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ABSTRACT 

 

The scientific literature currently contains an ever growing number of reports of 

applications of vibrational spectroscopy as a multivariate non-invasive tool for analysis 

of biological effects at the molecular level. Recently, Fourier Transform Infrared 

Microspectroscopy (FTIRM) has been demonstrated to be sensitive to molecular events 

occurring in cells and tissue post-exposure to ionising radiation. In this work the 

application of FTIRM in the examination of dose dependent molecular effects occurring 

in skin cells post exposure to ionising radiation, with the use of  partial least squares 

regression (PLSR) and generalized regression neural networks (GRNN) is studied. The 

methodology is shown to be sensitive to molecular events occurring with radiation dose 

and time after exposure. The variation in molecular species with dose and time after 

irradiation is shown to be non-linear by virtue of the higher modelling efficiency yielded 

from the non-linear algorithms. Dose prediction efficiencies of approximately ±10mGy 
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have been achieved at 96 hours after irradiation, highlighting the potential applications of 

the methodology in radiobiological dosimetry.  

 

Introduction 

 

The effect of exposure of biological species to ionising radiation is complex. The 

physico-chemical reactions that occur along the tracks of energy deposition within the 

cell generate free radicals and reactive oxygen species, whose subsequent interactions 

with the membrane, cytoplasm and the nuclear DNA initiate a range of molecular 

signalling networks that determine the fate of the cell (1, 2). Radiation induced DNA 

lesions such as base deletions, adducts, tandem lesions, single strand and double strand 

breaks, and clustered damage sites are considered critical to the fate of the cell, and their 

yield and complexity depends on the dose, dose rate and linear energy transfer of the 

radiation (3, 4). The yield of such damage also depends significantly upon the chemical 

environment of the DNA, where endogenous thiols (such as cysteamine) and enzymes 

(such as glutathione, superoxide dismutase) may ameliorate the effect of the radiation 

exposure through scavenging of free radicals (3, 5, 6), while oxygen may assist the 

formation of DNA lesions through fixation of the damage. In instances where DNA 

damage is formed, the cell has evolved sophisticated DNA repair mechanisms to deal 

with the radiation insult (7, 8), where the repair mechanism that is adopted by the cell is 

related to the part of the cell cycle in which it is irradiated (4), and may initiate cell cycle 

arrest (9). Effective repair depends on sensing of the damage with specialized proteins 

and the processing of this damage via specialized repair enzymes (7, 8). Deficiencies in 
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such responses in the cell can lead to increased radiosensitivity (10). Despite the complex 

nature of the network of signalling effects in the cell, some damage is not repaired, 

possibly due to its level of complexity, which can result in the initiation of cell death via 

apoptosis (11), necrosis, or mitotic cell death (12). Other potential outcomes include the 

senescence of the cell (13), autophagic response in which the morphological changes 

resemble those seen during apoptosis (14), in addition to genomic instability and 

mutagenesis. The level of cell survival  after irradiation depends on the level of dose, 

dose rate, LET of the radation, and on the radiosensitivity of the cell (4), with responses 

such as low dose hypersensitivity and increased radioresistance thought to occur at low 

doses as a result of variations in the level of sensing of DNA damage (15).  

 

The search for non-invasive techniques for biological dosimetry has established the 

analysis of chromosomal translocations as a signature of radiobiological damage in 

humans (16). Recently, methods which analyse concentration changes in metabolites 

have also been applied to this problem, identifying biomarkers of radiobiological effect in 

various biological media (17-19). The vibrational microspectroscopy modalities (Raman 

and FTIR microspectroscopy (FTIRM)) are techniques that can rapidly and non-

invasively measure the spatially-resolved chemistry of the cell (20) and of tissue (21) 

with minimal sample preparation. FTIRM has proven to be useful in the analysis of 

complex biological responses during a range of biological processes, including 

proliferation and cell death processes (22-25). Importantly, it has also shown promise as a 

technique for the examination of the total biochemical content post-irradiation in human 

cells (26-28), human tissue (29-32) and bacteria (33-35), in addition to isolated molecular 
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constituents of the cell and its subcellular compartments (36-38). Melin and co-workers 

(31-33) have studied the effects of γ-irradiation of D. radiodurans, K. rosea and M. luteus 

with FTIRM and have demonstrated that differences occurred in spectral signatures 

associated with nucleic acids, carbohydrates, fatty acids and protein. Gault et al. have 

also demonstrated that changes in the vibrational intensity of bands across the spectrum 

occur in HaCaT cells after a 6 Gy and 20 Gy γ-radiation dose (26, 27), and after a 2Gy 

dose of alpha particles (25).  

 

Infrared radiation, when incident on molecular species, causes transitions within the 

vibrational manifold of polar bonds i.e. bonds containing an atom with an overall positive 

charge bonded to one with an overall negative charge. When the frequency of the 

incident infrared radiation matches that of the natural frequency of vibration of the bond, 

the bond will absorb the radiation. In complex biological species the absorption bands are 

broad and represent the superposition of vibrations of various distinct biological species, 

and may be attributed to families of bond vibrations (eg. lipid or sugar phosphate bond 

vibrations, carbohydrate osidic bond vibrations etc. (39, 40)). A spectrum therefore 

contains information on the biochemical content of multiple cellular species, and 

consequently has high dimensionality. Previous studies employing FTIRM in the analysis 

of chemical changes post-irradiation have simply analysed spectral changes using 

differences of the mean spectra within each dose class (31-33) or analyses of Fourier self-

deconvolution spectra (24-26), which does not clearly provide information regarding the 

variation in specific chemical components with dose and time post-irradiation. Such 

information is provided via the use of multivariate methods (chemometric methods in the 
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context of modelling spectroscopic data) to analyse the variation in spectral content with 

exposure and response factors. Many methods have been developed for the analysis of 

multivariate data (41); the choice of any individual method depends on the nature of the 

multivariate measurement and on the purpose of the analysis, a task which may require 

some prior knowledge of the system under study. Linear (42) and non-linear (43) 

methodologies for regression of multivariate data against various endpoints can provide 

insights into the underlying chemical effects occurring in the sample with the agent of 

interest and can produce models which are useful in the prediction of chemical content or 

effect in new multivariate data (42, 43). 

 

In the present study we present for the first time a chemometric analysis of the variation 

in the content of the FTIR spectra of a human keratinocyte cell line (HaCaT (44)) with γ-

radiation dose and with time post-irradiation. Since FTIR spectra represent a 

quantification of the total concentration of organic biochemical species within the cell, 

this approach ultimately provides radiobiological models which analyse the variation of 

all the major cellular constituents (lipid, protein, nucleic acid, amino acid, carbohydrate, 

etc.) simultaneously, which may be used as a means to retrospectively analyse radiation 

dose. The analysis here employs linear and non-linear modelling techniques that provide 

the means to predict radiobiological dose. It was found that linear and polynomial 

multivariate models are not sufficiently comprehensive to describe the variation in the 

FTIRM biochemical fingerprint with respect to dose and time after irradiation. Features 

of interest in the predictive performance of these models, and their implications for the 

application of FTIRM to biological dosimetry, are discussed. 
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Materials and Methods 

 

Cell Culture 

 

A spontaneously immortalized, aneuploid, cell line was employed in this study, which 

has been shown to be non-tumourigenic, albeit with a transformed phenotype, in-vitro 

(44). Cells were cultured in Dulbecco’s MEM:F12 (1:1) whole medium (Sigma, Dorset, 

UK) supplemented with 10% fetal calf serum (Gibco, Irvine, UK), 1% penicillin-

streptomycin solution 1,000 IU (Gibco, Irvine, UK), 2 mM L-glutamine (Gibco, Irvine, 

UK) and 1 μg/mL hydrocortisone (Sigma, Dorset, UK). Cells were cultured and 

maintained in an incubator at 37oC with 95% relative humidity and 5% CO2. Cells were 

routinely subcultured at 80%-100% confluency using a 1:1 solution of 0.25% trypsin and 

1mM versene at 37oC. 

 

For FTIRM, transmission of the IR radiation through a biological sample is necessary for 

the acquisition of a spectrum, and therefore spectroscopic substrates that allow the 

transfer of infrared radiation through the biological sample must be employed. It has 

previously been demonstrated that FTIRM of HaCaT cells may be performed in 

transmission-reflection (or ‘transreflection’) mode using a low emissivity silver oxide 

coated glass slide (MirrIR, Kevley Technologies), on which a 2% gelatin coating is 

deposited to enable attachment of the cell and improve cell viability (22). Transreflection 

is essentially a double pass transmission measurement; the broadband IR radiation is 
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transmitted through the sample to the substrate and is then reflected from the silver oxide 

coating back through the sample to the collection optics in the FTIR instrument (22). In 

this study MirrIR slides were cut into 20 mm × 25 mm pieces and sterilised in 70% 

industrial methylated spirits before being placed in 6-well plates and allowed to dry in a 

laminar flow cabinet. The slides were then washed in phosphate buffer solution (PBS). 

Approximately 300 μL of a pre-prepared sterile solution of 2% gelatin (b/w) in deionised 

water (dH2O) was placed on each substrate, and was stored for 24 hours at 4oC. After this 

period, the unbonded portion of the gelatin solution was aspirated from the substrate and 

the cell suspension was immediately added to the substrate, with the sample subsequently 

incubated at 37oC for a further 2-hour period to effect initial attachment. The samples 

were incubated in 3 ml DMEM:F12 for 24 hours prior to irradiation. For FTIRM analysis 

at 6 and 12 hours post-irradiation, the cell density used was 1 × 105 cells per substrate, 

while 5 × 104, 2.5 × 104 and 1.5 × 104 cells per substrate were, respectively, used for 

analysis at 24 hours, 48 hours and 96 hours post-irradiation.  

 

Irradiation  

 

Three individual passages of the HaCaT cells were used to coat each of three individual 

substrates for irradiation and analysis at each dose and time point, and were irradiated 

with γ-rays from a cobalt-60 teletherapy source, which is equipped with a chronometer 

allowing time settings in 0.01 minute intervals. The dose rate at the sample at the time of 

irradiation was determined to be 153.47 cGy/min from a decay corrected measurement of 

the in-beam axial dose at 80 cm source to chamber distance (measured in a water 
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equivalent phantom using a secondary standard ionization chamber). The dose settings 

(and the corresponding actual doses delivered with associated uncertainties) were 5 mGy 

(8.3 ± 40%), 20 mGy (23 ± 13%), 50 mGy (58 ± 17%), 200 mGy (209 ± 5%), 500 mGy 

(511 ± 2%), 750 mGy (763 ± 1.3%), 1 Gy (1.014 ± 1%), 2.5 Gy (2.514 ± 0.4%) and 5 Gy 

(5.011 ± 0.2%). The actual dose to which each sample was exposed was determined from 

the axial dose, corrected for the irradiation time during ingress and egress of the source 

and the actual irradiation time (a rounding of the calculated irradiation time to 0.01 min 

increments), scatter and grid factors, together with the source to sample distance. The 

source to sample distance used was 100 cm with a 30 × 30 cm field size for doses from 

5Gy to 50 mGy and 184 cm with a 47 cm × 47 cm field size for the 20 mGy and 5 mGy 

dose settings. The uncertainty in the dose delivered for each dose point was estimated by 

assuming an uncertainty in the chronometer setting of ±0.01 min (the minimum 

chronometer setting).  

 

The dose range for this study was chosen such that a variety of cellular molecular 

responses would be seen, including those associated with low dose hypersensitivity, 

increased radioresistance, and apoptotic, necrotic and mitotic cell death. This allows us to 

then to examine the performance of the models to explain the spectral effects occurring as 

a result of a range of radiobiological effects. Control samples were sham irradiated and 

all samples were returned to the incubator immediately after irradiation. After post-

irradiation incubation periods of 6, 12, 24, 48 and 96 hours, the cells were fixed in a 4% 

neutral-buffered formalin solution for 10 minutes, washed three times in dH2O and 

dessicated for subsequent FTIRM. Fixation times were kept to a minimum to reduce the 
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risk of any cellular degradation (45, 46). The samples were stored in a dessicator until the 

time of analysis. 

 

FTIR Microspectroscopy 

 

FTIRM was performed using a Perkin-Elmer GX-II spectrometer. The system is 

equipped with a mid-infrared source and motorised mid-infrared and far-infrared 

beamsplitters, allowing the measurement of spectra over the range from 7000 to 50 cm-1 

with a maximum resolution of 0.3 cm-1. It is also equipped with a ×40 objective, a 

motorised stage, and a liquid-N2 cooled MCT detector for operation in either 

transmission or reflection mode. In the present work spectra were recorded over a 4000 to 

720 cm-1 wavenumber range with an aperture size of 100 μm ×100 μm, at a spectral 

resolution of 4 cm-1 and with 64 scans per spectrum. All spectra were recorded in 

transreflection mode; approximately 300 spectra were recorded at each dose and time 

point. 

 

Pre-processing of FTIR Spectra 

 

Single cell FTIR spectra contain contributions from the chemical content of the sample 

and physical effects which originate in the optically inhomogeneous nature of the sample 

under measurement including spurious effects such as scattering within the sample (47), 

resulting in alterations in the baseline. Additional unwanted effects include noise and 

contamination of the spectra by infrared-active molecules such as water vapour and 
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carbon-dioxide (48). Pre-processing of spectra aims to reduce such contributions, 

minimising all non-biological variance. Here, all spectral processing and analysis was 

performed using Matlab 7.2 (The MathWorks Inc., USA) with PLS Toolbox 5.0.3 

(Eigenvector Research, Wenatchee, WA, USA).  

 

Firstly outliers within each set of spectra at a given dose and time point were removed 

using Grubb’s test of the Mahalanobis distances between scores of the first three 

principal components of each spectral set (49). Principal components are used to reduce a 

given multivariate data matrix to a set of orthogonal basis vectors (principal components 

or eigenvectors) where those vectors with the largest scores (eigenvalues) correspond to 

the basis spectra which contribute to the largest degree of variance in the dataset (41, 42). 

Subsequently, the contributions of water and carbon dioxide were removed from each 

spectral set by a modelling procedure using second-derivative spectra of CO2 and water 

vapour recorded by the FTIR instrument separately (48). Each spectral set was then 

subjected to the extended multiplicative scatter correction for removal of linear and 

multiplicative optical effects that contribute to the baseline in the spectra (47), and the 

spectra were then vector normalised to adjust for point-to-point variations in 

concentration of cells within the aperture window across the sample.  

 

PLS Regression 

 

The partial least squares regression (PLSR) algorithm has found extensive use in the field 

of chemometrics since its first description by Wold (50). The PLSR algorithm constructs 
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a model that allows the regression of a series of spectral measurements onto target agent 

or analyte concentrations. The model itself is given as follows (41): 

 

 Y = XB + E           (1) 

 

where Y is a matrix which defines the concentration of agent (in this case radiation dose) 

associated with each of the multivariate objects (spectra) which  themselves are contained 

within the matrix, X, and E is a matrix of residuals. The algorithm aims to maximize the 

association between the structure of X versus the structure of Y and minimize E. An 

approximation to the procedure by which the algorithm operates visualises the X and Y-

matrices being decomposed into their principal components and then regressed against 

one another. Thus the X and Y-matrices are decomposed into their eigenvectors 

(principal components, or in the context of PLSR, ‘latent variables’) and eigenvalues 

(scores) as: 

 

 X = T.PT + EX          (2) 

 Y = U.QT + EY          (3) 

 

where T and U are the score matrices associated with the transposed matrix of latent 

variables, PT and QT within the X and Y-matrices respectively, with EX and EY being the 

residuals associated with the decomposition. The regression model then attempts to 

approximate the Y-score matrix in equation 3 (U) with the X-score matrix, T, as: 
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 U = TB + H           (4) 

 

where those latent variables within X, that best regress against Y are retained within the 

model. Estimates of U in equation 5 are then fed into equation 4, providing predictions of 

Y,   öY , from the X-block data. It is also possible to construct PLSR models that regress the 

latent variables in X against Y by means of a non-linear model. A nonlinear PLSR model 

(NL-PLSR) employing a second order polynomial was constructed in an attempt to 

examine whether the adjustment in the total biochemical content of the cell post-radiation 

follows a simple non-linear model (which may be associated with cascading or clustering 

of DNA damage (51). The equation describing this model is of the following form (52): 

 

 U = B0 + B1T + B2T
2 + E         (5) 

 

Generalised Neural Network Regression 

 

Artificial neural networks (ANN’s) have been termed ‘nonparametric nonlinear 

regression estimators’ (43) because of their ability to determine relationships between 

one or several input or ‘independent’ variables and one or several output or ‘dependent’ 

variables, regardless of the form of the function defining the relationship between the two 

sets of variables. The network employed here is a generalized regression neural network 

(GRNN), first described by Specht (53), which is a form of kernel regression in which the 

optimum non-linear regression surface relating the input data to the output data is 
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determined (53). A schematic of the network is presented in figure 1. The network has, as 

its basis, the following formula which is derived from generalised regression theory (54): 

 

  

E y x( )=
y. f (x, y).dy

−∞

∞

∫

f (x, y).dy
−∞

∞

∫
        (6) 

 

where E y x( ) is the expected value of the output, y, for a given input, x, and f(x,y) is a 

probability density function of x and y, which defines the relationship between the two 

variables. The GRNN effectively estimates f(x,y) via a subset of the matrix of the input 

dataset which is used to train the network. Since the network is developed directly from a 

training subset of the input dataset, it can generalise to any functional form that relates 

any input to any target output. The input data is fed through various “layers”, which are 

stages of the network operations and which are arithmetic operations whose parameters 

are unobservable to the operator. However, key to the operation of the network is the 

“smoothness” of the radial basis function (RBF) layer (or the width, σ of the RBF 

distribution functions). The form of these radial basis functions assumes a Gaussian form 

when σ is large, and may assume non-linear shapes when σ is small. In the first instance, 

this will increase the prediction error between the output of the network and the desired 

output but the network will perform well when presented with unseen data, while in the 

second the prediction error will be small but outliers in the input data will have too great 

an effect on the regression. Therefore, during training of the network, suitable values for 

σ (which will be termed the ‘smoothness’ of the network) are determined through cross-
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validation of the training data versus corresponding target outputs; the optimal value for 

σ is then that value which provides the minimum prediction error (53, 54).  

 

Design and Testing of Models 

 

To develop a model of spectral measurements against dose, the spectral dataset was 

randomized and split into a training set containing 60% of the total number of spectra and 

a testing set containing the remaining 40% of the spectra. It is known that PLSR models 

can model noise in the dataset of independent variables if the model chosen is overly 

complex, i.e. if the number of latent variables chosen is too large. Leave-one-out cross-

validation was employed to determine the optimal number of latent variables to retain in 

the model. The PLSR and NLPLSR algorithms were then executed for ten separate 

randomisations of the calibration and testing matrices in order to avoid bias in the 

algorithms when through presentation with different training and testing datasets. In 

defining the performance of the model in the regression of the spectral measurements 

against radiation dose at cross-validation we have used the root-mean-squared error of 

cross-validation (RMSECV). At the model training stage this measure is termed the root-

mean-squared error of calibration (RMSEC) and root-mean-squared error of prediction 

(RMSEP) at the testing stage. The root mean squared error is defined as: 

 

  
RMSE =

öYi − Yi( )2

i=1

n

∑
n

         (8) 
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where the predicted dose from each model, Ŷi , is compared to the corresponding true 

value, Yi . Ten-fold cross-validation was employed to define the optimal smoothness of 

the GRNN before calibration, in order to prevent over-fitting. The data-set was again 

randomly split into a training set (60% of total spectra) and unseen testing set (40% of 

total spectra), and these were used to develop and test the network. Since the network is 

initialised randomly on each development of the network (i.e. cross-validation, 

calibration and testing), the network was run over 50 independent initialisations and the 

mean values of the RMSEC and RMSEP were computed to evaluate the performance of 

the GRNN. Execution of the models repeatedly in this manner avoids data bias by 

randomisation of the training and testing data matrices. The values of RMSEP quoted in 

this work are conservative estimates due to the uncertainties in the dose delivered 

(estimates of which are included in the section on Irradiation earlier), a factor that has 

been demonstrated to lower the actual RMSEP (55, 56). 

 

PLSR, and NL-PLSR models were evaluated separately for corrected spectra, 1st order 

derivative spectra and second order derivative spectra. First order derivatives are 

employed in spectroscopy for the removal of slowly varying background or baseline 

features below chemical signatures, and are employed here in a separate modelling 

procedure as a check of the preprocessing procedures that were employed to correct the 

spectra. Second order derivative spectra are normally employed to highlight ‘shoulder’ 

features occurring on spectral peaks, and are here employed to determine whether such 

features are important in terms of their relationship to dose or in the ability to predict 

radiation dose from such spectra. 
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Results  

 

Spectral Vibrations in HaCaT cells 

 

The main FTIRM spectral features of sham-irradiated and irradiated HaCaT cells at 96 

hours post-irradiation are shown in figure 2. The associated band assignments are shown 

in table 1 (with associated references to their sources). Mean spectra from each spectral 

category are presented here to highlight spectral changes occurring as a result of exposure 

to ionising radiation, although a full interpretation of the multivariate models involves 

detailed analysis of their fitting parameters. Detailed analyses of the correlation of the 

complex changes to the spectral response as a function of dose and exposure time with 

gold standard tests for viability, proliferative capacity and mitochondrial activity are 

currently underway.  

 

In sham-irradiated cells, the region up until 1750 cm-1 (fingerprint region) shows 

vibrations of characteristic modes of DNA and RNA (phosphate backbone, C-O stretch, 

C-N-C stretch, amide and characteristic modes of certain nucleic acid bases), lipid (-CH3 

and -CH2 bending and scissoring and COO stretch), and protein (carbonyl stretch coupled 

to N-H bending vibration of peptide backbone (amide I), C-N stretch coupled to N-H 

bend (amide II) and C=O bend coupled to N-H bending vibration (amide III)). In the 

higher wavenumber region (from ~ 2600-3500 cm-1), the vibrational modes are 

dominated by methyl -CH2 and -CH3 stretching vibrations in lipid and protein, together 



17 
 

with interaction of the excited state of the N-H stretching vibration and the overtone of 

the amide II vibration (amide A and amide B vibration respectively). Stretching 

vibrations of the O-H bond occur in both the fingerprint and higher wavenumber region, 

and have origin in water contamination of the sample, or O-H bond vibrations within 

carbohydrates (57, 58). 

 

Cross Validation, Calibration and Prediction Performance of PLSR, NL-PLSR and 

GRNN Models 

 

The complexity of a partial least squares (PLSR) model is determined by the number of 

latent variables incorporated in the model (which are orthogonal dimensions that explain 

the variation in the multivariate dataset with respect to the target variable). Selection of a 

suitable number of latent variables to retain in constructing the PLSR and NL-PLSR 

models is essential to ensure that over-fitting of the data does not occur (42). Martens and 

Naes have defined a condition indicating the optimal number of latent variables to retain 

in such models as the minimum of a plot of the cross-validation error versus the latent 

variable number in an independent test set (42). Adopting this approach we have 

determined that the optimal number of latent variables (nLVs) for both the PLSR and 

NL-PLSR models is as shown in tables 2 and 3, with examples of the corresponding 

cross-validation, and subsequent calibration and testing, results shown in figure 4(a) and 

(b).  
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Tables 2 and 3 also show the corresponding variance explained by the first two latent 

variables for the PLSR and NL-PLSR models at each time point, and the corresponding 

root mean squared errors of calibration (RMSEC) and prediction (RMSEP). The 

explained variance with respect to LV above the second LV is not shown as these  

describe decreasing amounts of the variance in the dataset with respect to the target dose, 

and the variance described by the first two LV’s is quite high (above 96-97% for both the 

corrected and 1st order derivative spectra) in each model. There is good agreement 

between the values of RMSEC and RMSEP for each PLSR and NL-PLSR model at each 

dose point, indicating that overfitting is not evident in the modelling results, despite the 

large number of LV’s required to model the data. In addition, the values of RMSEC and 

RMSEP for the models developed with either corrected spectra or 1st order derivative 

spectra agree well with one another, indicating that the spectral pre-processing employed 

here is effective at removing spectral variance within baseline features, and that such 

effects have little influence on the predictive efficiency of the models. 

 

Table 4 shows the performance of the GRNN in training (calibration) and prediction of 

dose, and the associated goodness-of-fit statistics. An example of the results seen at 

cross-validation of the network, and subsequent calibration and testing, are shown in 

figure 4(c). Also included in the table are the values of the network smoothing factor. It is 

notable that the value of the smoothing factor of the neural network is quite similar for 

the network developed for each spectral dataset at each time point. This indicates that the 

range of spectral features that are modelled with each independent neural network are 

quite consistent, even though the weights of each network used to combine the spectral 
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features in regressing against dose may be different at each training stage. Again the 

values of RMSEC and RMSEP for each of the networks are quite similar, indicating that 

the networks do not over-fit spectral features within the datasets, and as such generalise 

well to previously unseen data.  

 

Discussion 

 

Spectral Features Varying with Dose 

 

There is a paucity of studies on the use of vibrational spectroscopy for the analysis of  

biological samples exposed to ionising radiation. Although studies with FTIRM by Melin 

and co-workers (31-33) on the effects of γ-irradiation of D. radiodurans, K. rosea and M. 

luteus are not directly comparable to effects on eukaryotic cells, they demonstrate that 

spectral differences occur in the 1245 to 900 cm-1 (nucleic acids and carbohydrates), 

3100-2800 cm-1 (fatty acids and protein) and 1750 to 1390 cm-1 (lipid and protein) 

regions of the spectrum (in certain bacterial strains these band intensities were observed 

to increase, while in others they were observed to decrease). Gault et al. have also 

demonstrated that changes in vibration intensity of bands across the fingerprint region 

occur in HaCaT cells after a 6 Gy and 20 Gy γ-radiation dose, and after a 2Gy dose of 

alpha particles (25, 65).  

 

A straightforward means of examining the spectral changes occurring after irradiation is 

through examination of the difference spectra between the mean sham-irradiated cell 
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spectra and those for the irradiated cells. An example of the difference spectra seen for 

500mGy and 5Gy dose categories at 96 hours post irradiation is shown in Figures 3(a) 

and 3(b). It must be noted in interpreting these difference spectra that a peak denotes an 

absorbance in the sham-irradiated cell spectra that is higher than the corresponding 

absorbance in the irradiated sample, and vice versa. The findings of Gault et al are 

supported by the features in figure 3(a) and 3(b) of the present work. Absorbance 

differences between 1200 cm-1 and 1030 cm-1 are due to vibrations of osidic (C-O) bond 

stretching in DNA, RNA and other carbohydrates, together with overlapping O-H 

deformation vibrations in carbohydrates from 1290 to 1030 cm-1 (57-59). There are also 

differences attributable to changes in asymmetric (~1230 cm-1) and symmetric (~1090-

1084 cm-1) stretching of phosphate bond vibrations in RNA and DNA. Other 

characteristic vibrations in nucleic acids (bending vibration in uracil at 996 cm-1 and 

stretching vibration in PO4
- moieties in DNA) also exhibit slight absorbance differences. 

In addition there is a strong absorbance difference in the tyrosine ring vibration band at 

~1515 cm-1 in the 500mGy sample. As a complete picture these features could signify an 

increase in DNA strand breaks and base cleavage reactions with dose, increasing 

hydroxylation of C=C double bonds in purine and pyrimidine rings of DNA, and 

potentially, the formation of DNA-DNA or DNA-protein cross-links (25, 26). The 

absorbance differences at 1160 cm-1 (-C-OH in nucleic acid carbohydrates) and 1242 cm-

1 (-PO2
- asymmetric stretching vibration) also suggest adjustments to the hydrogen 

bonding structure in DNA that have been seen previously in apoptosis in irradiated 

lymphocytes (26). In addition, the pyranose carbohydrate vibrations (symmetric and 

asymmetric ring vibrations, C-H deformation) exhibit positive absorbance differences 
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from 935 to 905 cm-1, while the O-H bond stretching vibration has highly positive 

absorbance differences at ~3176 cm-1 and 3262 cm-1. These features could signify an 

adjustment to metabolic activity involving glucose synthesis for energy production in 

molecular transduction responses to radiation exposure (15, 60). 

 

The absorbance differences in protein amide bands suggest the occurrence of dose 

dependent secondary structural changes to protein, previously seen by Gault et al (27, 

28). Such changes to the structure of protein have been demonstrated to result from chain 

cleavage, formation of protein-protein cross-links and amino acid degradation post-

ionising radiation exposure (25, 26). However, many of the regions of the spectrum 

ascribed to protein also contain vibrations that are assigned to lipid species, to which the 

highlighted signatures may be assigned. This could be evidence of degradation to the 

structure and function of biomembranes within the cell (25, 26). There are also 

absorbance differences in the CO-O-C symmetric and symmetric stretching vibration at 

1170 and 1070 cm-1 in lipids, which supports this latter assertion. 

 

Comparative Predictive Efficiency of Modelling Procedures 

 

The values of RMSEC and RMSEP for the PLSR, NL-PLSR and GRNN models may be 

compared through consulting the top panels of table 2 and 3 with table 4. It is clear that 

both the PLSR and NL-PLSR models have similar performances in prediction of dose 

from spectral information, and generalise well to unseen data, although the NL-PLSR 

model is slightly less effective in comparison with the PLSR model. The GRNN, 
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however, outperforms both the PLSR and NL-PLSR models in terms of prediction and 

generalisation ability, achieving values of RMSEC and RMSEP that are in general lower 

than the other two models. It is also notable that for the PLSR and NL-PLSR models, the 

use of 2nd order derivative spectra shows no improvement in the predictive ability of each 

model, but rather appears to disimprove them.  

 

The large difference between the RMSEC and RMSEP values obtained using the GRNN 

versus either the PLSR or NL-PLSR models suggest that the concentration of many 

chemical components of the cell vary in a non-linear manner with dose, and this variation 

is not explained adequately via either a linear or second order polynomial model. This 

demonstrates that subtle and complex dose-dependent changes are apparent in FTIR 

spectral fingerprints. 

 

The inter-comparison of RMSEC and RMSEP values between GRNN models at different 

time points can give insights into the dynamics of the system under study (see table 4 and 

5). The predictive efficiency of the PLSR and NL-PLSR models are relatively consistent 

with time post-irradiation, while the predictive efficiency of the GRNN varies with time 

post-irradiation, being best at 6 hours and 96 hours post-irradiation, falling from a 

maximum at 12 hours post-irradiation onwards. This suggests that there is an increased 

variance in the biochemical content of the cell population at 12 hours post-irradiation, 

suggesting that the total chemical composition of the cells is varying as a result of the 

initiation of a variety of DNA repair, and other, response mechanisms (15, 60). This 

response appears to induce a range of spectral content profiles across the population of 
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cells while they undergo responses such as DNA repair, apoptosis or necrosis (15, 60). It 

is also possible that this increase in variance within the population of cells is a result of 

the difference in response mechanisms occurring within cells exposed to doses that may 

initiate non-targeted effects (from 5 mGy to 200 mGy (15)) in comparison to those 

exposed to doses producing effects consistent with the classical paradigm (3, 15). The 

reduction in the RMSEC and RMSEP values at 24 hours suggests that spectral content 

and thus dose-dependent modelling efficiency may also be affected by the 

synchronisation of cells within the cell cycle (9) (the length of the cell cycle in HaCaT 

cells is approximately 23 hours (44)). At 96 hours, it appears that cells within a 

population have exhausted the range of molecular response mechanisms available to 

them, since variance in the spectral content within each dose category reduces, and the 

predictive efficiency of the modelling procedures increases; this suggests that the spectral 

content within the population of cells varies according to a more consistent model with 

respect to radiation dose. The predictive efficiency of the model at this time point is 

excellent (approximately ± 10 mGy including the variance in RMSEP) when compared to 

that achieved with established methods of biological dosimetry. This RMSEP equates to 

a measurement uncertainty which varies between 200% for a dose of 5 mGy, to 2% at 

500 mGy and 0.2% at 5Gy, while this uncertainty has been quoted as high as 62% for 

estimates based on measurements of chromosomal translocation frequency (61).  

 

Finally, the PLSR and GRNN algorithms were applied to the development of models 

based on the complete dataset of spectra at all time points. The PLSR algorithm in this 

case is termed a PLS2 algorithm (42), and predicts both the dose and time of irradiation. 



24 
 

The RMSEC and RMSEP for prediction of time from this algorithm were both 17.9 hours 

(with R2 values of approximately 0.85 and 0.84 respectively), while the corresponding 

values for RMSEC and RMSEP in prediction of dose were both 1.3 Gy (with R2 values 

of 0.41 and 0.43 respectively). In contrast, the GRNN was capable of predicting time to 

within 6.3 hours (with an RMSEC of 5.8 hours and R2 values of 0.99 and 0.98 at 

calibration and testing respectively) and dose to within 0.37 Gy (with an RMSEC of 0.25 

and R2 values of 0.99 and 0.97 at calibration and prediction respectively). This 

emphasizes the degree to which chemical signatures vary in a non-linear manner with 

dose and time post irradiation.  

 

Conclusion 

 

This study demonstrates that FTIRM, in addition to its potential in cytometry and tissue 

pathology, provides a platform form the non-invasive measurement of radiobiological 

damage as it is sensitive to the complex series of molecular responses produced in the 

cell. It has been demonstrated that powerful multivariate techniques can offer the means 

to analyse the changes in the biochemical fingerprint occurring with dose and time after 

irradiation as a platform for retrospective biological dosimetry. The study raises questions 

regarding the nature of the non-linearities in these changes that are suggested by the 

performance of the GRNN in modelling the biochemical fingerprint. Further detailed 

investigations are currently being directed towards interpreting the modelling parameters 

within the multivariate models, with a view to elucidating the identity of 

radiobiologically relevant spectral features and modelling their association with 
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radiobiological effect. A correlation of the observed spectral responses as a function of 

radiation dose with biochemical endpoints could potentially add considerable insight into 

the molecular origin of the response.  
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Table Captions: 
 
Table 1. Tentative FTIR vibrational assignments (for cellular spectra) taken from various 
sources ((26, 27), (40, 62-65) and references therein). ν = bond stretch; s = symmetric 
vibration; as = asymmetric vibration; δ = bending vibration; sc = scissoring vibration; p = 
protein; l = lipid; 
 
Table 2. Performance of PLSR model in prediction of dose at each time point post-
irradiation ((RMSEC and RMSEP are in the units of dose (Gy)). All values presented are 
the mean of ten independent executions of the model. ‘nLv’ denotes the number of latent 
variables required to explain the spectral variance (see the text of the manuscript for a 
description of this). The variance described indicates the percentage of the variance in the 
dataset explained by the model (in a specific Latent variable (Lv)). Analyses have been 
performed separately for raw pre-processed (i.e. corrected) spectra and their first and 
second order derivatives. Figures in brackets denote the standard deviations on the mean 
 
Table 3. Performance of NL-PLSR model in prediction of dose at each time point post-
irradiation ((RMSEC and RMSEP are in the units of dose (Gy)). All values presented are 
the mean of ten independent executions of the model. ‘nLv’ denotes the number of latent 
variables required to explain the spectral variance (see the text of the manuscript for a 
description of this). The variance described indicates the percentage of the variance in the 
dataset explained by the model (in a specific Latent variable (Lv)). Analyses have been 
performed separately for raw pre-processed (i.e. corrected) spectra and their first and 
second order derivatives. Figures in brackets denote the standard deviations on the mean 
 

 
Table 4. Performance of GRNN in regression of spectral measurements against radiation 
dose ((RMSEC and RMSEP are in the units of dose (Gy)) at each time point. Each value 
of RMSEC or RMSEP is the mean of 50 independent executions of the network for 
complete randomizations of the training and testing datasets. GRNN’s were generated on 
the raw spectral data at each time point post irradiation. The ‘smoothing’ factor is the 
value of ‘n’ required in the radial basis function (RBF) of the neural network (see the text 
of the manuscript for a description of this). Figures in brackets denote the standard 
deviations on the mean 
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Figure Captions: 
 
Figure 1. Schematic representation of neural network architecture used for regression of 
spectral measurements against radiation dose. 

 
Figure 2. Mean FTIR spectra of HaCaT cells exposed to 0.5Gy, 5Gy, and sham-
irradiated, at 96 hours post-irradiation. The width of the trace in each case denotes the 
extent of the standard errors for each spectral category. 

 
Figure 3(a). Difference spectra in fingerprint region between mean sham-irradiated and 
mean irradiated HaCaT cells in two dose categories at 96 hours post-irradiation. 
Absorbance changes seen in regions assigned to carbohydrate, nucleic acid, protein and 
lipid. Standard errors are shown as shaded bands around the difference spectra. 
 
Figure 3(b). Difference spectra in high wavenumber region between mean sham-
irradiated and mean irradiated HaCaT cells in two dose categories at 96 hours post-
irradiation. Absorbance changes seen in regions assigned to carbohydrate, protein and 
lipid. Standard errors are shown as shaded bands around the difference spectra. 
 
Figure 4. Prediction and cross-validation performance of (a) PLS, (b) NL-PLS and (c) 
GRNN models at 96 hours post-irradiation. The top panel depicts the cross-validation 
performance of each of the models in selection of the optimal model complexity. The 
bottom panel displays the test performance of each of the models in estimating the 
radiation dose from spectral measurements versus the actual dose delivered. The reader 
should note that the uncertainty in ‘actual’ dose delivered is within the bounds defined by 
the dimensions of the symbols on the graph. 



Tables 

Table 1:

Wavenumber (cm-1) Assignment 
3520-3100  O-H (carbohydrate) 

~3290 Amide A (ν -N-H), (p) 
3200-3000  as –NH3

+ (free amino acids) 
3000-2850  C-H (free amino acids) 

~3100 Overtone of Amide II band
~3050  Amide B (ν -N-H), p 

3030-3020 ν as -CH3 (l) 
~3010 ν =C-H (l) 
~2960 ν as -CH3 (l, p) 
~2920 ν as -CH3 (l, p) 
~2875 ν s -CH3 (l, p) 
~2850 ν s –CH2 (l, p) 

1720-1745 ν –C=O (l) (esters) 
1710-1716 ν as –C=O (RNA, esters) 
1705-1690 ν as –C=O (RNA, DNA) 

1654 Amide I ν -C=O (80%), ν - C-N (10%),  δ -N-H (10%), α-helix 
1640-1630 Amide I ν -C=O (80%), ν - C-N (10%),  δ -N-H (10%), β-sheet 
1610, 1578 ν -C4-C5, ν -C=N (imidazole ring, DNA, RNA) 
1550-1540 Amide II δ -N-H (60%), ν - C-N (40%), α-helix 

1530 Amide II δ -N-H (60%), ν - C-N (40%), β-structure 
1515 Aromatic tyrosine ring  
1467 δ –CH2 (l, p) 
1455 δ as –CH3 / -CH2, sc (l, p) 

1400-1370 ν -COO-, δ s –CH3 (l, p) 
1330-1200 Amide III (p) 
1290-1030 O-H def., (carbohydrate) 
1244-1230 ν as –PO2

- (RNA, DNA) 
1200-1030 ν -C-O (pyranose carbohydrates) 
1160-1000 ν -C-O (carbohydrate) 
1160, 1120 ν -C-O (RNA ribose) 
1170, 1070 ν as, ν s –CO-O-C (l) 
1090-1084 ν s –PO2

- (RNA, DNA) 
1060, 1050 ν –C-O (deoxyribose/ribose DNA, RNA) 

996 ν s (RNA and δ ring of uracyl) 
965 ν s - PO4

- (DNA and deoxyribose-phosphate skeletal motions) 
975-960 Terminal methyl def. (amino acids) 
960-730 C-H deformation (pyranose carbohydrates) 
935-905 Asymmetric ring vibration (pyranose carbohydrates) 
900-800  s CNC (p)
855-835 C-H def. ( -pyranose carbohydrates) 
785-760 Ring vibration ( -pyranose carbohydrates) 



Table 2:

Corrected Spectra       
Time nLv RMSEC RMSEP R2 Cal. R2 Test Variance 

Described 
(LV 1) 

Variance 
Described 
(LV 2) 

6 22 0.22 (0.01) 0.31 (0.02) 0.99 0.98 96.6 2.5
12 21 0.59 (0.03) 0.79 (0.03) 0.92 0.87 97.2 2.1
24 21 0.24 (0.02) 0.33 (0.02) 0.99 0.98 97.4 2.3
48 23 0.32 (0.01) 0.46 (0.02) 0.97 0.95 95.4 3.6
96 20 0.27 (0.02) 0.37 (0.01) 0.98 0.96 94.7 1.6

        
1st Order Derivative      
Time nLv RMSEC RMSEP R2 Cal. R2 Test Variance 

Described 
(LV 1) 

Variance 
Described 
(LV 2) 

6 13 0.25 (0.03) 0.37 (0.01) 0.98 0.97 94.3 2.5
12 16 0.43 (0.09) 0.89 (0.07) 0.96 0.83 96.1 1.9
24 18 0.18 (0.05) 0.51 (0.02) 0.99 0.94 96.9 2.05
48 20 0.19 (0.1) 0.59 (0.03) 0.99 0.91 95.3 2.9
96 15 0.22 (0.02) 0.44 (0.01) 0.99 0.94 95.7 2.3

        
2nd Order Derivative      
Time nLv RMSEC RMSEP R2 Cal. R2 Test Variance 

Described 
(LV 1) 

Variance 
Described 
(LV 2) 

6 11 0.32 (0.04) 0.51 (0.03) 0.97 0.93 72.7 16.3
12 11 0.63 (0.15) 1.14 (0.04) 0.91 0.67 70.1 13.9
24 11 0.52 (0.12) 0.90 (0.03) 0.94 0.81 80.7 9.8
48 11 0.52 (0.06) 0.92 (0.05) 0.93 0.78 88.5 4.6
96 10 0.49 (0.12) 0.88 (0.04) 0.92 0.76 64.5 18.3



Table 3:

Corrected Spectra       
Time nLv RMSEC RMSEP R2 Cal. R2 Test Variance 

Described 
(LV 1) 

Variance 
Described 
(LV 2) 

6 22 0.35 (0.02) 0.48 (0.05) 0.97 0.94 96.6 2.4
12 21 0.56 (0.04) 0.76 (0.06) 0.93 0.86 97.2 1.9
24 21 0.27 (0.02) 0.40 (0.04) 0.98 0.96 97.4 2.2
48 24 0.32 (0.02) 0.46 (0.03) 0.98 0.95 95.4 3.7
96 20 0.39 (0.04) 0.52 (0.02) 0.96 0.93 94.6 1.7

        
1st Order Derivative      
Time nLv RMSEC RMSEP R2 Cal. R2 Test Variance 

Described 
(LV 1) 

Variance 
Described 
(LV 2) 

6 12 0.29 (0.04) 0.39 (0.01) 0.98 0.96 94.3 2.6
12 15 0.48 (0.06) 0.87 (0.08) 0.95 0.82 96.1 1.9
24 18 0.17 (0.03) 0.50 (0.03) 0.99 0.94 96.9 0.8
48 24 0.16 (0.05) 0.58 (0.03) 0.99 0.91 95.2 2.7
96 16 0.26 (0.02) 0.56 (0.02) 0.98 0.91 95.7 1.7

        
2nd Order Derivative      
Time nLv RMSEC RMSEP R2 Cal. R2 Test Variance 

Described 
(LV 1) 

Variance 
Described 
(LV 2) 

6 11 0.37 (0.03) 0.59 (0.05) 0.96 0.91 72.5 15.1
12 11 0.56 (0.07) 0.97 (0.05) 0.93 0.68 69.2 14.0
24 10 0.50 (0.05) 0.76 (0.05) 0.94 0.83 80.6 5.5
48 14 0.39 (0.14) 0.77 (0.07) 0.95 0.80 88.5 4.2
96 10 0.41 (0.13) 0.72 (0.06) 0.94 0.80 64.7 16.5



Table 4:

6 hr GRNN RMSEC RMSEP Smoothing R2 Cal R2 Test 
 0.028 

(0.005) 
0.042  

(0.007) 
0.018 0.999 0.999 

      
12 hr GRNN RMSEC RMSEP Smoothing R2 Cal R2 Test 
 0.170 

(0.007) 
0.405 

(0.072) 
0.018 0.995 0.972 

      
24 hr GRNN RMSEC RMSEP Smoothing R2 Cal R2 Test 
 0.094 

(0.006) 
0.171 

(0.024) 
0.019 0.998 0.994 

      
48 hr GRNN RMSEC RMSEP Smoothing R2 Cal R2 Test 
 0.091 

(0.062)
0.242 

(0.082)
0.019 0.996 0.983 

      
96 hr GRNN RMSEC RMSEP Smoothing R2 Cal R2 Test 
 0.003 

(0.005) 
0.005 

(0.004) 
0.014 0.999 0.999 
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RMSEP: 0.36945

R2: 0.96167
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R2: 0.93107
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RMSEP: 0.002992

R2 0.999
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