short term progenitors with increased lineage 

committed progenitors is transferable clinically two survival studies were performed. For these studies 

100ng/g body weight of rPTN was administered before and after radiation exposure, it was found the 

rPTN did not enhance survival of these lethally irradiated mice.  As survival is directly correlated to 
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the reconstitution of mature blood cells a study to examine mature blood cell reconstitution with rPTN 

was performed.  The parameters examined included white cells, red cells platelets and Haemoglobin. 

The full blood counts when analysed displayed no increase in circulating mature blood cells in mice 

treated with rPTN compared to the control group indicating although there is an increase in 

stem/progenitor cells within mice treated with rPTN that it is not reflected in the mature blood cells, 

that a disconnect exists between repopulation and regeneration of the marrow and the lack of mature 

cells in the peripheral blood. 

 

To investigate if the difference in between the marrow repopulation and mature blood cell 

reconstitution studies was due to the prolonged treatment regimes in the reconstitution study a further 

study to examine if prolonged treatment with rPTN caused damage to the marrow in vivo. Mice were 

treated with the same dose of as that in the stem cell/progenitor repopulation study and also the 

mature blood cell reconstitution study.  The femurs were collected and the marrow stained with 

haematoxylin and eosin to determine histologically if any had damage occurred to the bone marrow. 

No damage between the saline and treatment group was noted indicating the results observed were 

valid, not due to rPTN induced toxicity.  

 

Finally to investigate PTN as a mechanism used by the body to mitigate or relieve radiation damage 

incurred post radiation injury naturally. We investigated MNCs of the marrow to determine if the ptn 

gene is up-regulated in the marrow in response to radiation damage and if so was it immediately or 

was it a more delayed response. A sharp increase in the active transcription of the ptn gene was noted 

in the MNCs of the marrow six hours after radiation injury occured highlighting PTN as a possible 

autocrine factor released by MNCs of the marrow to act on the marrow to mitigate marrow recovery. 
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Conclusions 

PTN is a self renewal factor for stem/progenitor cells in vitro and is a regenerative factor for stem 

cells in vivo. PTN activity however is localised to the HSC compartment highlighted by the failure to 

reconstitute circulating mature blood cells and in turn the failure to prolong survival of lethally 

irradiated mice when administered before or after radiation injury. 

 

Future directions for this study would include the administration of PTN and GM-CSF post radiation 

injury to aid increase survival and mature blood cell reconstitution. The PTN would regenerate the 

stem/progenitor cells and preserve the lineage committed cells while the GM-CSF would aim to 

elevate thedisconnect between the marrow and mature cells in the peripheral blood by promoting the 

differentiation of the granulocyte and monocyte lineage committed cells.   

 

Another future direction for PTN would be to study if its use in expanding HSCs in vivo with the goal 

of generating more cells for harvest for use in bone marrow transplants. PTN would increase the stem 

cell content in the marrow, so treatment with a mobilising agent such as G-CSF or AMD3100 would 

lead to a more fruitful stem cell harvest with a corresponding increase in transplanted and engrafted 

cells.   
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Laboratory equipment 

• Cell culture hood (SterilGard III. The Baker Company Sanford U.S.A) 

• CO2 incubator (Sanyo Scientific Indainapolis IN U.S.A) 

• Centrifuge (Sorvall RT refridgerated centrifuge) 

• Waterbath (Precision) 

• Microscope 

o Nikon Eclipse TS100 (Nikon Intrument Inc. N.Y, U.S.A) 

o Zeiss Axiovert 200 (Carl Zeiss Microimaging Inc. Boston MA, U.S.A) 

• Vortex (Vortex Genie® Scientific Industries NY, U.S.A) 

• FACS CantoII (Becton, Dikinson and Company Ltd) 

• Cryostat  (Leica CM 3050 Solms, Germany) 

• -80
O
C freezer (Sanyo scientific Indianapolis IN,U.S.A) 

• Cesium 137 irradiator (MDS, Nordia, Ottowa, Ontario, Canada) 

• -20
O
C freezer (Fisher Scientific Pittsburgh PA, U.S.A) 

• 4-8
O
C fridge (Fisher Scientific Pittsburgh PA, U.S.A) 

• Automatic pipette (pipetman® Gilson Middleton WI, U.S.A) 

• Pipet aid (Drummond) 

• Cell sorter (Beckton Dickenson FACSVantage SE cell sorter). 

• Nuebauer Haemocytometer. 

• Cell Counter 

• Aerated circular perspex containers  

• Haemavet 950FS Hematology Analyser (Drew Scientific Oxford CT, U.S.A) 

• Nanodrop ND-1000 spectrophotometer (ThermoScientific, Nanodrop products 

Wilmington D.E U.S.A) 

• 2720 Thermocycler (Applied Biosystems) 

• 7300 RT-PCR system (Applied Biosystems) 

• Sterile scissors and forceps 
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Laboratory consumables 

• 15cc tube (Falcon® Becton Dikinson and company Ltd.) 

• 50cc tube (Falcon® Becton Dikinson and company Ltd.) 

• Flow tubes (Falcon® Becton Dikinson and company Ltd.) 

• 1.5mL Eppendorf tubes (Eppendorf Ltd. Hamburg, Germany) 

• 16.5 gauge needle (Becton Dickinson and Company Inc.) 

• 5mL syringe (Becton Dickinson and Company Inc.) 

• 35mm gridded CFC dish (Thermo Fisher Scientific MA, U.S.A) 

• Large cell culture dish (Thermo Fisher Scientific) 

• Kendall Curity Sterile sponge gauze (Kendall Healthcare Ltd. Mansfield M.A U.S.A) 

• Slide rack 

• Coverslips (VWR international Inc. West Chester, PA, U.S.A) 

• Filter paper (VWR international Inc.) 

• Elastic band 

• Plastic bags 

• Animal lancet GoldenRod® (MEDIpoint Inc., Mineola, NY, U.S.A) 

• Pipette tips (Sharp® Denville Scientific Inc. Metuchen, NJ, U.S.A) 

• 5ml, 10ml, 25ml Sterile pipette (Falcon® Becton Dikinson and company Ltd) 

• 0.2um Nalgene bottle (Thermo Fisher Scientific) 

• Cling Film 

• 96 well plate 
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 Laboratory Reagents 

• Red Cell lysis Buffer (Sigma-Aldrich Chemical company Ltd St. Louis, MO) 

• Trypan Blue (Sigma-Aldrich Chemical company Ltd.) 

• MACS magnetic cell sorting kit (Miltenyi Biotec Ltd. Bisley, United Kingdom) 

o Biotin Antibody cocktail 

o Anti-Biotin Microbeads 

• 2% Gelatin (Sigma-Aldrich Chemical company Ltd.) 

o Catalogue no. G1393 

• Tracking beads (Becton, Dickinson and company Ltd.) 

• Vybrant ® CFDA –SE Cell Tracer Kit (Molecular Probes, Invitrogen detection 

technologies, Eugene, Oregon, U.S.A) 

• Phosphate buffered Saline (Gibco® Invitrogen Corporation San Diego CA, U.S.A) 

• Iscove’s Modified Dulbecco’s medium/IMDM (Invitrogen Corporation) 

o Catalog no. 12440 

• Methocult (Stem cell technologies Inc. Vancover, Canada) 

o Catalog no. GF M3434  

� Lot: 08G26993 

� Expiry: 07/2010 

• Cal-Ex Decalcifying solution (Thermo Fisher Scientific Inc. MA, U.S.A)  

o Catalog no. CS510-1D 

• Sakura Tissue-Tek Optimum Cutting Temperature (OCT)                         

Compound (Sakura Finetek Ltd.) 

• Murine M2-10B4 (American Tissue Culture Corporation ATCC number: CRL-1972, 

Stem Cell Technologies Inc. Vancover Canada) 

• Harris Haematoxylin (Sigma-Aldrich chemical company Ltd.) 

o Lot: HTS-2-32 

• Scotts tap water substitute concentrate (Sigma-Aldrich chemical company Ltd) 

o Lot: 078K4366 

o Expires: 07/10 

• Eosin stain (Sigma-Aldrich chemical company Ltd.) 

o Lot: HT110-2-32 

• Cryoseal XYL mounting medium (Thermo Fisher Scientific Inc) 
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o Lot: 105167 

o Expires 06/10 

• Ethylenediaminetetra-acetic acid/ EDTA (Vacutainer® Becton Dikinson and 

company Ltd) 

• HEMAVET 950FS mouse control (Drew Scientific Oxford CT, U.S.A) 

• 100% Heat-inactivated Fetal Bovine Serum (Hyclone® Thermo Fisher Scientific Inc. 

MA, U.S.A) 

o Catalogue no. SH30071.03 

• Penicillan/streptomycin (Gibco® Invitrogen Corporation) 

o Catalogue no. 15140-122 

• Stem Cell Factor (Research & Diagnostics Systems, Inc. Minneapolis, MN USA). 

o Catalog no. 455-MC 

• Flt 3 ligand (Research & Diagnostics Systems, Inc) 

o Catalog no. 427-FL 

• Thrombopoietin (Research & Diagnostics Systems, Inc) 

o Catalog no. 488-TO 

• Recombinant Pleiotrophin (Research & Diagnostics Systems, Inc). 

o Catalog no. 252-PL 

• Anti-Pleiotrophin antibody (Research & Diagnostics Systems, Inc) 

o Catalog no. AF-252-PB 

• Heparin (Sigma-Aldrich chemical company Ltd) 

o Catalog no. H3149 

• Endothelial Cell Growth Supplement/ECGS (Sigma-Aldrich chemical company Ltd) 

o Catalog no. E0760 

• L-Glutamine (Invitrogen Corporation) 

o Catalogue no. 25030-081 

• Medium 199 (Invitrogen Corporation) 

• Lymphoprep ™ (Axis-Shield Oslo Norwary) 

• Sucrose (Sigma-Aldrich chemical company Ltd) 

o Catalog no. S1888 

• FITC labeled anti-mouse Ly-6A/E (sca-1) (Becton, Dikinson and Company Ltd.) 

o Lot: 40174 

o Expiry: 09/2011 

• FITC labeled rat IgG1, κ isotype control (Becton, Dikinson and Company Ltd.) 
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o Lot: 52205 

o Expiry: 06/2009 

• PE anti-mouse CD117 (c-kit 2B8) (Becton, Dikinson and Company Ltd.) 

o Lot: 74612 

o Expiry: 11/2012 

• PE Rat IgG2a, κ isotype control (Becton, Dikinson and Company Ltd.) 

o Lot: 21237 

o Expiry: 05/2014 

• APC mouse lineage antibody cocktail (CD3e, CD11b, CD45R/CD220,erythroid cells, 

Ly-6G and Ly-6c) (Becton, Dikinson and Company Ltd.) 

o Lot: 19745 

o Expiry: 09/2010 

• APC mouse lineage isotype control cocktail(Becton, Dikinson and Company Ltd.) 

o Lot: 19744 

o Expiry: 11/2010 

• PE-CY5 labeled 7AAD (Becton, Dikinson and Company Ltd.) 

o Lot: 93823 

o Expiry: 11/2009 

• FITC mouse Anti-human Ki-67 set ((Becton, Dikinson and Company Ltd.) 

o 51-36524x clone; B56 

o 51-35404x-clone MOPC-2 

o Lot ; 556026 

o Expiry 30/04/2010 

• RNeasy Mini Kit (Qiagen, Ambion Inc. Austin Texas U.S.A) 

o RLT lysis solution 

o RNeasy spin column 

o RW1 buffer 

o RPE 

o RNase free H2O 

• cDNA Reverse Transcription Kit (Applied Biosystems, California U.S.A) 

o 10xRT buffer 

o 25x dNTP mix 

o 10x RT primers 

o MultiScribe Reverse Transcriptase 
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o Nuclease free H2O 

• Taqman ptn gene expression assay kit. 

o Taqman gene expression mastermix (Applied Biosystems, California U.S.A) 
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 Laboratory solutions 

Cytokine Resuspension Medium 

Iscove’s Modified Dulbecco’s medium  

1% FBS 

1% Pen/Strep 

(Filter sterilize through 0.2um Acrodisc syringe filter or Nalgene bottle) 

 

Endothelial Cell culture Medium  

50mL FBS 

5mL Pen/Strep 

5mL L-Glutamine (Invitrogen Corporation) 

0.5mL 1000x Heparin 

2 vials ECGS (60mg/L; Dissolve each vial in 5mL M199 and mix before adding) 

Bring up to 500mL with Medium 199 

 

10% FBS 

500mL DPBS (Dulbecco’s Phosphate Buffered Saline) 

55mL 100% Heat-inactivated Fetal Bovine Serum  

0.5mL Penstrep  
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10% Gelatin Solution 

Melt 2% Gelatin in 37
O
C water-bath 

Add 55mL 2% Gelatin to 500mL PBS. 

 

IMDM base medium 

Iscove’s Modified Dulbecco’s medium 10% FBS 

1% Pen/Strep 

(Filter sterilize through 0.2um Nalgene bottle) 

 

100ng/mL rPTN  

Stock rPTN: 50ug lyophilized powder  

50ug rPTN (stock) in 500ul TSF → 100ng/uL rPTN 

10uL (100ng/uL) in 10mL TSF → 100ng/mL. 

 

500ng/mL rPTN 

Stock rPTN: 50ug lyophilized powder  

50ug rPTN (stock) in 500ul TSF → 100ng/uL rPTN 

50uL (100ng/uL) in 10mL TSF → 500ng/mL 

 

100ng/g rPTN 

250ug lyophilized stock solution in 25mL PBS: 10ug/mL or 2ug/200uL. 

Average Balb/c 20g. 20g x 100ng: 2000ng or 2ug. 
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So ach mouse injected with 200uL of 10ug/mL solution or 2ug rPTN. 

10% Sucrose  

333uL 30% sucrose stock solution 

666uL PBS 

 

15% Sucrose  

500uL 30% stock solution 

500uL PBS 

 

20% Sucrose  

666uL 30% Sucrose Solution 

333uL PBS 

 

30% Sucrose solution (Stock) 

150uL 100% Sucrose 

350uL PBS 

 

TSF 

97mL Iscove’s Modified Dulbecco’s medium  

1mL 100X stem cell factor  

1mL 100X Flt 3  

1mL 100X Thrombopoietin  
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