
The ITB Journal The ITB Journal

Volume 4 Issue 2 Article 6

2003

Pathfinding in Computer Games Pathfinding in Computer Games

Ross Graham

Hugh McCabe
hugh.mccabe@tudublin.ie

Stephen Sheridan

Follow this and additional works at: https://arrow.tudublin.ie/itbj

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Graham, Ross; McCabe, Hugh; and Sheridan, Stephen (2003) "Pathfinding in Computer Games," The ITB
Journal: Vol. 4: Iss. 2, Article 6.
doi:10.21427/D7ZQ9J
Available at: https://arrow.tudublin.ie/itbj/vol4/iss2/6

This Article is brought to you for free and open access by the Ceased publication at ARROW@TU Dublin. It has
been accepted for inclusion in The ITB Journal by an authorized editor of ARROW@TU Dublin. For more
information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/itbj
https://arrow.tudublin.ie/itbj/vol4
https://arrow.tudublin.ie/itbj/vol4/iss2
https://arrow.tudublin.ie/itbj/vol4/iss2/6
https://arrow.tudublin.ie/itbj?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol4%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol4%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.tudublin.ie/itbj/vol4/iss2/6?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol4%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

ITB Journal

Pathfinding in Computer Games
Ross Graham, Hugh McCabe, Stephen Sheridan

School of Informatics & Engineering,
Institute of Technology Blanchardstown

ross.graham@itb.ie, hugh.mccabe@itb.ie, stephen.sheridan@itb.ie

Abstract
One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer games
is agent movement. Pathfinding strategies are usually employed as the core of any AI movement
system. This report will highlight pathfinding algorithms used presently in games and their
shortcomings especially when dealing with real-time pathfinding. With the advances being made in
other components, such as physics engines, it is AI that is impeding the next generation of computer
games. This report will focus on how machine learning techniques such as Artificial Neural Networks
and Genetic Algorithms can be used to enhance an agents ability to handle pathfinding in real-time.

1 Introduction
One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer

games is agent movement. Pathfinding strategies are usually employed as the core of any AI

movement system. Pathfinding strategies have the responsibility of finding a path from any

coordinate in the game world to another. Systems such as this take in a starting point and a

destination; they then find a series of points that together comprise a path to the destination. A

games’ AI pathfinder usually employs some sort of precomputed data structure to guide the

movement. At its simplest, this could be just a list of locations within the game that the agent is

allowed move to. Pathfinding inevitably leads to a drain on CPU resources especially if the

algorithm wastes valuable time searching for a path that turns out not to exist.

Section 2 will highlight what game maps are and how useful information is extracted form

these maps for use in pathfinding. Section 3 will show how pathfinding algorithms use this

extracted information to return paths through the map when given a start and a goal position.

As the A* pathfinding algorithm is such a major player in the computer games it will be

outlined in detail in Section 4. Section 5 will discuss the limitations of current pathfinding

techniques particularly with their ability to handle dynamic obstacles. Sections 6 and 7 will

introduce the concept of using learning algorithms to learn pathfinding behaviour. The report

will then conclude, in Section 8, with how learning algorithms can overcome the limitations of

traditional pathfinding.

2 Game World Geometry
Typically the world geometry in a game is stored in a structure called a map. Maps usually

contain all the polygons that make up the game environment. In a lot of cases, in order to cut

Issue Number 8, December 2003 Page 57

ITB Journal

down the search space of the game world for the pathfinder the games map is broken down

and simplified. The pathfinder then uses this simplified representation of the map to determine

the best path from the starting point to the desired destination in the map. The most common

forms of simplified representations are (1) Navigation Meshes, and (2) Waypoints.

2.1 Navigation Meshes

A navigation mesh is a set of convex polygons that describe the “walkable” surface of a 3D

environment [Board & Ducker02]. Algorithms have been developed to abstract the

information required to generate Navigation Meshes for any given map. Navigation Meshes

generated by such algorithms are composed of convex polygons which when assembled

together represent the shape of the map analogous to a floor plan. The polygons in a mesh

have to be convex since this guarantees that the AI agent can move in a single straight line

from any point in one polygon to the center point of any adjacent polygon

[WhiteChristensen02]. Each of the convex polygons can then be used as nodes for a

pathfinding algorithm. A navigation mesh path consists of a list of adjacent nodes to travel on.

Convexity guarantees that with a valid path the AI agent can simply walk in a straight line

from one node to the next on the list. Navigation Meshes are useful when dealing with static

worlds, but they are unable to cope with dynamic worlds (or worlds that change).

2.2 Waypoints

The waypoint system for navigation is a collection of nodes (points of visibility) with links

between them. Travelling from one waypoint to another is a sub problem with a simple

solution. All places reachable from waypoints should be reachable from any waypoint by

travelling along one or more other waypoints, thus creating a grid or path that the AI agent can

walk on. If an AI agent wants to get from A to B it walks to the closest waypoint seen from

position A, then uses a pre-calculated route to walk to the waypoint closest to position B and

then tries to find its path from there. Usually the designer manually places these waypoint

nodes in a map to get the most efficient representation. This system has the benefit of

representing the map with the least amount of nodes for the pathfinder to deal with. Like

Navigation Meshes, Waypoints are useful for creating efficient obstacle free pathways

through static maps but are unable to deal with dynamic worlds (or worlds that change).

Issue Number 8, December 2003 Page 58

ITB Journal

Figure 2.1

Figure 2.1 shows how a simple scene might be represented with waypoints. Table 2.1 shows

the routing information contained within each waypoint. The path from (A) to (B) can be

executed as follows. A straight-line path from (A) to the nearest waypoint is calculated (P1)

then a straight-line path is calculated from (B) to the nearest waypoint (P2). These waypoints

are 6 and 3 respectively. Then looking at the linking information, a pathfinding system will find

the path as follows { P1, waypoint 6, waypoint 5, waypoint 2, waypoint 3, P2 }

Way Point Number Link Information
1 4
2 3, 5
3 2
4 1, 5
5 2, 4
6 5

Table 2.1

2.3 Graph Theory

Pathfinding algorithms can be used once the geometry of a game world has been encoded as a

map and pre-processed to produce either a Navigation Mesh or a set of Waypoints. Since the

polygons in the navigation mesh and the points in the waypoint system are all connected in

some way they are like points or nodes in a graph. So all the pathfinding algorithm has to do is

transverse the graph until it finds the endpoint it is looking for. Conceptually, a graph G is

composed of two sets, and can be written as G = (V,E) where:

 V – Vertices: A set of discreet points in n-space, but this usually corresponds to a 3D

map.

Issue Number 8, December 2003 Page 59

ITB Journal

 E – Edges: A set of connections between the vertices, which can be either directed

or not

Together with this structural definition, pathfinding algorithms also generally need to know

about the properties of these elements. For example, the length, travel-time or general cost of

every edge needs to be known. (From this point on cost will refer to the distance between

two nodes)

3 Pathfinding
In many game designs AI is about moving agents/bots around in a virtual world. It is of no use

to develop complex systems for high-level decision making if an agent cannot find its way

around a set of obstacles to implement that decision. On the other hand if an AI agent can

understand how to move around the obstacles in the virtual world even simple decision-making

structures can look impressive. Thus the pathfinding system has the responsibility of

understanding the possibilities for movement within the virtual world. A pathfinder will define a

path through a virtual world to solve a given set of constraints. An example of a set of

constraints might be to find the shortest path to take an agent from its current position to the

target position. Pathfinding systems typically use the pre-processed representations of the

virtual world as their search space.

3.1 Approaches to Pathfinding

There are many different approaches to pathfinding and for our purposes it is not necessary to

detail each one. Pathfinding can be divided into two main categories, undirected and

directed. The main features of each type will be outlined in the next section.

3.1.1 Undirected

This approach is analogous to a rat in a maze running around blindly trying to find a way out.

The rat spends no time planning a way out and puts all its energy into moving around. Thus the

rat might never find a way out and so uses most of the time going down dead ends. Thus, a

design based completely on this concept would not be useful in creating a believable behaviour

for an AI agent. It does however prove useful in getting an agent to move quickly while in the

background a more sophisticated algorithm finds a better path.

There are two main undirected approaches that improve efficiency. These are Breadth-first

search and Depth-first search respectively, they are well known search algorithms as

detailed for example in [RusselNorvig95]. Breadth-first search treats the virtual world as a

large connected graph of nodes. It expands all nodes that are connected to the current node

and then in turn expands all the nodes connected to these new nodes. Therefore if there is a

Issue Number 8, December 2003 Page 60

ITB Journal

path, the breadth-first approach will find it. In addition if there are several paths it will return

the shallowest solution first. The depth-first approach is the opposite of breadth-first

searching in that it looks at all the children of each node before it looks at the rest, thus

creating a linear path to the goal. Only when the search hits a dead end does it go back and

expand nodes at shallower levels. For problems that have many solutions the depth-first

method is usually better as it has a good chance of finding a solution after exploring only a

small portion of the search space.

 For clarity the two approaches will be explained using a simple map shown in Figure 3.1.

Figure 3.1

Figure 3.1 shows a waypoint representation of a simple map and its corresponding

complete search tree from the start (S) to the goal (G).

Figure 3.2 shows how the two approaches would search the tree to find a path. In this

example the breadth-first took four iterations while the depth-first search finds a path in two.

This is because the problem has many solutions, which the depth-first approach is best, suited

to. The main drawback in these two approaches is that they do not consider the cost of the

path but are effective if no cost variables are involved.

Issue Number 8, December 2003 Page 61

ITB Journal

Figure 3.2

3.1.2 Directed

Directed approaches to pathfinding all have one thing in common in that they do not go blindly

through the maze. In other words they all have some method of assessing their progress from

all the adjacent nodes before picking one of them. This is referred to as assessing the cost of

getting to the adjacent node. Typically the cost in game maps is measured by the distance

between the nodes. Most of the algorithms used will find a solution to the problem but not

always the most efficient solution i.e. the shortest path. The main strategies for directed

pathfinding algorithms are:

 Uniform cost search g(n) modifies the search to always choose the lowest cost next

node. This minimises the cost of the path so far, it is optimal and complete, but can be

very inefficient.

 Heuristic search h(n) estimates the cost from the next node to the goal. This cuts

the search cost considerably but it is neither optimal nor complete.

The two most commonly employed algorithms for directed pathfinding in games use one or

more of these strategies. These directed algorithms are known as Dijkstra and A* respectively

[RusselNorvig95]. Dijkstra’s algorithm uses the uniform cost strategy to find the optimal path

while the A* algorithm combines both strategies thereby minimizing the total path cost. Thus

A* returns an optimal path and is generally much more efficient than Dijkstra making it the

backbone behind almost all pathfinding designs in computer games. Since A* is the most

commonly used algorithm in the pathfinding arena it will be outlined in more detail later in this

report.

Issue Number 8, December 2003 Page 62

ITB Journal

The following example in Figure 3.3 compares the effectiveness of Dijkstra with A*. This

uses the same map from Figure 3.1 and its corresponding search tree from start (S) to the

goal (G). However this time the diagram shows the cost of travelling along a particular path.

Figure 3.3

Figure 3.4

Figure 3.4 illustrates how Dijkstra and A* would search the tree to find a path given the costs

indicated in Figure 3.3. In this example Dijkstra took three iterations while A* search finds a

path in two and finds the shortest path i.e. the optimal solution. Given that the first stage

shown in Figure 3.4 for both Dijkstra and A* actually represents three iterations, as each

node connected to the start node (S) would take one iteration to expand, the total iterations for

Dijkstra and A* are six and five respectively. When compared to the Breadth-first and Depth-

first algorithms, which took five and two iterations respectively to find a path, Dijkstra and A*

took more iterations but they both returned optimal paths while breadth-first and depth-first did

not. In most cases it is desirable to have agents that finds optimal pathways as following sub-

optimal pathways may be perceived as a lack of intelligence by a human player.

Issue Number 8, December 2003 Page 63

ITB Journal

Many directed pathfinding designs use a feature known as Quick Paths. This is an undirected

algorithm that gets the agent moving while in the background a more complicated directed

pathfinder assesses the optimal path to the destination. Once the optimal path is found a “slice

path” is computed which connects the quick path to the full optimal path. Thus creating the

illusion that the agent computed the full path from the start. [Higgins02].

4 A* Pathfinding Algorithm
A* (pronounced a-star) is a directed algorithm, meaning that it does not blindly search for a

path (like a rat in a maze) [Matthews02]. Instead it assesses the best direction to explore,

sometimes backtracking to try alternatives. This means that A* will not only find a path

between two points (if one exists!) but it will find the shortest path if one exists and do so

relatively quickly.

4.1 How It Works

The game map has to be prepared or pre-processed before the A* algorithm can work. This

involves breaking the map into different points or locations, which are called nodes. These can

be waypoints, the polygons of a navigation mesh or the polygons of an area awareness

system. These nodes are used to record the progress of the search. In addition to holding the

map location each node has three other attributes. These are fitness, goal and heuristic

commonly known as f, g, and h respectively. Different values can be assigned to paths

between the nodes. Typically these values would represent the distances between the nodes.

The attributes g, h, and f are defined as follows:

 g is the cost of getting from the start node to the current node i.e. the sum of all the

values in the path between the start and the current node

 h stands for heuristic which is an estimated cost from the current node to the goal

node (usually the straight line distance from this node to the goal)

 f is the sum of g and h and is the best estimate of the cost of the path going through

the current node. In essence the lower the value of f the more efficient the path

The purpose of f, g, and h is to quantify how promising a path is up to the present node.

Additionally A* maintains two lists, an Open and a Closed list. The Open list contains all the

nodes in the map that have not been fully explored yet, whereas the Closed list consists of all

the nodes that have been fully explored. A node is considered fully explored when the

algorithm has looked at every node linked to it. Nodes therefore simply mark the state and

progress of the search.

Issue Number 8, December 2003 Page 64

ITB Journal

4.2 The A* Algorithm

The pseudo-code for the A* Algorithm is as follows:

1. Let P = starting point.

2. Assign f, g and h values to P.

3. Add P to the Open list. At this point, P is the only node on the Open list.

4. Let B = the best node from the Open list (i.e. the node that has the lowest f-

value).

a. If B is the goal node, then quit – a path has been found.

b. If the Open list is empty, then quit – a path cannot be found

5. Let C = a valid node connected to B.

a. Assign f, g, and h values to C.

b. Check whether C is on the Open or Closed list.

i. If so, check whether the new path is more efficient (i.e. has a

lower f-value).

1. If so update the path.

ii. Else, add C to the Open list.

c. Repeat step 5 for all valid children of B.

6. Repeat from step 4.

A Simple example to illustrate the pseudo code outlined in section 4.2. The following step

through example should help to clarify how the A* algorithm works (see Figure 4.1).

Figure 4.1

Let the center (2,2) node be the starting point (P), and the offset grey node (0,1) the end

position (E). The h-value is calculated differently depending on the application. However for

Issue Number 8, December 2003 Page 65

ITB Journal

this example, h will be the combined cost of the vertical and horizontal distances from the

present node to (E). Therefore h = | dx-cx | + | dy-cy | where (dx,dy) is the destination node

and (cx,cy) is the current node.

At the start, since P(2,2) is the only node that the algorithm knows, it places it in the Open list

as shown in Table 4.1.

Open List Closed List
{ P(2,2) } { Empty }

Table 4.1

There are eight neighbouring nodes to p(2,2). These are (1,1), (2,1), (3,1), (1,2), (3,2),

(1,3), (2,3), (3,3) respectively. If any of these nodes is not already in the Open list it is added to

it. Then each node in the Open list is checked to see if it is the end node E(1,0) and if not, then

its f- value is calculated (f = g + h).

Node g-value h-value f-value
(1,1) 0 (Nodes to travel through) 1 1
(2,1) 0 2 2
(3,1) 0 3 3
(1,2) 0 2 2
(3,2) 0 4 4
(1,3) 0 3 3
(2,3) 0 4 4
(3,3) 0 5 5

Table 4.2

As can be seen from Table 4.2 Node (1,1) has the lowest f-value and is therefore the next

node to be selected by the A* algorithm. Since all the neighbouring nodes to P(2,2) have been

looked at, P(2,2) is added to the Closed list (as shown in Table 4.3).

Open List Closed List
{ (1,1), (2,1), (3,1), (1,2), (3,2),

(1,3), (2,3), (3,3) }

{ P(2,2) }

Table 4.3

Issue Number 8, December 2003 Page 66

ITB Journal

There are four neighbouring nodes to (1,1) which are E(1,0), (2,1), (1,2), (2,2) respectively.

Since E(1,0) is the only node, which is not on either of the lists, it is now looked at. Given that

all the neighbours of (1,1) have been looked at, it is added to the Closed list. Since E(1,0) is the

end node, a path has therefore been found and it is added to the Closed list. This path is found

by back-tracking through the nodes in the Closed list from the goal node to the start node { P

(2,2), (1,1), E(1,0) }. This algorithm will always find the shortest path if one exists

[Matthews02].

5 Limitations of Traditional Pathfinding
Ironically the main problems that arise in pathfinding are due to pre-processing, which makes

complex pathfinding in real-time possible. These problems include the inability of most

pathfinding engines to handle dynamic worlds and produce realistic (believable) movement.

This is due primarily to the pre-processing stages that produce the nodes for the pathfinder to

travel along based on a static representation of the map. However if a dynamic obstacle

subsequently covers a node along the predetermined path, the agent will still believe it can

walk where the object is. This is one of the main factors that is holding back the next

generation of computer games thar are based on complex physics engines similar to that

produced by middleware companies such as Havok (www.havok.com) and Renderware

(www.renderware.com). Another problem is the unrealistic movement which arises when the

agent walks in a straight line between nodes in the path. This is caused by the dilemma which

arises in the trade off between speed (the less number of nodes to search the better) and

realistic movement (the more nodes the more realistic the movement). This has been improved

in some games by applying splines (curve of best fit) between the different nodes for

smoothing out the path.

The problems listed above, are mainly due to the introduction of dynamic objects into static

maps, are one of the focuses of research in the games industry at present. Considerable effort

is going into improving the AI agent’s reactive abilities when dynamic objects litter its path.

One of the solutions focuses on giving the agent a method of taking into account its

surroundings. A simple way to achieve this is to give the agent a few simple sensors so that it

is guided by the pathfinder but not completely controlled by it. However this method will not be

effective if the sensors used are unable to deal with noisy data.

5.1 Limitations Of A*

A* requires a large amount of CPU resources, if there are many nodes to search through as is

the case in large maps which are becoming popular in the newer games. In sequential

programs this may cause a slight delay in the game. This delay is compounded if A* is

Issue Number 8, December 2003 Page 67

ITB Journal

searching for paths for multiple AI agents and/or when the agent has to move from one side of

the map to the other. This drain on CPU resources may cause the game to freeze until the

optimal path is found. Game designers overcome these problems by tweaking the game so as

to avoid these situations [Cain02].

The inclusion of dynamic objects to the map is also a major problem when using A*. For

example once a path has been calculated, if a dynamic object then blocks the path the agent

would have no knowledge of this and would continue on as normal and walk straight into the

object. Simply reapplying the A* algorithm every time a node is blocked would cause

excessive drain on the CPU. Research has been conducted to extend the A* algorithm to deal

with this problem most notably the D* algorithm (which is short for dynamic A*) [Stentz94].

This allows for the fact that node costs may change as the AI agent moves across the map

and presents an approach for modifying the cost estimates in real time. However the

drawback to this approach is that it adds further to the drain to the CPU and forces a limit on

the dynamic objects than can be introduces to the game.

A key issue constraining the advancement of the games industry is its over reliance on A* for

pathfinding. This has resulted in game designers getting around the associated dynamic

limitations by tweaking their designs rather than developing new concepts and approaches to

address the issues of a dynamic environment [Higgins02]. This tweaking often results in

removing/reducing the number of dynamic objects in the environment and so limits the

dynamic potential of the game. A potential solution to this is to use neural networks or other

machine learning techniques to learn pathfinding behaviours which would be applicable to real-

time pathfinding.

5.2 Machine Learning

A possible solution to the problems mentioned in section 5.1 is to use machine learning to

assimilate pathfinding behaviour. From a production point of view, machine learning could

bypass the need for the thousand lines or so of brittle, special case, AI logic that is used in

many games today. Machine learning if done correctly, allows generalisation for situations that

did not crop up in the training process. It should also allow the game development team to

develop the AI component concurrently with the other components of the game.

Machine learning techniques can be broken into the following three groups:

 Optimisation – Learning by optimisation involves parameritising the desired

behaviour of the AI agent and presenting a performance measure for this desired

Issue Number 8, December 2003 Page 68

ITB Journal

behaviour. It is then possible to assign an optimisation algorithm to search for sets of

parameters that make the AI agent perform well in the game. Genetic Algorithms

are the most commonly used technique for optimisation.

 Training – Learning by training involves presenting the AI agent with a set of input

vectors and then comparing the output from the AI agent to the desired output. The

difference between the two outputs is known as the error. The training involves

modifying the internal state of the agent to minimise this error. Neural Networks

[Fausett94] are generally used when training is required.

 Imitation – Learning by imitation involves letting the AI agent observe how a human

player plays the game. The AI agent then attempts to imitate what it has observed.

The Game observation Capture (GoCap) technique [Alexander 02] is an example of

learning through imitation.

6 Learning Algorithms
There are two machine learning approaches that have been used in commercial computer

games with some degree of success. These are Artificial Neural Networks (ANNs) and

Genetic Algorithms (GAs). This section will outline both of these approaches in detail followed

by a discussion of the practical uses for them in learning pathfinding for computer games.

6.1 Neural Networks

An artificial neural network is an information-processing system that has certain performance

characteristics in common with biological neural networks [Fausett94]. Artificial Neural

networks have been developed as generalizations of mathematical models of human cognition

or neural biology, based on the following assumptions:

1. Information processing occurs in simple elements called neurons

2. Signals are passed between neurons over connection links

3. Each of these connections has an associated weight which alters the signal

4. Each neuron has an activation function to determine its output signal.

An artificial neural network is characterised by (a) the pattern of connections between

neurons i.e. the architecture, (b) the method of determining the weights on the connections

(Training and Learning algorithm) (c) the activation function.

Issue Number 8, December 2003 Page 69

ITB Journal

6.2 The Biological Neuron

A biological neuron has three types of components that are of particular interest in

understanding an artificial neuron: its dendrites, soma, and axon, all of which are shown in

Figure 5.1.

Figure 5.1

 Dendrites receive signals from other neurons (synapses). These signals are electric

impulses that are transmitted across a synaptic gap by means of a chemical process.

This chemical process modifies the incoming signal.

 Soma is the cell body. Its main function is to sum the incoming signals that it receives

from the many dendrites connected to it. When sufficient input is received the cell

fires sending a signal up the axon.

 The Axon propagates the signal, if the cell fires, to the many synapses that are

connected to the dendrites of other neurons.

6.3 The Artificial Neuron

Figure 5.2

Issue Number 8, December 2003 Page 70

ITB Journal

The artificial neuron structure is composed of (i) n inputs, where n is a real number, (ii) an

activation function and (iii) an output. Each one of the inputs has a weight value associated

with it and it is these weight values that determine the overall activity of the neural network.

Thus when the inputs enter the neuron, their values are multiplied by their respective weights.

Then the activation function sums all these weight-adjusted inputs to give an activation value

(usually a floating point number). If this value is above a certain threshold the neuron outputs

this value, otherwise the neuron outputs a zero value. The neurons that receive inputs from or

give outputs to an external source are called input and output neurons respectively.

Thus the artificial neuron resembles the biological neuron in that (i) the inputs represent the

dendrites and the weights represent the chemical process that occurs when transferring the

signal across the synaptic gap, (ii) the activation function represents the soma and (iii) the

output represents the axon.

6.4 Layers

It is often convenient to visualise neurons as arranged in layers with the neurons in the same

layer behaving in the same manner. The key factor determining the behaviour of a neuron is

its activation function. Within each layer all the neurons typically have the same activation

function and the same pattern of connections to other neurons. Typically there are three

categories of layers, which are Input Layer, Hidden Layer and Output layer respectively.

6.4.1 Input Layer

The neurons in the input layer do not have neurons attached to their inputs. Instead these

neurons each have only one input from an external source. In addition the inputs are not

weighted and so are not acted upon by the activation function. In essence each neuron

receives one input from an external source and passes this value directly to the nodes in the

next layer.

6.4.2 Hidden Layer

The neurons in the hidden layer receive inputs from the neurons in the previous input/hidden

layer. These inputs are multiplied by their respective weights, summed together and then

presented to the activation function which decides if the neuron should fire or not. There can

be many hidden layers present in a neural network although for most problems one hidden

layer is sufficient.

Issue Number 8, December 2003 Page 71

ITB Journal

6.4.3 Output Layer

The neurons in the output layer are similar to the neurons in a hidden layer except that their

outputs do not act as inputs to other neurons. Their outputs however represent the output of

the entire network.

6.5 Activation Function

The same activation function is typically used by all the neurons in any particular layer of the

network. However this condition is not required. In multi-layer neural networks the activation

used is usually non-linear, in comparison with the step or binary activation function functions

used in single layer networks. This is because feeding a signal through two or more layers

using linear functions is the same as feeding it through one layer. The two functions that are

mainly used in neural networks are the Step function and the Sigmoid function (S-shaped

curves) which represent linear and non-linear functions respectively.

Figure 5.3 shows the three most common activation functions, which are binary step, binary

sigmoid, and bipolar sigmoid functions respectively.

Figure 5.3

6.6 Learning

The weights associated with the inputs to each neuron are the primary means of storage for

neural networks. Learning takes place by changing these weights. There are many different

techniques that allow neural networks to learn by changing their weights. These broadly fall

into two main categories, which are supervised learning and unsupervised learning

respectively.

Issue Number 8, December 2003 Page 72

ITB Journal

6.6.1 Supervised Learning

The techniques in the supervised category involve mapping a given set of inputs to a specified

set of target outputs. This means that for every input pattern presented to the network the

corresponding expected output pattern must be known. The main approach in this category is

backpropagation, which relies on error signals from the output nodes. This requires guidance

from an external source i.e. a supervisor to help (monitor) with the learning through feedback.

 Backpropagation – Training a neural network by backpropagation involves three

stages: the feed forward of the input training pattern, the backpropagation of the

associated output error, and the adjustments of the weights to minimise this error. The

associated output error is calculated by subtracting the networks output pattern from

the expected pattern for that input training pattern.

6.6.2 Unsupervised Learning

The techniques that fall into the unsupervised learning category have no knowledge of the

correct outputs. Therefore, only a sequence of input vectors is provided. However the

appropriate output vector for each input is unknown.

 Reinforcement – In reinforcement learning the feedback is simply a scalar value,

which may be delayed in time. This reinforcement signal reflects the success or

failure of the entire system after it has preformed some sequence of actions. Hence

the reinforcement-learning signal does not assign credit or blame to any one action.

This method of learning is often referred to as the “Slap and Tickle approach”.

Reinforcement learning techniques are appropriate when the system is required to

learn on-line, or a teacher is not available to furnish error signals or target outputs.

6.7 Generalization

When the learning procedure is carried out in the correct manner, the neural network will be

able to generalise. This means that it will be able to handle scenarios that it did not encounter

during the training process. This is due to the way the knowledge is internalised by the neural

network. Since the internal representation is neuro-fuzzy, practically no cases will be handled

perfectly and so there will be small errors in the values outputted from the neural network.

However it is these small errors that enable the neural network handle different situations in

that it will be able to abstract what it has learned and apply it to these new situations. Thus it

will be able to handle scenarios that it did not encounter during the training process. This is

known a “Generalisation”. This is opposite to what is known as “Overfitting”.

Issue Number 8, December 2003 Page 73

ITB Journal

6.8 Overfitting

Figure 5.4

Overfitting describes when a neural network has adapted its behaviour to a very specific set

of states and performs badly when presented with similar states and so therefore has lost its

ability to generalise. This situation arises when the neural network is over trained i.e. the

learning is halted only when the neural networks output exactly matches the expected output.

6.9 Topology

The topology of a NN refers to the layout of its nodes and how they are connected. There are

many different topologies for a fixed neuron count, but most structures are either obsolete or

practically useless. The following are examples of well-documented topologies that are best

suited for game AI.

6.9.1 Feed forward

This is where the information flows directly from the input to the outputs. Evolution and

training with back propagation are both possibilities. There is a connection restriction as the

information can only flow forwards hence the name feed forward.

6.9.2 Recurrent

These networks have no restrictions and so the information can flow backward thus allowing

feedback. This provides the network with a sense of state due to the internal variables needed

for the simulation. The training process is however more complex than the feed forward

because the information is flowing both ways.

7 Genetic Algorithms
Nature has a robust way of evolving successful organisms. The organisms that are ill suited

for an environment die off, whereas the ones that are fit live to reproduce passing down their

good genes to their offspring. Each new generation has organisms, which are similar to the fit

members of the previous generation. If the environment changes slowly the organisms can

gradually evolve along with it. Occasionally random mutations occur, and although this usually

Issue Number 8, December 2003 Page 74

ITB Journal

means a quick death for the mutated individual, some mutations lead to a new successful

species.

It transpires that what is good for nature is also good for artificial systems, especially if the

artificial system includes a lot of non-linear elements. The genetic algorithm, described in

[RusselNorvig95] works by filling a system with organisms each with randomly selected genes

that control how the organism behaves in the system. Then a fitness function is applied to each

organism to find the two fittest organisms for this system. These two organisms then each

contribute some of their genes to a new organism, their offspring, which is then added to the

population. The fitness function depends on the problem, but in any case, it is a function that

takes an individual as an input and returns a real number as an output.

The genetic algorithm technique attempts to imitate the process of evolution directly,

performing selection and interbreeding with randomised crossover and mutation operations on

populations of programs, algorithms or sets of parameters. Genetic algorithms and genetic

programming have achieved some truly remarkable results in recent years [Koza99],

beautifully disproving the public misconception that a computer “can only do what we program

it to do”.

7.1 Selection

The selection process involves selecting two or more organisms to pass on their genes to the

next generation. There are many different methods used for selection. These range from

randomly picking two organisms with no weight on their fitness score to sorting the organisms

based on their fitness scores and then picking the top two as the parents. The main selection

methods used by the majority of genetic algorithms are: Roulette Wheel selection,

Tournament selection, and Steady State selection. Another important factor in the selection

process is how the fitness of each organism is interpreted. If the fitness is not adjusted in any

way it is referred to as the raw fitness value of the organism otherwise it is called the

adjusted fitness value. The reason for adjusting the fitness values of the organisms is to give

them a better chance of being selected when there are large deviations in the fitness values of

the entire population.

7.1.1 Tournament Selection

In tournament selection n (where n is a real number) organisms are selected at random and

then the fittest of these organisms is chosen to add to the next generation. This process is

repeated as many times as is required to create a new population of organisms. The organisms

that are selected are not removed from the population and therefore can be chosen any

number of times.

Issue Number 8, December 2003 Page 75

ITB Journal

This selection method is very efficient to implement as it does not require any adjustment to

the fitness value of each organism. The drawback with this method is that because it can

converge quickly on a solution it can get stuck in local minima.

7.1.2 Roulette Wheel Selection

Roulette wheel selection is a method of choosing organisms from the population in a way that

is proportional to their fitness value. This means that the fitter the organism, the higher the

probability it has of being selected. This method does not guarantee that the fittest organisms

will be selected, merely that they have a high probability of being selected. It is called roulette

wheel selection because the implementation of it involves representing the populations total

fitness score as a pie chart or roulette wheel. Each organism is assigned a slice of the wheel

where the size of each slice is proportional to that respective organisms fitness value.

Therefore the fitter the organism the bigger the slice of the wheel it will be allocated. The

organism is then selected by spinning the roulette wheel as in the game of roulette.

This roulette selection method is not as efficient as the tournament selection method because

there is an adjustment to each organism’s fitness value in order to represent it as a slice in the

wheel. Another drawback with this approach is that it is possible that the fittest organism will

not get selected for the next generation, although this method benefits from not getting stuck in

as many local minima.

7.1.3 Steady State Selection

Steady state selection always selects the fittest organism in the population. This method retains

all but a few of the worst performers from the current population. This is a form of elitism

selection as only the fittest organisms have a chance of being selected. This method usually

converges quickly on a solution but often this is just a local minima of the complete solution.

The main drawback with this method is that it tends to always select the same parents every

generation this results in a dramatic reduction in the gene pool used to create the child. This is

why the population tends to get stuck in local minima as it is over relying on mutation to create

a better organism. This method is ideal for tackling problems that have no local minima or for

initially getting the population to converge on a solution in conjunction with one of the other

selection methods.

Issue Number 8, December 2003 Page 76

ITB Journal

Figure 6.1

7.2 Crossover

The crossover process is where a mixture of the parent’s genes is passed onto the new child

organism. There are three main approaches to this random crossover, single-point

crossover and two-point crossover.

7.2.1 Random Crossover

For each of the genes in the offsprings

chromosome a random number of either

zero or one is generated. If the number is

zero the offspring will inherit the same gene

in Patent 1 otherwise the offspring will

inherit the appropriate gene from Parent 2.

This results in the offspring inheriting a

random distribution of genes from both

parents.

7.2.2 Single-Point Crossover

A random crossover point is generated in

the range (0 < Pt 1 < length of Offspring

chromosome). The offspring inherits all the

genes that occur before Pt1 from Parent 1

and all the genes that occur after Pt1 from

Parent 2.

7.2.3 Two-Point Crossover

Issue Number 8, December 2003 Page 77

ITB Journal

This is the same as the single-point

crossover except this time two random

crossover points are generated. The

offspring inherits all the genes before Pt1

and after Pt2 from Parent 1 while all the

genes between Pt1 and Pt2 are inherited

from Parent 2.

7.3 Mutation

Mutation is another key feature of the crossover phase in genetic algorithms as it results in

creating new genes that are added to the population. This technique is used to enable the

genetic algorithm to get out of (resolve) local minima. The mutation is controlled by the

mutation rate of the genetic algorithm and is the probability that a gene in the offspring will be

mutated. Mutation occurs during the crossover stage; when the child is inheriting its genes

form the parent organisms each gene is checked against the probability of a mutation. If this

condition is met then that gene is mutated although this usually means a quick death for the

mutated individual, some mutations lead to a new successful species.

8 How Learning Algorithms Can Solve Pathfinding Problems
The main problems associated with real-time pathfinding are:

 Handling dynamic objects

 Using up too many resources especially on game consoles, which have limited

memory

 Leave the AI until the end of the development process

Learning algorithms offer the possibility of a general pathfinding Application Programming

Interface (API) that would allow an agent to learn how to find its way around the game world.

An API is a collection of specific methods prescribed by an application program by which a

programmer writing another program can make requests to. This would allow game

developers experiment with training agents in more complex situations and then simply reuse

this behaviour in future games even if the new game was completely different, as long as it

can present the agent with the inputs it requires (as defined by the API).

Issue Number 8, December 2003 Page 78

ITB Journal

8.1 Evolving the Weights of a Neural Network

Figure 8.1

The encoding of a neural network which is to be evolved by a genetic algorithm is very

straightforward. This is achieved by reading all the weights from its respective layers and

storing them in an array. This weight array represents the chromosome of the organism with

each individual weight representing a gene. During crossover the arrays for both parents are

lined up side by side. Then depending on the crossover method, the genetic algorithm chooses

the respective parents weights to be passed on to the offspring.

A discussion on how learning algorithms can overcome the problems listed at the start of this

section will now be looked at:

 Dynamic problem – Having continuous real-time sensors the AI agent should be

able to learn to use this information via a neural network to steer around obstacles and

adjust to a changing environment. Also because neural networks can generalise, the

agent should be able to make reasonable decisions when it encounters a situation that

did not arise during training. Genetic algorithms can be used to train the neural

network online as new elements are added to the game.

 Resource problem – Neural networks do not require large amounts of memory and

can handle continuous inputs in real-time as the data processing mainly involves

addition and multiplication which are among the fastest processes a computer can

perform

Issue Number 8, December 2003 Page 79

ITB Journal

 Speeding up the development process – Giving the agents the ability to learn how

to navigate around the map allows developers to start developing the AI at an earlier

stage. If a new element is added to the game, then it should be a simple matter of

allowing the agent learn the game with this new element.

8.2 Conclusion

The reason that games developers have not researched machine learning for pathfinding is

that it would take to much time to do so and time is money! Games developers are also very

reluctant to experiment with machine learning, as it could be unpredictable. One game that did

use unsupervised machine learning was Black & White (www.lionhead.com) where the

human player was able to train their own creature. A neural network was used to control the

creature but while the human player was able to train the creature through reinforcement

learning, it was tightly controlled to avoid totally unpredictable/unrealistic behaviour. So it

seems that until the game developers are shown proof that machine learning can overcome the

limitations of standard approaches they will avoid it.

Future work will involve setting up a test bed to test the practicality of using machine learning

to perform pathfinding. Pacman is the game chosen for the test bed, as it is a real-time game

that uses pathfinding algorithms to navigate around a 2D maze. Learning algorithms will be

used to train a neural ghost that can be compared to standard ghosts in terms of speed,

believability, and ability to play dynamic maps. The ghosts will use a neural network, which will

decipher real-time data inputted by a number of sensors attached to the ghost, to decide what

path to follow. The neural network will be trained using reinforcement learning with a genetic

algorithm to evolve the weights as described in section 8.1.

References
[Alexander02] Alexander, Thor,. “GoCap: Game Observation Capture”, AI Game Programming

Wisdom, Charles River Media, 2002

[Alexander02a] Alexander, Thor,. “Optimized Machine Learning with GoCap”, Game Programming

Gems 3, Charles River Media, 2002

[Board & Ducker02] Board, Ben., Ducker, Mike., “Area Navigation: Expanding the Path-Finding

Paradigm”, Game Programming Gems 3, Charles River Media, 2002

[Cain02] Cain, Timothy, “Practical Optimizations for A*”, AI Game Programming Wisdom, Charles

River Media, 2002

[Fausett94] Fausett, Laurene, “Fundamentals of Neural Networks Architectures, Algorithms, and

Applications”, Prentice-Hall, Inc, 1994.

[Higgins02] Higgins, Dan, “Generic A* Pathfinding”, AI Game Programming Wisdom, Charles

Issue Number 8, December 2003 Page 80

ITB Journal

River Media, 2002.

[Higgins02a] Higgins, Dan, “How to Achieve Lightning-Fast A*”, AI Game Programming Wisdom,

Charles River Media, 2002

[Higgins02b] Higgins, Dan., “Pathfinding Design Architecture”, AI Game Programming Wisdom,

Charles River Media, 2002

[Higgins02c] Higgins, Dan., “Generic Pathfinding”, AI Game Programming Wisdom, Charles River

Media, 2002

[Matthews02] Matthews, James, “Basic A* Pathfinding Made Simple”, AI Game Programming

Wisdom, Charles River Media, 2002.

[RusselNorvig95] Russel, Stuart., Norvig, Peter., "Artificial Intelligence A Modern Approach",

Prentice-Hall, Inc, 1995

[Stentz94] Stentz, Anthony., “Optimal and Efficient Path Planning for Partially-known

Environments.” In proceedings of the IEEE International Conference on Robotics and

Automation, May 1994

[Stentz96] Stentz, Anthony., “Map-Based Strategies for Robot Navigation in Unknown

Environments”. In proceedings of the AAAI Spring Symposium on Planning with

Incomplete Information for Robot Problems, 1996

[WhiteChristensen02] White, Stephen., Christensen, Christopher., “A Fast Approach to Navigation

Meshes”, Game Programming Gems 3, Charles River Media, 2002

Issue Number 8, December 2003 Page 81

	Pathfinding in Computer Games
	Recommended Citation

	ITB Journal

