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Abstract
One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer games
is  agent  movement.  Pathfinding  strategies  are  usually  employed  as  the  core  of any  AI movement
system.  This  report  will  highlight  pathfinding  algorithms  used  presently  in  games  and  their
shortcomings especially  when dealing  with real-time pathfinding. With the advances being made in
other components, such as physics engines, it is AI that is impeding the next generation of computer
games. This report will focus on how machine learning techniques such as Artificial Neural Networks
and Genetic Algorithms can be used to enhance an agents ability to handle pathfinding in real-time. 

1  Introduction
One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer

games is agent movement. Pathfinding strategies are usually employed as the core of any AI

movement system. Pathfinding strategies have the responsibility of finding a  path from any

coordinate in the game world to another. Systems such as this take in a starting point and a

destination; they then find a series of points that together comprise a path to the destination. A

games’ AI pathfinder usually employs some sort of precomputed data structure to guide the

movement. At its simplest, this could be just a list of locations within the game that the agent is

allowed move to. Pathfinding inevitably leads to a drain on CPU resources  especially if the

algorithm wastes valuable time searching for a path that turns out not to exist. 

Section 2 will highlight what  game maps are  and how useful information is extracted form

these  maps for use  in pathfinding. Section 3 will show how pathfinding algorithms use  this

extracted information to return paths through the map when given a start and a goal position.

As  the  A* pathfinding algorithm is such a  major player  in the  computer  games  it will be

outlined in detail in Section 4.  Section 5 will discuss  the  limitations of current  pathfinding

techniques particularly with their ability to handle dynamic obstacles.  Sections 6 and 7 will

introduce the concept of using learning algorithms to learn pathfinding behaviour. The report

will then conclude, in Section 8, with how learning algorithms can overcome the limitations of

traditional pathfinding.

2 Game World Geometry
Typically the world geometry in a game is stored in a structure called a map. Maps usually

contain all the polygons that make up the game environment. In a lot of cases, in order to cut
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down the search space of the game world for the pathfinder the games map is broken down

and simplified. The pathfinder then uses this simplified representation of the map to determine

the best path from the starting point to the desired destination in the map. The most common

forms of simplified representations are (1) Navigation Meshes, and (2) Waypoints.

2.1 Navigation Meshes

A navigation mesh is a set of convex polygons that describe the “walkable” surface of a 3D

environment  [Board  &  Ducker02].  Algorithms  have  been  developed  to  abstract  the

information required to generate  Navigation Meshes  for any given map. Navigation Meshes

generated  by such  algorithms are  composed  of  convex  polygons which when  assembled

together represent the shape of the map analogous to a floor plan. The polygons in a mesh

have to be convex since this guarantees  that the AI agent can move in a single straight line

from  any  point  in  one  polygon  to  the  center  point  of  any  adjacent  polygon

[WhiteChristensen02].  Each  of  the  convex  polygons  can  then  be  used  as  nodes  for  a

pathfinding algorithm. A navigation mesh path consists of a list of adjacent nodes to travel on.

Convexity guarantees  that with a valid path the AI agent can simply walk in a  straight line

from one node to the next on the list. Navigation Meshes are useful when dealing with static

worlds, but they are unable to cope with dynamic worlds (or worlds that change).

2.2 Waypoints 

The waypoint system for navigation is a  collection of nodes  (points of visibility) with links

between  them.  Travelling from one  waypoint to  another  is a  sub problem with a  simple

solution. All places  reachable  from waypoints should be  reachable  from any waypoint by

travelling along one or more other waypoints, thus creating a grid or path that the AI agent can

walk on. If an AI agent wants to get from A to B it walks to the closest waypoint seen from

position A, then uses a pre-calculated route to walk to the waypoint closest to position B and

then tries to find its path from there.  Usually the designer manually places  these  waypoint

nodes  in a  map  to  get  the  most  efficient  representation.  This system has  the  benefit  of

representing the  map with the  least  amount of nodes  for the pathfinder to deal with. Like

Navigation Meshes,  Waypoints  are  useful  for  creating  efficient  obstacle  free  pathways

through static maps but are unable to deal with dynamic worlds (or worlds that change).
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Figure 2.1

Figure 2.1 shows how a simple scene might be represented with waypoints. Table 2.1 shows

the routing information contained within each  waypoint. The path from (A)  to (B)  can  be

executed as follows. A straight-line path from (A) to the nearest waypoint is calculated (P1)

then a straight-line path is calculated from (B) to the nearest waypoint (P2). These waypoints

are 6 and 3 respectively. Then looking at the linking information, a pathfinding system will find

the path as follows { P1, waypoint 6, waypoint 5, waypoint 2, waypoint 3, P2 }

Way Point Number Link Information
1 4
2 3, 5
3 2
4 1, 5
5 2, 4
6 5

Table 2.1

2.3 Graph Theory

Pathfinding algorithms can be used once the geometry of a game world has been encoded as a

map and pre-processed to produce either a Navigation Mesh or a set of Waypoints. Since the

polygons in the navigation mesh and the points in the waypoint system are  all connected in

some way they are like points or nodes in a graph. So all the pathfinding algorithm has to do is

transverse  the graph until it finds the endpoint it is looking for.  Conceptually, a  graph  G is

composed of two sets, and can be written as G = (V,E) where:

 V – Vertices:  A set of discreet points in n-space, but this usually corresponds to a 3D

map.
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 E – Edges:  A set of connections between the vertices, which can be either directed

or not

Together  with this structural definition, pathfinding algorithms also generally need to know

about the properties of these elements. For example, the length, travel-time or general cost of

every edge needs to be known.  (From this point on cost will refer  to the distance between

two nodes)

3 Pathfinding
In many game designs AI is about moving agents/bots around in a virtual world. It is of no use

to develop complex systems for high-level decision making if an agent cannot find its way

around a set of obstacles to implement that decision. On the other hand if an AI agent can

understand how to move around the obstacles in the virtual world even simple decision-making

structures  can  look  impressive.  Thus  the  pathfinding  system  has  the  responsibility  of

understanding the possibilities for movement within the virtual world. A pathfinder will define a

path through a  virtual world to solve a  given set  of  constraints.  An example of  a  set  of

constraints might be to find the shortest path to take an agent from its current position to the

target  position. Pathfinding systems  typically use  the  pre-processed  representations of  the

virtual world as their search space.

3.1 Approaches to Pathfinding

There are many different approaches to pathfinding and for our purposes it is not necessary to

detail  each  one.  Pathfinding can  be  divided  into  two  main  categories,  undirected and

directed. The main features of each type will be outlined in the next section.

3.1.1 Undirected

This approach is analogous to a rat in a maze running around blindly trying to find a way out.

The rat spends no time planning a way out and puts all its energy into moving around. Thus the

rat might never find a way out and so uses most of the time going down dead ends. Thus, a

design based completely on this concept would not be useful in creating a believable behaviour

for an AI agent. It does however prove useful in getting an agent to move quickly while in the

background a more sophisticated algorithm finds a better path.

There are two main undirected approaches that improve efficiency. These are  Breadth-first

search and  Depth-first  search respectively, they  are  well known search  algorithms  as

detailed for example in [RusselNorvig95].  Breadth-first search treats  the virtual world as  a

large connected graph of nodes. It expands all nodes that are  connected to the current node

and then in turn expands all the nodes connected to these new nodes. Therefore if there is a
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path, the breadth-first approach will find it. In addition if there are several paths it will return

the  shallowest  solution first.  The  depth-first approach  is  the  opposite  of  breadth-first

searching in that  it looks at  all the  children of each  node before  it looks at  the  rest, thus

creating a linear path to the goal. Only when the search hits a dead end does it go back and

expand nodes  at  shallower  levels.  For problems that  have  many solutions the  depth-first

method is usually better as  it has a good chance  of finding a solution after  exploring only a

small portion of the search space.

 For clarity the two approaches will be explained using a simple map shown in Figure 3.1.

Figure 3.1

Figure 3.1 shows a waypoint representation of a simple map and its corresponding 

complete search tree from the start (S) to the goal (G).

Figure  3.2 shows  how the  two approaches  would search  the  tree  to find a  path.  In this

example the breadth-first took four iterations while the depth-first search finds a path in two.

This is because the problem has many solutions, which the depth-first approach is best, suited

to. The main drawback in these two approaches  is that they do not consider the cost of the

path but are effective if no cost variables are involved.    
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Figure 3.2

3.1.2 Directed

Directed approaches to pathfinding all have one thing in common in that they do not go blindly

through the maze. In other words they all have some method of assessing their progress from

all the adjacent nodes before picking one of them. This is referred to as assessing the cost of

getting to the adjacent node. Typically the cost in game maps is measured by the distance

between the nodes.  Most of the algorithms used will find a  solution to the problem but not

always  the  most  efficient solution i.e.  the  shortest  path.  The  main strategies  for  directed

pathfinding algorithms are:

 Uniform cost search g(n) modifies the search to always choose the lowest cost next

node. This minimises the cost of the path so far, it is optimal and complete, but can be

very inefficient.

  Heuristic search h(n) estimates the cost from the next node to the goal. This cuts

the search cost considerably but it is neither optimal nor complete.

The two most commonly employed algorithms for directed pathfinding in games use one or

more of these strategies. These directed algorithms are known as Dijkstra and A* respectively

[RusselNorvig95]. Dijkstra’s algorithm uses the uniform cost strategy to find the optimal path

while the A* algorithm combines both strategies thereby minimizing the total path cost. Thus

A* returns an optimal path and is generally much more efficient than Dijkstra making it the

backbone behind almost all pathfinding designs in computer  games.  Since  A* is the  most

commonly used algorithm in the pathfinding arena it will be outlined in more detail later in this

report.
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The following example in Figure 3.3 compares  the effectiveness  of Dijkstra with A*. This

uses the same map from Figure 3.1 and its corresponding search tree from start (S) to the

goal (G). However this time the diagram shows the cost of travelling along a particular path.

Figure 3.3

Figure 3.4

Figure 3.4 illustrates how Dijkstra and A* would search the tree to find a path given the costs

indicated in Figure 3.3. In this example Dijkstra took three iterations while A* search finds a

path in two and finds the shortest  path i.e.  the  optimal solution. Given that  the  first  stage

shown in Figure  3.4 for both Dijkstra and A* actually represents  three  iterations, as  each

node connected to the start node (S) would take one iteration to expand, the total iterations for

Dijkstra and A* are six and five respectively. When compared to the Breadth-first and Depth-

first algorithms, which took five and two iterations respectively to find a path, Dijkstra and A*

took more iterations but they both returned optimal paths while breadth-first and depth-first did

not. In most cases it is desirable to have agents that finds optimal pathways as following sub-

optimal pathways may be perceived as a lack of intelligence by a human player.
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Many directed pathfinding designs use a feature known as Quick  Paths. This is an undirected

algorithm that gets the agent moving while in the background a  more complicated directed

pathfinder assesses the optimal path to the destination. Once the optimal path is found a “slice

path” is computed which connects the quick path to the full optimal path. Thus creating the

illusion that the agent computed the full path from the start. [Higgins02].

4 A* Pathfinding Algorithm
A* (pronounced a-star) is a  directed algorithm, meaning that it does not blindly search for a

path (like a  rat in a  maze) [Matthews02].  Instead it assesses  the best direction to explore,

sometimes  backtracking to try  alternatives.  This means  that  A*  will not only find a  path

between two points (if one exists!) but it will find the shortest path if one exists and do so

relatively quickly.

4.1 How It Works

The game map has to be prepared or pre-processed before the A* algorithm can work. This

involves breaking the map into different points or locations, which are called nodes. These can

be  waypoints, the  polygons of  a  navigation mesh  or  the  polygons of  an  area  awareness

system. These nodes are used to record the progress of the search. In addition to holding the

map  location each  node  has  three  other  attributes.  These  are  fitness,  goal and  heuristic

commonly known as  f,  g, and  h respectively. Different  values  can  be  assigned to  paths

between the nodes. Typically these values would represent the distances between the nodes.

The attributes g, h, and f are defined as follows:

 g is the cost of getting from the start node to the current node i.e. the sum of all the

values in the path between the start and the current node

 h stands for heuristic which is an estimated cost from the current node to the goal

node (usually the straight line distance from this node to the goal)

 f is the sum of g and h and is the best estimate of the cost of the path going through

the current node. In essence the lower the value of f the more efficient the path

The purpose of  f,  g, and  h is to quantify how promising a  path is up to the present node.

Additionally A* maintains two lists, an Open and a Closed list. The Open list contains all the

nodes in the map that have not been fully explored yet, whereas the Closed list consists of all

the  nodes  that  have  been  fully explored.  A  node  is  considered  fully explored  when  the

algorithm has looked at  every node linked to it. Nodes therefore  simply mark the state  and

progress of the search.
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4.2 The A* Algorithm

The pseudo-code for the A* Algorithm is as follows:

1. Let P = starting point.

2. Assign f, g and h values to P.

3. Add P to the Open list. At this point, P is the only node on the Open list.

4. Let B = the best  node from the Open list (i.e.  the node that has the lowest f-

value).

a. If B is the goal node, then quit – a path has been found.

b. If the Open list is empty, then quit – a path cannot be found

5. Let C =  a valid node connected to B.

a. Assign f, g, and h values to C.

b. Check whether C is on the Open or Closed list.

i. If so, check whether  the new path is more efficient (i.e.  has a

lower f-value).

1. If so update the path.

ii. Else, add C to the Open list.

c. Repeat step 5 for all valid children of B.

6. Repeat from step 4.

A Simple example to illustrate  the pseudo code outlined in section 4.2.  The following step

through example should help to clarify how the A* algorithm works (see Figure 4.1).

Figure 4.1

Let the center  (2,2) node be the starting point (P), and the offset  grey node (0,1) the end

position (E). The h-value is calculated differently depending on the application. However for
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this example,  h will be the combined cost  of the vertical and horizontal distances  from the

present node to (E). Therefore h = | dx-cx | + | dy-cy | where (dx,dy) is the destination node

and (cx,cy) is the current node.

At the start, since P(2,2) is the only node that the algorithm knows, it places it in the Open list

as shown in Table 4.1.

Open List Closed  List
{ P(2,2) } { Empty }

Table 4.1

There are eight neighbouring nodes to p(2,2). These are (1,1), (2,1), (3,1), (1,2), (3,2),

(1,3), (2,3), (3,3) respectively. If any of these nodes is not already in the Open list it is added to

it. Then each node in the Open list is checked to see if it is the end node E(1,0) and if not, then

its f- value is calculated (f = g + h).

Node g-value h-value f-value
(1,1) 0 (Nodes to travel through) 1 1
(2,1) 0 2 2
(3,1) 0 3 3
(1,2) 0 2 2
(3,2) 0 4 4
(1,3) 0 3 3
(2,3) 0 4 4
(3,3) 0 5 5

Table 4.2

As can be seen from Table 4.2 Node (1,1) has the lowest  f-value and is therefore the next

node to be selected by the A* algorithm. Since all the neighbouring nodes to P(2,2) have been

looked at, P(2,2) is added to the Closed list (as shown in Table 4.3). 

Open List Closed  List
{ (1,1), (2,1), (3,1), (1,2), (3,2),

(1,3), (2,3), (3,3) }

{ P(2,2) }

Table 4.3

Issue Number 8, December 2003                                                                                                           Page 66



ITB Journal

There  are  four neighbouring nodes to (1,1) which are  E(1,0), (2,1), (1,2), (2,2) respectively.

Since E(1,0) is the only node, which is not on either of the lists, it is now looked at. Given that

all the neighbours of (1,1) have been looked at, it is added to the Closed list. Since E(1,0) is the

end node, a path has therefore been found and it is added to the Closed list. This path is found

by back-tracking through the nodes in the Closed list from the goal node to the start node { P

(2,2),  (1,1),  E(1,0)  }.  This  algorithm  will  always  find  the  shortest  path  if  one  exists

[Matthews02].

5 Limitations of Traditional Pathfinding
Ironically the main problems that arise in pathfinding are due to pre-processing, which makes

complex  pathfinding in  real-time  possible.  These  problems  include  the  inability of  most

pathfinding engines to handle dynamic worlds and produce realistic (believable) movement.

This is due primarily to the pre-processing stages that produce the nodes for the pathfinder to

travel along based  on a  static  representation of the  map.  However  if a  dynamic obstacle

subsequently covers  a  node along the predetermined path, the agent will still believe it can

walk where  the  object  is.  This is one  of  the  main factors  that  is holding back  the  next

generation of computer  games  thar  are  based  on complex physics  engines  similar to that

produced  by middleware  companies  such  as  Havok  (www.havok.com) and  Renderware

(www.renderware.com). Another problem is the unrealistic movement which arises when the

agent walks in a straight line between nodes in the path. This is caused by the dilemma which

arises  in the trade off between speed (the less number of nodes to search  the better)  and

realistic movement (the more nodes the more realistic the movement). This has been improved

in some  games  by  applying splines  (curve  of  best  fit)  between  the  different  nodes  for

smoothing out the path.

The problems listed above, are  mainly due to the introduction of dynamic objects into static

maps, are one of the focuses of research in the games industry at present. Considerable effort

is going into improving the AI agent’s reactive abilities when dynamic objects litter its path.

One  of  the  solutions  focuses  on  giving the  agent  a  method  of  taking into account  its

surroundings. A simple way to achieve this is to give the agent a few simple sensors so that it

is guided by the pathfinder but not completely controlled by it. However this method will not be

effective if the sensors used are unable to deal with noisy data.

5.1 Limitations Of A*

A* requires a large amount of CPU resources, if there are many nodes to search through as is

the  case  in large  maps  which are  becoming popular  in the  newer  games.  In  sequential

programs  this may cause  a  slight delay in the  game.  This delay is compounded if A* is
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searching for paths for multiple AI agents and/or when the agent has to move from one side of

the map to the other. This drain on CPU resources  may cause the game to freeze until the

optimal path is found. Game designers overcome these problems by tweaking the game so as

to avoid these situations [Cain02]. 

The inclusion of dynamic objects to the map is also a  major problem when using A*.  For

example once a path has been calculated, if a dynamic object then blocks the path the agent

would have no knowledge of this and would continue on as normal and walk straight into the

object.  Simply reapplying the  A*  algorithm every  time  a  node  is  blocked  would cause

excessive drain on the CPU. Research has been conducted to extend the A* algorithm to deal

with this problem most notably the D* algorithm (which is short for dynamic A*) [Stentz94].

This allows for the fact that node costs may change as the AI agent moves across the map

and  presents  an  approach  for  modifying the  cost  estimates  in real  time.  However  the

drawback to this approach is that it adds further to the drain to the CPU and forces a limit on

the dynamic objects than can be introduces to the game.

A key issue constraining the advancement of the games industry is its over reliance on A* for

pathfinding.  This  has  resulted  in game  designers  getting around  the  associated  dynamic

limitations by tweaking their designs rather than developing new concepts and approaches to

address  the  issues  of  a  dynamic environment  [Higgins02].  This tweaking often  results  in

removing/reducing the  number  of  dynamic  objects  in the  environment  and  so  limits the

dynamic potential of the game. A potential solution to this is to use neural networks or other

machine learning techniques to learn pathfinding behaviours which would be applicable to real-

time pathfinding.

5.2 Machine Learning

A possible solution to the  problems mentioned in section 5.1 is to use  machine learning to

assimilate  pathfinding behaviour.  From a  production point of  view, machine learning could

bypass the need for the thousand lines or so of brittle, special case, AI logic that is used in

many games today. Machine learning if done correctly, allows generalisation for situations that

did not crop up in the training process.  It should also allow the game development team to

develop the AI component concurrently with the other components of the game.

Machine learning techniques can be broken into the following three groups:

 Optimisation –  Learning  by  optimisation  involves  parameritising  the  desired

behaviour of the  AI  agent  and presenting a  performance  measure  for  this desired
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behaviour. It is then possible to assign an optimisation algorithm to search for sets of

parameters  that make the AI agent perform well in the game.  Genetic Algorithms

are the most commonly used technique for optimisation.

 Training – Learning by training involves presenting the AI agent with a set of input

vectors and then comparing the output from the AI agent to the desired output. The

difference  between  the  two  outputs  is known as  the  error.  The  training involves

modifying the  internal state  of the  agent  to minimise this error.  Neural  Networks

[Fausett94] are generally used when training is required.

 Imitation – Learning by imitation involves letting the AI agent observe how a human

player plays the game. The AI agent then attempts to imitate what it has observed.

The Game observation Capture (GoCap) technique [Alexander 02] is an example of

learning through imitation.

6 Learning Algorithms
There  are  two machine learning approaches  that  have been used in commercial computer

games  with some degree  of success.  These  are  Artificial Neural Networks  (ANNs)  and

Genetic Algorithms (GAs). This section will outline both of these approaches in detail followed

by a discussion of the practical uses for them in learning pathfinding for computer games.

6.1 Neural Networks

An artificial neural network is an information-processing system that has certain performance

characteristics  in common  with  biological neural  networks  [Fausett94].  Artificial  Neural

networks have been developed as generalizations of mathematical models of human cognition

or neural biology, based on the following assumptions:

1. Information processing occurs in simple elements called neurons

2. Signals are passed between neurons over connection links

3. Each of these connections has an associated weight which alters the signal

4. Each neuron has an activation function to determine its output signal.

An  artificial neural  network  is  characterised  by (a)  the  pattern  of  connections  between

neurons i.e.  the architecture, (b) the method of determining the weights on the connections

(Training and Learning algorithm) (c) the activation function.
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6.2 The Biological Neuron

A  biological  neuron  has  three  types  of  components  that  are  of  particular  interest  in

understanding an artificial neuron: its dendrites, soma, and axon,  all of which are  shown in

Figure 5.1. 

Figure 5.1

 Dendrites  receive signals from other neurons (synapses).  These signals are electric

impulses that are transmitted across a synaptic gap by means of a chemical process.

This chemical process modifies the incoming signal.

 Soma is the cell body. Its main function is to sum the incoming signals that it receives

from the many dendrites connected to it. When sufficient input is received the cell

fires sending a signal up the axon.

 The  Axon  propagates  the  signal, if the  cell fires,  to the  many synapses  that  are

connected to the dendrites of other neurons.

6.3 The Artificial Neuron

Figure 5.2
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The artificial neuron structure is composed of (i) n inputs, where  n is a real number, (ii) an

activation function and (iii) an output. Each one of the inputs has a weight value associated

with it and it is these weight values that determine the overall activity of the neural network.

Thus when the inputs enter the neuron, their values are multiplied by their respective weights.

Then the activation function sums all these weight-adjusted inputs to give an activation value

(usually a floating point number). If this value is above a certain threshold the neuron outputs

this value, otherwise the neuron outputs a zero value. The neurons that receive inputs from or

give outputs to an external source are called input and output neurons respectively.

Thus the artificial neuron resembles the biological neuron in that (i) the inputs represent the

dendrites and the weights represent the chemical process  that occurs when transferring the

signal across  the synaptic gap, (ii) the activation function represents  the soma and (iii) the

output represents the axon.

6.4 Layers

It is often convenient to visualise neurons as arranged in layers with the neurons in the same

layer behaving in the same manner. The key factor determining the behaviour of a neuron is

its activation function. Within each  layer all the neurons typically have the same  activation

function and the  same  pattern  of  connections to other  neurons.  Typically there  are  three

categories of layers, which are Input Layer, Hidden Layer and Output layer respectively.

6.4.1 Input Layer

The neurons in the input layer do not have neurons attached to their inputs. Instead these

neurons each  have  only one input from an external source.  In addition the  inputs are  not

weighted and  so  are  not  acted  upon by the  activation function. In  essence  each  neuron

receives one input from an external source and passes  this value directly to the nodes in the

next layer.

6.4.2 Hidden Layer

The neurons in the hidden layer receive inputs from the neurons in the previous input/hidden

layer.  These  inputs are  multiplied by their respective  weights, summed together  and then

presented to the activation function which decides if the neuron should fire or not. There can

be many hidden layers present in a  neural network although for most problems one hidden

layer is sufficient.
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6.4.3 Output Layer

The neurons in the output layer are  similar to the neurons in a hidden layer except that their

outputs do not act as inputs to other neurons. Their outputs however represent the output of

the entire network.

6.5 Activation Function

The same activation function is typically used by all the neurons in any particular layer of the

network. However this condition is not required. In multi-layer neural networks the activation

used is usually non-linear, in comparison with the step or binary activation function functions

used in single layer networks.  This is because  feeding a  signal through two or more layers

using linear functions is the same as feeding it through one layer. The two functions that are

mainly used in neural networks are  the  Step function and the  Sigmoid function (S-shaped

curves) which represent linear and non-linear functions respectively.

Figure 5.3 shows the three most common activation functions, which are  binary step, binary

sigmoid, and bipolar sigmoid functions respectively.

Figure 5.3

6.6 Learning

The weights associated with the inputs to each neuron are the primary means of storage for

neural networks. Learning takes place by changing these weights. There are  many different

techniques that allow neural networks to learn by changing their weights. These broadly fall

into  two  main  categories,  which  are  supervised  learning and  unsupervised  learning

respectively.
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6.6.1 Supervised Learning

The techniques in the supervised category involve mapping a given set of inputs to a specified

set  of target outputs. This means that for every input pattern presented to the network the

corresponding expected output pattern must be known. The main approach in this category is

backpropagation, which relies on error signals from the output nodes. This requires guidance

from an external source i.e. a supervisor to help (monitor) with the learning through feedback. 

 Backpropagation –  Training a  neural network by backpropagation involves three

stages:  the  feed  forward  of the  input training pattern, the  backpropagation of the

associated output error, and the adjustments of the weights to minimise this error. The

associated output error is calculated by subtracting the networks output pattern from

the expected pattern for that input training pattern.

6.6.2 Unsupervised Learning

The techniques that fall into the  unsupervised learning category have no knowledge of the

correct  outputs.  Therefore,  only a  sequence  of  input vectors  is  provided.  However  the

appropriate output vector for each input is unknown.

 Reinforcement  –  In reinforcement learning the feedback is simply a  scalar  value,

which may be  delayed in time.  This reinforcement  signal reflects  the  success  or

failure of the entire system after it has preformed some sequence of actions. Hence

the reinforcement-learning signal does not assign credit or blame to any one action.

This method of learning is often referred  to as  the “Slap  and  Tickle  approach”.

Reinforcement  learning techniques  are  appropriate  when the  system is required to

learn on-line, or a teacher is not available to furnish error signals or target outputs.

6.7 Generalization

When the learning procedure is carried out in the correct manner, the neural network will be

able to generalise. This means that it will be able to handle scenarios that it did not encounter

during the training process. This is due to the way the knowledge is internalised by the neural

network. Since the internal representation is neuro-fuzzy, practically no cases  will be handled

perfectly and so there  will be small errors  in the values outputted from the neural network.

However it is these small errors that enable the neural network handle different situations in

that it will be able to abstract what it has learned and apply it to these new situations. Thus it

will be able to handle scenarios that it did not encounter during the training process.  This is

known a “Generalisation”. This is opposite to what is known as “Overfitting”.
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6.8 Overfitting

Figure 5.4

Overfitting describes when  a neural network has adapted its behaviour to a very specific set

of states and performs badly when presented with similar states and so therefore has lost its

ability to generalise.  This situation arises  when the  neural network is over  trained i.e.  the

learning is halted only when the neural networks output exactly matches the expected output. 

6.9 Topology

The topology of a NN refers to the layout of its nodes and how they are connected. There are

many different topologies for a fixed neuron count, but most structures are either obsolete or

practically useless.  The following are  examples of well-documented topologies that are  best

suited for game AI.

6.9.1 Feed forward

This is where  the  information flows directly from the  input to the  outputs.  Evolution and

training with back propagation are  both possibilities. There  is a connection restriction as  the

information can only flow forwards hence the name feed forward.

6.9.2 Recurrent

These networks have no restrictions and so the information can flow backward thus allowing

feedback. This provides the network with a sense of state due to the internal variables needed

for  the  simulation. The  training process  is however  more  complex than the  feed  forward

because the information is flowing both ways.

7 Genetic Algorithms 
Nature has a robust way of evolving successful organisms. The organisms that are  ill suited

for an environment die off, whereas the ones that are fit live to reproduce passing down their

good genes to their offspring. Each new generation has organisms, which are similar to the fit

members  of the previous generation. If the environment changes  slowly the organisms can

gradually evolve along with it. Occasionally random mutations occur, and although this usually
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means  a  quick death for  the  mutated individual, some mutations lead to a  new successful

species.

It transpires that what is good for nature is also good for artificial systems, especially if the

artificial system includes  a  lot of  non-linear  elements.  The  genetic  algorithm, described in

[RusselNorvig95] works by filling a system with organisms each with randomly selected genes

that control how the organism behaves in the system. Then a fitness function is applied to each

organism to find the two fittest  organisms for this system. These  two organisms then each

contribute some of their genes to a new organism, their offspring, which is then added to the

population. The fitness function depends on the problem, but in any case, it is a function that

takes an individual as an input and returns a real number as an output.

The  genetic  algorithm  technique  attempts  to  imitate  the  process  of  evolution  directly,

performing selection and interbreeding with randomised crossover and mutation operations on

populations of programs, algorithms or sets  of parameters.  Genetic algorithms and genetic

programming  have  achieved  some  truly  remarkable  results  in  recent  years  [Koza99],

beautifully disproving the public misconception that a computer “can only do what we program

it to do”.

7.1 Selection

The selection process involves selecting two or more organisms to pass on their genes to the

next  generation. There  are  many different  methods used for  selection. These  range  from

randomly picking two organisms with no weight on their fitness score to sorting the organisms

based on their fitness scores and then picking the top two as the parents. The main selection

methods  used  by  the  majority  of  genetic  algorithms  are:  Roulette  Wheel  selection,

Tournament selection, and Steady State selection. Another important factor in the selection

process is how the fitness of each organism is interpreted. If the fitness is not adjusted in any

way  it is referred  to as  the  raw  fitness  value  of the  organism otherwise  it is called the

adjusted fitness value. The reason for adjusting the fitness values of the organisms is to give

them a better chance of being selected when there are large deviations in the fitness values of

the entire population.

7.1.1 Tournament Selection

In tournament selection n (where  n is a real number) organisms are  selected at random and

then the fittest of these  organisms is chosen to add to the next generation. This process  is

repeated as many times as is required to create a new population of organisms. The organisms

that  are  selected  are  not removed from the  population and therefore  can  be  chosen  any

number of times.
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This selection method is very efficient to implement as it does not require any adjustment to

the fitness  value of each  organism. The drawback  with this method is that because  it can

converge quickly on a solution it can get stuck in local minima.

7.1.2 Roulette Wheel Selection

Roulette wheel selection is a method of choosing organisms from the population in a way that

is proportional to their fitness value. This means that the fitter the organism, the higher the

probability it has of being selected. This method does not guarantee that the fittest organisms

will be selected, merely that they have a high probability of being selected. It is called roulette

wheel selection because  the implementation of it involves representing the populations total

fitness score as a pie chart or roulette wheel. Each organism is assigned a slice of the wheel

where  the  size  of  each  slice  is  proportional to  that  respective  organisms  fitness  value.

Therefore  the fitter the organism the bigger the slice of the wheel it will be allocated. The

organism is then selected by spinning the roulette wheel as in the game of roulette.

This roulette selection method is not as efficient as the tournament selection method because

there is an adjustment to each organism’s fitness value in order to represent it as a slice in the

wheel. Another drawback with this approach is that it is possible that the fittest organism will

not get selected for the next generation, although this method benefits from not getting stuck in

as many local minima.

7.1.3 Steady State Selection

Steady state selection always selects the fittest organism in the population. This method retains

all but a few of the worst performers from the current population. This is a form of elitism

selection as only the fittest organisms have a chance of being selected. This method usually

converges quickly on a solution but often this is just a local minima of the complete solution.

The main drawback with this method is that it tends to always select the same parents every

generation this results in a dramatic reduction in the gene pool used to create the child. This is

why the population tends to get stuck in local minima as it is over relying on mutation to create

a better organism. This method is ideal for tackling problems that have no local minima or for

initially getting the population to converge on a solution in conjunction with one of the other

selection methods. 
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Figure 6.1

7.2 Crossover

The crossover process is where a mixture of the parent’s genes is passed onto the new child

organism.  There  are  three  main  approaches  to  this  random  crossover,  single-point

crossover and two-point crossover.

7.2.1 Random Crossover

For  each  of  the  genes  in the  offsprings

chromosome  a  random number  of  either

zero or one is generated.  If the number is

zero the offspring will inherit the same gene

in  Patent  1  otherwise  the  offspring  will

inherit the appropriate gene from Parent 2.

This  results  in  the  offspring  inheriting a

random  distribution  of  genes  from  both

parents.

7.2.2 Single-Point Crossover

A  random crossover  point is generated  in

the  range  (0 < Pt  1 < length of Offspring

chromosome).  The offspring inherits all the

genes  that occur before  Pt1 from Parent  1

and all the genes  that occur after  Pt1 from

Parent 2.

7.2.3 Two-Point Crossover
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This  is  the  same  as  the  single-point

crossover  except  this  time  two  random

crossover  points  are  generated.  The

offspring inherits all the  genes  before  Pt1

and after  Pt2 from Parent  1 while all the

genes  between  Pt1  and  Pt2  are  inherited

from Parent 2.

7.3 Mutation

Mutation is another key feature  of the crossover phase in genetic algorithms as  it results in

creating new genes  that  are  added to the population. This technique is used to enable the

genetic  algorithm to get  out  of  (resolve)  local minima.  The  mutation is controlled by the

mutation rate of the genetic algorithm and is the probability that a gene in the offspring will be

mutated.  Mutation occurs  during the crossover stage;  when the child is inheriting its genes

form the parent organisms each gene is checked against the probability of a mutation. If this

condition is met then that gene is mutated although this usually means a quick death for the

mutated individual, some mutations lead to a new successful species.

8 How Learning Algorithms Can Solve Pathfinding Problems
The main problems associated with real-time pathfinding are:

 Handling dynamic objects 

 Using  up  too  many  resources  especially on  game  consoles,  which  have  limited

memory

 Leave the AI until the end of the development process

Learning algorithms offer  the  possibility of a  general pathfinding Application Programming

Interface (API) that would allow an agent to learn how to find its way around the game world.

An API is a collection of specific methods prescribed by an application program by which a

programmer  writing  another  program  can  make  requests  to.  This  would  allow  game

developers experiment with training agents in more complex situations and then simply reuse

this behaviour in future games even if the new game was completely different, as long as it

can present the agent with the inputs it requires (as defined by the API). 
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8.1 Evolving the Weights of a Neural Network

Figure 8.1

The  encoding of a  neural network which is to be  evolved by a  genetic  algorithm is very

straightforward.  This is achieved by reading all the  weights from its respective layers  and

storing them in an array. This weight array represents the chromosome of the organism with

each individual weight representing a gene. During crossover the arrays for both parents are

lined up side by side. Then depending on the crossover method, the genetic algorithm chooses

the respective parents weights to be passed on to the offspring.

A discussion on how learning algorithms can overcome the problems listed at the start of this

section will now be looked at:

 Dynamic problem –  Having continuous real-time sensors  the AI  agent should be

able to learn to use this information via a neural network to steer around obstacles and

adjust to a changing environment. Also because  neural networks can generalise, the

agent should be able to make reasonable decisions when it encounters a situation that

did not  arise  during training.  Genetic  algorithms  can  be  used  to  train the  neural

network online as new elements are added to the game.

 Resource  problem – Neural networks do not require large amounts of memory and

can  handle  continuous inputs  in real-time  as  the  data  processing mainly involves

addition and multiplication which are  among the  fastest  processes  a  computer  can

perform 
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 Speeding up the development process  – Giving the agents the ability to learn how

to navigate around the map allows developers to start developing the AI at an earlier

stage.  If a  new element is added to the game, then it should be a simple matter  of

allowing the agent learn the game with this new element. 

8.2 Conclusion

The reason that games  developers have not researched machine learning for pathfinding is

that it would take to much time to do so and time is money! Games developers are also very

reluctant to experiment with machine learning, as it could be unpredictable. One game that did

use  unsupervised  machine  learning was  Black  &  White  (www.lionhead.com)  where  the

human player was able to train their own creature. A neural network was used to control the

creature  but while the  human player  was  able to train the  creature  through reinforcement

learning, it was  tightly controlled to  avoid totally unpredictable/unrealistic behaviour.  So it

seems that until the game developers are shown proof that machine learning can overcome the

limitations of standard approaches they will avoid it. 

Future work will involve setting up a test bed to test the practicality of using machine learning

to perform pathfinding. Pacman is the game chosen for the test bed, as it is a real-time game

that uses  pathfinding algorithms to navigate around a  2D maze. Learning algorithms will be

used  to train a  neural ghost that  can  be  compared  to standard ghosts  in terms  of speed,

believability, and ability to play dynamic maps. The ghosts will use a neural network, which will

decipher real-time data inputted by a number of sensors attached to the ghost, to decide what

path to follow. The neural network will be trained using reinforcement learning with a genetic

algorithm to evolve the weights as described in section 8.1.
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