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Abstract

Monophonic sound source separation (SSS) refers to a process that separates

out audio signals produced from the individual sound sources in a given acoustic

mixture, when the mixture signal is recorded using one microphone or is directly

recorded onto one reproduction channel. Many audio applications such as

pitch modification and automatic music transcription would benefit from the

availability of segregated sound sources from the mixture of audio signals for

further processing.

Recently, Non-negative matrix factorization (NMF) has found application

in monaural audio source separation due to its ability to factorize audio

spectrograms into additive part-based basis functions, where the parts typically

correspond to individual notes or chords in music. An advantage of NMF is that

there can be a single basis function for each note played by a given instrument,

thereby capturing changes in timbre with pitch for each instrument or source.

However, these basis functions need to be clustered to their respective sources

for the reconstruction of the individual source signals.

Many clustering methods have been proposed to map the separated signals
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into sources with considerable success. Recently, to avoid the need of clustering,

Shifted NMF (SNMF) was proposed, which assumes that the timbre of a note

is constant for all the pitches produced by an instrument. SNMF has two

drawbacks. Firstly, the assumption that the timbre of the notes played by

an instrument remains constant, is not true in general. Secondly, the SNMF

method uses the Constant Q transform (CQT) and the lack of a true inverse

of the CQT results in compromising on separation quality of the reconstructed

signal.

The principal aim of this thesis is to attempt to solve the problem of

clustering NMF basis functions. Our first major contribution is the use of SNMF

as a method of clustering the basis functions obtained via standard NMF. The

proposed SNMF clustering method aims to cluster the frequency basis functions

obtained via standard NMF to their respective sources by making use of shift

invariance in a log-frequency domain.

Further, a minor contribution is made by improving the separation

performance of the standard SNMF algorithm (here used directly to separate

sources) obtained through the use of an improved inverse CQT. Here, the

standard SNMF algorithm finds shift-invariance in a CQ spectrogram, that

contain the frequency basis functions, obtained directly from the spectrogram

of the audio mixture.

Our next contribution is an improvement in the SNMF clustering algorithm

through the incorporation of the CQT matrix inside the SNMF model in order

to avoid the need of an inverse CQT to reconstruct the clustered NMF basis
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functions.

Another major contribution deals with the incorporation of a constraint

called group sparsity (GS) into the SNMF clustering algorithm at two stages

to improve clustering. The effect of the GS is evaluated on various SNMF

clustering algorithms proposed in this thesis.

Finally, we have introduced a new family of masks to reconstruct the original

signal from the clustered basis functions and compared their performance to

the generalized Wiener filter masks using three different factorisation-based

separation algorithms. We show that better separation performance can be

achieved by using the proposed family of masks.
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Abbreviations and Notations

Algorithms

• NMF → Non-negative Matrix Factorisation 1.5.4.

• SNMFcqt → Standard Shifted NMF 1.5.6. The standard SNMF algorithm

finds shift invariance in the constant Q spectrogram obtained directly from

the audio spectrogram.

• SNMFncqt → Standard Shifted NMF using invertible CQT(approximate)

3.4.

• SNMFgncqt → SNMFncqt with group sparsity 5.6

• SNMFmap → Shifted NMF clustering using one-to-one mapping 2.3.2.

The Shifted NMF clustering algorithm finds shift invariance in the

log-frequency domain frequency basis functions obtained via NMF.

• SNMFmask → Shifted NMF clustering using spectral masking 2.3.2.

vii



• SNMFlmap → Shifted NMF clustering with CQT incorporated into SNMF

model and the signal is reconstructed using one-to-one mapping 4.2.

• SNMFlmask → Shifted NMF clustering with CQT incorporated into SNMF

model and the signal is reconstructed using spectral masking.4.2.

The SNMF clustering algorithm is considered to have two stages. Firstly,

the NMF stage, where the NMF basis functions is calculated and Secondly,

the clustering stage, where the basis functions is clustered using SNMF.

1st stage 5.3

• NMFkl → NMF using KL divergence

• NMFgkl → NMF using KL divergence with group sparsity

• NMFis → NMF using IS divergence

• NMFgis → NMF using IS divergence with group sparsity

2nd stage 5.4

• SNMFkl → SNMF clustering using KL divergence

• SNMFgkl → SNMF clustering using KL divergence with group sparsity

• SNMFis → SNMF clustering using IS divergence

• SNMFgis → SNMF clustering using IS divergence with group sparsity

The combination of two stages of a SNMF clustering algorithm is denoted

by SNMFgkl−gkl where ‘-’ in the subscript divides the two stages where the
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left side refers to the first stage and the right side represents the second

stage. Hence, SNMFgkl−gkl represents SNMF clustering algorithm with

GS at both the stages with KL divergence. Also, SNMFkl−kl is same as

SNMFmask.

Notations

X Magnitude audio spectrogram of size m× n

X Complex Audio spectrogram of size m× n

A Frequency Basis functions of size m× r obtained using NMF

B Time activations functions of size r × n obtained using NMF

C Frequency basic functions in log-frequency domain (Matrix notation)

C Frequency basic functions in log-frequency domain (Tensor notation)

R Translation tensor

D Translated frequency basis functions

H Activations functions corresponding to D

A ·B indicates elementwise multiplication

A

B
indicates elementwise division

r number of basis functions

P number of sources in mixture

p, s indexing the source

ix
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Chapter 1

Introduction

1.1 Basic Concepts

The human auditory system is very skilful in processing the signals in a given

audio mixture where multiple sources are present. This processing of the audio

signals simplifies the way we perceive the signals from the sound mixture. As

a result, the human auditory system can hear out certain sounds such as a

conversation that takes place in a noisy environment such as a bus stand or

a crowded wedding party. This ability of focusing on a particular auditory

stimulus in a noisy environment is known as the cocktail party problem.

Human hearing and other senses like lip movement of the source speaker

and spatial location of a source operate quite well in a relative sense to help

in focusing on separating individual sources from complex mixtures even in

noisy conditions [21]. The psychoacoustic cues such as binaural masking, source

10



classification and sound localization also help in filtering out the separate sounds

from a sound mixture.

The field of study that deals with the ability to organize sounds from a

mixture into perceptually meaningful sources is called Auditory Scene Analysis

(ASA). With the recent development and growth of digital audio technology,

much research has been carried out to design systems that can replicate the

human auditory system for ASA. The Computational modelling of the human

auditory system to process real world sound signals is called Computational

Auditory Scene Analysis (CASA) [3], [4]. CASA systems aim to computationally

implement the rules derived from psychoacoustics to segregate or stream the

components of sounds in a similar way as human hearing. CASA systems aim

to be able to perform similar functions to accurately characterize and group

complex components of sound mixtures into their respective sources, based on

the cues such as pitch, onset/offset time, spatial location, notes and harmonicity.

This influenced and partially gave rise to an area of research called Blind Sound

Source Separation (SSS). SSS is the process of estimation of individual sources

from the mixture signal.

The attempt to replicate ASA is further complicated by the properties of

the sound mixtures that need to be separated. Newer complications emerge

when exploring the methods and acoustical conditions under which the mixing

of sound is done. Knowledge of the nature of the sources and the recording

conditions can provide vital information to the design of a separation algorithm.

Some of the notable factors that determine the recording conditions are; the

11



number of microphones used, the distance between microphones, the number

of sound sources, room reverberation and the size of room. Though absolute

knowledge of these factors cannot guarantee an ideal solution, they certainly

help in defining the separation problem at hand and in building the solution

framework for that particular application. There are a large number of

applications, such as automatic music transcription, remixing, chord estimation

and pitch modification, for which source separation algorithms would be of

benefit. Though all the SSS algorithms attempt to tackle the same problem,

the approach and methodology employed in each case is usually different.

In the context of this thesis, the term source is used to refer to the audio

signals that need to be separated by the algorithm. Though source may not

be the right term conveying the correct implication, it has been used over

the years consistently in Audio Source Separation. But to make it clearer,

by source one actually means Auditory Streams which is to be understood

the same way as Bregman used it decades ago [61]. An auditory stream is

produced by a continuous activity of a physical source in the form of waves by

interaction with the environment. For example, in the case of a piano played in

a closed reverberant room, the sound waves that are produced are not due to

the instrument alone, but due to each of the keys that are played along with the

reverberation that is produced due to reflection of the waves from the walls and

so on. In this case, though the sounds are produced by one musical instrument,

logically we would have n sources, if each key played is considered a source, in

addition to the reverberant room itself. In such a case, the use of the term source
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to include all the factors producing the waves is inappropriate. The term source

is often also misunderstood to be a single physical audio source, which is clearly

not the case. It is more correct to use the term Auditory Stream to denote the

continuous activity produced by the piano in conjunction with its immediate

surrounding. The focus of the thesis is on sound source separation algorithms

(in the context of music) that deal with the auditory streams produced by

different musical instruments. As these auditory streams are perceived to be

single entities, the term source is used to denote them.

The next term that is commonly used in audio source separation is sensors.

This is a relatively simpler concept to understand than sources. Sensor is used to

denote the physical entities that are used to detect the audio signals or sources.

In real world terminology, sensors could be microphones used to record the audio

signals or the channels of an audio mixture. For a stereo mixture, there would

effectively be two sensors, since there are two channels, left and right. It can

also be understood that the sensors form what is known as the mixing system

or the mixing matrix in a source separation problem. The relationship between

this mixing system and the sources forms the observation mixture or the output

mixture. In the following section, classification of sound mixtures is explained

in order to give a better understanding of our research goal.

1.1.1 Classification of Sound Mixtures

Before learning about the separation problem itself, it is important to give a

description of the classification of the sources that the algorithms have to deal
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with. In audio signal processing, sound mixtures can be roughly classified on

the basis of:

• Number of sources(P ) and mixtures (X)

– Under-determined system where P > X .

– Determined system where P = X

– Over-determined system where P < X .

• Instantaneous and Convolutive mixing

– Instantaneous mixing : In this model it is assumed the time delay

describing the arrival of the sound signals at the sensors is the same

for all sources and sensors or is zero.

– Convolutive mixing : This model accounts for time lag between the

arrival of signals at the sensors. The signal also may arrive from

multiple paths through reflection for example, in a room surrounded

by walls. Based on these assumption the convolutive mixing model

can be further classified as anechoic and echoic. The anechoic mixing

model assumes no degree of reverberation and is considered echo

free while echoic mixing model assumes each reflection in the given

acoustic environment is modelled as an individual source.

• Time dependence

– Time-invariant mixing where mixing filters remain constant over

time.
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– Time-varying mixing where mixing filters vary with time.

Having said that, we will define the problem we attempt to solve in the

course of the thesis, in the next section.

1.2 Blind Sound Source Separation Problem

In our research, we focus on separating musical signals produced by the

individual sound sources (instruments) in a single channel under-determined

instantaneous audio mixture. This is equivalent to a mono recording and is

something of a worst case scenario for the under-determined mixture model,

where the number of mixture present is equal to 1. This Blind source separation

problem can be typically formulated by the equation:

X = AS (1.1)

where S is a set of unknown source signal vectors denoted by s1, s2,..., sp. Here,

P is the number of sources present in the mixture such that p ∈ P . A contains

the mixing matrix that are linearly mixed with the sources signals in S to give

the audio mixture X . Also, we are only principally dealing with mixtures of

signals produced by the pitched instruments.
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1.2.1 Applications for single channel SSS

Many audio applications which involve editing, analysis and manipulation of

audio data would benefit from the availability of segregated sound sources from

the mixture of audio signals for further processing.

SSS can be used as a pre-processing step in automatic music transcription.

It is comparatively easier to estimate the fundamental frequencies corresponding

to individual notes for a given instrument rather than a mixture of instruments

[5].

SSS can be used for automatic speech recognition. When, speaking in a

microphone, such as a mobile phone, there may be sources of interference like

background noise, that can deteriorate the target speech signal. Here, source

separation can be used to separate out the noise from the target speech signal

[6].

Separation of source signals can be used to remove or change temporal

properties (move or extend in time) of certain instruments or vocals to

create remixes or karaoke applications. Further, these SSS methodology

once implemented on single channel music recordings can be extended to the

up-mixing from mono to stereo or 5.1 surround sound recordings. Recently,

Fitzgerald has utilised his sound source separation technologies to create the

first ever officially released stereo mixes of several songs of the Beach Boys,

including Good Vibrations [7].
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1.2.2 The Clustering Problem

In general, the separation of the individual sound sources from a given audio

mixture is done using a time-frequency representation such as a spectrogram.

A detailed description of time-frequency representation is given in section 1.4.

In recent years, many factorisation techniques, such as Non-negative Matrix

Factorisation (NMF) [23] of magnitude spectrograms have been proposed to

separate out sources from spectrograms [24, 28, 25]. NMF decomposes a

spectrogram into frequency basis functions which typically corresponds to the

notes and the chords in the given mixture. It is important to note that the

number of notes present in a music mixture is typically more than the number

of sources. Hence, the clustering of these notes to their corresponding sources is

required to achieve source separation. Clustering of these basis functions is at

present an open issue and is an important area of research to ensure the quality

of the separated sound sources.

Many clustering algorithms have been proposed to cluster the basis functions

obtained from factorisation techniques. Supervised clustering methods have

been discussed in [28] and [29] to map the separated signals to their sources.

Spiertz and Gnann [41] have used a source-filter model to cluster the separated

frequency basis functions by mapping the basis functions to the Mel frequency

cepstral domain where clustering is performed. While these methods represent

a considerable improvements over previous methods, there is still room for

improvement in clustering the basis functions to sources.

Recently, Shifted NMF (SNMF) was proposed in order to avoid the need of
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clustering of the frequency basis functions [44]. The SNMF algorithm assumes

that the timbre of the notes played by an instrument remains constant. However,

this assumption is not true in general. Another drawback of using the SNMF

algorithm is that it uses a log-frequency spectrogram (see section 1.4.2) and the

lack of a true inverse for log-frequency spectrogram results in a deterioration of

the sound quality of the reconstructed signal.

To this end, we intend to develop improved NMF based techniques for the

clustering of basis functions. Also, we aim to develop an improved version of

SNMF model that would assist in segregating the frequency basis functions

corresponding to their sources. Finally, we propose to investigate and introduce

a new family of masks to enhance the performance of the separation algorithms.
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This research work have led to the following publications:

R. Jaiswal, D. FitzGerald, E. Coyle and S. Rickard, “Clustering NMF basis

functions using Shifted NMF for Monaural Sound Source Separation,” in

Proceedings IEEE International Conference on Acoustic Speech and Signal

Processing ICASSP, May, 2011.

R. Jaiswal, D. FitzGerald, E. Coyle and S. Rickard, “Shifted NMF using an

Efficient Constant Q Transform for Monaural Sound Source Separation,” 22nd

IET Irish Signals and Systems Conference, 23-24 June, 2011.

R. Jaiswal, D. Fitzgerald, E. Coyle, and S. Rickard, “Shifted NMF with Group

Sparsity for clustering NMF basis functions,” Proceedings at 15th International

Conference on Digital Audio Effects, DAFx-12 September 17-21, York, UK,

2012.

D. Fitzgerald, R. Jaiswal, “On the use of Masking Filters in Sound Source

Separation,” 15th International Conference on Digital Audio Effects DAFx

2012, York, England, 2012.

R. Jaiswal, D. Fitzgerald, E. Coyle, and S. Rickard, “Towards Shifted NMF

for improved Monaural Separation,” Proceedings at 23rd IET Irish Signals and

Systems Conference, 20-21 June, LYIT Letterkenny, Ireland, 2013.

In light of the fact that we are dealing with audio signals, we will briefly

cover the basics of sound and how it is produced. The next section focuses on

fundamentals of music and musical instruments that we would require to aid the

development of the digital signal processing (DSP) methods for sound source

separation.
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1.3 Fundamentals of Music

As we are focusing on the separation of musical sound sources, in particular

pitched instruments, it is necessary to discuss briefly some of the characteristics

of sound and musical instruments and the properties of music in general.

Initially, we discuss the properties of sound followed by a classification of musical

instruments on the basis of how the sound is produced and finally, we discuss

some relevant features of music.

Sound is the audible effect of air pressure variations caused by the vibrations,

movement, friction or collision of objects. Here, we review the basic physics,

properties and propagation of sound waves.

1.3.1 Sound Pressure Level

Sound Pressure Level. The minimum audible air pressure variations (i.e. the

threshold of hearing) p0 is only 10−9 of the atmospheric pressure or 2 × 10−5

N/m2. Sound pressure is measured relative to p0 in decibels as

P (dB) = 20log10(
p

p0
) (1.2)

From equation 1.2 the threshold of hearing is 0 dB. The maximum sound

pressure level (the threshold of pain) is 106p0 (10−3 the atmospheric pressure)

or 120 dB. Hence the dynamic range of the hearing system of hearing is about

120 dB, although the range of comfortable and safe hearing is less than 120 dB.

20



1.3.2 Sound Power Level

Sound power level. For a tone with a power of w watts this is defined in

decibels relative to a reference power of w0 = 10−12 watts (or 1 pico watts) as

PL(dB) = 10log10(
w

w0
) (1.3)

1.3.3 Sound Intensity Level

Sound intensity level. This is defined as the rate of energy flow across a unit

area as:

I(dB) = 10log10(
I

I0
) (1.4)

where I = 10−12 watts/m2.

1.3.4 Pitch, Notes, Timbre and Harmonics

The frequency of a sound wave is defined as the number of oscillations per second

and is measured in Hertz (Hz). Being a pressure wave, the frequency of the wave

is the number of oscillations per second from a high pressure (compression) to

a low pressure (rarefaction) and back to a high pressure. The human ear is

capable of hearing sound waves in a range of about 20 Hz to 20 kHz.

Pitch is a subjective quantity which is defined as the perceived fundamental

frequency of a sound wave. The actual measured fundamental frequency may

differ from the perceived fundamental frequency because of overtones and
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harmonics, which are explained later in this section. However, a high pitch

sound usually corresponds to a high fundamental frequency and a low pitch

sound typically corresponds to a low fundamental frequency.

In music, a note is a pitched sound. Notes with fundamental frequencies in

the following ratios, 1 : 2n where n is 1,2,3 and so on, are perceived very similar

and can be grouped under the same pitch class. In western music theory, pitch

classes are represented by first seven letters of the Latin alphabet (A, B, C, D,

E, F and G), however different countries have their own ways of representing

them, for example India uses Sa, Re, Ga, Ma, Pa, Dha, Ni. The eighth note, or

octave is given the same name as the first, but has double its frequency, that is

the frequency ratio is 1:2.

A harmonic is defined as a frequency component of a sound wave and is

measured as an integer multiple of the fundamental frequency. For example, if

the fundamental frequency is Fo then its harmonics will have frequencies kFo,

i.e 1Fo, 2Fo, 3Fo, ....

The human ear is sensitive to the frequency ratios of the notes rather than

the differences between them. The notes which when played simultaneously

produce a pleasant sensation are said to be consonant and the combination of

notes that are not pleasing to the ear are called dissonant. This phenomenon

forms the basis of the intervals in music. The intervals which are perceived to

be most consonant are composed of small integer ratios of frequency such as

the octave which has a frequency ratio of 2:1. This is because small integers

in the ratio ensures that the repetitive pattern in sound waves is achieved in a
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Interval Frequency
Ratios

Octave 2:1
Third 5:4
Fourth 4:3
Fifth 3:2

Table 1.1: Music interval and their ratios

small interval of time. As a result, the two notes played simultaneously do not

sound harsh as their upper harmonics will overlap with each other. However, the

same cannot be said for the notes played simultaneously whose frequency ratio

is 15:16. Some common musical intervals and their ratios are listed in Table

1.1. These musical intervals are considered as universally consonant because

the musical compositions built around these tone combinations are pleasing to

most people in many cultures.

Most natural sounds, such as the human voice, musical instruments, or bird

chirping, are made up of many frequencies, which contribute to the perceived

quality (or timbre) of the sounds. Consider two instruments playing musical

notes at the same pitch and loudness. The sound produced by those two

instruments does not sound the same to the ear. Thus, the sound quality of

a note played by two different instrument differs with the way it is produced.

The tone quality of a musical note that distinguishes between the different kinds

of sound production is called the timbre of the note. Thus, the timbre can be

used to distinguish between musical notes played by two or more instruments

in a music mixture of same pitch and loudness. The timbre of a note is mainly

characterised by the harmonic content and the dynamic characteristics of the
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note such as vibrato and the attack-decay envelope of the note in consideration.

In simple words, a timbre is generally described as everything else about a sound

which is not described by its pitch and loudness.

1.3.5 Frequencies of Musical Notes

There are two musical pitch standards which are widely accepted, the American

pitch standard which takes A in the fourth piano octave (A4) to have a frequency

of 440 Hz and the International pitch standard (A4 = 435 Hz). Both of these

pitch standards define equal tempered chromatic scales, which means that each

successive pitch is related to the previous pitch by a factor of the twelfth root

of 2 ( 12
√
2 = 1.05946309436) known as a half-tone. Hence there are twelve

half-tones, or steps, in an octave which corresponds to a doubling of pitch. We

are assuming the use of the American pitch standard for this research.

The frequency of the intermediate notes, or pitches, can be found by

multiplying (or dividing) a given starting pitch by as many factors of the twelfth

root of 2 as there are steps up to (or down to) the desired pitch. For example,

the G above A4 (that is, G5) in the American Standard has a frequency of 440

( 12
√
2)10 =783.99 Hz. Likewise, in the International standard, G5 has a frequency

of 775.08 Hz. G♯5 is another factor of the 12th root of 2 above these, or 830.61

and 821.17 Hz, respectively. Note when counting the steps that there is a single

half-tone (step) between B and C, and E and F.

These pitch scales are referred to as ‘well tempered’. This refers to a

compromise built into the use of the 12th root of 2 as the factor separating
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each successive pitch. For example, G and C are a fifth apart. The frequencies

of notes that are a perfect fifth apart are exactly in the ratio of 1.5. G is seven

chromatic steps above C, so, using the 12th root of 2, the ratio between G

and C on either standard scale is ( 12
√
2)7 =1.49830707688, which is slightly less

than the 1.5 required for a perfect fifth. For instruments such as piano it is

impossible to tune all 3rds, 5ths, etc to their exact ratios such as 1.5 for fifths

and simultaneously have all octaves come out exactly in the ratio of 2. As a

result, a slight reduction in frequency is required for the complete tuning of the

instrument. This slight reduction in frequency is referred to as tempering.

1.3.6 Bandwidths of Music and Voice

The bandwidth of unimpaired hearing is normally between 20 Hz to 20 kHz,

although some individuals may have a hearing ability beyond this range of

frequencies. Sounds below 20 Hz are called infra-sounds and above 20 kHz

are called ultra-sounds. The information in speech (i.e. words, speaker identity,

accent, intonation, emotional signals etc.) is mainly in the traditional telephony

bandwidth of 300 Hz to 3.5 kHz.

The sound energy above 3.5 kHz mostly conveys the quality and sensation

essential for high quality applications such as broadcast radio/tv, music and film

sound tracks. Singing voice has a wider dynamic range and a wider bandwidth

than speech and can have significant energy in the frequencies well above that

of normal speech. For music the bandwidth is from 20 Hz to 20 kHz. Standard

CD music is sampled at 44.1 kHz and quantized with the equivalent of 16 bits
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of uniform quantization which gives a signal to quantization noise ratio of about

100 dB at which the quantization noise is inaudible and the signal is transparent.

The frequency and temporal content is usually analysed with the help of

time frequency representation (TFR) of a given sound mixture. We will give a

brief overview of the various kinds of TFR used in the context of this thesis.

1.4 Time Frequency Representations (TFR)

Here, we discuss the concept and objective of time-frequency representations. In

general, the time resolution of the time domain representation of an audio signal

is dependent on the sampling frequency. Here, the time resolution is determined

by the sampling rate. However, this representation has no information on the

frequency content of the mixture signal. In contrast, the absolute value of

the Fourier transform of the audio signal gives a magnitude spectrum, that

has a very high frequency resolution. However, this representation contains

the frequency components of the audio signal but fails to give any temporal

information that when a particular note corresponding to a frequency is played

within the audio mixture. This situation is not ideal for the analysis of audio

signals where the frequency content of the signal changes with time. Hence, we

need a time-frequency representation (TFR) that can bridge the gap between the

two (time and frequency) representations and provide some temporal and some

spectral information simultaneously. This leads us to the TFRs that are useful

for the representation and analysis of the audio signals that contain multiple
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time-varying frequencies.
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Figure 1.1: Time representation of an audio signal

First, we discuss the most widely used frequency representation obtained

using the Fourier transform. Mathematically, it can be calculated as follows:

X(f) =

∫ ∞

−∞

x(t)e−2πftdt (1.5)

where, X(f) gives the frequency spectrum of the time signal x(t) which is

continuous in time. However, in our case, the music signals are discretely

sampled in time domain and are of finite length. Therefore, for the discretely

sampled signals, the Fourier transform can be found using the following

equation.

X(f) =

(

1

N

)N−1
∑

n=0

x[n]e−
j2πfn

N (1.6)

The above transform is referred as Discrete Fourier transform (DFT). As
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noted previously, the X(f) in equation 1.6 gives the frequency spectrum that

is an average over the entire duration of signal. The magnitude spectrum using

DFT exhibits frequency peaks corresponding to the notes in music. The relative

heights of the detected peaks may tell us something about the tonality of the

given music mixture but the relative timing of the notes present in the magnitude

is missing. In case of music signals, the time information of the notes along

with its frequency is essential to understand or identify the melodies played by

a particular instrument that may help in separating the corresponding notes to

their respective sources. Therefore, it can be seen that being able to see how

frequency content changes with time would be advantageous in analysing signals

with time varying frequency content such as musical signals.

A time-frequency representation (TFR) provides a bridge between the time

domain and the frequency domain representation of the signal. A TFR provides

both temporal information and spectral information simultaneously where the

time and frequency resolution of the signal is determined by certain parameters.

A TFR typically uses two orthogonal axes, where one axis corresponds to time

and other axis represents frequency. A time domain signal x[n] can then be

represented over a two dimensional space of time and frequency. Here we

first discuss the most commonly used TFR, the Short-time Fourier Transform

(STFT) followed by the Constant Q transform (CQT).

28



1.4.1 Short-time Fourier Transform (STFT)

The Short-Time Fourier Transform (STFT) is a powerful general-purpose tool

for obtaining a TFR. The STFT was first proposed in [9]. The STFT is used

for analysing non-stationary signals, whose frequency characteristics vary with

time. In essence, the STFT extracts several frames of the signal to be analysed

with a window that moves with time. If the time window is sufficiently narrow,

each frame extracted can be viewed as stationary so that the FT can be used in

each window. With the window moving along the time axis, the evolution of the

frequency content of the signal can then be analysed. This TFR maps the signal

into a two-dimensional function of time and frequency. A moving overlapped

window, for example, the Hanning window, is applied to the signal to divide the

signal into frames. An advantage of using the overlap of the windowing functions

is that it reduces the artefacts due to the edges of the windows used. Thereafter,

the Fourier transform is used to obtain the complex-valued spectrogram from

each divided frame. The STFT is widely used as a first processing step for most

types of data analysis in audio processing.

The STFT can be summarised by equation 1.7

ST FT (x[n]) ≡ X(l, ω) =
∞
∑

n=−∞

x[n]w[n− l]e−jωl (1.7)

where x[n] is a signal and w[n] is the chosen window. The magnitudes of the

STFT give a spectrogram (equation 1.8) that can show the spectral content

of a signal versus time. A spectrogram of a time signal is a two-dimensional
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Figure 1.2: Narrow-band spectrogram
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Figure 1.3: Wide-band spectrogram
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representation that displays time in its horizontal axis and frequency in its

vertical axis.

Spectrogram(x[n]) = |X(τ, ω)| (1.8)

A limitation of using the STFT is that it uses a constant resolution in both

frequency and time. The width of the windowing function determines how the

signal is represented. In general, the product of time resolution and frequency

resolution remains constant. Thus, a better time resolution is obtained at a price

of poorer resolution in frequency and vice versa. In other words, to analyse the

frequency content accurately, we need more samples (larger window in time)

in each frame. However, the larger window makes it more difficult to identify

precisely when an event occurs.

Figure 1.2 shows the STFT representation of a music signal with better

frequency resolution. A TFR using STFT with better time resolution can be

seen in the figure 1.3. The STFT is invertible and the original signal can be

recovered by using the inverse STFT on the transform.

Another way of representing a signal in time-frequency domain is the

Constant Q Transform(CQT). The CQT is a better suited representation for

musical signals due to its log-frequency spectral resolution. We will now

discuss how a log-frequency resolution of the spectrogram is better suited for

representing music signals.
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1.4.2 The Constant Q Spectrogram

As discussed in section 1.3.4, sounds are comprised of harmonic frequency

components. The positions of these frequency components in the spectral

domain play an important role in analysis of a given piece of music. Consider

the following harmonics kFo, i.e 1Fo, 2Fo, 3Fo, .... for a fundamental frequency

Fo. The absolute positions of the harmonics are dependent on the position of

the fundamental frequency, Fo. However, the relative position of the harmonics

are independent of the fundamental frequency if plotted against a logarithmic

scale. This can be summarised by the following equation.

Dnm = log(nFo)− log(mFo)

= log

(

nFo

mFo

)

= log
( n

m

)

= constant

(1.9)

where, Fo denotes a fundamental frequency and Dnm gives the logarithmic

distance between nth and mth harmonics. nFo and mFo represents nth and

mth harmonics of the fundamental frequency, Fo, respectively. It can be seen

from equation 1.9 that the logarithmic difference between the corresponding

harmonics is independent of the fundamental frequency. Thus, these harmonics

in sound or specifically in music contain a pattern that can be investigated using

frequency analysis.
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However, the conventional linear and uniform frequency separation in the

DFT does not show clearly the shift-invariant property of harmonics. This

can be explained as follows. Let a constant frequency resolution of 21.5 Hz

i.e. sampling frequency 44.1 kHz and window size of 2048 samples is used to

calculate the DFT. In the calculation of frequency component with a frequency

spacing of 21.5 Hz, we will lose many notes belonging to the lower frequencies

i.e. in the range of 150Hz. On the other hand, if we consider the notes

containing frequencies in the range of 3kHz, we are evaluating far more frequency

components to represent notes than desired. Thus, for musical analysis, a

time-frequency representation using DFT or STFT is not always a suitable

representation. Therefore, we need a TFR, where the resolution of the frequency

bins should be geometrically related to the frequency. Also, with respect to

notes the TFR should give a constant pattern of the frequency components

(harmonics) for analysis and musical signal processing. This can be achieved by

maintaining a constant ratio (Q) of the fundamental frequency to the frequency

resolution.

f

δf
= Q (1.10)

where, δf denotes the frequency resolution or the bandwidth of the frequency

bin and f represents the corresponding fundamental frequency.

To obtain this logarithmic resolution in TFR, a Constant Q transform (CQT)

is typically used. The constant Q transform of a discrete-time signal x[n] can

be calculated by using the following equation:
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Xcq[k] =

N [k]−1
∑

n=0

W [n, k]x[n]e−jωkn (1.11)

where Xcq[k] is the kth component of the Constant Q transform of the input

signal x[n]. W [n, k] is a window function of length N [k] for each value of k

and k varies from 1, 2, . . .K which indexes the frequency bins in the Constant

Q domain. The CQT was first proposed by JC Brown [45] inspired by many

earlier works including [10, 11, 12].

Figure 1.4: Constant Q Spectrogram of an audio mixture signal

Figure 1.4 shows the constant Q magnitude spectrogram of a test signal

containing music signals of two pitched instruments.

We will first discuss the calculation of CQT detailed in [84]. In western music,
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according to even tempered chromatic scale [52], the fundamental frequencies of

the adjacent notes are geometrically spaced by a factor of 12
√
2. Thus, a frequency

spacing of 12
√
2f would cover all the notes for musical analysis. Therefore, the

frequency of kth spectral component can be calculated using

fk = (
12
√
2)kfmin (1.12)

where fmin is the lowest frequency chosen manually. For our research, we have

chosen fmin to be 55Hz. The Q factor of a filter is calculated by using equation

1.10. For semi-tone spacing the Q factor can be evaluated to 17 as done in [84].

The direct evaluation of equation 1.11 is computationally inefficient as detailed

in [84]. Here, we will make use of Parseval’s equation to calculate the CQT

coefficients.

Let x[n] and w[n] are discrete time function and X(f) and W (f) represents

DFT of the discrete signals x[n] and w[n] respectively. Then according to

Parseval’s theorem,

N−1
∑

0

x[n]w∗[n] =
1

N

N−1
∑

0

X(f)W ∗(f) (1.13)

where, W ∗(f) denotes the complex conjugate of W (f). Thus, the CQT can be

efficiently calculated in the Fourier domain by using Parseval’s equation and

using the DFT coefficients in X(f) and the spectral kernels (as denoted in [84])

in Y (f). Here, Y (f) contains the coefficients of the DFT of the time domain

complex exponentials y[n] corresponding to the fundamental frequencies of the
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notes (geometrically spaced) present in music. These complex exponentials are

used to modulate the time domain signal to obtain the logarithmically scaled

frequency basis functions. The CQT can then be obtained by using the following

equation:

Xcq[k] =

N
∑

0

X(f)Y ∗(f) (1.14)

where, Y ∗(f) is the complex conjugate of Y (f). For simplicity, we will denote

the spectral kernels in Y (f) as transform matrix Y and the linear spectral

coefficients in X(f) as X, then the constant Q transform can be formulated as

Xcq[k] = Y∗X (1.15)

where, Y∗ is the complex conjugate of Y. However, a drawback of using the

CQT is that no true inverse of the CQT is possible. Therefore, it is typically

impossible to get a perfect reconstruction of the original signal. Another

drawback of using the Constant Q transform is that it is computationally

more intensive and complex than the simple DFT or the STFT. Despite these

limitations, the time-frequency representations using CQT give a far better

understanding of the musical signals and can be potentially used for the musical

signal processing.

An approximate inverse transform was proposed by Fitzgerald [88] with the

assumption that the music signals can be sparsely represented in the linear

frequency domain. However, the assumption does not hold good for all audio

signals and the algorithm was extremely slow in calculating the inverse CQT
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transform. Recently, Schörkhuber and Klapuri [85] has proposed an extension to

the method discussed in [45, 84] to calculate the CQT in a manner which allows

a high quality inverse CQT to be calculated. The algorithm processes each

octave in the signal one by one starting from highest to lowest to calculate the

CQT coefficients of a given spectrogram. In [85], the algorithm basically tries

to improve the computational efficiency by addressing two problems. Firstly,

when a wide range of frequencies is considered, the DFT blocks are very wide

in length, hence the transform matrix is no longer very sparse i.e. for frequency

range of 60Hz to 16kHz. Secondly, when calculating the CQT coefficients of the

highest frequency bins, the width between the frequency bins should be atleast

N
2
, where N the window length of highest CQT bin. These two problems were

addressed to reduce computational efficiency.

The computational efficiency improvement is obtained as follows. Firstly,

the transform matrix matrix Y, which contains the CQT coefficients for the

highest octave remains same for all the octaves. Then, the entire length of

audio input signal is passed through a lowpass filter and downsampled by factor

two. Thereafter, the CQT coeffients are calculated using the same transform

matrix. The process is repeated until the desired lowest octave is processed.

Since, the transform matrix Y represents the frequency bins that are separated

by a maximum of one octave, the matrix Y remains sparse for highest frequency

bins.

Secondly, many of the translated versions of y[n] within the transform matrix

Y are shifted temporally to different positions. This reduces the number of

37



DFTs calculations for x[n] in equation 1.14. The use of this algorithm and its

effect on the separation of sound sources is detailed in chapter 3. In the following

section, we give a brief overview of previous techniques used for the separation

of the sound sources from a given mixture.

1.5 DSP methods for Source Separation

Independent Component Analysis (ICA) was developed for the estimation of

sound signals (independent components) from a given mixture [66, 57, 58] in

case of determined systems. Another method Degenerate Unmixing Estimation

Technique (DUET) [47] was proposed to separate a given source from an audio

mixture using a time-frequency mask corresponding to that source. Barry et

al developed a source separation algorithm known as ADRess that uses the

pan positions of the instruments to estimate the sources in stereo recordings.

Recently, NMF [23] based techniques were successfully used to separate sound

sources from a monaural mixture. We will discuss these techniques in the

following sections.

1.5.1 Independent Component Analysis

ICA has been successfully used to solve blind source separation problems in

several application areas [64, 67]. A survey of ICA based algorithms is done in

[63]. ICA separates an observation vector by finding a de-mixing matrix, so that

the estimated variables, the elements of vector, are statistically independent
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from each other. Consider the cocktail party problem. Here, n speakers

are speaking simultaneously at a party, and any microphone placed in the

room records only an overlapping combination of the n speakers’ voices. For

example, we have n different microphones placed in the room, and because each

microphone is a different distance from each of the speakers, it records a different

combination of the speakers’ voices.

To formalize this problem, we imagine that there is some data s ∈ R
n that

is generated via n independent sources. What we observe is

x = As (1.16)

where A is an unknown square matrix called the mixing matrix. Repeated

observations gives us a dataset [x(i); i = 1, . . . m], and our goal is to recover the

sources s(i) that had generated our data (x(i) = As(i)).

In our cocktail party problem, s(i) is an n-dimensional vector, and s
(i)
j is the

sound that speaker j was uttering at time i. Also, x(i) in an n-dimensional vector,

and x
(i)
j is the acoustic reading recorded by microphone j at time i. LetW = A−1

be the unmixing matrix. Our goal is to find W , so that given our microphone

recordings x(i), we can recover the sources by computing s(i) = Wx(i). For

notational convenience, we also let wT
i denote the ith row of W , so that
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W =



















wT
1

wT
2

...

wT
n



















(1.17)

Thus, wi ∈ R
n, and the jth source can be recovered by computing s

(i)
j = wT

j x
(i).

ICA Algorithm

While there are many ICA algorithms, here we present a derivation of a method

for Maximum likelihood estimation to find independent sources as detailed in

[59]. We suppose that the distribution of each source si is given by a density

p(s), and that the joint distribution of the sources s is given by

p(s) =

n
∏

i=1

ps(si) (1.18)

It can be noted that preprocessing of data is required to make the sources

uncorrelated by centering and whitening of data. Therefore, by modelling the

joint distribution as a product of the marginal distributions, we capture the

assumption that the sources are independent. Further, using x = As = W−1s,

p(x) can be written as

p(x) =

n
∏

i=1

ps(w
T
i x)|W | (1.19)

To this end, a density function for the individual sources ps is needed. For the
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reasons explained in [59], a cumulative density function (cdf) is better suited over

probability density function. An appropriate sigmoid function can be chosen for

cdf that slowly increases from 0 to 1, is the sigmoid function g(s) = 1/(1+ e−s).

Most audio signals are super Gaussian, therefore a super Gaussian cdf can be

ideal for audio data. Hence, given the parametric model the log likelihood of

square matrix W for a training set x(i); i= 1, 2, ..., m can be expressed as

L(W ) =
m
∑

i=1

(

n
∑

j=1

log g
′

((wT
j x

(i)) + log |W |
)

(1.20)

L(W ) is then maximised with respect to W . By taking derivatives and

properly setting the step size, the unmixing matrix x(i) can be updated by

gradient ascent learning rule which is defined by equation:

W ≡ W + α





































1− 2g(wT
1 x

(i))

1− 2g(wT
2 x

(i))

...

1− 2g(wT
nx

(i))



















(x(i))T + (W T )−1



















(1.21)

The ICA algorithm has three notable ambiguities. Firstly, the ICA algorithm

can be used to recover the independent sources but the order of the sources can

not defined. Fortunately, this does not matter for most audio applications.

Secondly, there is no way to recover the correct scaling of the wi’s. For in-

stance, if A were replaced with 2A, and every s(i) were replaced with 0.5s(i), then

our observed x(i) = 2A(0.5s(i)) would still be the same. Thus, it is impossible to

recover the exact scaling of the sources. However, for the applications that we are
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concerned with, including the cocktail party problem, this ambiguity also does

not matter. Specifically, scaling a speaker’s speech signal s
(i)
j by some positive

(or negative) factor α affects only the volume of that speaker’s speech. Also, the

signals obtained can be rescaled to the desired amplitude as required. Therefore,

we will not address the above mentioned ambiguities for the algorithms discussed

in the remainder of the thesis.

Finally, for P number of sources, ICA requires P number of channel

informations to separate the sound source in the music mixture. Therefore,

ICA is suitable for determined systems where number of sources is equal to the

number of mixtures. However, this is not the case in commercially available

audio recordings. Therefore, we will now look at the techniques which can

handle such cases, such as DUET and ADRess.

1.5.2 Degenerate Unmixing Estimation Technique

The Degenerate Unmixing Estimation Technique (DUET) algorithm is based

on the fact that a perfect reconstruction of the sound sources from the audio

mixture can be obtained using binary time-frequency masks provided the TFRs

of the individual sources present do not overlap with each other [47]. This

phenomenon is known as W-disjoint orthogonality (WDO) [50]. Let x(t) denote

a mixture signal containing p number of sources such that

x(t) =
P
∑

i=1

si(t) (1.22)
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where si(t) represents signals produced by the ith source. Further, the

time-frequency representation of the signals can be formulated as follows

X(τ, ω) =
P
∑

i=1

Si(τ, ω) (1.23)

where Si(τ, ω) is the TFRs of the sources si(t) respectively in a given mixture.

Here, τ indicates time and ω signifies frequency. The criteria that the sources

are pairwise WDO can be expressed as follows.

Si(τ, ω).Sj(τ, ω) = 0 ∀i, j ∈ p : i 6= j (1.24)

Based on the assumption that the sources are pairwise WDO, we can say

that only one source will be active within in the mixture for a given τ and ω.

Therefore for a particular choice of τ and ω, X(τ, ω) becomes

X(τ, ω) = Sτ,ω(τ, ω) (1.25)

where Sτ,ω(τ, ω) represents the source at the given (τ, ω). Thereafter, the

time-frequency masks for each source can be calculated in the manner shown

below.

Mj(τ, ω) =











1 Sj(τ, ω) 6= 0

0 otherwise
(1.26)

These masks are then applied to the original time frequency representations

of the mixture signal to obtain the sources.
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It is assumed that the mixture signals are obtained from a linear mixture of

P sources as stated in equation 1.22. The assumption of linear mixing contains

the underlying assumption that the mixtures have been obtained under anechoic

conditions. Therefore, for p mixture in x(t) [s1(t), s2(t), ..., s(p)(t)], the mixing

model can described as:

X(t) =

N
∑

i=1

Aisi(t−Di) (1.27)

where Ai and Di are the elements of the attenuation coefficients vector and

time delays vector associated with the path of ith source. Considering the case

of two-microphone setup, the mixing model in the time-frequency domain can

be written as:







X1(τ, ω)

X2(τ, ω)






=







1

Aie
−jωDi













S1(τ, ω)

S2(τ, ω)






(1.28)

Let the element-wise ratio, R21(τ, ω), of STFTs of each channel be defined

as :

R21(τ, ω) =
X2(τ, ω)

X1(τ, ω)
(1.29)

The level ratio R21(τ, ω) uses the relative difference of attenuation from one

microphone to the another to calculate the masks needed for the reconstruction

of sources. Assuming all the sources are pairwise WDO, for an active jth source

at (τ, ω), the relative difference can be calculated using the following equation.
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R21(τ, ω) = Aje
−iωDj (1.30)

Thereafter, the magnitude and phase information of the element-wise ratio

R21(τ, ω) can be derived from equation 1.30 in terms of the parameters Ai and

Di. The phase of R21(τ, ω) is constrained between -π and π. A time-frequency

mask can be obtained for each source by determining the mixing parameters Ai

and Di. The generated mask can then be used on either of the original mixture

signals to obtain the separated sources.

A notable drawback of using the DUET is that the time delay between the

two receivers (two microphones) used is constrained to the following condition

ωmaxDjmax < π (1.31)

if ωmax = 2πfs
2

, where fs is the sampling frequency then the maximum time delay

and the maximum distance between the two microphones (for a two microphone

setup) is limited to

Djmax =
1

fs

dmax = Djmaxc

(1.32)

where dmax is the distance between the two microphones, and c is the speed of

sound. This means that the distance dmax is of the order of few centimetres

which is quite small in general.
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Another drawback of using DUET is that the assumption that all the sources

are independent to each other and and strictly W-DO is not true in general [47].

As a result, the sounds will interfere with each other in the mixture and the

estimated parameters for each source Ai and Di will deviate from its actual

value.

An algorithm was proposed to solve this problem in [49]. The algorithm was

based on the fact that the estimated attenuation and time delay parameters

(Ai, Di) for each source will still contain values within the close range of

the actual parameter value. Therefore, smoothed 2-D weighted histograms

can be constructed using the estimated mixing parameters as detailed in [48].

A resolution width for each parameter is chosen for the estimation of the

histograms. This defines the window for which the histogram is constructed

for each position in time and frequency. Thereafter, the peaks and the

location of the peaks is determined corresponding to the particular source. A

time-frequency binary mask is then constructed for each peak and are grouped

together to their source. This grouping of time-frequency points can be done by

using maximum likelihood function as explained in [48]. Finally, these individual

source masks can be applied to the original STFT on either of the mixture signal

to recover the source spectrogram

The DUET algorithm was found to give good results on anechoic mixtures

of speech signals. However, the performance of the DUET algorithm degraded

considerably for echoic mixtures where the the histogram peak regions were not

distinct and were overlapping with each other. Also, the algorithm required at
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least two microphones, hence it will not work in the case of mono signals.

1.5.3 Azimuth Discrimination and Resynthesis

(ADRess)

ADRess is an efficient source separation algorithm developed by Barry et al [62].

It is based on azimuth discrimination of sources within the stereo field. It uses

the pan positions to estimate the sources in stereo recordings.

The algorithm is designed for stereo recordings made in the fashion where

n sources are first recorded individually as mono tracks, and then summed

and spread across the two channels, left and right, using a mixing console. In

the mixing process, a panoramic potentiometer is used to achieve localization

of the various sources by dividing them into the two channels with different

intensity ratios that are continuously variable. A source can be positioned at

any location between two speakers by creating an inter-aural intensity difference

between the two channels. This is done by attenuating a source signal in one

of the channels which causes it to be localized in the other channel thereby

causing the source to come from a particular location in the azimuth plane.

Most stereo recordings have an inter-aural intensity difference (IID) between

the left and right channels as the different instruments are panned to various

degrees in the azimuth plane. In commercial stereophonic recordings, as a first

approximation, only the intensity of the sources between the two channels differs

but the phase information is exactly the same. The ADRess algorithm is created

for recordings made using this methodology. The algorithm also exhibits limited
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success with stereo-pair, mid-side and binaural type recordings. This algorithm

is found to be effective in various audio applications such as vocal removal.

Also, unlike many other algorithms, prior knowledge of the sources, sensors or

the recording conditions is not required to perform the separation task. The

ADRess algorithm succeeds fairly well in separating sources from commercial

recordings. The degree of separation largely depends on the number of sources

present, the proximity of the sources in the azimuth plane and the intensity level

of the sources. Experiments reveal that a low number of sources with unique

pan positions results in a low signal to noise ratio whereas a high number of

sources results in missing overlapping partials. However, ADRess cannot work

with mono recordings or where multiple sources are positioned at the same point

in the stereo field.

1.5.4 Non negative Matrix Factorisation

For musical analysis, non-negative matrix factorization (NMF) has been [23]

shown to be a useful decomposition of audio spectrograms. This is due to the

fact that it gives additive parts-based decompositions, where the parts typically

corresponds to the notes or the chords in the music. NMF can be defined as

follows. Given a non-negative matrix, such as magnitude spectrogram X, NMF

attempts to approximateX by decomposing into factorsA and B. The equation

can be expressed as:

X ≈ X̂ = AB (1.33)
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where the matrix A is of size n × r and the matrix B is of size r × m,

with r < n, m. Also all the elements of factors A and B are constrained

to be non-negative. In equation 1.33 the input magnitude spectrogram X is

approximated by X̂. Here, X̂ is a linear combination of the columns of matrixA,

and the corresponding rows of matrix B. Furthermore, the use of non-negativity

constraint in NMF ensures an additive parts-based decomposition of the

magnitude spectrogram into basis functions.

Cost function

Given a magnitude spectrogram X, there are infinite number of solutions for

NMF and the NMF may be defined for a wide range of divergence measures.

However, the matrix obtained should exhibit the properties discussed above.

Therefore, these properties should be encapsulated in the choice of the cost

function. The generalised optimisation problem for the divergence measures

can be formulated as

min Dfn (X, (AB)) (1.34)

where Dfn represents the choice of divergence for the optimisation problem. A

family of beta-divergences can be defined as
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Dβ(x, y) =























1
β(β−1)

(

xβ + (β − 1) yβ − βxyβ−1
)

if β ∈ {0, 2}

x log x
y
+ y − x if β = 1

x
y
− log x

y
− 1 if β = 0

(1.35)

It can be noted that the Dβ is continuous for β at 0 and 1. A thorough

review of the beta divergences can be found in [60]. The three most commonly

used divergences which are a part of the family of beta divergence are as follows:

DEUC(x, y) =
1
2
(x− y)2 the Euclidean norm

DKL(x, y) = xlog x
y
+ y − x the Kullback-Leibler (KL) divergence

DIS(x, y) =
x
y
− log x

y
− 1 the Itakura-Saito (IS) divergence

(1.36)

.

The choice of β for the decomposition of the spectrograms is an open issue.

For the reasons stated in [60], the factorisation with Dβ(x, y) varies with β such

that

Dβ(λx, λy) = λβDβ(x, y) (1.37)

This means that the IS divergence (β = 0) is invariant to scaling i.e

DIS(λx, λy) = DIS(x, y). It also states that the factorisation obtained with

β > 1 (in case of Euclidean norm or the KL divergence) will depend more on

the higher data values in the given matrix compared to the lower data values
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and the opposite can be expected for the divergence with β < 1. Therefore, it

can be said that the β value for NMF may be chosen by keeping in mind the

task it is intended for.

Multiplicative Updates

Once the cost function is defined, the problem is approached by minimizing the

cost function with respect to A and B. In each case, A and B can be initialised

randomly, subjected to constraint A,B ≥ 0. At the end of each iteration, a

new value of A and B is found by iterative updates respectively.

Now, we will formulate the iterative multiplicative updates for each of the

minimisation problems discussed for the NMF algorithm. For solving problems

in equation 1.36 the multiplicative updates using the Euclidean distance cost

function are as follows:

B← B ·
(

ATX

AT X̂

)

(1.38)

A← A ·
(

XBT

X̂BT

)

(1.39)

The multiplicative update equation for KL divergence and IS divergence can

be calculated using the following equations.

B← B ·
(

AT (X · X̂−δ)

AT (X̂−(δ−1)))

)

(1.40)
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A← A ·
(

(X · X̂−δ)BT

(X̂−(δ−1))BT )

)

(1.41)

were δ can be set to 1 and 2 for KL divergence and IS divergence respectively.

The “·” symbol indicates element-wise matrix multiplication in all equations

stated above. The Euclidean distance defined by equation 1.36 is non-increasing

for the update equations 1.38 and 1.39. Now we will give the proofs of

convergence for the Euclidean distance and the KL divergence as detailed in

[23].

Convergence proofs

The convergence proofs can be derived by making use of an auxiliary function

similar to that used in the Expectation-Maximization algorithm [26], [27].

Let g(b, b
′

) be an auxiliary function for function f such that it satisfies the

following conditions:

g(b, b
′

) ≥ f(b)

g(b, b) = f(b)

(1.42)

Then, function f is non-increasing under the following update rule

b(t−1) = argmin
b

g(b, bt) (1.43)

∀ bt such that t ≥ 0. This can be explained as follows. Here, we can find a local
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minimum of g by using the update rule defined in equation 1.43. For example,

minimizing the auxiliary function g(b, bt) ≥ f(b) ensures that f(bt+1) ≤ f(bt)

for a defined update rule. It is important to note that when bt corresponds to

a local minimum of g(b, bt), then f(bt+1) = f(bt). Thus, following the update

rule repetitively will generate a sequence of f(bt) that will converge to a local

minimum of f(b) because ∀ t > 0,

f(bt+1) ≤ g(bt+1, bt) (1.44)

g(bt+1, bt) ≤ g(bt, bt) (1.45)

and

g(bt, bt) = f(bt) (1.46)

This non-increasing pattern can be illustrated using figure 1.5. This figure

is taken from the presentation slides of [23].
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Figure 1.5: Figure showing the non-increasing pattern of f(bt)

Having described the properties of the auxiliary function, we will first give

the convergence proof of the update equation in 1.38 as described in [23].

Consider a function f(b) such that,

f(b) =
1

2

∑

m

(

xm −
∑

r

Amrbr

)2

(1.47)

where, xm represents themth column of matrixX andAmr denotes an element of

matrix A corresponding to mth row and rth column. We will use these notations

in the subsequent equation. An auxiliary function g(b, bt) for f can be defined

as
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g(b, bt) = f(bt) + (b− bt)T∇f(bt) + 1

2
(b− bt)K(bt)(b− bt) (1.48)

where, K(bt) is a diagonal matrix

Krl(b
t) =

δrl(A
TAbt)r
btr

(1.49)

and where, δ is a Kronecker delta function

δij =











0 if i 6= j

1 if i = j
(1.50)

To prove, g(b, b) is an auxiliary function of f we need to show

g(b, b) = f(b) &

g(b, bt) ≥ f(b)

(1.51)

By replacing bt with b in equation 1.48, the last two terms becomes 0 and

the equation 1.48 becomes g(b, b) = f(b). It can be seen from equation 1.47 that

f(b) is a quadratic equation in b, therefore

f(b) = f(bt) + (b− bt)T∇f(bt) + 1

2
(b− bt)T (ATA)(b− bt) (1.52)
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Thereafter, comparing equations 1.48 and 1.52, g(b, bt) will be ≥ f(b), only

if

1

2
(b− bt)T (ATA)(b− bt) ≤ 1

2
(b− bt)K(bt)(b− bt)

or, 0 ≤ (b− bt)T
(

K(bt)−ATA
)

(b− bt)

(1.53)

Finally, to prove that the resultant matrix (right hand side of the above

inequality) is positive semi-definite, let us consider a matrix Mrl, which is

obtained by rescaling the components of K −ATA, such that

Mrl(b
t) = btr

(

K(bt)−ATA
)

rl
btl (1.54)

Therefore, K−ATA is positive semi-definite only if M satisfies the following

condition.

xTMx ≥ 0 (1.55)

By expanding xTMx, we get

xTMx =
∑

rl

xrMrlxl

=
∑

rl

xrb
t
r

(

K(bt)−ATA
)

rl
btlxl

(1.56)

Substituting the value of K(bt) in above equation we get,
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=
∑

rl

xrb
t
r

(

δrl(A
TAbt)r
btr

−ATA

)

rl

btlxl (1.57)

The use of Kronecker delta zeros out non-diagonal elements in the first term

and the product of the corresponding elements of xr and xl give x2
r(or x

2
l )

=
∑

rl

btr(A
TA)rlb

t
rx

2
r − xrb

t
r(A

TA)rlbtlxl (1.58)

=
1

2

∑

rl

(ATA)rlb
t
rb

t
l

(

x2
r + x2

l − 2xrxl

)

(1.59)

=
1

2

∑

rl

(ATA)rlb
t
rb

t
l (xr − xl)

2 (1.60)

The terms outside the square in above equation are initialised with non-negative

numbers and constraint to be ≥ 0, therefore, we can say that

xTMx ≥ 0 (1.61)

The minimising of g(b, bt) in equation 1.48 with respect to b is done to replace

g(b, bt) in equation 1.43. Thereafter, we obtain the following update rule

bt+1 = bt − ∇f(b
t
r)

K(btr)
(1.62)

Further, after simplification, we get
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bt+1
r = btr

Axr

(ATAbt)r
(1.63)

which is equivalent to

B← B ·
(

ATX

AT X̂

)

(1.64)

Similarly, f can be shown to be non-increasing under the update equation

for A, by simply reversing the roles of A and B. Here, f is non-increasing under

the update equation of A and B because g is the auxiliary function.

To proof the convergence of KL-divergence consider the following auxiliary

function

g(b, bt) = −
∑

m

xm (1− log(xm)) +
∑

mr

Amrbr

−
∑

mr

xm

Amrb
t
r

∑

l Amlb
t
l

(

log(Amrbr)− log

(

Amrb
t
r

∑

l Amlb
t
l

)) (1.65)

for the divergence function f(b) in equation 1.66

f(b) =
∑

m

xm log

(

xm
∑

r Amrbr

)

− xm +
∑

r

Amrbr (1.66)

Again to prove that g(b, bt) is an auxiliary function for f(b), we need to

prove the set of axioms defined in 1.51. For g(b, b) = f(b), we replace bt by b in

equation 1.65.
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g(b, b) = f(h) +
∑

m

xm log(
∑

r

Amrbr)

−
∑

mr

xm

Amrbr
∑

l Amlbl

(

log(Amrbr)− log

(

Amrbr
∑

l Amlbl

))

= f(h) +
∑

m

xm log(
∑

r

Amrbr)−
∑

m

xm

∑

r Amrbr
∑

l Amlbl

(

− log

(

1
∑

l Amlbl

))

= f(h) +
∑

m

xm log(
∑

r

Amrbr)−
∑

m

xm log(
∑

l

Amlbl)

= f(h)

(1.67)

Further, to show that g(b, bt) ≥ f(b)∀t ≥ 0, the convexity of the log function

can be used, that satisfies the following inequality

− log
∑

r

Amrbr ≤ −
∑

αr log

(

Amrbr
αr

)

(1.68)

where, αr contains all non-negative elements that sum to unity, such as

αr =
Amrbr
∑

l Amlbl
(1.69)

Substituting the value of αr from equation 1.69 in equation 1.68 we get,

− log

(

∑

r

Amrbr

)

−
∑

r

Amrb
t
r

∑

l Amlb
t
l

(

log(Amrbr)− log

(

Amrb
t
r

∑

l Amlb
t
l

))

(1.70)
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By eliminating common terms in g(b, bt) and f(b) in equations 1.65 and 1.66

respectively and then comparing it with the inequality defined in equations 1.70,

we can see that f(b) ≤ g(b, bt).

Now by replacing g(b, bt) in the update rule (see equation 1.43) by equation

1.65, we get the following update equation,

bt+1
r =

btr
∑

l Akl

∑

m

xm
∑

l Amlbtl
Aml (1.71)

This is done by minimising g(b, bt) with respect to b i.e. by equating the

∇g = 0 as shown below

∇g(b, bt) = −
∑

m

xm

Amrb
t
r

∑

l Amlb
t
l

1

br
+
∑

m

Amr = 0

⇒
∑

m

Amr =
∑

m

xm

Amrb
t
r

∑

l Amlb
t
l

1

br

(1.72)

To avoid confusion, we can change the index on left hand side of the equation

from i to k and rearranging, we will get the required update rule defined in

equation 1.71. Further, it can be written in the form shown below:

Brn ← Brn ·
1

∑

k Akr

∑

m

AmrXmn

X̂mn

(1.73)

Again, function f is non-increasing the update rule of B because g(b, b) is the

auxiliary function of f(b). We can prove convergence of A in a similar manner.

It is important to note that the update equation in 1.73 is the same as defined
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above in equation 1.41.

Here, we have showed the convergence of the cost function to a local minima

with respect to either A or B. However, in general, the above discussed cost

functions is not convex with respect to both A and B and it would not be

feasible to find the global minima. A detailed description and derivation of IS

divergence update equations and its application in musical analysis can be be

found in [22].

Having discussed the convergence proofs of the cost functions, now we will

explain how the decomposition of the magnitude spectrogram using NMF is of

benefit in musical applications especially sound source separation.

NMF decomposition

The decomposition of the magnitude spectrogram is done using NMF that

results in non-negative matrices A and B. To demonstrate the workings of

a NMF of a music mixture, figure 1.6 shows a magnitude spectrogram of a toy

audio mixture.
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Figure 1.7: Columns of matrix A containing NMF frequency basis functions
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Figure 1.8: Rows of matrix B representing time envelopes corresponding to
NMF frequency basis functions in figure 1.7

Figure 1.7 represents the matrix A and the figure 1.8 represents the matrix

B. Matrix A contains the NMF frequency basis functions and by close

inspection, it can be seen that the columns of A correspond to note-like

entities, exhibiting harmonic structure and the matrix B contains the time

activation function along its rows that indicates when the corresponding

note-like entities in A is active within the mixture. This separation of basis

functions approximately representing the notes can be used to determine pitches

corresponding to notes and further by using the time activation functions

associated with the basis functions would allow a basic transcription [25].
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1.5.5 Limitations of Standard NMF

A drawback of using NMF is that it typically results in a larger number of basis

functions than there are active sources in the mixture. Therefore, clustering of

these basis functions is required for separating the sources. Clustering of these

basis functions is at present an open issue and is an important area of research

to ensure the quality of separated sound sources. Also, clustering of the basis

functions is one of the principal aims of this thesis.

However, in an effort to avoid the need for clustering of basis functions,

FitzGerald et al proposed an algorithm [44], which we will elaborate in the next

section.

1.5.6 Shifted Non-negative Matrix Factorisation

Shifted Non negative Matrix factorisation (SNMF) was proposed as a means

of avoiding the problem of clustering provided that a log frequency resolution

is used for the frequency basis functions. The SNMF algorithm [44] assumes

that the timbre of a note does not change for all the pitches produced by an

instrument. The basic principle used in the SNMF algorithm is well motivated

by the fact that, in western music the fundamental frequencies of each half tone

are geometrically spaced by a factor of 12
√
2. Therefore, a translated version

D of a frequency basis function of a particular instrument can then be used

to approximately cover the entire range of melodies played by the instrument

in consideration. Also, if the frequency bins are a semitone apart, a shift up

or down of the frequency basic function by one frequency bin can be used to
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approximate the frequency basis function of another note higher or lower by

half a note respectively. However, a log-frequency resolution of the frequency

basis functions is required to exploit this shift invariant property. A constant Q

transform can be used to obtain the log-frequency resolution.

Notations

We now define the parameters and notations used in the SNMF model. The

notations for tensor parameters used to define the SNMF model [44] is as per

the conventions described in [90]. Calligraphic upper-case letters (R) are used

to denote tensors of any given dimension. A contracted tensor product of two

tensors of finite dimension is defined as follows. Let a tensor R be of dimension

I1×· · ·×IS×L1×· · ·×LP and tensor D be of dimension I1×· · ·×IS×J1×· · ·×JN

then equation 1.74 denotes the contracted tensor multiplication of R and D

along the first p modes. Indexing of tensor elements is done using lower case

letters, such as j and is denoted by R(i, j).

〈RD〉{l1,...,lp,j1,...,jp} =
lp
∑

l=l1

· · ·
jp
∑

j=j1

Rl ×Dj = Z (1.74)

The dimensions along which the tensors R and D are to be multiplied is

specified in curly brackets. The resultant tensor Z will be of dimension l1 ×

· · · × lp × j1 × · · · × jp.
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SNMF Algorithm (SNMFcqt)

As noted previously, a log-frequency resolution of the frequency basis function is

required for the Shifted NMF. Here, the CQT is used to obtain the log-frequency

resolution. A CQT spectrogram can be obtained by multiplying the transform

matrix Y ( see equation 1.14) with X, where X is the linear domain magnitude

spectrogram.

C = YX (1.75)

Having obtained a Constant Q spectrogram C of size n × m, where m is

the number of time frames along the n frequency bins, SNMF can be used to

separate the instrument basis functions. In practice, for a given number of p

sources the spectrogram C can be decomposed using the SNMF model into

tensors as shown in equation:

C ≈ 〈〈RD〉{3,1}H〉{2:3,1:2} (1.76)

where, R is a translation tensor of dimension n×k×n for k possible translations.

R translates the instrument basis functions in D up or down to approximate

various notes played by an instrument in question. Tensor D is of size n × p

contains a frequency or instrument basis function for each source. H is a tensor

of size k × p ×m such that H(i , s , :) represents the time envelope for the ith

translation of the sth source, which informs when a given note is played by a

particular instrument.
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For a given s number of sources, SNMF will decompose the constant Q

spectrogram C into instrument basis functions and sets of associated time

activations that can be used to approximately represent C. The cost function

used to approximate tensors D and H is the same as used for NMF. To

approximately cover all the notes played by the instrument, the number of

translation k is chosen empirically. The translated (frequency-shifted) version

of an instrument basis function approximately captures all the notes played

by a given instrument considered in a mixture. Thus, the need of clustering

NMF basis functions is avoided, as each instrument is now represented by a

single instrument basis function. The SNMF algorithm requires the use of a

log-frequency spectrogram for segregating the frequency basis functions. In

music processing, a CQT is typically used to achieve log-frequency resolution.

The SNMF algorithm has two notable drawbacks. Firstly, the spectral

envelope of notes played by an instrument changes with the pitch, therefore,

the assumption that the timbre of any note played by an instrument remains

unchanged, regardless of pitch, is not true in general. However, this

approximation holds reasonably well over a limited pitch range.

Secondly, the lack of an inverse CQT results in a deterioration of the

separation quality of the reconstructed signal. However, the shift-invariant

property of the instrument basis function can be exploited to capture all the

notes played by pitched instruments in the audio mixture. We will attempt to

address these limitations to develop improved SNMF algorithms for monaural

sound source separation in chapters 2 and 3.
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1.6 Previous Clustering Techniques for NMF

basis functions

Recently, a data-adaptive method was proposed by Virtanen [29] to segregate

the NMF frequency basis functions obtained from the power spectrogram of

the input signal. The proposed method was based on the fact that the

high-energy components of the input signal can be compressed by modelling

the loudness perception of human auditory system using perceptually motivated

weights for each critical band in each frame [30]. Thus, for each critical band,

the perceptually significant low-energy characteristics of sources can also be

estimated. The individual components corresponding to sources were estimated

by minimizing the weighted divergence between the above model and the

observed power spectrogram. Another method was proposed in [28] that uses

sparse coding [17] with some modifications and as well as a temporal continuity

constraint [31]. A cost term, comprised of the sum of squared differences

between the gains in the adjacent frames of the activation function in B,

was used to impart the temporal continuity and sparseness was favoured by

penalizing non-zero gains in B. In [82], the clustering was done manually. A

non-negative sparse coding algorithm was suggested by Abdallah and Plumbley

in [24] that assumes that the sources sum in the power spectral domain, so that

the observation vector and basis functions are power spectra. Despite these

improvements to group the NMF basis function for sound source separation, all

the previous proposed clustering algorithms were unable to separate robustly
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the notes corresponding to a given set of pitched instruments overlapping in

frequency and time in a given mono mixture. Hence, there is a room for

much improvement. The first systematic attempt at unsupervised clustering

of the NMF basis functions was done by Spiertz and Gnann in [41] who used

a source-filter model to generate MFCC coefficients for NMF basis functions.

This method of unsupervised clustering is explained in the following section.

1.6.1 Source-Filter Based Clustering for Monaural BSS

Separation

According to the source-filter model in [20] and [79], each frequency basis vector

in A is a product of an excitation or source signal E and an instrument-specific

resonance filter R. These filters are mainly responsible for the formants

in the mixture. The MFCC-based source separation method exploits this

instrument-specific information to filter out the resonance effect in the mixture.

Here, we will briefly cover the calculation of MFCC coefficients. The Mel scale

[72] is defined as a perceptual scale of any two consecutive pitches perceived by

listeners to be equidistant from one another. The frequency f in mels m is given

by:

R = 2595log10

(

f

700
+ 1

)

(1.77)

69



Figure 1.9: Signal flowchart for the clustering using source-filter model

Flowchart 1.9 shows the signal in the clustering algorithm using the

source-filter model. In the following section the MFCC and NMF clustering

method is discussed.
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MFCC Clustering

Let N denote a Mel filterbank with Nmel filters where each row in N represents

a filter with a triangular shaped weighing function. The distance between the

centre frequencies f for all the filters in the Mel filterbank is chosen as per the

Mel scale defined by equation 1.77. Having obtained the filter bank of Nmel

filters the MFCC coefficients for NMF basis functions is calculated as follows.

The frequency basis functions in A is obtained in a similar manner as shown in
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equation 1.33. The inner dot product of input vectors in A (columns of matrix

A), representing NMF basis functions, is filtered by Nmel filters in N to obtain

basis vectors M in the Mel frequency domain.

M = NA2 ≈ N [E2 ∗R2] (1.78)

where M contains the MFCC coefficients corresponding to the NMF basis

functions and each column of M is denoted by Mfr(n), such that 1 ≤ n ≤ Nmel

and 1 ≤ r ≤ R. To separate out the excitation component, the logarithm is

used as it converts the multiplication operation into simple addition and thus

the equation becomes

log(cMfr + 1) ≈ log(NE2
r ) + log(NR2

m) where c =
at

max(Mfr(n))
(1.79)

Here an offset of +1 is added to counter any negative logarithmic value and

the constant c is used to normalised the basis vectors Mfr by the maximum

amplitude, where max(Mfr(n)) and a tuning element at (usually between range

0.1 to 0.01) is also used to make the model linear.

log(cMfr + 1) = log(c) + log(Mfr) + log

(

1 +
1

c(Mfr)

)

(1.80)

As the tuning element at is increased, the linearity is increased by making

the last term in equation 1.80 smaller but it also increases the offset value

log(c). Therefore, there is a trade off between these two and the value of at was
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determined through experiments.

Then, the Discrete Cosine Transform (DCT) [70] is used to separate out

or decorrelate the source component and spectral component by dropping

out eigenvalues corresponding to signal energy (first coefficient) and higher

frequency components. In the last step, a simple clustering (of sources) method

like k-means [46] is applied on k mfcc components to find a permutation matrix

that indicates which basis function belongs to which source in the given mixture.

NMF Clustering

As discussed in section 1.6.1, the DCT helps in decorrelating the two

signals log(NE2
r ) and log(NR2

m) corresponding to source and resonance filter

respectively. However, this decorrelation of the spectral components for a given

channel is performed without any information of the other channels. On the

other hand, NMF can be used instead of the DCT to extract, Rm which contains

the activation functions corresponding to the resonance filters. This is done

as stated in [41]. The input log signal for the decorrelation in 1.80 can be

rearranged as follows

L(n, i) = log(cMfr + 1) (1.81)

where each column of L is approximately equal to the summation of

corresponding columns of log(NE2
r ) and log(NR2

m) (see equation 2.15), n and i

are used to index the channels and sources respectively. Thereafter, two matrices

T of size Nmel ×M and T of size M × I are initialised with positive random

numbers.
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L = TZ (1.82)

Then, the NMF factors T and Z are obtained by minimising the KL

divergence cost function described in equation 1.36. Furthermore, this method

does not use k-means clustering as the clustering is carried out by comparing

and finding the dominant of the source components for each of the channel in

M corresponding to the rows in matrix Z and thus obtaining a permutation

matrix g(i) as shown in equation 1.83:

g(i) = arg max
m

Z(m, i). (1.83)

1.6.2 Incorporation of group sparsity in NMF with IS

divergence

The term sparse refers to a signal model, where only a few units of data out

of a large population can be used to efficiently represent a typical data vector

[14]. A property of NMF is that it typically generates a sparse representation of

the given audio data. This makes the frequency basis function sparse in nature.

However, NMF does not impose any quantitative constraint on the nature of

sparsity. Also, the level of sparseness in NMF representation varies depending on

the signal. Therefore, it is hard to set the optimal level of sparsity automatically.

Nevertheless, there are cases in which additional constraints may be imposed

to control the degree of sparseness to identify components in mixtures [16, 28].
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Such a constraint has been proposed by [53] that generates a set of NMF basis

functions which benefits from sparsity at a group level.

Given a magnitude spectrogram, X of size m × n, the power spectrogram

can be calculated by

V = |X|2 (1.84)

Then, the frequency basis functions can be obtained by optimising the

following equation

V ≈ V̂ = WH (1.85)

where, the frequency basis functions are contained in W and the local

amplitudes corresponding to the frequency basis functions are stored in H.

The incorporation of group sparsity in NMF is due the fact that the activation

of the NMF results in the frequency basis functions that corresponds to the

instruments (groups) present in the music mixture. Therefore, we want the

NMF frequency basis functions to be sparse in a group sense. GS assumes

that each instrument is turned on (played) for as little a time as possible and

that an individual instrument activation is much sparser than that of a mixture

of instruments. It is hoped that this prior knowledge of GS may reduce the

time-frequency overlapping of the frequency basis functions, hence give improved

clustering of the basis functions.

In [53], GS is incorporated in NMF with the hypothesis that the local

amplitudes of the sources are independent and may be derived as a marginal

distribution for the activation function H. Further, they used Itakura-Saito (IS)
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divergence as the cost function. This is done to exploit the equivalence between

IS-NMF method and maximum-likelihood estimation of (W,H) when power

spectrum density (PSD) of the input signal is used to calculate the frequency

basis functions.

Here, the power spectrum matrix is used for the calculation of the frequency

basis functions. This is motivated by the fact that the components in the power

spectrum on average sum linearly. This is analogous to the fact that the time

domain signals obtained from the concurrent sound sources and their complex

spectra sum linearly, which is not the case in magnitude spectra. However,

in many audio applications the linear summation of magnitude spectra has

produced better results.

With the assumption that the local amplitudes of the sources are

independent from each other and for the reasons stated in [51] [22], the

minimisation of the IS divergence cost function, DIS(V||V̂) (see equation 1.36)

is equivalent to the maximum likelihood problem of estimating (W, H) in sum

of Gaussian components. This is based on the assumption that the components

in spectrogram X is a linear instantaneous mixture of i.i.d Gaussian signals.

Then, ML estimation of W and H from X is equivalent to estimating (W, H)

from power spectrogram V using NMF where IS divergence is used [22]. Hence,

V has the following distribution :

p(V|V̂) =
∏

m,n

1

ˆVmn

exp

(

−Vmn

ˆVmn

)

(1.86)

It is also assumed that a source can be characterised by a subset of
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components g. Therefore, the source spectrogram corresponding to a group,

Xg, where

Xg =
∑

r∈g

Xr, (1.87)

can be estimated by the following Wiener filter estimator [53]:

E (Xg|X,W,H) = X ·
(

WgHg

WH

)

. (1.88)

Maximum Likelihood with group sparsity

The r number of basis functions inW needs to be divided into g non-overlapping

groups, where each group contains the frequency basis functions corresponding

to a given source. Following the conventions used in [53], for a given

time-frequency frame n, if a source (group) is not active, then the corresponding

activation gain Hgn is made equal to zero. Let Hgn is a vector of basis functions

ri such that ri is a member of a given group g ( ri ∈ g where 1 ≤ i ≤ m). Let

Hg
n be defined as a time envelop of the given source for a given time frame n

such as

Hg
n = ||Hgn||1 (1.89)

where ||.||1 represents the L1 norm function. Furthermore, it is assumed that

the activation gain Hg
n for all the individual sources are mutually independent

inverse gamma random variables. Thereafter, by using the conditional

probability on the activation function H at frame n for r basis functions, the

activation gains can be factorized into groups to determine respective sources ;
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and Hrn are exponentially distributed conditionally on Hg
n, with mean Hg

n. This

can be denoted as:

p(Hn|Hg
n) =

∏

g

∏

r∈g

p(Hrn|Hg
n) (1.90)

The prior of the activation functionsHn can be calculated using the marginal

distribution as follows:

p(Hn) =
∏

g

Γ(g + η)

Γ(η)

αη

(α +Hg
n)(η+g)

(1.91)

where the parameters α and η define the shape of the inverse gamma

distribution. By providing this prior information, the ML estimation with group

sparsity can be defined as follows:

(W,H) = min
W,H≥0

DIS(V||WH) + λΦ(H) (1.92)

where λ ∈ [0, 1) is a scaling factor that regularises the optimisation term Φ(H).

Φ(H) defines the the grouping pattern.

Equation 1.93 and 1.95 show the multiplicative updates for H and W

respectively.

H← H ·
(

WT (V · V̂−2)

WT (V̂−(δ−1)) + λΦ′(||Hgn||1)

)

(1.93)

where

Φ(z) = log(α + z) (1.94)
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W←W ·
(

(V · V̂−δ)HT

(X̂−1)HT + λ
∑

n HrnΦ
′(||Hgn||1)

)

(1.95)

The derivation of the update equations can be found in [53]. After the

convergence, the grouped frequency basis functions can be used to re-synthesize

the individual sources.

The clustering of the frequency basis functions using group sparsity were

found to achieve a good separation for temporally overlapping of sources up

to 66%, where the sources where not active constantly with time. However,

in many cases the sources will have considerably more overlap than that, and

so the clustering based on GS may fail in these cases. Nevertheless, the group

sparsity in NMF was found to reduce the amount of overlapping of the sources

in mixture. Thus, it can potentially be used to improve the clustering of the

NMF basis functions. We will exploit and discuss this idea in chapter 5.

1.7 Conclusions

In this introductory chapter, we have attempted to provide the motivation

for blind sound source separation and explained its importance in the field

of various audio applications. We considered the basic assumptions such as

number of sources, number of sensors, time-invariance and so on, under which

sound mixtures can be classified. We also presented the fundamentals of music

and musical instruments that we require to aid the development of sound source

separation methods.

We have described a standard ICA SSS technique for instantaneous
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determined sound mixture model. Then, we discussed the limitation of using

standard ICA, in particular that it will fail to work if the number of sources

present is more than the given number of mixtures or over-determined mixtures.

Further, we introduced other sound source separation algorithms such as DUET,

ADRess for audio mixture model. Although, these techniques could handle cases

where there was more sources than sensors, but still required at least stereo

signals and so will not work for mono signals. Then, a widely used factorisation

technique, NMF, for sound source separation was discussed. We showed that

how NMF attempts to give a part-based decomposition of the audio spectrogram

where the individual parts (basis functions) correspond to the notes in the given

mixture. However, these basis functions are usually greater in number than the

active sources present in the mixture.

As a consequence, we mentioned the need for clustering of these basis

functions into their respective sources to achieve source separation. Thereafter,

we discussed the SNMF model that attempts to use a single instrument basis

function per source to avoid the need for clustering of the basis functions.

We then followed up with an overview of previous techniques for unsupervised

clustering of the frequency basis functions, including the MFCC based source

filter method [41]. Finally, we discussed a recent approach of clustering basis

functions using a technique called group sparsity.

Following from this, we now give an outline of the chapters in the remainder

of the thesis. In chapter 2, we introduce two novel methods for clustering the

basis functions. The first of the two methods is the locally-linear embedding
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method that uses the source-filter model detailed in section 1.6.1 to group the

Mel scale basis functions. The second method uses the shift invariant property of

the SNMF model in an attempt to improve the clustering of the basis functions.

Chapter 3 deals with an improvement to the standard SNMF algorithm (see

section 1.5.6) obtained using a recently proposed CQT method [85]. Further,

in chapter 4, a novel attempt is made to incorporate the CQT matrix inside

the SNMF model in order to improve the working of the SNMF clustering

algorithm discussed in 2. Chapter 5 deals with the idea of incorporating GS

in the SNMF clustering algorithm such that the sparsity in NMF favours at

group level. Chapter 5 also gives an overview of the effects of the GS in the

various proposed SNMF clustering algorithms in the context of separation of

sound signals from a mono mixture. Chapter 6 deals with a new family of

masks to reconstruct the original signal from the clustered basis functions and

how the proposed family of masks are better performing masks as compared to

the generalized Wiener filter masks. Finally, Chapter 7 outlines the techniques

discussed in this thesis and focuses on the possible area of future work that

would improve source separation algorithms.
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Chapter 2

Shifted NMF Sound Source

Separation

2.1 Introduction

NMF has found use in single channel separation of audio signals, as it gives

a parts-based decomposition of audio spectrograms where the parts typically

correspond to individual notes or chords. However, a notable shortcoming of

NMF is the need to cluster the basis functions to their respective sources after

decomposition. Despite recent improvements in algorithms for clustering the

basis functions to sources, much work still remains to further improve these

algorithms. In this chapter we will introduced two new methods for clustering

of NMF basis functions. Firstly, we will use a dimension reduction method called

locally-linear embedding (LLE) with limited success. For LLE we have used the
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Figure 2.1: Signal flowchart of the System model

source-filter model discussed in section 1.6.1. Also, we present a novel clustering

algorithm (a major contribution to this research work) which overcomes some of

the limitations of previous clustering methods. This involves the use of SNMF as

a means of clustering the frequency basis functions obtained from NMF. Finally,

we will test the proposed algorithms to evaluate their performance using a testset

of mono mixtures.

The block diagram in the figure 2.1 shows how the various clustering

techniques we are comparing are related. Earlier, in chapter 1, we have discussed

the source-filter based NMF clustering and the k-means clustering methods as

proposed in [41] that uses the frequency basis functions in mel-scale for grouping

them to their sources. The first of the two techniques presented in this chapter

makes an attempt to group the Mel-scale frequency basis functions, is based
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on the simple modification of the clustering stage of the source-filter model as

shown above in the block diagram. Here, we use LLE, a dimension reduction

technique proposed by Saul et al in [74]. The Mel-scale basis functions are

obtained from NMF frequency basis function in a similar manner as detailed in

section 1.6.1. Then, an attempt is made to group the frequency basis functions

in mel domain using LLE.

The second algorithm proposed here is designed by combining two

techniques, the NMF and SNMF, described in chapter 1. Again, the frequency

basis functions are obtained by using NMF on the magnitude spectrogram.

Then, the Constant Q mapping is used to convert the frequency basis

functions from linear domain to log-frequency domain to impart frequency

shift-invariability. Thereafter, the Shifted NMF method is used to cluster the

frequency basis functions. The SNMF clustering algorithm is detailed in section

2.3.

It is important to note that the SNMF clustering algorithms (SNMFmap

and SNMFmask) described here is different from the standard SNMF algorithm

(SNMFcqt). The difference is in the way the frequency basis functions and the

inputs to the SNMF models are determined. For the SNMF clustering algorithm

the frequency basis functions are obtained by factorising the magnitude

spectrogram (obtained using STFT) using NMF and the SNMF model finds

shift invariance in sets of CQ domain frequency basis functions. However, the

standard SNMF algorithm finds shift invariance in a CQ spectrogram of the full

audio mixture.
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Having said that, we move our focus to the LLE algorithm which is described

in the following section.

2.2 Locally Linear Embedding

The LLE algorithm is a non-linear unsupervised learning algorithm for

dimension reduction for a given set of sampled data obtained from an underlying

manifold [74]. The algorithm is based on simple geometric intuitions. This

algorithm exploits the spatial property of the data set such that the nearby

data points in the high dimensional space remains in the neighbourhood with

respect to each other even in the low dimensional space.

Given a sampled dataset P (which defines the underlying manifold) that

contains N data points of dimension D. Pi ∈ P can be used to represent a

data vector (data point), where i varies from 1 to N . It is important that the

manifold is sampled well enough to restore the neighbourhood properties of the

closely located data points across the dataset. The algorithm assumes that the

given set of data lies on a smooth manifold of dimension d such that d << D.

Therefore, based on this assumption there exists an approximate linear mapping

such that it maps the high dimensional coordinates of each neighbourhood to

the global coordinates of the given low dimensional manifold.

Next, we will discuss the steps involved in the LLE algorithm. First, the

algorithm computes the k nearest neighbours for each data point Pi. Then,

the weights Wij are obtained such that the it minimises the least squared cost
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function in equation 2.1

DLLE1 =

N
∑

i=1

|Pi −
k
∑

j

WijPj |2 (2.1)

where Pj represents the neighbour j of the data point Pi and Wij gives the

contribution of the jth data point to the ith reconstruction. Notably, the cost

function in equation 2.1 is subjected to two constraints. Firstly, each data point

Pi should be reconstructed only from its neighbours ensuring that Wij = 0 if

Pj is not a neighbour of Pi. The second constraint is that the summation of

the rows of weights for a particular data point is 1 i.e.
∑

j Wij = 1. These

constraints ensures that the weights computed restores the intrinsic geometrical

properties of the original data. Details on how the defined constraints help in

optimising the calculation of weights can be found in [80].

Having obtained the weights Wij, the algorithm maps a low dimensional data

point corresponding to each of the high dimensional data points in P . This is

done by randomly initialising dataset Y that contains d dimensional data points

Yi and minimising the cost function defined in equation 2.2.

DLLE2 =

N
∑

i=1

|Yi −
k
∑

j

WijYj|2. (2.2)

Equation 2.2 uses the optimised weights obtained earlier when the original

data set was used. Since, the weights used reflects the intrinsic geometrical

properties of original data, it is expected that the constructed low-dimensional

dataset should have same properties.
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Having described the LLE algorithm, we will try to use the LLE algorithm

to obtain the grouping of the NMF frequency basis functions. This is based on

the idea that the frequency basis functions corresponding a source will fall into

neighbourhood of each other in terms of euclidean distance, when in the MFCC

domain and thus help in grouping them corresponding to their sources.

It can be seen from the block diagram in figure 2.1, that the LLE algorithm

is implemented for clustering of the mel domain basis functions. The frequency

basis functions in A (see equation 1.33) is converted into mel domain by using

equation 1.78. Here, the mel domain basis functions in M contains the basis

vector Mi corresponding to ith basis function.

Following the steps of the LLE algorithm, for k nearest neighbours the cost

function for this problem can be defined as:

ǫ(O) =
r
∑

i=1

|Mi −
k
∑

j

OijMj |2 (2.3)

where r is the number of basis functions and the neighbourhood is defined

by taking the Euclidean distance between the basis functions. The optimised

weights Oij are obtained after the cost function in equation 2.3 is converged.

These optimised weights are then used to construct instrument basis functions

(frequency basis functions corresponding to a particular instrument). This is

done by randomly initialising a dataset F , where each Fs in F contains frequency

basis functions corresponding to source s. Here, the number of sources are set

to P . The cost function here can derived from equation 2.2.
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η(F ) =

P
∑

p=1

|Fp −
k
∑

j

OpjFj |2 (2.4)

Here, Fj represents the neighbour j of Fp and Opj gives the contribution of

the jth data point. Once the frequency basis functions in F is optimised, then the

time domain signals are reconstructed as detailed in section 2.3.2. Performance

evaluation of the LLE algorithm is discussed in section 2.5

A new method of clustering using SNMF is discussed in the following section.

2.3 SNMF Clustering Algorithm

The SNMF clustering algorithm proposed here follows the same steps to obtain

the NMF frequency basis functions as discussed earlier in section 1.5.4. We will

write the NMF equation again for convenience:

X ≈ AB (2.5)

where the matrix A is of size n×r and the matrix B is of size r×m, with r < n,

m. Here, the matrix A that contains frequency basis functions is considered as

a spectrogram. The clustering of frequency basis functions is obtained using the

Shifted NMF.
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2.3.1 Shifted Decomposition

As noted previously in chapter 1, an advantage of NMF is that there can be

a single basis function for each note played by a given instrument, thereby

capturing changes in timbre with pitch for each instrument or source. Therefore,

instead of using a single frequency basis function to approximate all the notes

played by the instrument (as with the standard Shifted NMF), here we will use

all the frequency basis functions obtained using the NMF. This may solve the

problem of the change of timbre with pitch.

Having obtained a set of basis functions using NMF, SNMF attempts to

cluster the frequency basis functions as follows. At first, the matrix A is

multiplied with a the transform matrix Y to scale the components in A from

linear to log-frequency domain.

C = YA (2.6)

The transform matrix Y is obtained by taking the absolute value of

the Fourier transform of a bank of the complex exponentials, whose centre

frequencies are geometrically spaced. In effect, it is the absolute value of the

CQT proposed by Brown [45]. The log frequency basis function spectrogram C

is then passed as an input to SNMF:

C ≈ 〈〈RD〉{3,1}H〉{2:3,1:2} (2.7)

Given the number of sources, P , then SNMF will look for instrument basis
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functions that can be used to approximate C. Here, R is a constant translation

tensor. The multiplicative update equations for tensors D and H that defines

frequency basis functions are as follows:

H ← H ·
( 〈〈RD〉{3,1}Y〉{3,1}
〈〈RD〉{3,1}O〉{1,1}

)

(2.8)

where

Y =
C

〈PH〉{2:3,1:2}
(2.9)

P = 〈RD〉{3,1} (2.10)

and O is a tensor of all ones. Tensor P contains the translated instrument basis

functions.

The multiplicative updates for the tensor D can be calculated by using

following equations:

D ← D ·
( 〈ZH〉{1:3,1:3}
〈WH〉{1:3,1:3}

)

(2.11)

where,

W = 〈RO〉{1,1} (2.12)

and

Z = 〈RY〉{1,1} (2.13)

Operator · in all the equations indicate elementwise multiplication. All

division operations in all equations are elementwise unless otherwise stated. The

number of translations k of an instrument basis function is appropriately chosen
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Figure 2.2: NMF basis function of input mixture in constant Q domain.

so that it covers all the notes played by a particular instrument in the music

mixture. Assuming that each basis function in C corresponds to an individual

note played by the individual instrument, then the activations of the SNMF

model should indicate which basis functions in C are associated with which

individual source, in effect clustering the basis functions.

Figure 2.2 shows the NMF basis functions in Constant Q domain of a

input mixture of two sources. Figures 2.3 and 2.4 show the separated basis

functions corresponding to source 1 and source 2 respectively. The x-axis shows

the number of basis functions for individual notes to cover the highest pitch

range played by the instrument in the test mixture. The figure shows the clear

separation of basis functions associated with the different sources, hence these

clustered basis function can be used to segregate the sources in question.
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Figure 2.3: Separated Constant Q NMF basis functions for Source 1
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Figure 2.4: Separated Constant Q NMF basis functions for Source 2
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2.3.2 Signal reconstruction

The next step of the clustering algorithm requires the identification of the

clusters within the tensors obtained after the convergence and the recovery

of the source spectrograms for the estimation of sources. To this end, we

have introduced two different approaches to identify and recover the clusters

of frequency basis functions.

One-to-one Mapping

In practice, identification of clusters is carried out by reconstructing the

individual basis function spectrograms, Cs and comparing the energy in each

source at each frame. Here Cs denotes the magnitude source spectrogram of

the sth source, where the total number of sources is equal to P . After the

optimization of tensors D and H, a frequency basis function spectrogram Cs

can be represented by using the slices of tensors, D(:, s) and H(:, s, :), associated

with a given source s.

Cs = 〈〈RD(:, s)〉{3,1}H(:, s, :)〉{2:3,1:2} (2.14)

The energy of the individual frame in each spectrogram Cs is compared

with the corresponding frame of the other sources and the basis function in the

original matrix C is allocated to the source which has the highest energy at that

frame. This can be formulated as follows:

Es =

n
∑

Cs (2.15)
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where, matrix E of size r×s contains energy of each frame of each spectrogram of

frequency basis function corresponding to the individual sources. The individual

basis function is indexed by δs corresponding to respective sources. For a

particular source s, δs can be defined by the following equation:

δs(r) = argmaxs (E(:, s)) (2.16)

The index vector δs is of length r and it contains a binary mask indicating

membership of a source or otherwise. The contents of δs are repeated along

the rows and columns to match the number elements corresponding either to

A or B. This is done to filter out the time-frequency frames corresponding to

the frequency basis functions that does not belong to the source in question.

Here, we are using the matrix δs1 of size n × r corresponding to A. Thus, on

the basis of energy content of individual frames in C, the one-to-one mapping is

achieved from the clusters in C to those in A. As a result, for each instrument

the frequency basis functions for each sound source are grouped together. The

use of index matrix δs1 to generate the source spectrogram Xs corresponding to

the source s can be formulated as follows:

Xs = (A · δs1)B (2.17)

Further, the Xs is used to generate a mask Ms corresponding to the source

s:

Ms =

(

X·2
s

∑P
p=1X

·2
p

)

(2.18)
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where P is the number of sources. The mask Ms is then applied on the original

complex-valued source spectrogram, X , to recover the phase information for the

estimated magnitude spectrograms. This done as follows:

Xs = X ·Ms (2.19)

where Xs is the complex-valued source spectrogram estimated for source s.

Finally, the re-synthesis of the separated sources is done by using the inverse

STFT on the separated complex spectrograms.

SNMF Masking

An alternate approach to map the individual source spectrogram, Cs back in

linear domain yielding As is also implemented. This is based on the fact that

there is a one to one correspondence between the basis functions in C and A.

Therefore, the clustering obtained forC is equally valid for clustering inA which

can be further partitioned into individual As, where As contains the frequency

basis functions associated with the sth source. Hence, an approximate inverse

CQT of the individual basis function spectrograms Cs may be used to obtain

the frequency basis functions in As. This is done as follows. The matrix Y
′

(see

equation 2.6) is multiplied with the basis function spectrogram Cs to obtain

corresponding As.

As = Y
′

Cs (2.20)

Having obtained individual spectrogram for frequency basis functions As,
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the source spectrogram can be reconstructed using spectral masking.

The recovered source frequency basis functions As are used to generate a

mask which is applied to A. Then, A is passed through these masks to obtain

the source frequency basis functions Âs. The frequency basis functions in Âs

corresponding to source s is calculated using the following equation:

Âs = A ·
(

A·2
s

∑P

p=1A
·2
p

)

(2.21)

As each row vector in A has a corresponding column vector in B, clustering

of the time activations is handled automatically. Then, the source magnitude

spectrogram is obtained as follows:

Xs = ÂsBs (2.22)

Thereafter, the generation of the complex valued spectrogram is done using

the mask generated from Xs and the resynthesis of the individual sources is

obtained as stated in equation 2.18 and 2.19.

2.4 Experiments

The algorithm was implemented in Matlab for single channel audio mixtures.

The SNMF model was tested for 25 monaural input mixtures of 2 instruments

from a total of 15 different orchestral instruments taken from a sample library

[91] including brass, woodwind and strings. The signals in the test set varied
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in duration of roughly 4 to 8 seconds with a sampling frequency of 44.1kHz.

To imitate real world melodies, the notes played by individual instruments in

the input mixture were in harmony and covered pitches from as low as 87Hz

to pitches up to 1500Hz. The source signals were mixed with unity gain. More

details on how the database was created can be found in [20].

The magnitude spectrogram of the time-domain signal were obtained using

the STFT. Hann windows of 4096 samples in length of were used and there was

75% overlapping between successive Hann windows. The number of NMF basis

functions for all the test signals were equal to 13. The number of frequency

basis functions may vary with the length (time duration) of the test samples in

the testset used. NMF was run for 300 iterations. The constant Q transform

used 24 frequency bins per octave covering frequencies ranging from 55Hz to

22.05kHz. Tensors D and H, in equation 2.7, were randomly initialised with

non negative values. As discussed in section 1.5.6 the cost function used for

SNMF decomposition is the commonly used KL divergence (see equation 1.36).

The multiplicative updates and positive initialization for D and H ensures the

factorisation is non negative. The algorithm is set for number of sources equal

to 2 and it ran for 50 iterations. Here, the number of translations can be varied

in the range between 5 to 12 to check the robustness of the algorithm. However,

for the given testset, the number of time shifts i.e. allowable translations, k,

was set to 7.

An example of an audio mixture spectrogram is shown in figure 2.5. The

audio mixture comprises of two sources. Figures 2.6 and 2.7 show the separated
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Figure 2.5: Mixture spectrogram of the two sources

signals, corresponding to source 1 and source 2 respectively, using the SNMF

clustering algorithm with one-to-one mapping. Figures 2.8 and 2.9 show the

separation of two sources using the SNMF clustering algorithm using mask. It

can be seen from the figures that the interference due the sources in the time

period between 1 and 2 seconds is considerably lower for the SNMF clustering

algorithm using a mask that those for one-to-one mapping. However, both the

methods can be potentially used for separating sound sources in mono mixtures.

The quality of separation is evaluated in the following section. Audio examples

of the testset and the separated source signals can be found at [92].
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Figure 2.6: Separated source 1 using SNMF clustering with one-to-one mapping.

Time

F
re

qu
en

cy

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

x 10
4

Figure 2.7: Separated source 2 using SNMF clustering with one-to-one mapping.
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Figure 2.8: Separated source 1 using SNMF clustering algorithm using mask.
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Figure 2.9: Separated source 2 using SNMF clustering algorithm using mask.
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2.5 Results

The performance of the SNMF clustering algorithms were evaluated using

the quality measures signal-to-distortion ratio (SDR), the signal-to-interference

ratio (SIR), and the signal-to-artifacts ratio (SAR). These measures are widely

used for the evaluation of separation quality and the details of these metrics

can be found in [89]. SDR determines the overall sound quality of the recovered

signal, SIR measures the interference of other sources in the separates sound

source and SAR calculates the artefacts present in separated signal.

Following the notations of [89], let s be the original input signal. Then, s

can be decomposed as:

s = starget + einterf + enoise + eartif (2.23)

where starget is the reconstructed output and where einterf , enoise and eartif are

respectively the interferences, noise and artifacts error terms. SDR determines

the overall sound quality of the recovered signal and it is fomulated as:

SDRdB = 20log10

(

starget

einterf + enoise + eartif

)

(2.24)

SIR is the measure of the interference of each source on the other separated

sound sources. It can be defined as:

SIRdB = 20log10

(

starget

einterf

)

(2.25)
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And SAR calculates the artifacts present in separated signal. It can be

calculated by the following equation:

SARdB = 20log10

(

starget + einterf + enoise

eartif

)

(2.26)

The original source signals were used as a reference for the performance

evaluation.

clustering SDR SIR SAR
Ckm 0.80 10.96 3.30
Cnmf 2.89 12.72 4.59
SNMFmap 5.40 15.27 6.90
SNMFmask 8.94 23.69 9.72

Table 2.1: Mean SDR, SIR and SAR for separated sound sources using SNMF
clustering

Cnmf and Ckm are the two other clustering methods used for comparison [41].

The clustering algorithms Cnmf and Ckm represents the NMF clustering and

k-means clustering discussed earlier in chapter 1 . All the clustering algorithms

were tested using the same set of input mixtures to compare the results. All

the results for mean SDR, SIR and SAR are shown in dB. The performance

of two proposed clustering algorithms Shifted NMF with one-to-one mapping,

SNMFmap and shifted NMF with masking, SNMFmask are shown in the Table

2.1. It can be seen from the data that SNMF clustering using the mask gave

better results than the SNMF clustering with ‘one-to-one’. It is also evident

from the Table 2.1 that both the proposed clustering algorithms SNMFmap and

SNMFmask outperform the other clustering techniques. This was also evident
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from the informal listening test that the separation quality of the estimated

sources using SNMFmask were better than those for other listed algorithms in

table 2.1. We tested the LLE clustering algorithm detailed in section 2.2 for the

same set of audio mixtures. However, we did not observe any convergence of the

LLE cost function, hence the results were uncorrelated and so were not included.

Also, the results obtained using the LLE method were not consistent, i.e. we

were getting a random separation each time for the same test mixture. This may

be due to the fact that NMF gives a sparse representation and for the reasons

stated in [75, 76], LLE is quite sensitive to the sparse data sets. Processing

of sparse data by LLE results in deteriorating the local geometry of the data

manifolds in the embedding space. This is because the reconstruction weights of

the embedding space are replaced by the reconstruction weights obtained from

the original data space mainly due to the insufficient number of data points.

2.6 Conclusions

In this chapter, we have introduced two novel methods of clustering of NMF

basis functions. Firstly, we implemented LLE clustering which maps a higher

dimension data to a lower dimension data by learning weights. For this method

we used the source-filter model discussed in section 1.6.1. The sound source

separation obtained by LLE clustering did not show improvements over the

previously implemented methods.

Secondly, we presented two SNMF based clustering algorithms for single
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channel blind source separation which used SNMF to cluster the frequency

basis functions obtained from the standard NMF. We also dealt with the

change in timbre with pitch by assuming a separate basis function for each

note being played by the individual instruments. For the first SNMF clustering

algorithm, we used one-to-one mapping from the Constant Q domain to the

linear spectrogram to eliminate the need of inverse Constant Q transform.

Alternatively, we used an approximate inverse transform followed by masking of

the original spectrogram (containing basis functions) with the recovered basis

functions to obtain the clustered basis function in the linear domain. We

tested the algorithms on various test input mixtures of two sources. The

tests show a significant improvement of the sound quality as compared to

the unsupervised clustering done by Spiertz and Gnann [41]. Furthermore,

these clustering algorithms can be extended for input mixtures of n sources.

Therefore, clustering using SNMF is an effective way to cluster pitched basis

function to separate out harmonic instruments. In the next chapter, we will

discuss a recently proposed method [85] to calculate CQT in order to improve

the separation performance of the standard SNMF algorithm (SNMFcqt).
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Chapter 3

Shifted NMF algorithm using an

improved Constant-Q Transform

3.1 Introduction

This chapter contains a minor contribution of the thesis. Here, we will discuss

two previously proposed algorithms and will make an attempt to combine them

in order to improve the performance of a separation algorithm. In chapter 1, we

have discussed various techniques to cluster the NMF basis functions to separate

sound sources from an single channel audio mixture. Thereafter, we proposed

two methods to map the frequency basis functions to their respective sources

in chapter 2. Furthermore, we noted that the Shifted NMF based algorithms

use the shift invariant property of the instrument basis function to cluster the

frequency basis functions obtained from a given mixture signal. Also, the Shifted
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NMF requires a log-frequency spectrogram which is obtained using the constant

Q transform. However, the use of CQT makes the problem difficult to solve

due the fact that a true inverse of a constant Q transform does not exist.

Therefore, there is no guarantee of the perfect reconstruction of the sources from

the instrument basis functions (frequency basis functions corresponding to an

instrument) even though we achieve a good separation of the underlying sources.

We will try to address this issue in the chapter by using a recently proposed

improved method [85] to calculate the CQT and the approximate inverse CQT.

This work was inspired by the method developed in [84]. We argue that by using

this method to calculate CQT, we may improve the separation of the sources

using the standard Shifted NMF algorithm. Further, we will test whether the

inverse CQT gives a better reconstruction of the separated signals.

Before we discuss the proposed SNMF algorithm in detail, it is important

to note that the standard SNMF algorithm presented here is different from the

SNMF clustering algorithm discussed in chapter 2. Here, the standard SNMF

algorithm finds shift invariance in a CQ spectrogram obtained directly from the

magnitude spectrogram of the original mixture signal.

3.2 System model

Figure 3.1 shows the signal flow in the system model. A test mixture in

time domain is first converted into the constant Q domain using the CQT.

Thereafter, the shift-invariant property of SNMF algorithm is used to determine
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the instrument basis functions. Furthermore, spectral masking is incorporated

to improve the quality of separation. Finally, the separated signal is recovered

by an improved method to calculate the approximate inverse CQT. We will first

explain the basic principle involved in calculating the CQT as it would assist in

understanding other features in the system model.

Figure 3.1: Signal flowchart of the System model

3.3 Constant Q Transform

As discussed earlier in chapter 1, the CQT can be obtained by modulating the

audio signal with a bank of complex exponentials, whose centre frequencies are
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geometrically spaced. The geometrical spacing was used because it matched

the resolution of the most widely used tuning system. Further, we mentioned

that the CQT can be efficiently calculated in the Fourier domain by taking

the transform of the complex exponentials used to obtain the CQT, yielding

a sparse matrix Y. The CQT can then be obtained by multiplying a linear

domain spectrogram P by the the conjugate transpose of the sparse matrix Y

as shown in equation. Following the terminology of [85] we will the address the

matrix Y as a spectral kernel.

Q = Y∗P (3.1)

The CQT method [85] used here is an extension to the method discussed

above[84]. Earlier, since a wide range of frequencies was considered (60Hz to

16kHz), the spectral kernel generated was not very sparse. This is due to the

reason that the frequency response of the higher bins are wider as compared

to the lower frequency bins. To overcome this, here, the new CQT algorithm

processes each octave in the signal one by one starting from highest to lowest to

calculate the CQT coefficients of a given spectrogram. This is done as follows.

A spectral kernel matrix Y is used that produces the CQT for the highest

octave only. Once, the highest-octave CQT bins are calculated using the spectral

kernal and the DFT block corresponding to the entire signal, the input signal

is lowpass filtered and downsampled by a factor two. Again, the CQT bins are

calculated for the second highest octave and the process is repeated until the

lowest desired octave is reached in terms of calculating the CQT bins. It is
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important to note that for each subsequent octave the CQT bins are calculated

using exactly the same DFT block size, Xd and the spectral kernel, Y as shown

in equation 3.2, where d is an index value of the dth octave.

Let x[n] be the input signal for which a CQT is needed. Therefore, for the

dth successive octave, x[n] is lowpass filtered and down-sampled by a factor of

2d. let xd(n) represents a signal generated by decimating x[n] by 2d times. And

let Xd contain the DFT values of xd(n). Then, the CQT coefficients Cd for

octave d is obtained as

Cd = Y∗Xd (3.2)

The above process is repeated for the subsequent octaves. More importantly,

the spectral kernal remains constant for all the octaves. Also, the DFT length

in samples remains constant but the effective FFT length in terms of seconds

doubles after every decimation. For simplicity, let C denote a Constant Q

spectrogram and it contains the absolute value of all the CQT coefficients

obtained by processing the desired number of octaves.

In the proposed kernel structure, the number of points where C is evaluated

is not same for all bins from the lowest frequency bin of the lowest octave to

the highest frequency bin of the highest octave. It decreases by a factor two

per octave as we move down from the higher to lower octave. This would give a

representation of CQ spectrogram that is not useful for factorisation techniques

as it does not yield a rectangular matrix. To overcome this problem a rasterised

version of the CQT was then obtained. Data interpolation between the time
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points in C was used to obtain this rasterised CQT data structure. This data

structure and the user interface, it is possible to obtain the entire CQT matrix

representing the input signal or the CQT coefficients corresponding to a certain

time slice.

Having obtained the rasterised CQT matrix, C, we will now use it as the

input to the SNMF algorithm to perform sound source separation.

3.4 Shifted Non-negative Matrix Factorisation

As noted previously, the SNMF model exploits the shift-invariant property of

the frequency basis function to cluster them to corresponding sources, provided

log-frequency resolution is used. Having obtained the Constant Q spectrogram

C (obtained from the audio spectrogram of the audio mixture) of size n × m,

where m are the number of time frames along the n frequency bins, SNMF is

used to obtain instrument basis functions in a similar manner as detailed in

section 2.3.1.

As an example of SNMF using the new CQT method, figure 3.2 gives a

pictorial representation of the frequency basis functions of the input mixture in

the Constant Q domain. Figures 3.3 and 3.3 show the Constant Q spectrogram

of the instrument basis functions obtained after the activation of SNMF model.

It can seen through visual inspection that the frequency basis functions have

separated reasonably well (frequency basis functions between 1 second to 1.5

seconds is wrongly separated) and would assist in reconstruction of individual
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Figure 3.2: Frequency basis functions in Constant Q domain of a music mixture

source signals.

3.5 Spectral masking and Signal

reconstruction

As discussed in section 2.3.2 the individual source spectrogram Cs for s
th source

can be reconstructed by using the slices of tensors by using the slices of tensors,

D(:, s) and H(:, s, :).

Cs = 〈〈RD(:, s)〉{3,1}H(:, s, :)〉{2:3,1:2} (3.3)

The estimated source spectrogram is used to generate a mask to be applied
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Figure 3.3: Separated Constant Q frequency basis functions of Source 1

on the original spectrogram C. The generated masks are then applied to C to

obtain filtered sources spectrograms Ĉs. A masking filter M̂s can be calculated

as shown in equation:

M̂s =

(

C2
s

∑P
p=1C

2
p

)

(3.4)

Furthermore, the filtered source spectrograms Ĉs in constant Q domain are

obtained using the equation:

Ĉs = C · M̂s (3.5)

where · indicates element-wise multiplication in equation 3.5. The recovered

source spectrograms are then converted into time domain signal by using an

approximate inverse CQT (ICQT) [85].
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Figure 3.4: Separated Constant Q frequency basis functions of Source 2

3.6 Inverse CQT

The ICQT is used to approximately reconstruct the input signal x[n]. This

is done by using CQT coefficients in matrix Ĉs obtained using equation 3.5.

This is done octave wise in a similar manner as we calculated the forward CQT

but is in a reverse order. Let x̂d is the part of time-domain input signal x[n]

that represents one octave. The complex valued DFT coefficients are calculated

using the following equation.

X̂d = YĈsd (3.6)

Then, the inverse STFT is used to calculate the x̂d. Thus, processing the

CQT spectrogram over all the octaves, the ICQT reconstruct x̂(n) which is an
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approximation of the input signal x[n].

This new method to calculate the CQT coefficients for each octave gives

a better inverse CQT than the previously proposed methods because of the

following reasons. Firstly, the method uses a spectral transform matrix Y for bo

number of CQT bins, the signal is repetitively analysed from higher octaves to

lower octaves to obtain the CQT coefficients which increases the redundancy

of the transform. However, this increase in redundancy helps in capturing

most of the data features required to obtain a high quality inverse CQT. The

redundancy,Rf , is directly proportional to the highest frequency analyzed i.e.

the highest octave chosen. The separation quality can be further improved

by increasing the number of CQT bins per octave, Bo. However, Rf and Bo

are optimally chosen for computational efficiency. An analysis of quality of

reconstruction as a function of Rf and Bo can be found in [85]. It is important

to note that this octave by octave processing of audio signal makes it impossible

to use this version of the CQT for clustering of linear domain basis functions as

there is no way to directly map the linear frequency basis functions to the CQT

domain using this approach.

A complete implementation of CQT can be found in [85]. In this chapter, we

have used the MATLAB toolbox of the reference implementation of the above

discussed method provided at [83] to obtain the Constant Q spectrogram.
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3.7 Experimental Set-up

The experimental setup for this experiment is the same as described in section

2.4. The same set of input mixtures were taken for evaluating the performance

of the algorithm. The parameters for CQT is described as follows.

The Fast Fourier Transform is used to calculate the successive DFT blocks

for each octave. 24 frequency bins per octave, Bo, are used for the CQT to

obtain log-frequency resolution. Frequencies ranges from 55 Hz to 15 kHz are

used to calculate the frequency bins. More details on the calculation of CQT

coefficients for each octave in the spectrogram can be found in [85]. For the

SNMF model, the number of sources is equal to 2. The cost function used

for the SNMF decomposition is same as used for NMF. The SNMF algorithm

is run for 50 iterations. Individual spectrograms of the separated signals are

then obtained through spectral masking followed by reconstruction of individual

signal as explained in section 3.5.

For the given 25 test mixture, the number of allowable translations, k, varies

between 4 and 9. Multiple tests were run for the different number of allowable

time shift and the separated sources with the highest separation quality were

picked.

Figure 3.5 shows the audio spectrogram of a test mixture signal and its

corresponding separate sources. Figures 3.6 and 3.7 show the separation of two

sources using the improved CQT method in SNMF algorithm. It can be seen

from the spectrogram that the proposed algorithm achieves the separation of

the signals corresponding to the sources. On hearing, the melodies played by
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Figure 3.5: Mixture spectrogram of the two sources

both the estimated sources were found to be separated well. The algorithm

was also found to separate notes simultaneously played by both the pitched

instruments in the mixture with a small interference of harmonics related to

that note. Performance evaluation of the SNMF algorithm, to measure the

separation quality, is done in the next section.

3.8 Results

The original separated signal from the sample library [91] were used as reference

to measure the performance of the SNMF algorithm. For comparison, the

original SNMF algorithm is used and is denoted by SNMFcqt. Details on the
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Figure 3.6: Separated source 1 using the improved CQT method in SNMF
algorithm.
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Figure 3.7: Separated source 2 using the improved CQT method in SNMF
algorithm.
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clustering SDR SIR SAR
SNMFcqt -1.85 14.97 3.46
SNMFncqt 10.88 25.44 11.47

Table 3.1: Calculated mean SDR, SIR and SAR for separated sound sources

SNMFcqt algorithm can be found in [44]. SNMFncqt represents the SNMF

algorithm discussed in this chapter. Quality measures for both the listed

algorithms were calculated. Table 3.1 shows the quality measures calculated

for SNMFcqt and SNMFncqt. All the results i.e. mean SDR, SIR and SAR,

are in dB. Both the SNMF algorithms, SNMFcqt and SNMFncqt, are coded in

MATLAB and are tested for the same set of test mixture discussed in section

2.4. From table 3.1, we can see an improvement of mean SDR of more than 10

dB by using the new CQT in the SNMF algorithm for the same set of audio

mixture and test parameters. As a result, on listening to the separated signals

the sources can be clearly identified with few artefacts. These artefacts are due

to interference of melodies played by one source on other in the mixture. Overall

it can be stated that by replacing the method to calculate the CQT in the SNMF

algorithm, considerably improves the separation quality. Hence, the algorithm

SNMFncqt outperforms the monaural source separation algorithm SNMFcqt.

Audio examples for the estimated audio source signals can be found at [92].

3.9 Conclusions

We have demonstrated that by replacing the method to the calculate CQT

coefficients in Shifted NMF algorithm with an improved method of calculating
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the CQT, the separation quality can be significantly improved. The CQT

coefficients were calculated on an octave-by-octave basis to efficiently capture

all the features to improve the separation quality. We have also discussed that

the separation quality is directly proportional to the redundancy factor Rf and

the number of frequency bins per octave B0, of the newly proposed CQT. We

tested the algorithm for multiple input mixtures of two sources that contained

melodies covering wide range of frequencies. Finally, we compared the results

obtained with the SNMF algorithm discussed in [44]. It was evident from the

tests that by replacing the method to calculate the CQT transform, we can

significantly improve the sound quality of the separated sources. However, it

should be noted that this improved CQT method cannot be used for SNMF

based clustering due to the lack of a direct mapping matrix from the linear

domain to the log-frequency frequency domain. In the following chapter, we

will modify the structure of the model in the SNMF clustering algorithm to

improve the sound separation results.
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Chapter 4

Incorporating the CQT in

SNMF to improve clustering

4.1 Introduction

In previous chapters, we have shown that Shifted Non-negative Matrix

factorisation (SNMF) based methods can be used to group NMF basis functions.

However, the clustering of basis functions using SNMF uses a Constant Q

Transform (CQT) of the frequency basis functions. Here, we argue that

incorporating the CQT into the SNMF model can be used to better the

separation quality of individual sources. An algorithm [87] is presented to

estimate sound sources and will be shown to be an improvement to the existing

techniques.

The system model for the proposed algorithm is shown in figure 4.1.
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Figure 4.1: Block Diagram of the System model

Following the terminology of previous chapters, the magnitude spectrogram

X of the input mixture is obtained by using the short-time Fourier transform

(STFT). Then, the non-negative factorisation of X results in A and B. Also

a transform matrix Y is calculated using CQT. This is done by generating a

constant Q filterbank. Then, the frequency basis functions contained in A and

the CQT coefficients stored in Y are fed into the SNMF clustering model to

recover the instrument basis functions. Thereafter, the source spectrograms

for individual sources are recovered using two techniques. They are spectral

masking and one-to-one mapping. The clustering techniques are discussed in

chapter 2. The reconstruction of the individual sources is done using Weiner

filtering.

As discussed earlier, the SNMF clustering algorithm uses a CQT. However,

the use of CQT in the clustering algorithm makes it difficult to recover the

separated sources. This is because there is no true inverse of CQT available.

Although, we can use one-to-one mapping discussed in section 2.3.2 to recover

the individual sources, the separation obtained using the spectral masking is

considerably better than that of one-to-one mapping. Keeping this mind,

the modification proposed here is principally aimed at the spectral masking
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approach, as there is no need for the inverse in the one-to-one mapping.

However, the approximate inverse CQT in the case of spectral masking does

not give a perfect reconstruction of the signals associated with sources. This

results in the deterioration of the separation quality of the individual sources. In

order to avoid using frequency basis functions in the CQT domain, we propose to

incorporate the CQT mapping in the SNMF model, with the aim of improving

the clustering and separation. This is explained in the next section.

4.2 Methodology

4.2.1 Linear Frequency Domain Approximation of

SNMF

The proposed modification of the SNMF clustering algorithm is follows:

A ≈ 〈〈PD〉{3,1}H〉{[2:3],[1:2]} (4.1)

where, P is constant tensor of size n × k × f and can be obtained using

equation 4.2.

P = 〈YR〉{1,1} (4.2)

The SNMF model uses the tensors A and Y as the input parameters. The

tensorA in equation 4.1 is the same as the matrixA in equation 1.33. The tensor

A contains NMF frequency basis functions in the linear frequency domain and
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is considered as a spectrogram of the linear domain frequency basis functions.

Another input parameter to SNMF, the transform tensor Y of size f×n contains

the CQT coefficients, where f is the number frequency bins. Again the transform

tensor is the same as the transform matrix Y as discussed in section 2.3.1.

R is a translation tensor of dimension f × k × f for k possible frequency

translations. R translates the instrument basis functions in D up or down in

frequency by half a tone to approximately cover all the notes played by the

particular instrument. The tensor D of size f × s contains instrument basis

functions for each source, where s is the number of sources. Tensor H of size

k × s× r denotes a time activation function. For example, H(i , j , :) indicates

the time envelope for the ith translation of the jth source. It gives the temporal

information about a given note that is being played by a particular instrument.

The spectrogram A is then factorised using the SNMF model to

approximately determine the instrument basis functions as shown in equation

4.3.

The cost function used to obtain tensors D and H is the same as used for

NMF. Therefore, the SNMF problem using KL divergence can be defined as

〈L,H〉 = min
L,H≥0

DKL(A||〈LH〉{2:3,1:2}) (4.3)

where L denotes

L = 〈PD〉{3,1} (4.4)
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In equation 4.4, P is a constant tensor. Therefore, the problem defined in

equation 4.3 is reduced to minimising the divergence between A and the product

of non-negative tensors D and H.

4.2.2 Update Equations

The update equations for tensor D and tensor H are derived using the cost

function described in 1.36. The iterative multiplicative updates used for the

translated frequency basis functions in D are determined in a similar manner as

done in [44]. This can be formulated as follows:

D ← D ·
(〈〈PA〉{1,1}H〉{[1,3],[1,3]}
〈〈PO〉{1,1}H〉{[1,3],[1,3]}

)

(4.5)

where O of size n×r is a tensor of all ones. Similarly, the multiplicative updates

for the activation functions in H are calculated as follows:

H ← H ·
( 〈〈PD〉{3,1}A〉{1,1}
〈〈PD〉{3,1}O〉{1,1}

)

(4.6)

The tensors D and H are constrained to be non-negative. This is

ensured by random positive initialisation and multiplicative updates. After the

factorisation, the individual instrument basis functions can be reconstructed

using the slices of tensor, D(:, s) and H(:, s, :). This is shown in equation 4.7.

As ≈ 〈〈PD(:, s)〉{3,1}H(:, s, :)〉{2:3,1:2} (4.7)

whereAs denotes a spectrogram containing instrument basis functions for source
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s.

It is important to note that, this method of grouping of frequency basis

functions is different from previously proposed methods in chapter 2 because of

the following two reasons. Firstly, the SNMF model uses the linear domain NMF

basis functions as an input and the CQT transform matrix is fed into the SNMF

algorithm to exploit the shift-invariant property. This is done by using the CQT

transform matrix to map the linear domain NMF basis functions to the CQT

domain before every iteration until the convergence is achieved. Secondly, the

use of the CQT inside the SNMF model avoids the need to use the inverse CQT

for recovering the NMF basis functions. As a result, the separated NMF basis

functions, contained in As, are in the linear domain, and so this should lead to a

better approximation of the original sources. Thus, the linear frequency domain

approximation of the SNMF model can be used to separate frequency basis

functions corresponding to their respective sources in a given music mixture.

4.3 Signal Reconstruction

Having obtained the clustering of the basis functions, the individual source

spectrograms can be reconstructed by the two techniques used in section 2.3.2.

However, the estimated source spectrograms here are in linear domain rather

than in log-frequency domain. Therefore, the processing step of converting

the frequency basis functions from log-frequency domain to linear domain will

vanish. Thus, the two methods for the reconstruction of the sound sources are
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as follows.

4.3.1 One-to-one mapping

The first method of reconstruction is one to one mapping. Having obtained the

individual source spectrograms for frequency basis functions As corresponding

to s, the energy of the individual frame in each spectrogram As for P number

of sources is calculated. Subsequently, the frequency basis functions in the

original NMF matrix A is assigned to the source that has the highest energy at

that frame, thus the grouping of frequency basis functions is done. After, the

frequency basis functionsA are grouped together corresponding to their sources,

the individual complex valued spectrograms corresponding to the sources are

obtained as detailed in section 2.3.2.

Finally, the individual sources are obtained using inverse STFT.

4.3.2 Spectral Masking

The second method of source reconstruction is that of spectral masking. Here,

the individual source spectrograms are reconstructed using the spectral masking

as detailed in 2.3.2. The estimated source spectrograms As are used to generate

individual masks. These masks are then applied to the original spectrogram A

that contains the frequency basis functions obtained using NMF. The calculation

of the individual mask Ms associated with s is shown in equation:
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Figure 4.2: Spectrogram of a input mixture signal

Ms =

(

A·2
s

∑P

p=1A
·2
p

)

(4.8)

Then, the mask Ms is applied on the original basis function spectrogram A

to obtain Âs that contains the frequency basis functions corresponding to the

source s as shown in equation 4.9. This is done to improve the quality of the

separation.

Âs = A ·
(

A·2
s

∑P
p=1A

·2
p

)

(4.9)

As each row vector in A has a corresponding column vector in B, clustering

of the time activations is handled automatically. Then, the source magnitude
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Figure 4.3: Spectrogram of the separated source 1.

spectrogram is obtained as follows:

Xs = ÂsBs (4.10)

Thereafter, the generalised Weiner filter is used to obtained the

complex-valued source spectrograms as shown in equations 2.18 and 2.19.

Then, the individual sound sources can be reconstructed using inverse STFT.

In the following section, we will discuss the details about the test mixture and

simulation setup used for the experiments detailed in this chapter.
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Figure 4.4: Spectrogram of the separated source 2

4.4 Results and Discussion

The simulations are done on the same experimental set up as previous chapters

to compare the results. Figure 4.2 shows the magnitude spectrogram of a test

signal containing music signals of two pitched instruments. Figure 4.3 and

figure 4.4 show the spectrogram of reconstructed sound source of a test mixture.

Through visual inspection, it can be concluded that the linear frequency domain

approximation of the SNMF model can be used to separate frequency basis

functions corresponding to sources in monaural mixture. The performance of

the proposed SNMF algorithms is evaluated in the following section.
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4.4.1 Results

We will compare the results of the proposed method i.e. the linear frequency

domain approximation of the SNMF algorithm with the recently proposed

SNMF clustering algorithms (SNMFmask and SNMFmap) discussed in chapter

2. We will use SNMFlmap and SNMFlmask to represent the SNMF clustering

algorithms proposed in this chapter, where lmap and lmask in the subscript

indicate the use of one-to-one mapping and spectral masking respectively. It

is important to note that SNMFmask and SNMFmap use log-frequency mapped

versions of the NMF basis functions as an input to the SNMF model while

SNMFlmap and SNMFlmask use the linear domain frequency basis functions.

SNMF algorithm SDR SIR SAR
SNMFmap 7.69 20.61 8.83
SNMFmask 10.25 27.15 10.87
SNMFlmap 5.75 24.86 6.88
SNMFlmask 11.11 32.13 11.47

Table 4.1: Mean SDR, SIR and SAR for separated sound sources using SNMF
algorithms.

A summary of the results for all the SNMF clustering algorithms are listed

in table 4.1. The results are calculated by averaging the quality measures over

frequency shifts k and the number of sources P , present for each mixture in the

test dataset.

From table 4.1, we can see that SNMFlmask outperforms the other listed

SNMF algorithms. We can see that there is a significant improvement of

separation quality with the use of SNMFlmask over SNMFmap. It can be
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concluded from the SIR score that the SNMFlmask performs considerably better

than SNMFmask to remove interference between the sources in a given mixture.

There is approximately 1 dB improvement on the SAR and SDR scores but

on listening, the separated sound sources using SNMFlmask were audibly better

than those of SNMFmask. This highlights the fact that the quality measures do

not correlate well with human perception of separation quality. Audio examples

for the estimated source signals using SNMFlmask can be found at [92].

Furthermore, we found that the use of one-to-one mapping in SNMFlmap

does improve the separation as compared to the previously proposed algorithms.

Although we were able to reduce the interference using SNMFlmap as compared

to SNMFmap, it resulted in increased artefacts and lower overall performance in

terms of SDR. Overall, the SNMFlmask was found to perform best. This further

proves the point that spectral masking is a better way to re-synthesise the

separated sources as it adds to the improvement achieved through the separation

algorithm. Hence, we can argue that, a better separation algorithm may further

be improved by using spectral masking. We will discuss the effect of masking

on separation performance in chapter 6.

4.5 Conclusions

A SNMF based algorithm has been proposed to group NMF frequency basis

functions corresponding to their respective sources. We have implemented the

clustering algorithm to use the NMF frequency basis function in the linear
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frequency domain as an input to the SNMF model. This avoids the need for

the use of the inverse CQT after the clustering stage for the reconstruction of

the individual source signals. This is because the CQT is now incorporated in

the SNMF model to obtain the clustering of the frequency basis functions. The

SNMF clustering algorithm proposed in this chapter demonstrates improved

performance over previous attempts at clustering basis functions for sound

source separation. Having discussed various SNMF algorithms, we will introduce

a group sparsity technique, motivated by the work done in [53], to improve the

working of the SNMF clustering algorithms.
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Chapter 5

Group Sparsity with Shifted

NMF

5.1 Introduction

In this chapter, we will continue our discussion with NMF based algorithms

discussed in previous chapters. Here, we will see the effect of various cost

functions used to evaluate the basis functions and further evaluate its effect on

SNMF algorithms. Also, we will try to incorporate the group sparsity technique

in the SNMF clustering method. We argue that the incorporation of group

sparsity to the NMF based methods may benefit the clustering algorithms. We

will test this on various SNMF clustering algorithms to evaluate the separation

quality of individual sources.

As discussed earlier in section 1.6.2, a property of NMF is that it typically
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gives a sparse representation of the given audio data. This makes the frequency

basis function sparse in nature. However, the NMF does not impose any

quantitative constraint on the nature of sparsity. Until this point in thesis,

NMF has been used to generate a compressed representation of the given audio

data with no control on the sparseness. Therefore, additional constraints may be

imposed to control the degree of sparseness to identify components in mixtures.

Such a constraint was proposed in [53] that generates a set of NMF basis

functions which benefits from sparsity at a group level. Here, we will attempt to

incorporate the group sparsity technique inside the SNMF clustering algorithms.

As mentioned earlier in 1.6.2, power spectrograms were used to calculate the

frequency basis functions in the original implementation of GS [53]. However,

many recent works in audio have used NMF of magnitude spectra instead of

power spectra because it gave better sound separation quality [28, 68, 41].

Therefore, we will use magnitude spectrograms for the the calculation of the

frequency basis functions.

To this end, we propose that this incorporation of GS in NMF of magnitude

spectra may improve the clustering in recently proposed SNMF-based clustering

algorithm discussed in chapter 2. The use of GS in NMF is motivated by the

fact that the activation of the NMF results in frequency basis functions that

correspond to the instruments (groups) present in the mixture. Therefore,

we want the NMF basis functions to be sparse in a group sense, hence the

prior knowledge of group sparsity may yield better grouping of the frequency

basis functions. Here, we use the relation between KL-NMF (NMF using
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KL divergence) and ML problem of estimating A and B using the Poisson

distribution [29] as explained in section 5.3. We also propose that the GS

constraint can further be integrated in the SNMF model for better separation

of the individual sources. Here, the SNMF model refers to the SNMF stage in

the SNMF clustering algorithm.

Here, we will explain the significance of the incorporation of GS at the two

stages of the SNMF clustering algorithm discussed in this chapter. The first

stage refers to the calculation of the frequency basis functions using the NMF

and the second stage refers to the clustering stage where the SNMF model is

used. In [53], it is mentioned that, in general, clustering of the basis functions

using group sparsity, close to that of the ideal, can be achieved for temporal

overlapping of sources up to 66%. However, in many cases there will be more

overlap of the sources than this percentage. Therefore, it can be concluded that

the GS in the first stage alone will not give good clustering of the basis functions

hence, the use of second stage to improve clustering.

We have discussed the implementation of the second stage alone in chapter

3 i.e. the standard SNMF algorithm (SNMFncqt) where the frequency basis

functions in log domain are obtained directly from the time domain signal using

CQT. However, after testing, we did not get any significant improvement on

the application of GS on SNMFncqt as evident from table 5.1. However, GS in

NMF at first stage did appear to reduce the amount of temporal overlapping

in the separated frequency basis functions. Further, with the application of GS

at the clustering stage, we argue that the prior knowledge of a particular group
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(source) will activate the SNMF model to force the corresponding frequency

basis function to iterate towards the group it belongs and thus improve the

quality of separation. This leads us to use the two stage process. Hence, GS

may assist the SNMF clustering algorithms discussed in this chapter and the

two stage process was necessary for improving the quality of separation [86].

As noted above, grouping of NMF basis functions is needed to segregate

sound sources. To this end we propose that the prior information of these groups

may be incorporated while calculating the NMF basis functions. Furthermore,

we can assume that an individual sound source present in the mixture is sparse

in nature, i.e, at a particular time, the contribution of the other instruments

compared to the currently active one is negligible and can be ignored. This

group-sparsity can further be integrated in the SNMF clustering algorithm to

improve the quality of the separation.

The structure of the chapter is as follows: Section 5.2 gives the flowchart

of the proposed algorithm. Section 5.3 illustrates the penalized ML estimation

method for GS in KL-NMF. Section 5.4 gives a overview of the SNMF algorithm

and gives the update equations for the proposed SNMF algorithm with GS. A

comparison of various SNMF algorithms is done in section 5.5. Finally, the

results of the proposed SNMF algorithm are compared against a previously

proposed algorithm in section 2.3.
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5.2 Overview of Statistical Model

Figure 5.1 shows the flowchart for the algorithm proposed. The spectrogram of

the input signal is obtained by using the short-time Fourier transform (STFT).

Then, the NMF basis functions are obtained from the magnitude spectrogram

of a given mixture. Thereafter, the NMF basis functions are then converted

into log frequency domain using CQT to exploit the shift-invariant property

of the SNMF algorithm. Then, the activation of the SNMF model results in

determining the instrument basis functions Ar for the respective sources. The

individual source spectrograms are obtained from Ar using SNMF masking as

explain in section 2.3.2.

Figure 5.1: Signal flowchart of the System model

It can be seen from the figure 5.1 that we have incorporated group sparsity at
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two stages of the proposed algorithm. The first of the two stages is calculating

the NMF basis functions and the second stage is the activation of the SNMF

clustering algorithm to determine the instrument basis functions. However, it

can be noted that no knowledge of GS at first stage is used to model the SNMF

clustering at second stage and vice versa. In the following section we will explain

the incorporation of the NMF method using KL divergence to determine the

NMF basis functions.

5.3 Group sparsity with KL-NMF

5.3.1 Equivalence between KL-NMF and ML estimation

The minimising of the KL divergence cost function in equation 1.36 to determine

A and B can be derived from a probabilistic model described in [29]. This can

be illustrated as follows. Given the magnitude spectrogramX of the input signal

x, we assume that at every time-frequency interval, the sum of the magnitude

of individual source signals xr
m,n is the total magnitude of the observed signal

xm,n, such that:

xm,n =
R
∑

r=1

xr
m,n (5.1)

where xr
m,n represents the time-frequency atom in the instrument spectrogram

xr produced by the rth source. R is the number of sources in the mixture. Also,

we make the hypothesis that signals in xr
m,n follow the Poisson distribution.
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Thus, the magnitude of each xr
m,n can be represented as:

xr
m,n ∼ P(xr

m,n;Am,rBr,n) (5.2)

P(k;λ) = λke−λ

Γ(k + 1)!
(5.3)

where Br,n is the activation gain for the basis function Am,r. Equation 5.3

defines the Poisson distribution, P(k;λ). It can be noted that the summation of

the statistically independent Poisson random variable is also a Poisson random

variable. Further, as mentioned in [1] the determination of basis functions can

be modelled as

p(X|A,B) = P(X;AB) (5.4)

Alternatively, it can be written as:

p(X|A,B) =
∏

mn

e−(AB)mn(AB)mn
Xmn

Γ(Xmn + 1)!
(5.5)

The ML solution can be given by taking the log and solving which is as follows:

(A,B) = arg max
A,B

log p(X|A,B)

=
∑

mn

−(AB)mn +Xmn log(AB)mn − log(Γ(Xmn + 1))

≡ −DKL(X||AB)

(5.6)

Thus, we derived a ML estimation of the basis vectors using the probability

model in equation 5.6. Here, we can see that the problem definition in equation
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5.6 is same as the cost function DKL(X||X̂) defined in equation 1.36 up to a

set of constant terms. Hence, we find that this objective is same as minimising

the cost function DKL(X||X̂). In the next section we will incorporate group

sparsity with the ML estimation that would favour NMF using KL divergence.

Following the assumption made in section 1.6.2, a source can be characterised

by a subset of components g. Therefore, the source spectrogram corresponding

to a group, Xg, where

Xg =
∑

r∈g

Xr, (5.7)

can be estimated by the following Wiener filter estimator [53]:

E (Xg|X,A,B) = X ·
(

AgBg

AB

)

. (5.8)

5.3.2 ML with Group Sparsity

Given r basis functions, we need to group them into g groups, where each of

these non-overlapping groups contains all the basis functions that correspond to

a particular source. The sparsity constraint has been previously applied on both

A and B or either A or B for many SSS algorithms but until the introduction

of group sparsity, this was done on individual basis functions because setting

the correct level of sparsity at the basis function level was problematic, as the

level of sparsity varied from signal to signal [17]. In our case, we want to make

a given source active for as little time as possible. Therefore, following the

principle used in [53], for a given time-frequency frame n, if a source (group) is
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not on, then the corresponding activation gain Bgn should be set to zero. Here,

Bgn is a vector of basis functions ri such that ri is a member of a given group

g ( ri ∈ g where 1 ≤ i ≤ m). Let Bg
n be defined as a time envelope of the given

source for a given time frame n such as

Bg
n = ||Bg,n||1 (5.9)

where ||.||1 is the L1 norm function. Furthermore, it is assumed that the

activation gains Bg
n for all the individual sources are statistically independent

inverse gamma random variables. Thereafter, by using the conditional

probability on the activation function B at frame n for r basis functions, the

activation gains can be factorized into groups to determine respective sources.

Hence, the marginal distribution of Bn:

p(Bn|Bg
n) =

∏

g

∏

r∈g

p(Brn|Bg
n) (5.10)

The prior of the activation functions Bn can be calculated using the marginal

distribution as follows:

p(Bn) =
∏

g

Γ(g + η)

Γ(η)

αη

(α +Bg
n)(η+g)

(5.11)

where α is the scaling factor and the parameter η defines the shape of the

gamma distribution. The ML estimation of basis functions A and gains B is

done using this prior and the term defined in equation 5.6. This introduction of
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the penalized term, i.e. the prior information, for the ML estimation is known

as MAP (maximum a posterior) estimation. Therefore, the MAP estimation

technique can be formulated as:

(A,B) = min
A,B≥0

DKL(X||AB) + λΦ(B) (5.12)

where the 2nd term Φ(B) is an optimisation term and is used to uniquely

define the grouping pattern. A definition of Φ(B), as shown in equation 5.14,

was proposed in [53]. The regularisation term λ ∈ [0, 1) tunes the quality

of factorisation obtained and can be set to zero to obtain standard KL-NMF

solution.

The update equation for the activation function A and B are follows:

B← B ·
(

AT (X⊛ X̂−δ)

AT (X̂−(δ−1)) + λΦ′ ||Bgn||1)

)

(5.13)

where

Φ(z) = log(α + z) (5.14)

A← A ·
(

(X⊛ X̂−δ)BT

(X̂−(δ−1))BT + λ
∑

nBrnΦ
′ ||Bgn||1

)

(5.15)

were δ is set to 1 for KL divergence. The operator · indicates elementwise matrix

multiplication. The derivation of update equations can be found in [53] where δ

was set to 2 for the IS divergence. All operations in equations 5.13 and 5.15 are

done elementwise. Using these equations the basis functions with GS constraints

can be obtained. The obtained frequency basis functions need to be clustered
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to respective sources for SSS. In chapter 2, we have proposed a SNMF based

clustering algorithm to segregate the frequency basis functions to their sources.

We argue that further incorporating GS in SNMF would better the quality of

separated sources as it would guide the basis function obtained using NMF with

GS towards the sources. In section 5.5, we will show how the choice of method

to calculate the NMF basis functions affects the SNMF clustering stage. Also,

we mention that we are not using GS grouping at the first stage to guide the

SNMF clustering at the second stage.

Next, we will discuss the implementation of GS in KL-SNMF.

5.4 Group sparsity with KL-SNMF

Having obtained the basis functions using group sparsity in KL-NMF, a

knowledge of groups and their sparseness can be introduced in SNMF when

clustering these basis functions. This enforcing of the basis functions towards

their respective groups will further improve the clustering and hence improving

the separation quality of the individual sources. This can be done in the same

way as explained in section 5.3. Here, we will use the principles and techniques

used in SNMF clustering algorithm to derive the update equations in KL-SNMF.

5.4.1 Shifted NMF with Group Sparsity

To incorporate shift-invariant property, the Constant Q spectrogram C is

obtained by multiplying a transform matrix Y with matrix A in a similar
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manner as done in section 2.3. Here, transform matrix Y acts as a warping

function which translates the linear frequency representation inA into Constant

Q domain.

C = YA (5.16)

The spectrogram C is then factorised using the SNMF model to

approximately determine the instrument basis functions as shown in equation

5.17.

C ≈ 〈〈RD〉{3,1}H〉{2:3,1:2} (5.17)

The parameter definition of the given SNMF model can be found in section

1.5.6. The cost function used to obtain tensors D and H is same as used for

NMF. Therefore, the equivalence between ML estimation of tensors D and H

and minimising the KL divergence between tensors C and 〈DH〉 can be exploited.

The cost function for the decomposition described in equation 1.76 can be

defined as:

DKL(C||〈PH〉{2:3,1:2})

=
∑

i,j

(Cijlog
Cij

〈PH〉{2:3,1:2}
− Cij + 〈PH〉{2:3,1:2}) (5.18)

where

P = 〈RD〉{3,1} (5.19)
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where tensor P contains the translated instrument basis functions. The basis

functions in D are translated using the translation tensor P as shown in equation

5.19.

5.4.2 Update equations for H and D with Group Sparsity

Assuming that the number of groups is equal to the number of instruments,

we can get the required clustering of frequency basis functions. The GS in

SNMF can be incorporated by applying the group sparsity constraint on H and

determining the priors using the gamma distribution as done in equation 5.10

and 5.11. For a given time-frequency frame, let the activation gain Hg,k in

SNMF model be the summation of all the components defined by H(k, : , : ) for

a particular g. This can be expressed as:

Hk
g =

∑

k

H(k, g, :) (5.20)

where k is the number of frequency shifts. Further, with the knowledge of

priors of the activation function H, the SNMF problem can be reduced to the

ML estimation of the tensors D and H. The penalised ML solution for the

KL-SNMF problem can be defined as:

〈P,H〉 = min
P,H≥0

DKL(C||〈PH〉{2:3,1:2}) + λΦ(H) (5.21)

The optimisation term Φ(H) is again used to define the group sparsity

constraint. The interactive multiplicative update equations for P and H can be
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derived in a manner similar to [44]. This can be formulated as follows:

H ← H ·
( 〈〈RD〉{3,1}Q〉{3,1}
〈〈RD〉{3,1}O〉{1,1} + λΦ′(Hk

g)

)

(5.22)

where

Q =
C

〈PH〉{2:3,1:2}
(5.23)

and O is a tensor of all ones. The multiplicative updates for the translated basis

functions in D can be found by using following equations:

W = 〈RO〉{1,1} (5.24)

D ← D ·
( 〈ZH〉{1:3,1:3}
〈WH〉{1:3,1:3} + λ

∑

nHr,nΦ
′(Hk

g)

)

(5.25)

where

Z = 〈RQ〉{1,1}

where function Φ(z) is same as stated in equation 5.14. The multiplicative

updates and the positive random initialization for D and H ensures the positive

tensor factorisation. The number of translations k in R is chosen such that the

translated (frequency-shifted) instrument basis functions cover all the notes or

chords corresponding to basis functions in the mixture.

The performance evaluation of the various SNMF clustering algorithms

discussed in this chapter is based on two factors. The first one is the use of cost

functions i.e. KL divergence and IS divergence. The second one is the use of GS
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at the two stages discussed through the course of this chapter. We will define

some notations to denote the two stages and the SNMF clustering algorithms.

The prefix g has been used in subscript of SNMF or NMF to indicate the use of

GS in the given SNMF clustering algorithm. In other words, gkl represents KL

divergence with GS and kl refers to KL divergence without GS. For example,

SNMFgis−gis represents two stages of SNMF clustering algorithm with group

sparsity at both the stages with IS divergence. - in the subscript divides the two

stages where the left side refers to the first stage and the right side represents

the second stage. However, NMFkl denotes standard NMF method with KL

divergence for calculating frequency basis functions and SNMFgkl represents the

2nd stage of the SNMF clustering algorithm with KL divergence incorporated

with group sparsity. We will use these notations for rest of the chapter.

Having obtained the source spectrograms in C, signal reconstruction can be

carried out in the similar manner as done in section 2.3.2.

Figure 5.2 shows the log-frequency spectra of the NMFgkl basis functions of

a test mixture of two sources. The x-axis shows the frequency basis functions

for all the notes played by the instruments present in mixture. The application

of the SNMF clustering algorithm separates the basis functions into two groups

corresponding to the individual sources.

The separated basis functions of source 1 and source 2 respectively can be

seen in figures 5.3 and 5.5. Here, the SNMFkl was used for the clustering

stage. Figures 5.4 and show the separated frequency basis spectrograms using

SNMFgkl. The separated basis functions are more visible for respective sources
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Figure 5.2: NMFkl basis function of input mixture in constant Q domain.
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Figure 5.3: Recovered NMFkl basis functions using SNMFkl for source 1.
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Figure 5.4: Recovered NMFkl basis functions using SNMFgkl for source 1
.
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Figure 5.5: Recovered NMFkl basis functions using SNMFkl for source 2.

149



NMF basis functions

S
ca

le
d 

fr
eq

ue
nc

y 
C

om
po

ne
nt

2 4 6 8 10 12

20

40

60

80

100

120

140

160

180

200

Figure 5.6: Recovered NMFkl basis functions using SNMFgkl for source 2
.

for SNMFgkl as compared against SNMFkl. Thus, by inspecting above figures,

we can show that SNMFgkl works better than SNMFkl to obtain distinct

groupings of basis functions and can further be used to separate sources in

the mixture. We will further prove this point in the result section. Also, we can

conclude that SNMF with GS constraint can be used to cluster basis functions

in monaural mixtures. We

5.5 Experiments

A number of different tests were conducted to efficiently determine the frequency

basis functions using NMF and to determine the effect of the number of different

translations, k, in frequency on various SNMF algorithms. We were hoping that
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Figure 5.7: Mixture spectrogram of the two sources

the use of various frequency shifts would give some insights to the clustering

obtained and would give a clear comparison of the various SNMF methods.

The number of frequency shifts ranged from 5 to 12. Again, we use the same

set of test signals as in all previous chapters. The number of groups in GS was

limited to 2 for the given tests.

To demonstrate the improvement by using group sparsity, a comparison is

done between the SNMFkl−kl clustering algorithm and the SNMFkl−gkl clustering

method using spectrograms of the mixture signal and the estimated sources.

Figure 5.7 shows the mixture spectrogram of a mono signal which consists of

two sources. Figures 5.8 and 5.10 show the spectrograms of the separated sources

using SNMFkl−kl clustering algorithm. The spectrograms of the estimated

sources obtained using SNMFkl−gkl clustering algorithm is shown in figures 5.9
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Figure 5.8: Separated source 1 using SNMFkl−kl clustering algorithm.
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Figure 5.9: Separated source 1 using SNMFkl−gkl clustering algorithm.
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Figure 5.10: Separated source 2 using SNMFkl−kl clustering algorithm.
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Figure 5.11: Separated source 2 using SNMFkl−gkl clustering algorithm.
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and 5.11 respectively. From figure 5.10 it can be said that by using SNMF

clustering algorithm without GS completely rejects the upper harmonics of

the source 2 while SNMFkl−gkl recovers the upper harmonics to give better

separation. Hence, the incorporation of group sparsity helps in improving the

separation of the sources and after listening to the separated sources it was

found that the notes and the melodies played by the sources in mixture have

separated better than those of SNMFkl−kl clustering algorithm.

A summary of the results for all the SNMF algorithms are shown in figure

5.12. The scores for all the quality measures were calculated and graphed

against the allowable frequency shifts k. The results were determined by finding

the average of the quality measures obtained for each separated source for

each input mixture. Each set of quality measure, say SDR in figures (a),

(d) and (g), illustrates the comparison of all the listed SNMF algorithms for

NMFkl, NMFgkl and NMFgis basis functions respectively. Although, the GS

constraint in SNMFgis helps in enhance the clustering of NMFgkl basis functions

as compared against SNMFis but it fails to improve the grouping of for NMFgis

basis functions than that of SNMFis. Also, it can be concluded from the figure 1

(a) and (c) that the clustering results obtained using SNMFkl−gis are not good as

compared to the other proposed algorithms. On informal listening, we observed

that the SNMF clustering algorithm using KL divergence were found to give

typically good separation of the individual sources as compared to that of the

IS divergence. Also, through visual inspection it can be concluded that SNMF

algorithms with KL divergence (SNMFkl and SNMFgkl) completely outperforms
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Figure 5.12: Performance evaluation of SNMFkl(blue solid line), SNMFis(red
dotted line), SNMFgkl(black dash-dot line) and SNMFgis(green dashed line) to
group basis functions generated by NMFkl(1st column), NMFgkl(2nd column)
and NMFgis(3rd column) for different number of frequency shifts
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SNMF model with IS divergence (SNMFis and SNMFgis). As a result, we will

elaborate more on SNMF algorithms based on KL divergence in section 5.6.

5.6 Results

In this section, we will compare the result of the proposed SNMF clustering

algorithm with GS constraint against the SNMF clustering algorithm

(SNMFmask) discussed in chapter 2. It is important to note that the SNMFmask

algorithm is same as SNMFkl−kl as denoted in this chapter. As discussed

in section 5.5 the SNMF clustering algorithms with KL divergence work

better for clustering the basis functions when compared against the SNMF

clustering algorithms with IS divergence. Therefore, we will focus on SNMF

clustering algorithms with KL divergence. It can be concluded from figure

5.12 that for NMFkl basis functions, SNMFgkl improves the grouping of basis

functions as compared to SNMFkl. Also, SNMFgkl is marginally better than

SNMFkl to group the NMFgkl basis functions. However, both the SNMF

clustering algorithms, SNMFgkl−gkl and SNMFgkl−kl scores lower as the number

of frequency shifts increases. This is due to the over estimation of active notes

within the mixture because with the increase in frequency shifts the number

of estimated notes present in the mixture increases. It can potentially split

one ‘original note’ into two or more ‘notes’, thus deteriorating the timbre of

the original note present in the mixture and hence this adversely affects the

separation quality. Audio examples of the estimated source signals can be found
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at [92].

SNMF algorithm SDR SIR SAR
SNMFncqt 10.88 25.44 11.47
SNMFgncqt 10.75 25.19 11.39

Table 5.1: Mean SDR, SIR and SAR for separated sound sources using the
standard SNMF algorithm

SNMF algorithm SDR SIR SAR
SNMFkl−kl (SNMFmask) 10.25 27.15 10.87
SNMFkl−gkl 11.79 27.09 12.38
SNMFgkl−kl 10.83 26.04 11.43
SNMFgkl−gkl 10.98 25.81 11.64

Table 5.2: Mean SDR, SIR and SAR for separated sound sources using SNMF
algorithm

To compare the results listed in [2], the highest scores of the quality measures

for the separated sound sources for each mixture were hand-picked for the given

range of frequency shifts such that

SDR = max
k

SDRk, k ∈ K (5.26)

where K is the number of frequency shifts. The results were then calculated by

averaging the metrics (SDR, SIR and SAR) over each of the separated sources

for all the test mixtures. Thereafter, the mean SDR, SIR and SAR were obtained

by finding the average over each of the input mixture.

As mentioned earlier in section 5.1 that we did not get much improvement

in the separation performance by incorporating GS in the standard SNMF
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algorithm, SNMFncqt. Let SNMFgncqt denote the algorithm in which GS is

incorporated in SNMFncqt. A comparison of the quality measures between

SNMFncqt and SNMFgncqt is done in table 5.1. It can be concluded from the

table 5.1 that, in context of the standard SNMF algorithm, the incorporation

of the group sparsity does not give much improvement of the separation quality

of the individual sources.

Table 5.2 give the quality measures for the SNMF clustering algorithms. It

can be seen from the table 5.2 that each of the SNMF clustering algorithm

with group sparsity performs better than SNMFkl−kl. We can also see that

SNMFgkl performs better clustering for basis functions generated by NMFkl and

is marginally better for NMFgkl. Hence, the GS in SNMF improves clustering for

NMF basis functions. In general, for the SNMF clustering algorithms with GS,

the separated sound sources contained melodies corresponding a source with less

interference of the notes corresponding to the other source, as compared to that

of the SNMF clustering algorithm without GS, SNMFkl−kl. This observation

was made from the informal listening of the separated sources.

5.7 Conclusions

We have presented a Shifted NMF based clustering technique to cluster the

frequency basis functions. We have incorporated group sparsity at two stages

of the SNMF clustering algorithm. We have explained how the incorporation

of group sparsity at the first stage can potentially improve the clustering
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of frequency basis functions by reducing the overlapping of basis functions.

Subsequently, at the second stage, the group sparsity would guide the basis

functions to their respected groups corresponding to instruments in the given

mixture. A probabilistic model is used to exploit the equivalence between the

ML problem and minimising the KL divergence cost function, using the Poisson

distribution, to estimate the frequency basis functions. Group sparsity was

incorporated in the activation gain functions B and H respectively for the first

and second stages of the SNMF clustering algorithm. An optimisation term was

used to tune the grouping criteria. Results show that incorporating GS improves

the clustering of frequency basis function in the SNMF model, thus improving

the separation quality. In the next chapter we will discuss a family of masks

that may be used on the separation algorithms to improve the reconstruction of

the individual source signals.
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Chapter 6

Masking filters for

Reconstruction of Signals

6.1 Introduction

Through the course of this thesis, we have discussed the implementation of

various NMF based sound source separation (SSS) techniques that make use of

the magnitude or the power spectrograms and disregard the phase information

of the given audio signal. In general, the SSS algorithms filter out the phase

information from the audio signals [1, 33] and reduce the algorithm to a subset of

an image signal processing problem. This helps in reducing the complexity in the

analysis of the signal in order to separate meaningful identities to reconstruct the

magnitude spectrograms of the desired signals. However, a notable shortcoming

with such methods is that there is no phase information available to recover the
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time-domain signals from the separated source spectrograms. Many attempts

have been made to overcome this problem. Griffin and Lim proposed a

phase estimation technique to recover the phase of the source spectrograms

[35]. Le Roux et al [36] have used explicit consistency constraints on the

STFT spectrograms for the phase reconstruction. An alternative approach to

resynthesize the recovered signals was to simply reuse the phase of the given

original mixture.

In recent years, the most commonly used method has been to create

generalised Wiener filters using the estimated source spectrograms. Then,

these Wiener filters can be used as soft masks to the original complex valued

spectrogram to obtain the complex-valued individual source spectrograms.

The generalised Wiener filter in the context of monaural separation was first

proposed by Benaroya et al [34]. Recently, Le Roux et al [37] have utilised a

spectrogram consistency constraint to obtain better performing masks for phase

estimation of the recovered spectrograms. It can be noted that the creation of

soft masks is the same as spectral masking as discussed in section 2.3.2. The

method can be formulated as follows:

Xs = X ·Ms (6.1)

where for generalised Wiener filter, the soft masks Ms is defined as

Ms =

(

X·r
s

∑P

p=1X
·r
p

)

(6.2)
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Here Xs is the estimated complex spectrogram of the sth source, the

block letter X represents the original complex mixture spectrogram, Xs is the

estimated magnitude spectrogram of the sth source and the number of sources

in the mixture is P . Here, p is used to index the sources in P , The exponent

r is 1 for power spectrograms and is set to 2 for magnitude spectrograms.

The operator · represents elementwise operation and all the divisions in all

the equations in the chapter is done elementwise.

An advantage of using the Wiener filter approach is that the separated

sources sum together to give the original mixture signal. Thus, we will not lose

any part of the signal due to re-synthesis. This property is of particular benefit

for one of the application of separating sound sources from a mono mixture i.e.

remixing from mono to stereo. This is because the total sum of the separated

sources is equal to the original mixture, the interference due to the other sources

and errors in separation will often be masked and will be less prominent in the

upmix stereo space [40].

In effect, the Wiener filter method allocates energy in a given time-frequency

bin to the sources according to a least-square best fit. Thus, the masks obtained

are optimal in the lease square sense [54]. However, the masks generated does

not give any quantitative measure to justify that they are equally good in the

perceptual sense. Hence, it can be argued that from a perceptual point of view,

other masks may be more optimal for re-synthesis. Also, no work has been

done on how the performance of the masks vary with the number of iterations

performed by the separation algorithms. Instead, the masking is carried out at
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the end of the separation algorithm to recover the spectrograms. Having said

that, it is proposed to investigate the above mentioned issues in the remainder

of the chapter.

It is important to note that my contribution to this chapter is limited to

testing and evaluating the performance of the proposed family of masks using

various separation algorithms. I was also involved in the discussion of the

results obtained using PEASS toolbox [38]. However, the original idea and

the derivation of the divergence based masks is done by Derry Fitzgerald [39].

6.2 Divergence-Based Masks

As mentioned previously in section 6.1, the generalised Wiener filtering approach

is optimal in a least-square sense. However, in case of sound source separation

algorithms, especially NMF based methods, the cost function defined by the

least- square approximation has typically not performed better than other cost

functions. The two most widely used cost functions for audio applications are

the KL divergence and the IS divergence. The definition of the KL-based and

IS-based cost functions is detailed in section 1.5.4.

To this end, we propose to develop masks based on these divergences and

see if they improve the separation quality of the individual sources as compared

to the generalised Wiener filter masks. Hence we define a family of divergence

based masks:
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Ms = 1− D(Xs,X)t
∑P

p=1D(Xp,X)t
(6.3)

where the mask associated with the sth source is represented by Ms, X denotes

the estimated mixture spectrogram. The letter D symbolises any suitable

divergence metric and the parameter t is used to vary the properties of the

mask. More details on the derivation of equation 6.3 can be found in [39]. It

is important to note that both the KL and IS divergence used to create these

masks approach zero when the corresponding data points are similar. Therefore

the variable term in equation 6.3 defines a mask that removes the source from

the given mixture. Hence, subtracting this value from 1 generates the mask

to separate the source in consideration. Thereafter, for all the family of masks

generated, the complex valued source spectrogram Xs can be obtained using

equation 6.2.

Here, the allocation of the energy in a given time-frequency bin is based

on best fit according to the chosen divergence metric. It is also worth noting

that the sources separated using these masks will sum together to reconstruct

the original mixture to a constant term P − 1, where P indicates the number

of sources present in the mixture. However, the result will not vary as it is

invariant to the amplitude changes. Hence, the resynthesis using the proposed

family of masks is also suitable for remixing or upmixing.
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6.3 Masking Testsets

Here, we use three previously proposed NMF based algorithms with their

respective testsets to test the performance. This is done to ensure that the

applicability of the proposed family of masks is not limited to a given algorithm.

The first algorithm used is the Source-Filter based Sinusoidal Shifted

Non-negative Tensor Factorisation (SSNTF) algorithm. The algorithm is based

on the assumption that a given instrument can be uniquely modelled as a

frequency invariant set of harmonic weights along with a corresponding formant

filter. This set up allows the timbre of the instrument to change with pitch.

The details of the algorithm can be found in [20].

The second algorithm is the NMF based user-assisted source separation

algorithm (UA)as detailed in [18]. In this algorithm, the user sings along

with the given song and records the source to be separated. The recording is

then factorised to obtained frequency basis functions using NMF. The resultant

frequency basis functions are then used as priors to influence the factorisation

of the mixture signal to recover the desired source. Here, the source can be

any instrument or vocal present in the original mixture. The priors are used

to guide the factorisation for the first 20 iterations, with the influence of the

priors reduced with each subsequent iteration until the updates reduce to those

of standard NMF after 20 iterations. The test used here was created from a

set of recordings by the Beach Boys. Here, the vocals and the backing tracks

were available separately. Further, these recordings were used to create mono

mixtures by manually synchronising and mixing the tracks. The details of the
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testset can be found in [19].

The third algorithm is the SNMF clustering algorithm (SNMFmask) discussed

in chapter 2. The testset used for the first and the third algorithm are same as

detailed in section 2.4. Here SNMF was used to identify the clustering of the

frequency basis functions obtained by NMF. Then, NMF was run again on the

spectrogram using the same initialisation as the original NMF stage, so that

the NMF will converge to the same point as the initial NMF. This was done

to ensure that the clustering obtained using SNMF still applies. Further, the

use of standard NMF without any constraints helps in analysing the effects of

masking on the standard NMF algorithm.

The use of three algorithms to evaluate the performance ensures the following

two points. Firstly, all the NMF based source separation algorithm are using

different methods and constraints and secondly, the two testsets used here are

very different from each other. Therefore, in context of using masks, the results

obtained should generalise well.

6.4 Experiments and Results

We have used the values of t equal to 1 and 2 (see equation 6.3) to evaluate

the performance of the divergence based masks for both KL and IS divergences.

The three algorithms were run for 100 iterations with KL divergence as a cost

function. All the audio test signals in the testset were mono mixtures with a

sample rate of 44.1kHz. The separation performance of the proposed family of
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masks and the Wiener filter mask were calculated after every 10 iterations.

The evaluation of the working of the masks was done using the PEASS

toolbox, which attempts to measure the perceptual quality of the audio source

separation by calculating a set of objective measures [38]. The metrics used

were the target-related perceptual score (TPS), the artefacts-related perceptual

score (APS), the interference-related perceptual score (IPS), and the overall

perceptual score (OPS).

TPS determines how well the separated source matches the spatial

positioning of the original source. APS measures the amount of artefacts

perceived in the estimated source. IPS calculates the perceived interference of

the other sources in the separated source and finally OPS measures the perceived

overall quality of the separated sources.

Figure 6.1 shows the obtained mean OPS values for the source separation

achieved using the SSNTF algorithm for the corresponding testset. Through

visual inspection, it can be seen that the proposed family of masks outperform

the generalised Wiener filter. Also, the KL mask with t equal to 2 has the

highest perceptual value, thus performing the best. It is very interesting but

surprising to note that the peak is achieved after 10 iterations and then the

performance decreases for all the masks. We will comment on this in the later

part of this section.

Figure 6.2 shows the average OPS values for UA and its associated testset. It

can be seen that again the proposed masks outperforms the generalised Wiener

filter and KL mask with t = 1 performs best among all the masks and KL
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Figure 6.1: Overall Perceptual Scores for the SSNFT algorithm. A line with
diamonds indicates the performance of the use of the IS divergence mask, the
circle-dashed line denotes the perceptual score obtained due to the generalised
Wiener filter mask and stars indicates the use of a KL divergence mask. The
use of solid line is for t = 2 and a dotted line indicates the use of t = 1 for the
corresponding mask. The same legends is used for all subsequent figures in this
chapter
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Figure 6.2: Overall Perceptual Scores for the UA algorithm. Legend as per
figure 6.1.

Figure 6.3: Overall Perceptual Scores for the standard NMF algorithm. Legend
as per figure 6.1.
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Figure 6.4: Target-related Perceptual Scores for the SSNTF algorithm. Legend
as per figure 6.1.

Figure 6.5: Target-related Perceptual Scores for the UA algorithm. Legend as
per figure 6.1.
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Figure 6.6: Target-related Perceptual Scores for the standard NMF algorithm.
Legend as per figure 6.1.

mask with t = 2 is the second best in performance. Another interesting point

to note is that around 20 iterations, all the masks give best performance. As

mentioned earlier, it is at this point (20 iterations), the guidance of the priors

is removed from the update equations. This suggests that after this point the

NMF frequency basis functions begin to capture other parts of the mixture

signal along with the signals associated with the individual sources in question,

hence, the decline in performance of the masks.

Figure 6.3 shows the results obtained for OPS for standard NMF on its

testset. Again, like previous algorithms the peak is achieved at around 50

iterations, long before the convergence is achieved. Again, the generalised

Wiener filter is outperformed by the proposed divergence masks. However, the

improvement is smaller as compared to previous algorithms. Here, the IS masks
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with p = 2 performs the best with KL mask with t = 2 is the second best.

Therefore, in context of OPS, it can be said that the KL divergence mask with

t = 2 performs consistently well for all the algorithms.

Figure 6.4, 6.5 and 6.6 show the TPS for the SSNTF, the UA and the NMF

algorithms respectively. It was found that similar trends were followed for TPS

as compared to OPS for the SSNTF and the UA algorithms i.e. the proposed

masks outperform the generalised Wiener filter. However, the best performing

mask was for individual algorithms were different. In case of the standard NMF

algorithm TPS values increase gradually with the increase in iterations. The

KL mask with t = 1 performs best but the KL mask with t = 2 falls somewhere

in the centre in terms of performance.

Figure 6.7, 6.8 and 6.9 show the results calculated for IPS for the SSNTF,

the UA and the standard NMF algorithms respectively. Again, SSNTF shows

the highest peak in performance at the lowest iterations and follows a downward

trend with the increasing number of iterations and peaks can be seen for UA at

20 iterations. IPS values again reach a peak at 50 iterations and further varies

with iteration number. It can be seen that IS mask with t = 2 performs the

best and again KL mask with t = 2 is amongst the two masks. This suggests

that to minimise the interference of the other sources in the separated source,

the IS mask with t = 2 is optimal for resynthesis.

Finally, figures 6.10, 6.11 and 6.12 show the values obtained of APS for all

the three algorithms respectively. Here, the KL mask with t = 1 performs the

best and the Wiener filter is the second best. It is important to note that both
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Figure 6.7: Interference-related Perceptual Scores for the SSNFT algorithm.
Legend as per figure 6.1.

Figure 6.8: Interference-related Perceptual Scores for the UA algorithm. Legend
as per figure 6.1.
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Figure 6.9: Interference-related Perceptual Scores for the standard NMF
algorithm. Legend as per figure 6.1.

Figure 6.10: Artefacts-related Perceptual Scores for the SSNTF algorithm.
Legend as per figure 6.1.
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Figure 6.11: Artefacts-related Perceptual Scores for the UA algorithm. Legend
as per figure 6.1.

Figure 6.12: Artefacts-related Perceptual Scores for the standard NMF
algorithm. Legend as per figure 6.1.
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the KL and IS mask with t = 2 perform worst. Hence it can be concluded that

there is a trade off between the presence of artefacts and the interference of

the other sources in separation i.e. with the increase in artefacts reduces the

interference of the other sources and improves the IPS score.

Hence, we have seen that no individual mask performs the best for all the

metrics discussed in the chapter. However, in general the divergence based

masks outperforms that of the Wiener filter. Also, it can be said that the

mask should be chosen optimally according to the application for which the

separation of sources is done. Also, the KL mask with t = 2 is optimal for

the overall separation. Further, the IS mask with t = 2 is best suited for a

separation algorithm where the rejection of the other sources is important.

As noted earlier, we obtained an interesting but surprising result from these

tests at low number of iterations. We expected that the perceptual scores

would gradually increase as we increase the number of iterations and would

score highest once the convergence is achieved. This expectation was based

on the fact that more accurate modelling of the sources would lead to more

accurate separation, hence the high perceptual scores. On the contrary, in

most cases, we obtained highest perceptual scores at low number of iterations,

long before the separation algorithms are converged. After investigating this

issue, we found that a more accurate modelling of sources has actually resulted

in high perceptual scores, provided that the sources are reconstructed from

the estimated spectrograms directly, instead of using the estimated source

spectrograms to generate a mask to apply to the original mixture spectrogram.
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Hence, it can said that the highest perceptual score at low number of iterations

is a direct influence of using the masks when resynthesising the source signals.

We can further argue that the use of masking directly affects the quality of

separation and can give better separation before the convergence is achieved.

It can be potentially explained as follows. We are well aware of the fact that

an audio spectrogram representation is sparse in nature. Hence, we can say

that there will be a little or no energy present in many bins in the given

spectrogram. However, the estimated source spectrograms are more likely to

contain significant amount of energy at low number of iterations because of the

random initialisation of the basis functions. This is due to the fact that the basis

functions will not have adapted enough to remove this energy at low number of

iterations. In contrast, if we use the estimated source spectrograms to generate

masks then the masks would allocate energy of the corresponding bins in the

original spectrogram in proportion to that of the estimated source spectrograms,

and a proportion of a small number (in the original spectrogram) only yields

a smaller number. Therefore, it can be said that the masks gives a better

separation by removing the noise present in the estimated source spectrograms

obtained at low numbers of iterations, particularly for bins with low energy in

the original mixture spectrogram.

However, the above explanation is not valid for the bins having significant

energy. Nonetheless, the difference between the energy content in these bins and

the initial values obtained from the random initialisations will be considerably

high. This high energy difference results in higher rescaled gradient in the
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multiplicative updates used in these algorithms. As a result, the bins containing

high energy are more likely to converge faster at the lower iterations. Hence, we

can say that these bins are more likely to contain reasonable estimates of the

actual source energy than the other bins at low numbers of iterations. Further,

as discussed earlier, the use of masks is more efficient when the proportion of

energy content, not the actual energy, is correct. Therefore, a good separation

can be obtained once the proportion is approximately correct and the number

of iterations performed or the errors in the actual energy estimates no longer

matter. Therefore, it is reasonable to say that the use of masks can give good

separation at low iterations and the highest perceptual scores at low number of

iterations does make sense.

Hence, we can conclude that it may not be optimal to run the factorisation

based algorithms to fully converge in order to obtain good separation. This

is of particular benefit to reduce the run-time for the separation algorithms

by reducing the number of iterations while still getting better separation

performance. Audio examples related to the masking filters can be found at

[92].

6.5 Conclusions

We first discussed the use of the generalised Wiener Filter as a means of

resynthesis when performing the source separation. It was noted that although

Wiener filter is optimal in a least square sense, it may not guarantee good
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separation performance from a perceptual point of view. Hence, a new family

of masks based on the KL divergence and IS divergence were introduced.

These masks were shown to outperform the generalised Wiener filter for overall

perceptual quality when tested using three NMF based separation algorithm

and two testsets. We also discussed that a good separation performance can

be achieved with these algorithms at low number of iterations long before

convergence is achieved. Areas for future work include extending the family

of masks to include the Beta divergence to attempt further improvements and

also these masks may used to improve the results of the various NMF based

algorithms discussed throughout the course of the thesis.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In chapter 1, first, we gave the motivation for blind sound source separation

and defined the Blind SSS problem. Then, a review of sound source separation

techniques was presented including the standard ICA algorithm, DUET and

ADRess. Then, we discussed how these techniques would require more than

one sensors and would fail in the case of mono signals. Further, we showed

that how the factorisation based approaches such as NMF attempt to give a

part-based decomposition of the audio spectrograms where the individual parts

(basis functions) often correspond to the notes in the given mixture. This led

to the problem of clustering frequency basis functions ( the principal focus of

our thesis) because these basis functions are usually greater in number than

the active sources, hence the need of clustering. Then, we have stated how
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the Shifted NMF algorithm attempts to use a single instrument basis function

per source to avoid the need for clustering of the basis functions. Thereafter,

we outlined the previous techniques used for clustering of the frequency basis

functions, including the MFCC based clustering using the source filter model

and the technique involving the incorporation of GS in NMF. We found that

the previous clustering techniques were able to reduce the overlapping of sources

in the output of the separation algorithms, but these techniques failed to give

distinct separation of notes (source signals) corresponding to the sources. Hence,

much research needed to be done in this area and so provided the main focus of

the research in this thesis. Here, we give a brief summary of our contributions.

Firstly, we have introduced two novel SNMF based clustering algorithms

in chapter 2 to improve the clustering of the NMF frequency basis functions.

Here, we have used the SNMF model discussed in 1.5.6 for clustering the basis

functions in such a way that it finds shift invariance in sets of CQ domain

frequency basis functions where these frequency basis functions were obtained

using NMF. In the process, we also dealt with the problem related to the change

in timbre due to change in pitch by assuming a separate NMF frequency basis

function for each note present in the given mixture. Then, the frequency basis

functions were used to determine the instrument basis functions which were

then used to cluster the original frequency basis functions to sources. The

reconstruction of the source signals was performed using the two techniques,

one-to-one mapping and spectral masking, as detailed in section 2.3.2. It was

found that the source separation obtained through the proposed methods was
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considerably better than the previously proposed clustering algorithms.

As noted previously in chapter 2, a limitation of using SNMF algorithms was

that it used a log-frequency spectrogram and no true inverse of a log-frequency

spectrogram was possible. The non-availability of an exact inverse of the CQT

transform was found to result in a deterioration of the separation quality. Our

next two contributions deal with this issue. We showed that the performance

of the original SNMF separation algorithm can be improved considerably by

incorporating a recently proposed improved method of obtaining an inverse

CQT [85]. This was done to obtain an improved approximation of the inverse

CQT and thus improve the reconstruction of the estimated signals. Further,

on testing we have showed that the performance was significantly improved, in

the order of 10 dB over the original implementation of the SNMF separation

algorithm. It is important to note that more recently, a new invertible CQT

method was proposed by Velasco et al [55], where it uses the non-stationary

Gabor frames [56] to reconstruct more efficient and near to perfect inverse CQT

from the CQT transform. However, we have not tested the proposed CQT

method [55] to evaluate the performance in context of the separation algorithms

proposed in this thesis.

Another attempt was made to deal with the lack of true CQT inverse

by incorporating the CQT inside the signal model. In order to do so, we

have proposed a modified SNMF clustering algorithm that uses the NMF

frequency basis functions in the linear domain as an input to the SNMF model

(clustering stage) rather than in the log-frequency domain. This was done
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by incorporating the transform from linear to log frequency domains into the

SNMF algorithm as detailed in chapter 4. Here, the CQT transform matrix

was used to map the linear domain NMF basis functions to the CQT domain

before every iteration until the convergence was achieved. This incorporation

of the CQT transform allowed the SNMF model to measure the reconstruction

error from the divergence in the linear domain, thereby allowing a better fit to

the original linear domain frequency basis spectrogram. This use of the CQT

inside the SNMF model ensured that the need of the inverse CQT for recovering

the frequency basis functions in linear domain was avoided. The new SNMF

model was found to improve the separation quality of the individual sources as

compared to the SNMF clustering algorithms discussed in chapter 2.

Furthermore, we have introduced a group sparsity technique motivated by

the work done in [53]. The SNMF clustering algorithm discussed in 2 was

considered to have two stages, the NMF stage, where the frequency basis

function is calculated and the clustering stage, where the SNMF model is used

for clustering the frequency basis functions. Here, first we have incorporated the

GS in NMF because we wanted the NMF basis functions, that correspond to

instruments (groups), to be sparse in a group sense. Hence, the prior knowledge

of groups while calculating the NMF basis functions would result in better

grouping. Originally the GS in NMF [53] was shown to work well with mixtures

of sources with temporal overlapping of up to 66%, which is not true in general.

However, the application of GS in NMF at first stage was found to reduce

the amount of temporal overlapping in the separated frequency basis functions.

183



Therefore, we thought that this reduction of temporal overlapping of sources

and the prior knowledge of a particular group (source) would help the SNMF

model to force the corresponding frequency basis function to iterate towards the

group (or source) it belongs and thus result in better separation. Hence, the

two stage process was implemented. A probabilistic model was used to exploit

the equivalence between the ML problem and minimising the KL divergence

cost function to estimate of frequency basis functions. This was based on the

assumption that components in a magnitude spectrogram X are distributed

according to a Poisson noise model [29] as explained in section 5.3. A similar

probabilistic model was used for the IS divergence also as mentioned in [53]. A

number of SNMF clustering algorithms were implemented based on the chosen

divergence cost functions for the two stages in the SNMF clustering algorithm.

A summary of quality measures for all the SNMF algorithms were calculated

to evaluate the performance. Overall, just applying GS to the clustering stage

of the SNMF clustering algorithm when using the KL divergence was found to

perform best (see section 5.5).

Finally, we have presented a family of masks based on IS and KL divergences

to improve the separation quality of the individual sources for various separation

algorithms. This work was motivated by the fact that the commonly used

Wiener filter masks were a least square best fit and was optimal in a least square

sense, however it did not give a guarantee to be optimal in the perceptual sense.

Also, we have tested the performance of the proposed masks with the number of

iterations performed in the separation algorithm. The performance evaluation of
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this new family of masks was done using the PEASS toolbox, which measures

the perceptual quality of the audio source separation by calculating a set of

objective measures. After evaluation, we found that no individual mask has

performed the best for all the metrics discussed in the chapter 6. However,

in general the divergence based masks have outperformed the masks based on

the Weiner filter. Overall, it was concluded that the choice of mask should be

optimally done according to the application for which the separation of sources is

done. The best overall separation performance was obtained using the KL-based

masks with t = 2, but that best rejection of the other sources was obtained using

the IS divergence based masks with t = 2. On further investigation, we found

that a good separation performance can be achieved with these algorithms at

low number of iterations long before the convergence is achieved. Taking this

fact into account, we can considerably reduce the run-time for the separation

algorithms, while still getting better separation performance.

The above research work demonstrates a considerable improvement in

dealing with the problem of monaural sound source separation. Through this

work, we have overcome many of the problems present in previous research.

We have demonstrated that by optimizing or modifying individual stages in

the NMF based algorithms we can considerably improve the clustering of the

frequency basis functions, and that the clustering obtained can be used to

re-synthesis the individual sources with reasonable quality by the use of a new

family of divergence based masks.
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7.2 Future Work

Although, the algorithms described in this thesis represent an advance when

attempting SSS on single channel mixtures of musical instruments, there remains

a number of open issues and room for future research that may further improve

the clustering of the frequency basis functions for sound source separation in

music.

The algorithms described here are designed to work for pitched instruments

only, possible future work would be an extension of the proposed algorithms by

incorporating or developing new methods, such that, the algorithms work for

both pitched and percussive instruments. The systems presented are limited

to the fact that the number of the frequency basis functions, r corresponding

to the notes are chosen manually and r varies with the mixture in question.

A topic for future work would be in finding ways to automatically detect the

number of frequency basis functions required for a particular mixture. Further,

all the proposed separation algorithms were tested for the testset comprising of

a mixture of two sources. However, with the extension of the proposed designs

to overcome the complex overlapping of additional sources, these clustering

algorithms can be extended for input mixtures of more than two sources.

We have shown how improved signal reconstruction can be obtained by using

a family of masks obtained through the KL and IS divergences. Future work

may include evaluating the performance of the family of masks on all the SNMF

algorithms proposed in the thesis. This may improve the robustness in the

separation of sources and may give a clear idea that how the use of masks vary
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with the separation algorithms, number of iterations and the testsets used.

We have simulated all the proposed algorithms in Matlab, which is in

general not time-efficient. Future work may include the implementation of

these algorithms in high level language such as C or C++. This would help

in optimising the time and memory required to run these algorithms.

In conclusion, the research undertaken has developed a number of possible

ideas to improve the source separation algorithms. We have shown that by

improving the clustering of the frequency basis functions we can successfully

re-synthesize the individual sources with better quality. It is hoped that the

techniques outlined in this thesis will provide a basis for further advances in

sound source separation.
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