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Simulation and Analysis of Stochastic Signals using
the Kolmogorov-Feller Equation

Jonathan Blackledge, Marc Lamphiere, Kieran Murphy, Shaun Overton and

Afshin Panahi

Computational Finance Research Group
Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland

Abstract — We consider a Green’s function solution to the Classical Kolmogorov-
Feller Equation which requires an iterative approach for which a sufficient convergence
condition is derived. The solution obtained is applied to the simulation of signals whose
spectral properties are determined by a Characteristic Function of the form |k |79, ¢ >
0 where k is the spatial frequency and ¢ is the ‘Fourier Dimension’. Using example
macroeconomic financial time series (FTSE Close-of-Day and the Dow Jones Industrial
Average), correlations are observed to exist between ¢ and long term trends in the
series using a standard moving window process. This result provides the potential for
developing an accurate short term forecasting strategy.

Keywords — Stochastic signal modelling, the Kolmogorov-Feller equation, financial time

series analysis

I INTRODUCTION

The diffusion-type and jump-type properties asso-
ciated with the Kolmogorov-Feller Equation (e.g.
[1]-[4] and references therein) make it suitable for
modelling stochastic signals with long term corre-
lations or ‘trends’ including financial time series,
for example. However, surprisingly there is rela-
tively little published material on the Kolmogorov-
Feller Equation (KFE) and its applications, partic-
ularly with regard to solutions appropriate for sim-
ulating and analysing stochastic signals. A short
overview is therefore given in this paper on the
derivations of the Classical and Generalised KFE
[5]-[10].

A Green’s function solution to the (Classical)
KFE is then considered which provides an expres-
sion for the Finite Impulse Response function of a
system described by the KFE. This is the princi-
pal focus of the paper and reflects an original con-
tribution to the field. A specific solution is then
considered based on the application of a Charac-
teristic Function of the form | k£ |79, ¢ > 0 where
k is the spatial frequency and some example sim-
ulations provided. The inverse problem associated
with computing the index ¢ for a given input is
then considered and applied to financial time se-

ries analysis on a moving window basis. It is shown
that a correlation exists between the trending be-
haviour of a time series and ¢ which is demon-
strated using FTSE (Close-of-Day) and Dow Jones
(Weekly) Industrial Average data.

II THE CLASSICAL AND GENERALISED KFE

For a Probability Density Function (PDF) p(x)
with Characteristic Function (i.e. Fourier trans-
form) P(k), the ‘evolution equation’ for the ‘Den-
sity Field” u(z,t) is given by[11]

u(z,t+7) = u(z, t) @, p(x)

where ®, denotes the convolution integral over x.
The Density Field represents the evolution in time
t of a concentration of particles over a length x
undergoing a random walk process in a period of
time 7 which conforms to the PDF p(z).

Consider the Taylor series for the function
u(z,t+ 1), ie.

T2 82

0
u(z, t+71) = u(z, 75)—|—7'au(:1c7 t)+ 92

u(z,t)+...
For 7 << 1,

u(z,t + 1) = ulz,t) + T%u(:m t)



and we obtain the ‘Classical KFE’,

T—u(x,t) = —u(x,t) + u(z, t) @, p(x) (1)

ot
Equation (1) is based on a critical assumption
which is that the time evolution of the field u(x,t)
is influenced only by short term events and that
longer term (historical) events have no influence
of the behaviour of the field, i.e. the ‘system’ de-
scribed by equation (1) has no ‘memory’. This
statement is the physical basis upon which we in-
troduce the condition 7 << 1 thereby allowing the
Taylor series expansion of the u(x, t+7) to be made
to first order. The question then arises as to how
longer term temporal influences can be modelled,
other than by taking an increasingly larger num-
ber of terms in the Taylor expansion of u(z,t+ 7)
which is not of practical analytical value. For ar-
bitrary values of T,
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5 u(z,t) + ...

—u(x, t) + u(x, t) g p(ﬂj)

We can model the effect on a solution for u(x,t) of
the series on the left hand side of this equation in
terms of a ‘memory function’ m(t) and write

0
m(t) &t au(az,t) = 7u(x7t) + U(l’,t) Sz p(l’)
where ®; denotes the convolution integral over ¢ €
[0,00). This is the Generalised KFE which reduces
to the Classical KFE when

Note that for any memory function for which there
exists a function or class of functions of the type
m(t), say, such that

m(t) @ m(t) = 6(t)

then we can write the Generalised KFE in the form

T—u(x,t) = —m(t)@ru(z, t)+m(t):u(x, t) R p(x)

ot

where the Classical KFE is recovered when 7(t) =
o(t).

Any temporal solution obtained to the Gener-
alised KFE will depend on the choice of memory
function m(t) used. There are a number of choices
that can be considered each or which is taken to
be a ‘best characteristic’ of a ‘system’ in terms of
the influence of its time history. For example, the
Mittag-LefHler function

1

0<pg<1

where
m(t) — ;
(B - 1)t25
given that
70 exp(— i
(7)1 5
0

yields the (time) Fractional KFE.
IIT SorutioN TO THE KFE

‘We now turn our attention to developing a solution
to the Classical KFE, i.e. given equation (1), we
seek a solution for u(x,t) given p(x). We require
a general solution that allows us to investigate the
effect of different PDFs p(z) on the function u(z,t)
such that the associated inverse problem is practi-
cally viable, i.e. where statistical parameter(s) as-
sociated with p(z) can be computed from u(zx,t).
This condition rules out an approach based on, for
example, the transformation of equation (1) into
Fourier-Laplace space to obtain a solution of the
form

e 47T2 c7°°7 TUolej(_psjk_x equf)(st) deds
where .
P() = [ pla) exp(-iko)d
and -
Uo(k) = /OO u(z,t = 0) exp(—ikx)dx

which requires an initial condition u(z,t = 0) to
be stated. Thus, we consider a Green’s function
solution to equation (1) which we write in the form

Tgu(a: t) +u(x,t) =

T h(z,t) (2)

where
h(z,t) = u(z,t) @4 p(x)

The Green’s function g(7) is then given by the so-
lution of

0
T 9(€) + 9(€) = 5(¢) 3)

where £ =t — ty. Taking the Laplace transform of
equations (2) and (3), we have

(st —up) + @ = h (4)

and
7(sg—g0) +g=1 (5)



respectively, where

o0

(x,s) = /u(x,t) exp(—st)dt,

0

g(s) = [ g(§) exp(—s&)d¢,
/

ug = u(z,t = 0) and go = g(7 = 0). Form equa-
tions (4) and (5), it is clear that

ﬁ(x,s) ZQ(S)B(I',S) (6)

under the condition that vy = 0 and gy = 0. Using
the convolution theorem for the Laplace transform,
equation (6) becomes

u(z,t) = g(t) @4 h(z,t) (7)

The Green’s function, which is the solution to
equation (3), is given by

(1) = ~ exp(~t/m) H (1)

where
1, t>0

H(t):{o t<0

From equation (7), it is clear that an iterative so-
lution is required to solve for the function u(x,t)
and we therefore consider the iteration, for m =
1,2,3, ...

Umt1(2,1) = g(t) @4 um (2,1) @, p(x)  (8)

By transforming equation (8) into Fourier space
and using the convolution theorem for the Fourier
transform, we can write

Unm+1(k,t) = g(t) @1 Um(k, t) P(k)
where
U (k,t) = / U (2, 1) exp(—ikz)dx
and -
P(k) = /p(x) exp(—ikxz)dz
Ug(k, t) g(t) ®t Ul(k‘, f)P(k’)
Us(k,t) = g(t) ®¢ Uz(k, t) P(k)

= g(t) ®¢ g(t) @ Uy (k, t)[P(k)]?

and so on for m = 4,5, ..., M. Thus, by induction,

M

®9m

) @ Ur(k, )[P(k)]™  (9)

where

M
H gn®) =g

m=1

t) ®¢ g(t) ®¢ g(t) @4 ...

the condition for convergence being given by
IP(E)|| < v/27 as shown in Appendix A. We note
that the Laplace transform of g is given by

1 1
= exp(—t —st)dt =
/ - exp(—t/7) exp(—st) 575
0
and that, using the convolution theorem for

Laplace transforms,

0/ WEL gm(t) exp(—st)dt = (A+7s)

Thus, since

OOtM M!
/7 exp(—t/7) exp(—st)dt = (T4 75)1 770
0

it follows that

_exp(—t/T)tM1
H =G

Finally inverse Fourier transforming equation (9)
and using the convolution theorem for Fourier
transforms we can write

exp(—t/T)tM-1 ol
up(x,t) = I’%@tul(m?t)@m H pm(T)
" (10)

where it is clear that

lim wp(z,t) =0

t—oo

tlin(l)uM(x,t) =0 and

From equation (10), we define the Impulse Re-
sponse Function r(x,t) for a ‘stochastic system’
modelled by equation (1) as

ex T M-1
r(z,t) = p( t/ t H Pm (T

obtained for the case when wui(z,t) = 0(z)d(t).
Further, if we define the function

o}

() = / wng (x, £)dt

0

then equation (10) can be reduced to the form

M
ﬁ(w) = n(sc) g H pm(x)

(11)



where

o0

/exp t/T tM !

0

®¢ uq (z, t)dt

For a PDF p(x) with Characteristic Function P(k),
using the convolution theorem for Fourier trans-
forms, equation (11) transforms to

U (k)

— N(k)[P(k)” (12)

IV SIGNAL SIMULATION

Equation (12) is indicative of a standard model for
simulating the spectral characteristics of stochas-
tic signals. If we consider the case where n(x) is
‘white noise’ (whose Power Spectral Density Func-
tion (PSDF) is a constant), then the PSDF of U (k)
is determined by | [P(k)]* |? and the autocorre-
lation function of 4(z) is determined by the in-
verse Fourier transform of | [P(k)]™ |2. Thus, for
a Gaussian-type distribution (which defines diffu-
sive processes) given by P(k) = exp(—k?/M), for
example, we obtain

2 /4]

For a Lévy Characteristic Function given by
P(k) = exp(— | k |7) where v € (0,2] is the ‘Lévy
index’ [12]

() = n(z) ©s % exp|—

1

i(r) =
In this paper, we focus on an application of the
‘Characteristic Function’ P(k) =| k |79/M, ¢ >
0, where ¢ is the Fourier Dimension and when
equation (11) becomes [12]

-
I(g) [ [t~

Equation (13) describes a random scaling fractal
signal with Fractal Dimension D where ¢ = (5 —
2D)/2, D e (1,2) [12].

Figure 1 shows examples of signals (rescaled to
the range 0-1) simulated using equation (12) with
P(k) =| k |~9™ and uniformly distributed ‘white
noise’ for different values of ¢q. This result shows
the expected effect of increasing the value of the
Fourier Dimension on the ‘smoothness’ of the sig-
nal and the longer term trends that emerge as the
value of ¢ increases.

i(z) = n(x) R, (13)

V  SicNAL CHARACTERISATION

The simulation discussed in the previous section
identifies a method of characterising stochastic sig-
nals using the Fourier Dimension and further, seg-
menting such signals using a moving window ap-
proach. In the latter case, and based on the ex-
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Fig. 1: Example re-scaled signals computed using equa-
tion (12) for ‘white noise’ and Characteristics Function
| & |~9/M with ¢ = 0.5 (top), 1.0 (centre) and 1.5 (bot-
tom).

ample result given in the Figure 1, the Fourier Di-
mension provides a measure of both the smooth-
ness of a signal and thereby the localisation of cor-
related features on a non-stationary basis. Non-
stationary stochastic signals with significant vari-
ations in smoothness and long term correlations
include financial time series and in this Section we
apply the computation of the Fourier Dimension
based on equation (13) to macroeconomic (Close-
Of-Day and weekly) signals.

For a function 4(x) taken over a short period
window z € [0, W], let n(x) ~ §(z) in equation
(13) so that, ignoring scaling

1

a(x) ~ W7

€ [0, W] (14)

This is equivalent to the case when wu;(z,t) =
0(x)ui(t), = € [0,W] in equation (10). Given
equation (14), we consider a model for the dis-
crete function 4, = 4(z,) of the form (for n =
1,2,...,N)

Uy = azy,

Ty, >0

where a is a scaling constant and « = —(1—¢q). Es-
timates of the parameters a and « are then chosen
to minimise the error function

N
e(a,a) = || In, —Inu,|? = Z(lnﬁn —Inwuy,)?

n=1

where u,, is data which is taken to be normalised,
|lunllcoc = 1. Differentiating with respect to
A =Ina and « it is trivial to show that

N N N
> lnu, Y, Inz, — N > Inu,Ina,
-1

n n=1 n=1
o =

O



and

N N
o lnu, —a Y Inax,
a = exp n=1 n=1
N
given that
Oe Oe
% =0 and 87 =0

Note that in general, & = 1—¢ may be greater than
(for ¢ < 1) or less than (for ¢ > 1) zero thereby
providing a measure of any (long term) ascending
or descending trends in the data wu,, respective.
This effect of illustrated in Figure 2 which shows
the result of applying equation (15) to compute «
on a moving window basis (using a look-back win-
dow of 100 elements) for FTSE Close-of-Day Data
[13] after applying a moving average filter (also
using a look-back window of 100 elements). Simi-
larly, Figure 3 shows results for the Dow Jones In-
dustrial Weekly Average using look-back windows
of 30 elements.

1
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Fig. 2: Normalised FTSE values (close-of-day) from 27-06-
1985 to 03-01-2012 (blue) and normalised values of o given
by equation (15) (red) computed using a look-back window
of 100 and after applying a moving average filter for a look-
back window of 100.

The sample results shown in Figures 2 and 3
indicates a correlation between the polarity of the
signal « and the positive/negative gradient trends
associated with the economic index modelled by
4 thereby providing a possible investment and/or
forecasting strategy.

VI CONCLUSIONS

The Kolmogorov-Feller equation provides an ap-
proach to modelling density fields characterised by
a Probability Density Function p(z) and is a ‘state-
ment’ of the evolution equation

u(z,t +7) = u(z,t) @, p(x)

0 100 200 300 400 500 600

Fig. 3: Normalised Dow Jones Weekly Average from 07-
08-2000 to 09-01-2012 (blue) and normalised values of «
given by equation (15) (red) computed using a look-back
window of 30 and after applying a moving average filter for
a look-back window of 30.

under the condition that 7 << 1. By introducing
a memory function, a generalised form of the equa-
tion can be obtained which includes the fractional
KFE as discussed in Section II. In this paper, a
Green’s function solution to equation (1) has been
considered and a Finite Impulse Response func-
tion derived whose spatial characteristics are de-
termined by multiple convolutions of p(z). By con-
sidering the Fourier Dimension associated with a
Characteristic Function of the type | k | =%/ it has
been shown that the time integrated density field
can be written in the form given by equation (13)
with Impulse Response Function | z |971 (ignoring
scaling). Analysis of example financial signals us-
ing this function as a scaling law for data localised
within a moving window reveals a correlation be-
tween the direction of a trend and the polarity of
1—gq.
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APPENDIX A: CONVERGENCE CONDITION

Theorem. A necessary condition for the conver-
gence of the iteration

Um+1(xa t) = g(t) t Um(xa t) Qg p(x) (Al)

is ||P(k)|| < V27 where P(k) is the Fourier trans-
form of p(z).

Proof. By taking the Fourier transform of equa-
tion (A1), we obtain the iteration

Un+1(k,t) = g(t) @ U (k, 1) P(k) (A2)
Let

Un=U+¢, and U,y =U+€nt1



where €, is the error at iteration m. Substituting
these equations into equation (A2) we obtain

6m+1(k7t) = g(t) ®t Em(kvt)P(k)

since

U(k,t) =g(t) @, U(k,t)P(k)

Now consider the operator G = P(k)g(t)®; so that
we can write

eme1(k,t) = Gem(2,1)

and thus
em = GMeg

For global convergence, we require that €,, — 0 as
m — 00 or

lim GmEO =0 VEO

m—0

Convergence will therefore occur if |G™| < 1 and
since ||G™]] < ||G||™ the condition for convergence
becomes

IGI < 1P(R)] < lg(t)

| <1
For Eucliden norms,

1
2

1P(k)| = /IPwH%m

and

N

1
V2T

3=

lo ()]l = l/wm—%hMt _
0

Thus, a necessary condition for global convergence

is that [|p(k)|| < V27 or ||p(z)|| < /7/7 (using

Rayleigh’s theorem) which completes the proof.
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