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ABSTRACT

Road traffic accidents are a significant cause of deaths worldwide and there is a global
focus on understanding accident contributory factors and implementing prevention
strategies. Although accident statistics are steadily improving, effective prevention
must be persistent, evidence based and properly resourced. This research aimed to
extract fatal traffic accident prediction from UK STATS19 accident data using C5.0
and Chaid decision trees and Bayes net classification models. Data was grouped as
either fatal or non-fatal. The class imbalance due to fatal accident infrequency was
considered and data transformation and sampling techniques were applied to increase
prediction likelihood. Chaid was used for supervised discretisation and proved
effective in identifying homogeneous subgroups. SPSS Modeler was used for data
preparation and model build. Model performance was evaluated using accuracy, recall,
precision and ROC curves.

The experiment design and data preparation approach successfully predicted fatal
accidents with high recall results, however, significant misclassification of non-fatals
as fatals led to poor accuracy and precision performance. Boosting was subsequently
tested and achieved some accuracy improvement. Serious accidents were grouped as
non-fatal in the initial data analysis, however, are likely to hold similar characteristics
to fatal and the models therefore struggled to classify correctly as non-fatal. Changing
the experiment design to select fatal, serious and slight as targets may improve the
models accuracy. Overall, the models succeeded in classifying fatal traffic accidents
correctly and this was the original objective of the research.

Interpretation of business rules, by ranking rules and summarising in a standard
format, proved effective for understanding and comparison of key predictors. When
comparing both C5.0 and Bayes net models, the contributory factors identified were
consistent, with road surface and urban/rural identified as the strongest predictors for
both models. The experiment demonstrated that classification techniques can be used
to predict infrequent events once sampling techniques are applied.

Key words: Predictive analytics, fatal traffic accidents, classification techniques,
imbalanced datasets.
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1 INTRODUCTION

1.1 Introduction

Road traffic accidents are the eighth leading cause of deaths worldwide with over one
million people dying on the roads each year and trends suggest that by 2030 road
traffic deaths will have risen to the fifth leading cause (The World Health
Organisation, 2013, p. vii). Organisations across the globe are focussed on road traffic
accident analysis and understanding and proven strategies exist which can help to
reduce road traffic deaths (The World Health Organisation, 2013, p. 1). Research has
sought to identify factors which contribute to traffic accidents and use those factors for
more effective prediction and as a guide to road safety planning and traffic accident
prevention (Lord & Mannering, 2010). Speed, age, alcohol consumption and driving
fatigue are some of the factors commonly associated with fatal road traffic accidents
(The World Health Organization, 2004). The ability to accurately identify the key
factors which contribute most to fatalities could help focus road safety planning
efforts. Extracting actionable insights from historical information is a key aim of using
predictive analytics. Predictive analytics techniques can be used to extract prediction
from data by identifying patterns which may otherwise have gone unnoticed.
Classification techniques are commonly used to identify key underlying relationships
between data features and identify the key predicting features. Fatal traffic accidents
are infrequent and are considered to be random events which increases the prediction
difficulty. Sampling techniques can be applied to extract patterns from data with
infrequent events.

This research project investigates the use of three classification techniques, C5.0 and
Chaid decision trees and Bayes net to predict fatal traffic accidents. An outline of road
traffic accident literature provides background to the experiment and an understanding
of the key data characteristics. Literature review for data mining and predictive
analytics, including the three algorithms selected for the experiment, relevant model
evaluation techniques and current traffic accident prediction research are discussed.
The experiment design follows a standard methodology and focuses on understanding
and preparing the data, building the models and model performance assessment and
evaluation. The experiment implementation is described and model results are
presented, assessed and evaluated, with key findings outlined. The conclusion
summarises the experiment execution, the findings, the limitations and future work
which could enhance the findings.
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1.2 Background

This chapter outlines the key components of traffic safety and the role road safety
systems play to prevent accidents. Information sharing, the role of data and predictive
analytics techniques are discussed to understand how they can help prevent road safety
situations from occurring (Nyce, 2007). A commonly accepted definition for road
accidents is the following:

“a rare, random, multi-factor event which is always preceded by a situation in which
one or more road users have failed to cope with their environment” (Baguley, 2001).

From this definition, it can be concluded that road accidents are rare events in time. In
fact, road accidents have the characteristics of random events (David & Branche,
2004) which mean that they cannot be easily predicted. Accidents have many
contributory factors such as driver behaviour, vehicle condition, road or environmental
conditions as outlined in Fig. 1.1 (The World Health Organization, 2004, p. 71).

Factors influencing exposure to risk

Economic factors, including social deprivation

Demographic factors

Land use planning practices which influence the length
of a trip or travel mode choice

Mixture of high-speed motorized traffic with vulnerable
road users

Insufficient attention to integration of road function
with decisions about speed limits, road layout and
design

Risk factors influencing crash involvement

Inappropriate or excessive speed

Presence of alcohol, medicinal or recreational drugs

Fatigue

Being a young male

Being a vulnerable road user in urban and residential
areas

Travelling in darkness

Vehicle factors — such as braking, handling and
maintenance

Defects in road design, layout and maintenance which
can also lead to unsafe road user behaviour

Inadequate visibility due to environmental factors
(making it hard to detect vehicles and other road
users)

Poor road user eyesight

Risk factors influencing crash severity

Human tolerance factors

Inappropriate or excessive speed

Seat-belts and child restraints not used

Crash helmets not worn by users of two-wheeled
vehicles

Roadside objects not crash protective

Insufficient vehicle crash protection for occupants and
for those hit by vehicles

Presence of alcohol and other drugs

Figure 1. 1 The main risk factors for road traffic accidents
Source: (The World Health Organization, 2004, p. 71)

To improve road safety, factors which cause road safety issues in particular countries
or regions should be identified (Hermans, et al., 2009). Although individual accidents
cannot be predicted, by identifying and predicting the causes of accidents, appropriate
counter measures can be put in place to target the contributory factors. It is important
that road safety policies are not anecdotal and instead based on robust analysis and
interpretation of data and consideration must be given to the application of local
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solutions based on local knowledge (The World Health Organization, 2004, p. 25). The
five E’s of road safety improvement are education, enforcement, engineering,
encouragement and evaluation as described in Fig. 1.2 (Abugessaisa, 2008). Following
evaluation, policy makers can focus efforts on preventing accidents by targeting safety
awareness campaigns at high risk groups, deploying limited policing resources to high
risk areas and allocating funding to infrastructure improvements.

9
e Different campaigns can be used to educate
different target groups

» Can be achieved by deploying more Police to
monitorand address contributoryfactors

Enforcement

s Trafficengineers tasked to build safer road
infrastructure impacts positively on road safety

Engineering

» The government can playa pivotal role to
encourage and campaign for safer roads

Encouragement

» Results can be used as basis for proper, well
informed decisions

Evaluation

Figure 1. 2 The 5 E's of Road Safety Improvement
Source: (Abugessaisa, 2008)

Fig. 1.3 outlines Baguley’s general framework of road safety improvement achieved
by either accident prevention or reducing the cause of accidents, with an accident
database at the centre of planning and evaluation. In order for road safety efforts to be
effective they should be based on evidence, sustainable, properly resourced and the
cost considered (The World Health Organization, 2004, p. 12).

"Road Safety Strategy

ARB
Hational Roed salety Commiltos
A Accident Prevention Aswvaal Batistes Pl
Future Problems) Watienal Roed saledy Plar
(et Lurgeilatsuzn
B Accident Reduction
and Mitigation [of
Existing Problems) A Urkan & Rural Plassing

Higtrwiny Guemetric Dusig

B High Rish Sites, Mass Acthes ale.

/ / Low Cost Engissaring Maisures
A Education in Schesls L G -
Enginoaring/ Drbvee Traini
'/r,f' Planning - g EVALLATION

B Publicity Carsiians

Accident Data
Collection &

e R =
-

\l!nlnm-'nml |-_._ & Dirivver Tasiling

\ = Vhick Testing

g, | [
[ig. Spweding, Braathabyser wie)
Wahich Spol Chacks

\ B Ambulasces
First Ald [Palic - Public)

Emergesecy Talepieems #

Hecipital Facilitie

Figure 1. 3 A framework for road safety improvement
Source: (Baguley, 2001)

In order to prevent and reduce the causes of accidents, sharing accident data from
various sources is vital. Road safety data is collected by different agencies, e.g.
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hospitals and police. Road safety information is conducive to sharing due to the
features it holds (Mitchell, 2002). In the UK, police complete a standard STATS19
accident report form for each road traffic accident reported to them. This data is
available on the UK open government website for the period 1979 to 2013.* STATS19
data can answer questions such as where, when and what type of injury occurred, the
consequence of a collision as well as the environmental conditions.

To improve road safety, a prerequisite is that information is available about accidents,
fatalities, injuries and roads (Abugessaisa, 2008, p. 9). Many countries experience
problems defining the accident information, collecting the information, maintaining
quality and ensuring completeness (Abugessaisa, 2008, p. 9). In the UK, fatalities are
known to be recorded accurately, however, under reporting of non-fatalities is a
significant issue (The International Transport Forum, 2013). Two notable
characteristics of road safety data is that their sources vary and they suffer from under
reporting issues (Abugessaisa, 2008, p. 10). Extracting data from different data
sources, verification of data and harmonising into a consistent format are time
consuming tasks. Time spent on data integration is time which cannot be spent
analysing road safety situations and thus helping to prevent road safety issues. To help
address data integration issues, well defined methods should be adopted by road safety
experts. STRADA, the Swedish traffic accident data management system, is used by
police and hospitals to coordinate accident reports and aims to make road traffic
accident details reliable and consistent and harmonise data. By bringing together data,
the volume of data available on road traffic injuries and accidents increased and the
number of unrecorded incidents reduced (Abugessaisa, 2008, pp. 30-33). The
availability, quality, reliability and accuracy of relevant data would seem to be
paramount to a predictive road safety strategy. (Nyce, 2007, p. 2) stated:

“the validity of any predictive model depends on the quality and quantity of the data
available to develop it”.

Data on road traffic accidents is not consistently collected and harmonised into
databases in many countries (The International Transport Forum, 2013). Similarly,
data on accidents caused by environmental, technical and other factors is not well
captured. Information available in databases such as city event calendars and weather
conditions can provide additional awareness around the events that lead to road safety
issues. The more data that is available, the more opportunity there is to identify factors
which might influence road safety issues. A prominent issue is the lack of available
government policy to facilitate the sharing of data between government agencies. This
is a significant predictive modelling issue as data which might improve the accuracy of

! Department of Transport UK, 2014. Road Safety Data, http://data.gov.uk/dataset/road-

accidents-safety-data, [Accessed 26 10 2014].
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a predictive model is not available arising from data sharing issues.? This impacts road
safety policy makers capability to improve road safety polices and accurately monitor
performance. Recent initiatives to publicly share road safety and weather data would
seem to be a move in the right direction.® By releasing high quality and diverse data to
the public, crowd sourcing could use predictive analytics to help improve road safety.
Policy makers use road safety performance indicators to measure road safety
effectiveness. They provide a method to characterise the safety quality of road safety
components (Abugessaisa, 2008, p. 22).

In IRTAD countries, between 2000 and 2010, fatal road traffic accidents have reduced
substantially mainly due to improved safety features in cars and sustained anti drink
driving campaigns (The International Transport Forum, 2013). Road traffic accidents
relating to vulnerable road users such as pedestrians and cyclist have reduced but the
reduction was smaller than that recorded for vehicle occupants. It may be concluded
that significant improvements have been achieved, however, there is no time for
complacency as the World Health Organisation (WHO) estimate that approximately
1.24 million people will lose their lives each year as a result of road traffic accidents
with vulnerable road users making up half of those who die (The World Health
Organisation, 2013).

A Kkey requirement in the data mining and predictive analytics process is an
understanding of the data. Inaccurate or missing data impact on the quality of the
prediction which can be achieved. Given that fatal road traffic accidents are low
frequency events, when considered in the context of all data recorded for road traffic
accidents, this would be a key consideration when creating a predictive model as it
could pose problems in terms of acquiring an adequate sample size to make the data
amenable to prediction.

Data mining tools and techniques can be used to predict future events and trends which
allow proactive and knowledge driven decisions. A part of the data mining process
includes using machine learning techniques to find patterns and relationships in data
(Miner, et al., 2009, p. 17). Examples of modelling techniques include decision trees
and Bayes net. Many modelling techniques produce a propensity score which is a

2 Travis, A., 2012, ‘Government revives plan for greater data-sharing between agencies’, The
Guardian, 24 May. Available at:
http://www.theguardian.com/politics/2012/apr/23/government-plan-share-personal-data,
[Accessed 01 12 2014].

% UK Government, 2014. UK open data portal. http://data.gov.uk/, [Accessed 1 12 2014].
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number in the range zero to one which indicates the likelihood of the event modelled
occurring given a set of predictors. The score is ordered descending from highest to
lowest with higher scores indicating that the event is more likely to occur. When
approaching a data mining experiment, adoption of a methodology provides structure
and best practice to the process. CRISP-DM is an industry accepted methodology
which outlines six phases to a data mining project.

Predictive analytics relates to a broad field which applies statistical and analytical
techniques to build predictive models to identify future events or behaviours (Nyce,
2007, p. 1). Predictive analytics is defined as a

“set of business intelligence (BI) technologies that uncovers relationships and patterns
within large volumes of data that can be used to predict behaviour and events. Unlike
other BI technologies, predictive analytics is forward-looking, using past events to
anticipate the future” (Eckerson, 2007, p. 5).

The main component of a predictive analytics technique is the predictor. These are
variables that can be measured to predict future behaviour. Predictive analytics tools
include mathematical algorithms as well as machine learning and statistical methods.
These are very effective in terms of overcoming manual searching of data. Examples
of modelling techniques include clustering (McCue, 2007, p. 51), supervised learning
(Chong, et al., 2005) and time series analysis (Monfared, et al., 2013).

This research focuses on three classification techniques, C5.0 and Chaid decision trees
and Bayes net. C5.0 is a supervised learner developed by Ross Quinlan to build
decision trees using the concept of information gain. It works by splitting the data
based on the field that provides the most information gain. Each subsample defined by
the split is split again based on the next most important field. This process continues
until the subsamples cannot be split any more. Finally, the lowest splits in the decision
tree, which provide the least information, are removed. Similar to C5.0, Chaid is a
supervised learning algorithm used for classification. Chaid (Miner, et al., 2009, p.
246) stands for Chi-squared automatic interaction detection. It was proposed by Kass
in 1980. The splitting mechanism is specific to Chaid. Chaid uses the Chi-squared
statistical test for proportion to determine a split. Chaid uses multiway splits (Miner, et
al., 2009, p. 246) to construct trees and has a stopping mechanism which determines
when a sub tree is complete (Miner, et al., 2009, p. 792). A Bayesian network (Bayes
net) is a probabilistic graphical modelling technique used to represent knowledge about
an uncertain domain such as traffic accidents (Simoncic, 2004). Bayes net can be used
to classify a target variable such as fatal traffic accident. The network represents a set
of random variables and their conditional dependencies. In the network, nodes
represent random variables and edges represent the conditional dependencies among
random variables.
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1.3 Research Problem

(Tesema, et al., 2005) stated that we are drowning in data, yet knowledge of the factors
which contribute to road traffic accidents fatalities seem to be limited. The STATS19
data is used extensively for road traffic accident statistics reporting in the UK and
records accident related features in a consistent and relatively complete fashion.
Predictive analytics would seem to be suitable for sifting through the data to identify
useful patterns which could help predict road fatality risk. Fatal traffic accidents are
considered infrequent events which adds to the prediction difficulty.

The research problem addressed in this dissertation is whether three selected
classification techniques, C5.0 and Chaid decision trees and Bayes net, can predict
fatal road traffic accidents based on a STATS19 UK Road Safety dataset and whether
key contributory factors to fatal road traffic accidents can be extracted from the
models.

1.4 Research Aims and Objectives
This research aims to:

» Apply three predictive modelling techniques, C5.0 and Chaid decision trees and
Bayes net, to build predictive models to classify fatal road traffic accidents.

» Evaluate the technical and non-technical performance of the best prediction
models.

« ldentify the key contributory factors of fatal traffic accidents from the predictive
models.

The objectives of the research are to:
« Review academic literature for road traffic accidents

» Review literature for data mining, predictive analytics and evaluation techniques
and current research specific to traffic accident prediction

» Understand the data and prepare the data for modelling

» Design the experiment to build and evaluate models for C5.0 and Chaid decision
trees and Bayes net to predict fatal traffic accidents

« Conduct the experiment to classify fatal traffic accidents and assess and evaluate
the models

» Extract key findings from the experiment and the key contributory factors
identified from the models

« Suggest future work which could expand or enhance the experiment findings.
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Given fatal traffic accidents are a significant cause of preventable death, it is hoped
that this research will make a contribution to the existing body of knowledge.

1.5 Research Methodology

An overall design for the experiment will be prepared, following a recognised
methodology to ensure a reliable and repeatable process is adopted. The design will
include defining and preparing training data, test data and validation data, building
models using selected modelling techniques, assessing model performance as well as
model evaluation. IBM SPSS Modeler, a leading commercial predictive modelling
tool, will be used to build the predictive models.

The Cross Industry Standard Process for Data Mining (CRISP-DM) will be used to
guide the modelling process. CRISP-DM, as outlined in Fig. 1.4, is a standard process
used to implement a predictive analytics and data mining solution (McCue, 2007, p.
49). An adaptation of this methodology, further discussed in chapter 3, was applied for
the experiment to align to the specific experiment requirements.

Figure 1. 4 CRISP-DM Process
Source: (Chapman P., et al, 2000)

Business understanding was derived mainly from literature review. Data understanding
was based on data exploration and analysis using SPSS Modeler and Toad for Oracle
database. The dataset selected for the experiment was the STATS19 UK Road Safety
dataset, which is publicly available and is often used for academic research and the
most commonly used source of UK road safety statistics. The literature suggests that
the STATS19 data is well recorded for fatal accidents®, it was hoped that the data

4 Department of Transport UK, 2014, STATS19 Road Accident dataset.

http://www.adls.ac.uk/department-for-transport/stats19-road-accident-dataset/?detail,
[Accessed 03 10 2014].
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collected could be used to identify contributory factors for fatal accidents. Data
preparation involved data selection, reduction and construction. Modelling stage
included selection and design of the modelling techniques, building models in line
with design and assessment of models. Evaluation was the final stage of the
experiment where unseen data was scored against the models.

1.6 Scope and Limitations

The scope of the dissertation was to design, build and implement three classification
models which can effectively predict fatal road traffic accidents and to identify key
fatal accident contributory factors identified by the models. The data source was the
UK STATS19 road safety dataset which records all reported road traffic accidents. The
UK dataset was selected due to the reported quality and completeness of the data and
also the volume of fatal road traffic accidents in the UK should be sufficient to extract
meaningful prediction.

The focus of the research was on prediction of fatal accidents. Modelling and sampling
techniques were selected and applied to improve the likelihood of fatal accident
prediction. As fatal traffic accidents were infrequent events in the STATS19 dataset,
sampling techniques were used to improve fatal accident recall. However, as a result
precision and accuracy performance were expected to be negatively impacted. Data
preparation focussed on fatal accidents only which may also impact on accuracy
performance if non-fatal data is misclassified where features for fatal and non-fatal are
similar. This limitation means some performance metrics were expected to be low.
This research was completed without the assistance of a subject matter expert so data
exploration and preparation was completed using SPSS Modeler and Toad for Oracle
and using Chaid for data reduction. This limitation meant that business understanding
was not applied to the research and an informed review of data preparation prior to
model build may have provided more meaningful data groups and therefore data
relationships. The original experiment limits model builds to twenty seven, for each
classification model, three modelling techniques and three sampling techniques were
selected. Five additional models were built post evaluation to test if accuracy
performance could be improved. The limitation of model numbers was necessary in
order to ensure the research was completed within the time and project size constraints.

1.7 Organisation of the Dissertation

Following this brief introduction chapter, the remaining chapters describe in more
detail the literature review completed for road traffic accidents and data mining and
prediction techniques, the experiment design, implementation, evaluation and research
conclusions.
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Chapter two provides a description of the relevant literature on road traffic accidents.
The chapter provides an overview of road traffic accident environment, the role of road
safety data, UK accident statistics and contributory factors and the UK road traffic
accident data. The chapter also introduces relevant data mining and predictive
analytics research literature. An overview of data mining and the key data
considerations is provided, together with relevant data sampling techniques. Predictive
analytics, specifically focussed on classification techniques, is outlined and assessment
and evaluation techniques relevant to this research are discussed. Current traffic
accident prediction research is briefly discussed.

Chapter three proposes the research experiment design, including the implementation
methodology, the key requirements for data understanding and data preparation, the
model build and approach to model evaluation.

Chapter four describes the experiment implementation stages in line with the
experiment design outlined in chapter 3. This chapter discusses each stage in more
detail and provides details about the models built.

Chapter five outlines the experiment evaluation including the assessment of the model
performance for training and test data and the technical and non-technical evaluation
against validation data. Two suggested model improvements are evaluated and the key
findings are summarised.

Chapter six provides a summary of the research completed, contributions to the body
of knowledge and the experiment evaluation and limitations. Future work
considerations are suggested.

1.8 Conclusion

The introduction provides an outline for the research experiment. The background to
road traffic accidents and predictive analytics and classification techniques are
introduced. The research problem to be addressed as part of this research and the main
aims and objectives are presented. The planned research methodology is outlined,
together with the scope of the research and the key limitations identified. Finally the
structure of the research is summarised by chapter to provide an outline of the
subsequent research.
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2 LITERATURE REVIEW

2.1 Introduction

This chapter discusses current literature relating to road traffic accidents, data mining
and prediction techniques relevant to this research. An overview of road traffic
accidents is provided to frame an understanding of the relevant subject matter. The
overview is followed by a brief discussion of the role of road safety data, road traffic
accident data as well as information sharing. Relevant road traffic accident statistics
for the UK are presented together with a description of contributing factors as
identified in current literature.

Data mining is a broad term used to describe a variety of statistical and machine
learning techniques used to extract knowledge from data. Data mining techniques can
be applied to interrogate data and identify underlying trends allowing for the
development of models aimed at predicting future events. The literature review focuses
particularly on techniques which are of relevance to the research experiment and
applicable techniques which could be applied to the prediction of fatal accidents. An
overview of CRISP-DM is provided as this is a widely used methodology for data
mining and predictive analytics.

Predictive analytics uses data mining and machine learning techniques to predict future
events or behaviours. Classification techniques extract prediction by applying machine
learning techniques and identifying relationships in data and grouping into classes. An
overview of classification techniques including the algorithms selected for the
experiment, C5.0 and Chaid decision trees and Bayes net, is provided.

Relevant evaluation techniques are discussed which are used to evaluate the
performance of models in this experiment. Techniques include the confusion matrix,
receiver operator curve (ROC), area under the curve as well as model interpretability.
Four academic papers are briefly discussed outlining current research in the field of
traffic accident prediction. The results achieved by (Wabh, et al., 2012) in predicting
fatal traffic accidents led to consideration of this research problem.

2.2 Road Traffic Accident Overview

It is estimated that more than a million people die from injuries sustained on the
world’s roads annually and road fatalities are ranked eighth as the cause of deaths
globally (The World Health Organisation, 2013, p. 1). The consequential socio-
economic impact of dealing with road traffic accidents is estimated to run into the
billion’s with young people aged 15 — 29 representing the largest proportion of
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casualties (The World Health Organisation, 2013, p. 1). The costs of road traffic
injuries are staggering (David & Branche, 2004) and include, but are not limited to,
ambulance, hospital care, earnings lost as well as lifestyle disruption and emotional
costs. Traffic accident injury is considered largely predictable and preventable (The
World Health Organization, 2004, p. 25). For example, remedial and inexpensive
interventions can be undertaken such as removing overgrown hedging which obscure
stop signs (The Irish Road Safety Authority, 2013, p. 36). In recent years, countries in
the developed world have reduced road traffic accidents by adopting road safety
strategies and enforcing legislation to address some key risks such as speed, drink
driving and seat belt wearing, however, it is noted that encouraging a safe road culture
requires persistent effort (The World Health Organisation, 2013, p. 12). Fig. 2.1
presents the worldwide increase in comprehensive legislation enforced to target the
key five road risk factors.

Road traffic deaths each year have not increased, however, the volume of approx. 1.24
million remains “unacceptably high” (The World Health Organisation, 2013, p. 4) and
more action is needed to further reduce road traffic accidents. Although many useful
strategies exist to address road safety behaviour they could be more widely
implemented (David & Branche, 2004). 2012 was an important milestone for the
OECD-IRTAD with many countries recording their lowest fatality rate on record (The
International Transport Forum, 2013, p. 9). In order to achieve the 2020 targets set by
the UN, to halve the fatality rate worldwide, improved road safety strategies will need
to be adopted by those countries trailing behind the trend.
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Figure 2. 1 World population covered by legislation for five key road risk factors
Source: (The World Health Organisation, 2013, p. 12)

Fig. 2.2 displays the average fatality by road user from 2007 — 2011. Pedestrians and
cyclists represent a neglected group of road users which comprise 27% of road traffic
fatalities worldwide (The World Health Organisation, 2013, p. v). Recently, at the
Rio+20 UN conference on sustainable development, a link was established between
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road safety and sustainable development. Road safety policy must now focus on
increasing the safety of non-motorised road users by protecting them from high speed
traffic which is in line with a sustainable transport policy (The World Health
Organisation, 2013, p. v).
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Figure 2. 2 Fatalities by road user class (average 2007 - 2011)
Source: (The International Transport Forum, 2013, p. 8)

Figure 2.3 shows that the average annual reduction in fatalities was higher in the last
decade than any of the previous three decades for most IRTAD countries. This
evidence supports the assertion that the implementation of road safety strategies has
produced good results over the long term and the effective implementation of road
safety policies would seem to be crucial. The safety of vehicle occupants has improved
substantially over the last decade through public campaigns such as drink driving
awareness and speed reduction programs (The Irish Road Safety Authority, 2013).
National television networks have been used to graphically illustrative the
consequences of bad driving practice. According to UTV News, some cohorts have
strongly objected to the graphic nature of these accounts ° but others maintain that this
is what is required to deliver a compelling message to young people who are the
largest casualty group in the OECD (The World Health Organisation, 2013, p. vii).

® UTV News, 2014, 'Shocking NI road safety ad goes viral’, Available at:

http://www.u.tv/News/Shocking-NI-road-safety-ad-goes-viral/81cf1549-f38a-4d28-a274-
0060a6b2c43c, [Accessed 23 09 2014].
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Figure 2. 3 Trends in road fatalities
Source: (The International Transport Forum, 2013, p. 12)

Approaches such as legislative enforcement and police checkpoints have proven to be
effective (The Police Chief, 2005). Road users are now encouraged to consider and
reflect on their road usage behaviour by employing sophisticated road safety
advertisements and mass media campaigns (The Irish Road Safety Authority, 2013).

Attitudes to road safety and road user behaviour differ greatly worldwide. Cultural
considerations need to be factored into road safety planning and actions to prevent road
traffic accidents should be tested locally (The World Health Organization, 2004, p.
162).

The WHO recommends that road safety agencies should be appointed in each country
and should be given decision making authority to co-ordinate road safety efforts and
resources (The World Health Organisation, 2013, p. 27). For example semi-state
bodies such as the Irish Road Safety Authority play a key role educating the public
about road safety. Unless urgent action is taken, current research suggests that by
2030, road traffic accidents will become the fifth leading cause of death world wide
(The World Health Organisation, 2013, p. vii). A systems approach has been proposed
as a necessary tool to effectively prevent road traffic injury. Haddon’s matrix, as
outlined in Fig. 2.4, has been useful in the development of strategies and techniques
(The World Health Organization, 2004, p. 12).
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Figure 2. 4 Haddon Matrix - A Systems Approach
Source: (The World Health Organization, 2004, p. 13)

The WHO and World Bank intensified work on road traffic injury prevention and
prepared a detailed joint report which sought to describe patterns and impacts at a
global and local level, review key risk factors and discuss intervention strategies (The
World Health Organization, 2004, p. xx). Setting road safety targets has become an
important part of national road safety strategies in many high-income countries.
Governments are recommended to set interim targets to encourage public and political
support for long term strategies but collection of data is key (The World Health
Organisation, 2013, p. 27). There is strong scientific evidence available which supports
the claim that adopting intervention’s, such as creating, adopting and enforcing
legislation relating to key risk factors such as drink-driving, speed and wearing of seat
belts, leads to a reduction in road traffic injury (The World Health Organisation, 2013,
p. v). If action is taken, many lives can be saved and the evidence would seem to
suggest that improvements can be achieved by taking simple measures (The Irish Road
Safety Authority, 2013, p. 36). The WHO and World Bank joint report identified that
there are well established risk factors which influence the severity of a road traffic
accidents as summarised in Fig 2.5 (The World Health Organization, 2004, p. 88).

Risk factors influencing injury
severity
Well-established risk factors that contribute to the
severity of a crash include:

— inadequate in-vehicle crash protection;

— inadequate roadside protection;

— the non-use of protective devices in vehicles;

— the non-use of protective crash helmets;

— excessive and inappropriate speed;

— the presence of alcohol.

Figure 2. 5 Risk factors influencing road traffic injury severity
Source: (The World Health Organization, 2004, p. 88)



2.3 The Role of Road Safety Data

In order to improve road safety and reduce fatalities, high quality, reliable and
consistent information relating to accident circumstances as well as vehicle and
casualty details should be made available to road safety professionals.

“Only by systematic and data-led management of the leading road injury problems
will significant reductions in exposure to crash risk and in the severity of crashes be
achieved” (The World Health Organization, 2004, p. 8).

The availability of traffic accident data will enable road safety professionals to
accurately assess the current situation and propose appropriate counter measures to
reduce the likelihood of road safety situations. Data driven decisions taken, following
analysis, is a function of data quality. The higher the data quality, the more targeted the
corrective actions can be (Abugessaisa, 2008, p. 11). (Abugessaisa, 2008, p. 10) noted
that road safety data has two notable characteristics. The first is that not all traffic
accidents are reported. There may be a record of an injury at a hospital or insurance
claim at an insurance company but no official road traffic accident record with the
police. Secondly the consistency and accuracy of road traffic accident data sources
vary. Data consumers find themselves needing to analyse different sources to
materialise a consistent and accurate view of events. It would seem that there are data
quality issues with road safety data (Abugessaisa, 2008, p. 11) and the data owners in
many jurisdictions may need to be educated on the important role of road safety data.
Consideration should be given to how data is gathered, organised and analysed.
According to (Baguley, 2001, p. 8), studies of hospital records have shown that road
accidents are considerably under reported, although the level of reporting tends to be
higher for more severe injuries. However, in the UK all fatal accidents are reported by
the police (The International Transport Forum, 2013, p. 429). By involving all the key
participants responsible for road safety and implementing safety measures
systematically, road deaths and serious injuries can be avoided (The World Health
Organization, 2004, p. 19). The participants include but are not limited to drivers,
vehicle designers and manufacturers.

According to (Hermans, et al., 2009, p. 178), performance indicators representing road
safety risk factors can be used to quantify road safety performance. Accident or injury
safety performance indicators can be used to measure if actions are effective (The
World Health Organization, 2004, p. 19). Indicators are needed by road safety planners
as basic accident counts do not evaluate accidents in terms of costs which are critically
important to society e.g. social cost. By evaluating accidents in terms of critical
factors, performance indicators can be used to help legislators and road safety
professionals identify sectors in road safety which are performing well and those
which require attention. In the UK a new strategic framework was launched in May
2011 identifying six key road accident performance indicators as outlined in Fig 2.6.
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] MNumber of road deaths (and rate per billion vehicle milas);

¥ Rate of motorcyclist deaths per billion vehicle miles;

v Rate of car occupant deaths per billion wehicle miles;

v Rate of pedal cyclist deaths per billion vehicle miles;

v Rate of pedestrian deaths per billion miles walked;

. MWumber of deaths resulting from collisions involving drivers under 25.

Figure 2. 6 UK six road traffic accident performance indicators
Source: (The International Transport Forum, 2014, p. 501)

2.4 UK Accident Statistics and Contributory Factors

According to (The International Transport Forum, 2014, p. 491), between 2000 —
2012, a fatality reduction rate of 50% was recorded in the UK and as in Fig. 2.7 the
trend for road traffic deaths has been steadily falling since 2006 (The World Health
Organisation, 2013, p. 225).
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Figure 2. 7 Trends in UK road traffic accident deaths
Source: (The World Health Organisation, 2013, p. 225)

(The International Transport Forum, 2014, p. 490) states in 2013, 13% of the total
183,670 road casualties in the UK were killed or serious injury (KSI) casualties as
displayed in Fig. 2.8. Although traffic flow increased in the period, there was a 2%
decrease in the killed group. The reduction in accidents or fatal accidents was noted on
all road types in 2013 when compared to 2012.

183,670

Total casualties

21,657
arizanly mjured

1,713
killed

Figure 2. 8 KSI as a proportion of total casualties
Source: (Department of Transport UK, 2013)
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Drivers in 4-wheeled and light vehicles are the highest proportion of road deaths in the
UK in 2010 followed by pedestrians and motorbike riders as displayed in Fig. 2.9.
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Figure 2. 9 Deaths by road user in 2010 for UK
Source: (The World Health Organisation, 2013, p. 225)

In 2013, the (Department of Transport UK, 2013) reported that most fatalities were car
occupants and occurred on non-built up roads while most serious injuries occurred on
built up roads as shown in Fig. 2.10.

Killed Serous

Built-up
67%

e

Figure 2. 10 Proportion of casualties types by motorway
Source: (Department of Transport UK, 2013)

At the end of 2013, there were 35 million vehicles licensed for driving in the UK
(Grove, 2014) as outlined in Fig 2.11, this number has increased year on year for the
last 10 years. Even with the increase in licensed vehicles, the fatality rate has reduced
significantly over the last decade and in 2013, road safety incidents decreased again,
with fatalities at their lowest levels since records began (Department of Transport UK,
2013).
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Licensed vehicles, GB: 1994-2013
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Figure 2. 11 Licensed vehicles in the UK
Source: (Grove, 2014)

Fig 2.12 describes the number of fatalities reported for the period 2005 — 2013. The
2012 — 2013 fatality count was 39% below the 2005 — 2009 average which would
supports the claim that recent road safety strategies were effective (Department of

Transport UK, 2013).

2005 2006 2007 208 2009 2010 2011 2012 2013

Figure 2. 12 Reduction in road traffic accident fatalities in recent years in the UK
Source: (Department of Transport UK, 2013)

The largest ever reduction in fatalities in the UK was observed in 2010 due to
sustained periods of adverse snow and ice weather conditions (The International
Transport Forum, 2013, p. 429). Environmental factors impact on road traffic
accidents. (The International Transport Forum, 2014, p. 490) noted that in the first
quarter of 2013 the weather was notably colder when compared with 2012, this was
likely to have contributed to reduced casualties for pedal and motor cyclists and car
occupants. There are various factors which might have contributed to this reduction
including but not limited to improved vehicle safety, road engineering, hospital care
and road safety education (The International Transport Forum, 2014, p. 491).

In the event of a road traffic accident, a number of characteristics are known to
increase the risk of traffic accidents which include demographic, behavioural,
environmental and vehicle (The World Health Organization, 2004). Demographic
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characteristics include age and address as well as the occupation of the driver.
Behavioural characteristics include drug or alcohol taking while driving, seat belt
usage, speed and fatigue. Environmental characteristics include road and visibility
conditions as well as weather conditions. Vehicle characteristics include car class, age
and engine size.

Contributory factors for road safety accidents are wide ranging. The factors identified
are different depending on the particular characteristics being considered whether
demographic, behavioural, environmental or vehicle. For example a behavioural
contributory factor may be speed whereas as environmental factor may be road type.
(The International Transport Forum, 2014) road safety annual report presents the key
statistics relating to road safety accidents in the UK for 2013. Fig. 2.13 to Fig. 2.17
present the most recent statistics.
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Figure 2. 13 UK 2013 contributory factor and severity®

° Department of Transport UK, 2014. Contributory factors for reported road accidents,

https://www.gov.uk/government/statistical-data-sets/ras50-contributory-factors, [Accessed 01
12 2014].
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Number/percentage

2009 2010 2011 2012 2013

Per Per Per Per Per
Contributory factor reported in accident™®  Mumber cent Number cent MNumber cent Number cent Number cent
Driver/Rider failed to look properly 50677 40 50847 42 51946 44 51168 45 48038 44
Driver/Rider failed to judge other person’s 27778 22 27304 23 27106 23 26566 23 25411 23
path or speed
Driver/Rider careless, reckless orinahurry 19,640 15 19242 16 19797 7 18219 16 18594 17
Poor turn or manoeuvre 17,945 14 16453 14 171001 14 17306 15 16542 15
Loss of control 19330 15 18180 15 17091 14 16282 14 15260 14
Pedestrian failed to look properly 12265 10 12078 10 1631 10 11055 10 10462 10
Slippery road (due to weather) 15452 12 15250 13 10,014 8 11565 10 10218 9
Sudden braking 10462 8 9662 8 95177 8 893 8 8.271 8
Following too close 9,112 7 9,052 7 8,658 7 8.413 7 7,934 7
Travelling too fast for conditions 11,767 9 10,302 9 ,868 7 8,896 8 7.677 7
Total number of accidents’ 128,185 100 120,827 100 118,403 100 114,696 100 108,934 100

Figure 2. 14 UK 2009-2013 contributory factors for reported accidents®

Number/ percentage

Seriously
Killed injured Slightly injured Al casualties

) F'eE F'eE F'eE F'eE
Contributory factor reported in accident Mumber cent® MNumber cent® MNumber cent® MNumber cent®
Road environment contributed 179 11 2,404 13 17,759 14 20,342 14
Vehicle defects 43 3 M7 2 2,395 2 2,855 2
Injudicious action 462 29 4,182 22 32129 25 36,773 25
Driver/Rider error or reaction 1,104 70 12,621 67 95319 75 109,044 74
Impairment or distraction 34 24 3,138 17 16,679 13 20,191 14
Behaviour or inexperience 469 30 4,671 25 3,544 25 36,684 25
Vision affected by external factors 130 8 1,773 9 13,279 10 15,182 10
Pedestrian only (casualty or uninjured) 291 18 3,346 18 10,729 8 14,366 10
Special codes 107 7 884 5 5,715 4 6,706 5
Total number of casualties' 1,587 100 18,874 100 127,848 100 148,309 100

Figure 2. 15 UK 2013 casualties by contributory factor and severity®

Number/ percentage
Pedal cycle Matarcycle Car Bus or Coach  Van/Light goods HGV All vehicles®

Per Per Per Per Per Per Per
Contributory factor attributed to ve| Mumber cent  Number cent  Number cent MNumber cent MNumber cent Number cent Number cent
Road environment contributed 470 3 2253 13 11,862 8 122 3 670 7 47 6 15,853 8
Vehicle defects 34 2 181 1 1,197 1 19 0 136 1 106 2 2,003 1
Injudicious action 1,853 14 2497 15 19,506 13 193 5 1,45 14 588 11 26,254 13
Driver/Rider error or reaction 4915 37 7,652 45 65,644 44 1474 38 4814 48 2435 44 87,682 44
Impairment or distraction 1,009 8 550 3 11,124 7 98 3 636 6 268 5 13,11 7
Behaviour or inexperience 1,269 9 3292 20 19,771 13 218 6 1,359 13 508 9 26,613 13
Vision affected by external
factors 540 4 878 5 9,826 7 115 3 678 7 516 10 12,7119 6
Pedestrian only (casualty or
uninjured) 4 0 3 0 21 0 1 0 1 0 0 0 30 0
Special codes 170 1 298 2 3,087 2 13 3 255 k) 141 3 4,278 2
Vehicles with no contributory
factor 6,672 50 6,123 36 60,654 41 2,059 53 3,843 38 2,342 42 82434 41
Total number of vehicles 13,440 100 16,662 100 148,385 100 3,864 100 10,087 100 5571 100 200,074 100

Figure 2. 16 UK 2013 contributory factor by vehicle type®
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Mumber/ percentage

Motorways A roads B roads Other roads® All roads

Per Per Per Per Per
Contributory factor reported in accident’ Mumber cent® Number cent’ MNumber cent’® Number cent® MNumber cent®
Dangerous action in carriageway (eg. 8 0 355 1 101 1 660 2 1,124 1
playing)
Pedestrian impaired by alcohol 3 0 843 2 220 2 [E3] 2 1,807 2
Pedestrian impaired by drugs (illicit or 1 0 94 0 26 0 75 0 196 0
medicinal)
Pedestrian careless, reckless or in a hurry 5 0 2,3 4 548 4 2,143 g 5,027 5
Pedestrian wearing dark clothing at night 0 357 1 108 1 354 1 824 1
Pedestrian disability or illness, mental or 9 0 13 0 67 0 234 1 501 0
physical
Special Codes 203 4 2,299 4 542 4 1,969 5 5,013 5
Staolen vehicle 16 0 166 0 60 0 324 1 566 1
Vehicle in course of crime 16 0 115 0 40 0 218 1 389 0
Emergency vehicle on a call 10 0 384 1 56 0 169 0 619 1
Vehicle door opened or closed negligently 3 0 276 1 60 0 230 1 569 1
Other 170 4 1,426 3 349 2 1,162 3 3,107 3
Total number of accidents 4,771 100 51,843 100 14,239 100 38,081 100 108,934 100

Figure 2. 17 UK 2013 contributory factor by road®

2.5 UK Road Traffic Accident Data

To build an accident prediction model, a core set of data is required. From this data,
exploratory analysis can be conducted followed by model design. As previously
mentioned road safety information tends to be managed by multiple agencies and is
amenable to sharing (Mitchell, 2002). In the UK, the two main sources of road safety
information are STATS19, the national road accident reporting system which includes
police information, and the hospital episode statistics (HES) (The International
Transport Forum, 2013, p. 428). Each agency manages different information of interest
and uses it for specific purposes. All personal injury accidents which are reported to
the police are recorded on a standard form called the STATS19 form. The STATS19
Road Safety dataset is published annually by the UK Department of Transport. The
Department publishes the STATS19 dataset on the UK open data website which is
licensed under the open government license.” Under this license, an individual is free
to copy, publish, distribute and adapt the STATS19 dataset. The dataset is supported
by the “road accident safety data guide” which is a data dictionary which describes the
structure of the STATS19 data.?

The dataset contains 7.5 million observations providing details about the
circumstances of personal injury road accidents, vehicles involved and casualty details
recorded since 1979. Each observation is classified by accident severity. The accident
severity classifications are “fatal”, “serious” and “slight”. The dataset is divided into
three categories being accident, vehicle and casualty. Accident features include date,
time, speed limit, road type as well as weather, light and road surface conditions and

! Department of Transport UK, 2014. Road Safety Data, http://data.gov.uk/dataset/road-

accidents-safety-data, [Accessed 26 10 2014].
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junction detail. Vehicle features include but are not limited to vehicle type and
manoeuvre, driver sex and age as well as engine capacity. Casualty features include
casualty type, sex and age band of casualty. All features recorded in each category are
described in Table 2.1.

Table 2. 1 STATS19 features®

Accident Circumstances

Accident Index

Puolice Faorce

Accident Severity

Mumber of Yehicles

Mumber of Casualties

Date (DDMMAYYY)

Day of Week

Tirne (HH: M)

Location Easting OSGR (Mull if not known)
Location Marthing OSGR (Null if not known)
Longitude {Mull if not known)

Latitude (Mull if not known)

Local Authority (District)

Local Authority (Highway Authority - ONS code)
1st Road Class

1st Road Number

Road Type

Speed limit

Junction Detail

Junction Contral

2nd Road Class

Vehicle

Accident Index
“ehicle Reference
“ehicle Type

Towing and Ariculation
Yehicle Manoeuwre

“ehicle Location-Restricted Lane

Junction Location

Skidding and Overturning
Hit Object in Carriageway
“ehicle Leaving Carriageway
Hit Object off Carriageway
1st Point of Impact

Was “Wehicle Left Hand Drive
Journey Purpose of Driver
Sex of Driver

Age Band of Driver

Engine Capacity

“ehicle Propulsion Code
Age of Wehicle (manufacture)
Driver IMD Decile

Driver Home Area Type

Casualty

Accident Index
“ehicle Reference
Casualty Reference
Casualty Class

Sex of Casualty

Age Band of Casualty
Casualty Severity
Pedestrian Location
Pedestrian Movement
Car Passenger

Bus or Coach Passenger

Pedestrian Road Maintenance YWorker (From 2011)

Casualty Type
Casualty IMD Decile
Casualty Home Area Type

2nd Road Number

Pedestrian Crossing-Hurman Control
Pedestrian Crossing-Physical Facilities
Light Conditions

Weather Conditions

Road Surface Conditions

Special Conditions at Site

Carriageway Hazards

Urban or Rural Area

Did Puolice Officer Attend Scene of Accident
Lower Super Ouput Area of Accident_Location (England & Wales only)

2.6 Data Mining Overview

A key consideration for data mining is the type of data in the dataset, including the
volume, structure, frequency and specific characteristics. Fatal traffic accidents are rare
or infrequent events and therefore pose additional challenges for accurate prediction.
Sampling techniques can be applied to help identify patterns which would otherwise be
unseen. Data mining analyses data in order to identify underlying relationships and
patterns and the knowledge extracted can be used to develop predictive models (Nyce,
2007, p. 9). By rationalising the trends and relationships in data, knowledge is
discovered (Han, et al., 2011, p. 17). Data mining, also referred to as knowledge
discovery, is defined as;

“the nontrivial extraction of implicit, previously unknown, and potentially useful
information from data” (Frawley, et al., 1992).

8 Department of Transport UK, 2013. Road Accident Safety Data Guide,

http://data.dft.gov.uk/road-accidents-safety-data/Road-Accident-Safety-Data-Guide.xIs,
[Accessed 25 1 2014].
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The stages in data mining and knowledge discovery are outlined in Fig. 2.18 and
displays the relationship between data mining and knowledge discovery. The key
stages in the data mining process are briefly discussed below.

Data Mining & Knowledge Discovery Data
Scoring

Model Visualizatiy'

Model Evaluation

Model building

Data Transformation

Data Preparation

Data Mining
Selection & Sampling

Data Sourcing
Knowledge Discovery in Databases

Figure 2. 18 Data mining & knowledge discovery process
Source: (Miner, et al., 2009, p. 17)

2.6.1 Data understanding and selection

A key stage in the data mining process is the selection of data and often described as
data understanding stage. Data needs to be of good quality and clean as the quality of
predictive models is only as good as the data used to create them (Eckerson, 2007, p.
12). An understanding of the data characteristics, content and structure should be
gained as the nature of the data can affect the selection of appropriate mining and
prediction techniques to apply (McCue, 2007, p. 50).

Data quality considerations include accuracy, completeness and consistency (Han, et
al., 2011, p. 79). Data quality and volume are vital to ensure the reliability of a
predictive model and therefore prior to choosing a dataset an assessment of the data
quality should be completed. Data volume is a consideration as a dataset used for
predictive modelling must be large enough to be split into training, test and validation
data in order to evaluate the model. Training data is used to build a model, test data
estimates model accuracy and validation data, validates the model accuracy (Miner, et
al., 2009, p. 70). Similarly, enough test and validation data should be available to
validate model accuracy. The validation dataset is required as it is not sufficient to
report model performance on the basis of a dataset which was used to create the model
and the validation data should be kept separate from data included in model building
(Miner, et al., 2009, p. 70). The larger the volume of training data available, the more
accurate the resulting predictive model is likely to be. The data used for this research is
the STATS19 traffic accident dataset.
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In data mining, data is structured as continuous data or categorical data. Continuous
data relates to numbers such as the number of accidents while categorical data relates
to data grouping or categorisation such as road type. Data is typically described in a
data description and can include field data type, size as well as descriptive statistics
such as mean, standard deviations and data groupings for categorical fields. (Miner, et
al., 2009, p. 40) This research will focus on categorical data only.

Uncommon or infrequent data relates to the trends and pattern in data which do not
occur very often. Some infrequent patterns in data can contain useful prediction
information. However, these patterns can appear so infrequently, data mining
techniques can have difficulty capturing this information (He & Garcia, 2009, p.
1265). Where infrequent events exist the dataset may also suffer from class imbalance,
where the minority class is limited within the dataset. Data sampling techniques can be
applied to data which can make uncommon patterns more prominent in datasets (He &
Garcia, 2009, p. 1266).

2.6.2 Data preparation and transformation

Data preparation involves getting the data ready for modelling stages and involves
selecting the data relevant to the experiment, transforming and reshaping the data so it
is in a suitable format for analytical modelling (Miner, et al., 2009, p. 40). Data
preparation can present many challenges and can be a time consuming stage of
predictive modelling (Zhang, et al., 2003, p. 377). By creating a smaller dataset
through selection of relevant data only and applying data reduction techniques, such as
sampling, significant data mining efficiencies can be achieved (Zhang, et al., 2003, p.
377). Techniques for data transformation reduce the size of the dataset but attempts to
minimise the loss of information contained in the data (Han, et al., 2011, p. 111).

A sampling technique consists of building a representative sample of a dataset under
the:

‘hypothesis that a classifier trained from that sample will not perform significantly
worse than a classifier trained on the entire’ (Aounallah, et al., 2004) dataset.

Data sampling techniques are used in data mining to select a representative sample of
the data population which estimates the characteristics of the data population under
consideration (The SAS Institute, 1998, pp. 16-17). In the context of this research
experiment, these techniques will be used to rebalance the traffic accident data so fatal
traffic accidents are more prevalent. An additional feature of infrequent events is that
their occurrence is often limited in datasets, with features being outweighed by more
frequent events. The dataset is then considered imbalanced which poses a problem
when extracting relationships in the data, however, sampling techniques can be applied
to make the data amenable to prediction. When a class imbalance problem is identified,
experimentation with sampling techniques may help improve prediction performance.
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Sampling techniques require specialised skill and it can take a significant timeframe to
identify the best sample. Where an extreme imbalance exists in a dataset, most
algorithms will not perform well and will likely assign the minority imbalance as
negative (Ling & Li, 1998, p. 74). For most imbalanced datasets the application of
sampling techniques assists in improving classifier accuracy (He & Garcia, 2009, p.
1266).

Undersampling is a technique used in data mining to adjust the class distribution of a
dataset in favour of the minority class (He & Garcia, 2009, p. 1266). With
undersampling, the majority class is reduced or under sampled (Han, et al., 2011, p.
320) and randomly eliminates data from the majority class until both classes match
(Japkowicz, 2000, p. 13). For example, in the case of cancer diagnosis, patients given
the all clear are the majority class and patients diagnosed with cancer are the minority
class (He & Garcia, 2009). With undersampling, the volume of patients in the all clear
class would be reduced to bring them in line with patients diagnosed with cancer. By
undersampling the majority class, trends and patterns may be removed from the data
that might lead to a worse prediction for the majority class. In SPSS Modeler,
undersampling is referred to as majority reduction.

Oversampling is a technique used in data mining to adjust the class distribution of a
dataset in favour of the majority class (He & Garcia, 2009, p. 1266). With
oversampling, the minority class is increased or over sampled (Han, et al., 2011, p.
320) until the size meets that of the majority class (Japkowicz, 2000, p. 13). For
example in cancer diagnosis patients given the all clear are the majority class and
patients diagnosed with cancer are the minority class (He & Garcia, 2009). With
oversampling, the volume of patients in the cancer class would be increased to bring
them in line with patients who were given the all clear. With oversampling, there is a
risk of overfitting the minority class to a model (He & Garcia, 2009, p. 1267). Using a
validation dataset to test a model trained from oversampled data will provide
additional evidence that the model classifies accurately and overfitting has not
occurred. In SPSS Modeler, oversampling is referred to as minority boosting.

Class imbalance occurs when the class of interest is rare or infrequent i.e. the majority
class far outweighs the rare class (Han, et al., 2011, p. 305). In the case of fatal traffic
accidents, the non-fatal accident class far outweighs the fatal accident class. Class
imbalanced datasets, when used as training data, can lead to poor predictions for the
minority class as the minority class is not prevalent in the dataset.

2.6.3 Model building and evaluation

Model building involves applying a predictive modelling technique to the data created
at the preparation stage. When selecting the appropriate modelling techniques and
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tools, consideration should be given to the appropriateness and availability of
modelling tools and the intended use of the model results (McCue, 2007, p. 118). For
example, accuracy may sometimes be compromised to produce a model which can be
easily understood and actioned. Neural networks provide high degrees of accuracy but
it can be difficult to understand the basis of the result, whereas, for decision trees rules
can be extracted which can then be interpreted

Evaluation is a key stage in the data mining process and helps to assess the predictive
capability of the model and identify the model which performs best (Souza, et al.,
2002, p. 1). Specific focus is given to techniques used to evaluate classification models
which will be constructed as part of this experiment research such as the confusion
matrix, receiver operator curve (ROC) and the area under the curve (AUC).

A confusion matrix is designed to show correct and incorrect predictions (Han, et al.,
2011, p. 304). The terminology used to describe correct and incorrect predictions are
true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN).
It is common for classification models to be evaluated using confusion matrix results.
Fig. 2.19 is an example of a typical confusion matrix.

Predicted Class

yes no
Actual Class yes true positive false negative
no false positive true negative

Figure 2. 19 Confusion matrix example
Source: (Witten, et al., 2011, p. 164)

Commonly used evaluation measures which can be calculated from confusion matrix
results, include accuracy, which measures the percentage of data correctly classified,
precision, which measures the percentage of data which are correctly labelled as
positive and recall, which measures the percentage of the positive targets labelled
correctly (Han, et al., 2011, pp. 305-307).

e Accuracy — The proportion of TPs and TNs which were classified correctly.
This is also called the accuracy rate.

e Recall/Sensitivity - The proportion of TPs which were classified correctly. This
is also called the true positive rate.

e Precision — The proportion of TP’s which were classified as fatals which were
actually fatal.

The ROC curve provides a method to compare classification models (Han, et al., 2011,
p. 312). The x-axis represents the false positive rate while the y-axis represents the true
positive rate (Han, et al., 2011, p. 312). In this experiment research, the true positive
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rate is the proportion of fatal accidents which are classified correctly. Fig. 2.20
presents a sample ROC curve and represents the trade-off between the true positive
rate, also known as recall, and the false positive rate. The further the ROC curve is
from the diagonal line the more accurate the model is.
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Figure 2. 20 Sample ROC curve
Source: (Han, et al., 2011, p. 312)

Area under the curve (AUC) is a metric used to assess model accuracy (Han, et al.,
2011, p. 312). AUC is measured on a scale ranging from 0.5 to 1. AUC refers to the
area under the ROC curve. The larger the AUC (Witten, et al., 2011, p. 177), the more
accurate a model is. A large area indicates an AUC which is close to 1.

Interpretability of models is a non-technical evaluation method. Decision trees are
popular because business rules can be explained in English and can be easily
understood by users (Berry & Linoff, 2004, p. 165). A balance must be found between
interpretability and accuracy (McCue, 2007, p. 118).

2.6.4 Data mining methodology

The CRISP-DM process is based on the industry experience of data mining
practitioners rather than academic researchers and is a best practice model for data
mining (McCue, 2007, p. 50). CRISP-DM is designed to encourage best practice, aims
to aid faster and better results from data mining (Shearer, 2000, p. 13) and provides a
structured approach to planning and implementing a data mining project. (Beshah, et
al., 2013) in recent research on road accident data, followed the CRISP-DM approach
to conform to an industry standard. A similar methodology was adopted for this
research, with adaptation to meet the specific requirements of this research experiment.
The image in Fig. 2.21 depicts the standard CRISP-DM process and the recommended
phases and tasks.
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Generate Test Design
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Business Objectives | Initial Data Collection | Rationale for Inclusion/ | Techniques Assessment of Data | Deployment Plan
Background Report Exclusion Modeling Technique Mining Results w.r.t.
Business Objectives Modeling Business Success | Plan Monitoring and
Business Success Describe Data Clean Data Assumptions Criteria Maintenance

Criteria Data Description Data Cleaning Report Approved Models Monitoring and

Maintenance Plan

Inventory of Resources | Explore Data Derived Attributes Review of Process Produce Final Report

Requirements, Data Exploration Generated Records Build Model Final Report
Assumptions, and Report Parameter Settings Determine Next Steps | Final Presentation
Constraints Integrate Data Models List of Possible Actions

Risks and Verify Data Quality | Merged Data Model Descriptions | Decision Review Project
Contingencies Data Quality Report Experience

Terminology Format Data Assess Model Documentation

Data Mining Success
Criteria

Produce Project Plan

Project Plan

Initial Assessment of
Tools and
Technigues

Figure 2. 21 CRISP-DM process phases and tasks
Source: (Chapman P., et al, 2000, p. 12)

2.7 Predictive Analytics

Predictive analytics is a technique used to predict future outcomes and trends using
quantitative techniques to derive insights from data. The main component of predictive
analytics is the predictor. Statistical, data mining and machine learning techniques are
utilised. A variety of algorithms can be used to analyse historical information to make
predictions about future events or behaviour (McCue, 2007, p. 117). The focus of this
dissertation research is to apply prediction techniques to extract knowledge from traffic
accident data. Prediction techniques such as decision trees and Bayes net enable
organisations to rationalise the relationships in data through building prediction models
which are used to score new data. Often the techniques identify relationships which
would otherwise go unnoticed and the insights provided can be used for more focussed
plans and decision making.

Predictive analytics is widely used in the business environment. In marketing it helps
marketers to understand purchasing patterns to create new sales and reduce churn to
the competition (Berry & Linoff, 2004, pp. 115-116). In public safety predictive
analytics is used to support analytics applications designed to keep the public safe
(McCue, 2007, p. 52) for example predictive policing.

Predictive techniques or modelling algorithms in general are considered as supervised
or unsupervised learning techniques. The supervised techniques include classification
and regression models and aim to identify rules within the data which can be applied to
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predict a defined outcome (McCue, 2007, p. 119). Unsupervised techniques group data
with similar attributes but interpretation can be challenging.

This research focuses on the application of three classification techniques. A
classification technique is described by (Wahed, et al., 2012) as:

“a machine learning technique used t0 predict the correlation between data samples
and classes”.

Classification involves considering the features of a case and aligning it to one of a
predefined set of classes (Berry & Linoff, 2004, p. 9). For example, in
telecommunications, “churn” and “stay” are two predefined classes, with customers
who leave grouped into the “churn” class and customers who stay grouped into the
“stay” class. When model building is complete, new data can be scored against the
model to extract prediction. There are many classification techniques, however, this
experiment applies two types of decision trees, C5.0 and Chaid, and Bayes net.

A decision tree is a classification technique which separates data using class labelled
cases (Han, et al., 2011, p. 274). When viewed graphically, the splits resemble an
inverted tree or decision tree. C5.0 and Chaid trees are presented in the same format
but use different split mechanisms. Decision trees are based on a set of rules extracted
from the data and most commonly the rules are presented in a tree like format. A target
or output is set for the decision tree, presented as the top node on the tree, the data is
split into homogeneous subgroups, linked to that target, and the subgroups are
represented as branches on the tree. The process is iterative and once the decision tree
identifies the strongest predictor relating to the target it records it as a node on the
branch and moves to the next level down on the tree to identify the next strongest
predictor and so on until terminal nodes for each branch are created. The splitting
generally ceases when separation is no longer meaningful in relation to the target
(Konstantinos & Chorianopoulos, 2009, pp. 110-117). Once the decision tree is built
new data can be scored against the model and a class prediction can be extracted.
Decision trees are popular because business rules can be explained in English which
subject matter experts can understand (Berry & Linoff, 2004, p. 165). A key
characteristic of decision trees is the interpretability of rules. Typically, there is a
trade-off between model interpretability and model accuracy. Examples of the decision
tree format and the format of rule extraction in English are presented in Fig. 2.22 and
Fig. 2.23.
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Figure 2. 22 Sample decision tree from IBM SPSS Modeler
Source: (Konstantinos & Chorianopoulos, 2009, p. 116)
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Figure 2. 23 Sample decision tree ruleset from IBM SPSS Modeler
Source: (Konstantinos & Chorianopoulos, 2009, p. 117)

Chaid stands for Chi-squared interaction detection and was proposed by Kass in 1980.
Chaid applies the decision tree process, which, applies the Chi-squared statistical test
for proportion to determine a split and uses multiway splits to construct trees (Miner,
et al., 2009, p. 246). Chaid has a stopping mechanism which determines when a sub
tree is complete (Miner, et al., 2009, p. 792). The technique is popular for market
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segmentation, however, Chaid decision trees can be large and this can restrict the user
understanding (Miner, et al., 2009, p. 247).

The C5.0 decision tree is a popular modelling technique which is based on entropy and
information gain.? It is a descendant of the C4.5 decision tree technique. As with
Chaid, the decision tree process is followed but the splitting mechanism is specific to
C5.0. C5.0 uses the highest information gain to determine a split. When tree
construction is complete, the lowest level splits which contribute least are removed or
pruned® C5.0 models are robust to missing data and large numbers of input features.
C5.0 can only be used with categorical outcomes, and unlike Chaid, cannot construct
trees based on numeric outcomes.

A Bayesian belief network, more commonly referred to as Bayes net is a probabilistic
graphical modelling technique (Han, et al., 2011, p. 323). Bayes net displays a dataset
in a graphical model. Each variable in the graphical model is called a node. Each node
has a conditional dependency or importance. There may be a strong causal relationship
between variables in Bayes net but this doesn’t mean there is a cause and effect
relationship (Han, et al., 2011, p. 324). This experiment research will use Bayes net to
represent the probabilistic relationship between fatal traffic accidents and the
characteristics of fatal traffic accidents.

2.8 Traffic Accident Prediction Research

This research experiment investigates the area of fatal traffic accident classification
and identifying current research in the field of traffic accident prediction helped to
define the experiment.

Decision Tree Models for Count Data

(Wah, et al., 2012) conducted an experiment on a Malaysian motor cycle road accident
dataset and used categorical features to model motor cycle accident occurrences and
compared and contrasted the classification performance of CART decision trees,
poisson regression and negative binomial regression to predict death or serious injury
accidents. Their research produced 78% prediction accuracy using CART which was
marginally better than the other two models. Their research did not present findings for
precision or recall. They noted that the rules extracted from CART were easy to
interpret. They found that the most significant contributors to high frequency serious

o IBM, 2014. SPSS Modeler C5.0 Node. http://www-

01.ibm.com/support/knowledgecenter/SS3SRA7 15.0.0/com.ibm.spss.modeler.help/c50node g
eneral.htm ,[Accessed 10 11 2014].
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injury or fatal accidents were when an accident occurred on a straight road or on a
bend or at a junction. Most serious injury or fatal accidents occurred on straight roads.
Finally, their research found that serious injury or fatal accidents occurred most often
when the weather was clear and the road surface conditions were dry.

The prediction results achieved by (Wah, et al., 2012), led to this research giving
consideration to experimenting with the STATS19 dataset to predict fatal traffic
accidents using a number of classification techniques including two decision trees and
Bayes net.

Bayesian Network model of two car accidents

(Simoncic, 2004) describes using the Bayes net technique to model two car traffic
accident data using factors which influence accident outcomes including “fatality”.
Bayes net models use probability and graph theory to model the behaviour of complex
situations such as traffic accident behaviour. A model was presented which captured
the relationships between different accident factors. Some of the factors considered
include road, traffic, speed and time. (Simoncic, 2004) states that some of the factors
are interrelated such as traffic and time.

Their research found that Bayes net can be “fruitfully” (Simoncic, 2004) used to
model traffic accidents. The results are presented as probabilities rather than accuracy,
precision or recall. The main advantage of this modelling technique was its ability to
find relationships between factors that relate to fatal or serious injury outcomes.
(Simoncic, 2004) found that the model results were encouraging and mentioned that
adding additional features is one approach which might provide an improvement.
Finally, (Simoncic, 2004) found that by modelling more data, the reliability of the
model improved.

Traffic Accident Analysis Using Machine Learning Paradigms

(Chong, et al., 2005) research summarises the performance of neural networks, support
vector machines, decision trees and a concurrent hybrid approach to model driver
injury severity resulting from traffic accidents. Their research found that the hybrid
approach produced the best classification accuracy for the fatal injury class at 90%
accuracy but recall or precision performance was not discussed. A hybrid approach is a
technique which combines learning models into one model which can exploit the best
features of each model to provide a better prediction result. They combined a decision
tree and a neural network technique to create a hybrid model.

Their research did not present findings for precision or recall. They mentioned that
“fatality has the highest cost to society economically and socially”, therefore
predicting fatal accidents accurately is beneficial to society. (Chong, et al., 2005)
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mentioned that speed is recognised as an important factor which contributes to injury
severity. In their research, they could not use speed to predict as it was unknown in
68% of cases. According to (Chong, et al., 2005), if speed could have being used, it
would likely have improved the performance of the models.

Analysis of factors associated with traffic injury severity on rural roads in Iran

(Kashani, et al., 2012) research considers crash fatality and injury rates on two lane,
two way and freeway roads in Iran which has one of the highest injury and fatality
rates in the world. Using the classification and regression tree (CART) technique, their
research found that the factors which influence injury severity most were seat belt use,
cause of crash and collision type. Their research found that seat belt use was the most
important factor for two lane and two way rural roads. Seat belt use is less important
on freeways as police enforce the use of seat belts on freeways. Cause of crash was the
next most important factors with speeding and inappropriate overtaking being the
biggest causes on two way and two lane rural roads. In order to reduce accident
severity, (Kashani, et al., 2012) suggested improved policing and road design and
stopping pedestrians and animals from crossing freeways.

2.9 Conclusion

This chapter focused on the current literature in the domain of road safety and
specifically fatal road traffic accidents. The role of road safety data in understanding
road traffic accidents was briefly discussed. A cross section of the factors which
significantly affect the rate of severe and fatal traffic accidents were discussed and
road traffic accident data and statistics in the UK were outlined. The current literature
shows that the factors which contribute to fatal road traffic accidents are multifaceted
and difficult to quantify and can be considered to be “neither simple or linear” (The
International Transport Forum, 2014, p. 491) in nature.

In addition the chapter considered data mining and prediction techniques in the
context of fatal traffic accidents. The various stages of data mining including data
understanding, selection and preparation were presented. Considerations for sampling
techniques and model build were discussed and the CRISP-DM best practice data
mining methodology was outlined. Predictive analytics classification techniques and
assessment and evaluation techniques were discussed. Finally current research papers
in the area of traffic accidents prediction were summarised.
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3 EXPERIMENT DESIGN

3.1 Introduction

This chapter outlines the experiment design which was conducted as part of this
dissertation research. The nature of the data used for the experiment is presented
together with the data preparation employed in order to construct the data for
predictive modelling.

Predictive modelling classification techniques were used during the modelling phase of
the experiment and C5.0 and Chaid decision trees and Bayes net were selected. Each
technique trained a model on baseline or normal, semi reduced and reduced data and
sampling techniques were applied. In addition the techniques used to assess model
performance and evaluate models are discussed.

3.2 Implementation Methodology

The methodology adopted to implement the research and experiment was based on the
Cross Industry Standard Process for Data Mining (CRISP-DM) methodology as
described in chapter 2. This research methodology was adapted to align with the
specific requirements of this experiment design and the adapted methodology guided
the focus and phases of the experiment. An overview of the key stages in the adapted
experiment methodology is outlined in Fig. 3.1.
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Understanding Initial data Data selection Select Performance
fatal traffic collection modelling evaluation
accidents technigue
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I h Y d h Y d N i A+ r N
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Figure 3. 1 Adapted Experiment Methodology
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The initial stage was to develop an understanding of fatal traffic accident background,
key data characteristics and relevant industry wide significant factors worth
considering. The focus and the objective of the research experiment was defined.
Understanding the data was divided into four stages including an explanation of the
initial data collection, a description of the data, an outline of the planned exploration
techniques and the methods to be used to verify data quality and cleanse if required.
Data preparation was divided into two stages being the selection and transformation of
data and an outline for construction of the data. The approach to building each model
included a description of the modelling techniques employed, the key features of the
test design, the stages in model build and the steps in assessment of the model
performance. The final stage in this research methodology was to outline the steps in
evaluation of performance of the model, consideration of model improvements and
presentation of the key findings.

3.2.1 Database & analytics software

To execute this methodology two market leading database and analytics tools were
used, “Toad for Oracle database” and IBM SPSS Modeler. Oracle is a well-established
database vendor which sells database technology to large companies and governments
worldwide. Toad is an Oracle database development and administration tool which
provides capabilities to administer and design Oracle databases. Oracle database and
Toad were selected to host and manage the data for the experiment as they are widely
used and well regarded. The Oracle PL/SQL programming language was used to
construct the data for the experiment. SPSS Modeler, IBM’s flagship predictive
modelling product, was used to manipulate data and build predictive models. It is
mature, intuitive and easy to use. In addition it has strong ETL, data exploration, data
preparation and predictive modelling capabilities. It provides a range of modelling
techniques including decision trees, statistical models and text analytics.

For this experiment, SPSS Modeler was used for data understanding and preparation,
model design and build as well as results analysis and presentation. Three modelling
techniques were used to build predictive models for the experiment. These techniques
were C5.0, Chaid and Bayes net and technigque descriptions are outlined in chapter 2.

3.2.2 Focus of experiment and objectives

As identified in chapter 2, fatal traffic accidents are a significant worldwide issue.
Road safety agencies across the world, are focussing on researching and identifying
causes and potential improvements in an effort to develop enhanced road safety plans
to focus efforts and reduce the number of fatalities. Current developments in road
accident research, considers the potential for analysing existing road safety data and
using predictive analytics techniques to identify key contributory factors which would
allow more focused actions. The focus of this research was to build predictive models,
based on an extensive UK road traffic accident dataset STATS19, to classify fatal road
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traffic accidents using C5.0, Chaid and Bayes net classification techniques and to
evaluate model performance. The models which provide the best results using each
technique were analysed and evaluated using accuracy, recall, precision and ROC
curve performance metrics. In addition the aim was to interpret models to identify the
predictive factors which are most likely to contribute to fatal traffic accidents.

(Wah, et al., 2012) conducted a similar experiment on a Malaysian motor cycle road
accident dataset and used categorical features to model motor cycle accident
occurrences and compared and contrasted the classification performance of different
modelling techniques to predict death or serious injury accidents. They converted the
frequency of motor cycle accidents which involved death or serious injury into
categorical dependent variables of zero, low and high. The factors they considered
were collision type, road geometry, time, weather, road surface conditions and time of
day. Their research produced 78% prediction accuracy using decision trees (Wah, et
al., 2012). Following review of the paper and considering the good prediction results
achieved, the question arose whether classification techniques applied to UK traffic
accident data could hold similar prediction characteristics?

As mentioned, the data source for the experiment was the UK’s STATS19 dataset of
reported personal injury road accidents and is the only national source of detailed road
accident information in the UK.!° The STATS19 dataset contains three separate
datasets, vehicle, casualty and accident. The vehicle dataset contains information
relating to vehicles which were involved in accidents while the casualty dataset
contains information relating to the people who were the casualties of accidents. The
accident dataset contains information which directly relates to traffic accidents and is
the focus of this experiment. The majority of accident features in STATS19 are
categorical and are listed in Table 3.1. This research only modelled categorical features
which is similar to research by (Wabh, et al., 2012). However, each categorical feature
in the dataset can have many values, for example, Police Force includes the name of
each individual police constabulary who recorded an accident. When a categorical
feature has many values, this is described as a high order nominal.

1o Department of Transport UK, 2014, STATS19 Road Accident dataset.

http://www.adls.ac.uk/department-for-transport/stats19-road-accident-dataset/?detail
[Accessed 03 10 2014].
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Table 3. 1 Traffic accident features

| Accident Features

Police Farce Pedestrian Crossing-Human Caontral
Accident Severity Pedestrian Crossing-Physical Facilities
MNumber of Vehicles  [Light Conditions

Number of Casualties |Weather Conditions

Date Road Surface Conditions

Day of Week Special Conditions at Site

Time Carriageway Hazards

Road Type Urban or Rural Area

Speed limit Police Officer Attended Accident

Part of this research experiment was to identify the features which have the most
predictive power. The predictive features in their basic form may not have much
predictive power, however, grouping categorical features can increase the predictive
power. In data mining terminology, this grouping is called data transformation. To
gain the most predictive power, the best groupings must be identified. In this research
experiment, the Chaid decision tree technique was used to identify the groups with the
most predictive information. By modelling the accident dataset, it was hoped that the
resulting models would accurately identify the combinations of predictive factors that
contribute to fatal traffic accidents. While it was important to identify the factors that
contribute to fatal traffic accidents, model interpretability was also important. For
example, from a decision tree, it should be possible to extract and interpret rules which
explain the factors that contribute to fatal traffic accidents. In data mining terminology,
a hold out or validation dataset is the term used to describe data which a model has not
previously seen. A further aim of this experiment was to measure the performance of
predicted results as compared to actual results on hold out data. Accident dynamics do
not vary dramatically, especially in the short term, and this assessment evaluates how
well a model is likely to behave when new data is scored.

3.3 Data Understanding

Extracting actionable insights from historical information is a key aim of using
predictive analytics. Other issues must also be considered and addressed to ensure
successful results. These issues are discussed in the chapters that follow.

3.3.1 Initial data collection

Due to the nature of fatal accidents, recording of fatal events is largely complete given
the involvement of police, hospitals, death certification and legal reporting
requirements. In the UK, all personal injury accidents which are reported to the police
are recorded on a standard STATS19 form. The STATS19 dataset contains detailed
data relating to reported road accidents in the UK including accident circumstances,
vehicle type and related casualties. Although fatalities are accurately reported, the
dataset is considered incomplete in relation to non-fatal accidents. Despite this
limitation, the STATS19 dataset is considered “the most detailed, complete and
reliable single source of information on road casualties covering the whole of Great
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Britain, in particular for monitoring trends over time”.** As mentioned in chapter 2,
the STATS19 dataset is divided into three categories accident, vehicle and casualty.
For the purpose of this research experiment the accident dataset was selected as it
contained a wider range of features. As described in Table. 2.1 accident features
include date, time, speed limit, road type as well as weather, light and road surface
conditions and junction detail. The features in the accident dataset are mainly
environmental characteristics. This research was based on accident records in the
recent past and data from 2005 to 2012 was selected for this experiment. Older data
was not considered as driver behaviour and road volumes adjust over time. An Oracle
database was created and accident data was loaded from a comma delimited file to a
staging area. SPSS Modeler managed table creation and loading the data into the
staging area. The data audit node was used to initially understand the accident data and
the results are presented in Fig. 3.2. For continuous or numeric data, min was the
minimum value and max was the maximum value. For example, speed limit has a
minimum of 10 and a maximum of 70. For nominal or categorical data, the unique
field described the number of unique values each nominal can have. For example,
possible values for road surface are dry and snow.

Audit| Quality Annotations

Field Sample Graph Measurement Min Max Mean Std. Dev Skewness Unique Valid

< CL_SPEED_LIMIT H & Continuous 10.000 70.000 48934 15.359 0475 - 13116
|}
[A] CL_POLICE_FORCE_DESC & Nominal - - . - - 51 13116
[&] CL_ROAD_TYPE_DESC & Nominal - - . - - B 13118
il
[&] CL_JUNCTION_DETAIL_DESC | & Nominal - - - - - 9 18116
=
[&] CL_JUNCTION_CONTROL_DESC & Nominal - - - - - 6 13116
s
[&] CL_LIGHT_CON_DESGC & Nominal - - . - - 5 13116
00
[A] CL_WEATHER_DESC & Nominal - - . - - 10 13118
n
[&] CL_ROAD_SURFACE_DESC 0 & Nominal - - - - - 6 18116
[&] CL_URBAN_RURAL_DESC r‘  Flag - - - - - 2 18116
5 CL_WEEK_NUM_OF_YEAR m & Continuous 1000 53.000 27.269 14999 -0.080 - 13116
5 CL_QUARTER_NUM_OF_VEAR H & Continuous 1.000 4000 2562 1114 0082 - 13116
[&] CL_MONTH_NAME HHHHHHHHHH & Nominal - - - - - 12 18116

EH T ontinuous -01-0... 01 X<ith —| = — =
i cL_TIME Contil 1900-01-0 1800-01-01 23:59:00 18116

Figure 3. 2 SPSS Modeler audit of initial data

1 Department of Transport UK, 2013. Road accidents and safety statistics.

https://www.gov.uk/government/collections/road-accidents-and-safety-statistics, [Accessed 03
11 2014].
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Fig. 3.3 presents the initial data quality assessment. There were a total of 18,115 fatal
traffic accident records. The data audit node was used to understand the distribution of
the data, which is described in more detail in chapter 4. This initial data understanding
was completed prior to implementation to ensure that an effective experiment design
was outlined to meet the data requirements.

Audit | Qualtty| Annotations

Complete fields (%) [100% Complete records (%) [100%

Field Measurement Outliers Extremes Action Impute Missing Method % Complete Valid Records Null Valug Empty String White Space Blank Value
@ CL_SPEED_LIMIT & Continuous 0 0None Never Fixed 100 18116
[A] CL_POLICE_FORCE_DESC & Nominal B - Never Fixed 100 18116
[A] CL_ROAD_TYPE_DESC @ Nominal - 1= Never Fixed 100 18116
[A] CL_JUNCTION_DETAIL_DESC b Nominal - = Never Fixed 100 18116
[A] CL_JUNCTION_CONTROL_DESC ) Nominal | - -- Never Fixed 100 18116
[A] CL_LIGHT_CON_DESC @ Nominal - -- Never Fixed 100 18116
[A] CL_WEATHER_DESC @) Nominal | - -- Never Fixed 100 18116
[A] CL_ROAD_SURFACE_DESC @ Nominal - -- Never Fixed 100 18116
[A] CL_URBAN_RURAL_DESC § Flag B - Never Fixed 100 18116
<% CL_WEEK_NUM_OF_YEAR & Continuous 0 0None Never Fixed 100 18116
{ﬁ}} CL_QUARTER_NUM_OF_YEAR & Continuous 0 0None Never Fixed 100 18116
[A] CL_MONTH_NANE @) Nominal | - -- Never Fixed 100 18116
b cL_TinE & Continuous 0 0None Never Fired 100 18116

Figure 3. 3 SPSS Modeler data quality check of initial data

3.3.2 Data description

Each observation in STATS19 accident dataset was classified by accident severity.
The accident severity classifications are fatal, serious and slight. For the initial data
understanding, fatal cases were reviewed as these are the focus of this research
experiment. Using SPSS Modeler, the data auditing capabilities were used to profile
the characteristics of the data. The output from the SPSS Modeler data audit node,
presented in table format, was used as the initial data description for the data
preparation stage. The descriptive statistics reviewed and the data quality of each
feature was considered. Generally, the higher the quality of the data being used, the
more accurate the predictions are likely to be (Guillet & Hamilton, 2007, p. 120).

3.3.3 Data exploration

This task initially ran querying and reporting techniques in Toad query designer to
answer questions which may help to gain a better understanding of the data. The data
audit node in SPSS Modeler was used to expand this understanding so that data types
and the distribution of key fields was better understood. The data was then searched for
patterns and interesting relationships between features which might provide additional
data understanding.

3.3.4 Data quality and cleanse

Data quality and volume are vital to ensure the reliability of a predictive model. If the
source data is of good quality and there is sufficient volume, a model’s reliability will
likely increase. At the data quality stage, fatal cases were assessed for completeness
and correctness. Any missing, incorrect data or quality issues were identified and these
issues were addressed. All cleansing, if any, was applied to fatal accidents only given
the focus of the experiment.

The STATS19 dataset is a well-known data set which is often used for academic
research and the most commonly used source of UK road safety statistics. Fatal traffic
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accidents, which are the focus of this research, are known to be accurately recorded
(The International Transport Forum, 2014, p. 491). For this reason, it is expected that
the data quality will be high and therefore for this research experiment the data quality
requirements are reduced.

3.4 Data Preparation

Many of the features considered for prediction are high order nominals and a good
prediction result was difficult to achieve without reducing category levels to higher
level groupings. A simple analogy will help to explain this concept. For example
traffic accidents can be assigned classifications such as slight or serious and these can
then be grouped into non-fatal accidents. In this context, non-fatal accidents are a
higher level grouping. The chapters that follow outline the processes followed to select
categorical features, which were reduced and used in the modelling phase to build
prediction models, as well as building the base datasets from which prediction models
were trained in the model building phase.

3.4.1 Data selection and transformation

Each observation in STATS19 dataset was classified by accident severity and the
severity classifications are fatal, serious and slight. For the initial data analysis, serious
and slight were grouped and named non-fatal and fatal continued to be named fatal. In
SPSS Modeler, accident outcome is used to describe the non-fatal and fatal groups. All
accident data from 2005 to 2012 was extracted from STATS19 was loaded to Oracle
and used as the basis for the data transformation.

Data transformation relates to the process of transforming original data sources into
formats appropriate for data mining (Han, et al., 2011, p. 113). The technique selected
for this experiment was supervised discretisation, which used class label information to
identify split-points in the data. These spilt-points were presented on a decision tree as
branches, representing homogeneous subgroups with respect the target field
(Konstantinos & Chorianopoulos, 2009). To identify the features which had the best
predictive information, the Chaid decision tree data mining technique was used. Chaid
was configured with a target of accident outcome in order to identify the features in
STATS19 data with the most predictive information. Chaid is based on the Chi-
squared statistic of proportion and splits data into groups which can be used for
categorical feature level transformation. Fig. 3.4 outlines the process for discretisation
applied for this experiment.
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1. Configure Chaid to target fatal and non-fatal

2. Run Chaid against observation data and
generate decision tree

3.Record the top feature on the decision tree
and category levels listed on all other branches

4. Remove the top predictor from the dataset and
repeatsteps1to 3

5. Repeat process until top six predictors are
identified

Figure 3. 4 Process for discretisation

The technique identified the feature at the top of the decision tree as having the most
predictive information and the category levels of the various branches as having a
relationship with the target. By removing the top feature and repeating the process, the
technique was reapplied to search for the next most important feature and related split
information. On each run, the feature with the strongest relationship to the accident
outcome appeared at the top of the tree. The top features and the category levels
recorded at all six stages were used to create datasets at the data construction stage.
The process was limited to six repetitions for this experiment as further repetitions
affected the processing capability of the available hardware.

3.4.2 Data construction

As previously mentioned, the target for this experiment was accident outcome. The
basis for the target was the combinations of factors and the frequency of these
combinations. All fatal accidents had a positive frequency while non-fatal accidents
had a frequency of 0. Four datasets were created as part of data construction as
outlined in Table 3.2. Three were training data and the fourth was validation data. The
training datasets were used during the modelling phase of this experiment and the
validation data used for independent testing during evaluation.

Table 3. 2 Data Construction Datasets

Type of data Data set name Description

Training Reduced All categorical features are reduced

Training Semi reduced Some categorical features are reduced

Training Normal No categorical features are reduced

Hold out Hold out dataset This is the 2013 data which will be unseen by the model

Fig. 3.5 outlines the process followed to construct training data for the experiment
models.
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*Generate all combinations for the features selected.

o

-

*Using accident outcome as an indicator, remove combinations which are fatal from
the dataset generated in step 1. The cases which remain will be the non-fatal cases.
The results of this step will be stored in temporary storage.

>

h
*For each fatal combinations, count the frequency of the combination. Store the
result of this step including the frequency in temporary storage.

J

*Combine the results from 2 and 3 into one dataset. This dataset will represent the
fatal and non-fatal training data including frequencies.

Figure 3. 5 Training set construction process

The output of step 4 was the input to the modelling phase of this research. Each of the
training sets was complimented by sampling techniques in the modelling phase. The
combination of data creation and sampling techniques was designed to help identify
the optimal combination to give the balance between prediction accuracy and the
interpretability of model results.

As this research used the accident dataset only, there was no data integration process
required. Formatting took place in SPSS Modeler and Oracle, however, most
formatting took place prior to the construction of the training and validation datasets.
Some formatting and data manipulation was required at the modelling stage. For
example, the accident outcome was defined and sampling technique were applied at
the modelling stage.

3.5 Model Building

A number of modelling techniques were used for this research experiment. Models
were built on training data and model quality was estimated on test data. Following
testing, models were validated against validation data.

3.5.1 Select modelling technique

One of the objectives of this experiment was to classify fatal traffic accidents. This
type of modelling problem is called classification. Three classification techniques were
selected to model the STATS19 data. These techniques come from the decision tree
and Bayesian family of classifiers. The modelling techniques were C5.0 decision tree,
Chaid decision tree and Bayes net. The modelling techniques were modelled on three
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datasets. These datasets were created in the data preparation phase. These datasets
were:

a) Reduced dataset: training data where all features were grouped.
b) Semi reduced dataset: training data where some features were grouped.
¢) Normal dataset: training data where no features were grouped.

Fatal traffic accidents are generally described as low frequency and these low
frequency classes are often imbalanced. Sampling techniques were employed to try to
address the class imbalance in the dataset. The objective of these techniques was to
improve classification accuracy by rebalancing the dataset in favour of the rare class or
fatal accidents. The sampling techniques selected for this experiment research were:

1. Undersampling
2. Oversampling

In addition, no sampling, where a model was trained with training data but no
sampling technique was selected, was considered. In the next phase of model building,
a test design was generated.

3.5.2 Test design

A test design or workflow was constructed in SPSS Modeler. This design was used to
estimate model quality. A workflow is a series of interconnected nodes. The nodes in
SPSS Modeler combine data and modelling techniques to generate an initial model.
Fig. 3.6 was the test design workflow which used undersampling and the Chaid
modelling technique. This workflow was adapted to work with other modelling and
sampling techniques.

Typically models are measured in terms of overall accuracy e.g. the percentage of fatal
and non-fatal classified accurately, however, this research was focused on fatal
accident classification. Recall was the measure used to test fatal accident classification
and was the key measure used for this research experiment. Model performance was
presented using the confusion matrix and the matrix presented event counts for:

1. True positives (TP) — fatality occurred and was predicted

False positives (FP) — fatality did not occur and was predicted

True negatives (TN) — fatality did not occur and was predicted not to occur
False negatives (FN) — fatality occurred and was predicted not to occur
Total positives (P) — total fatal

6. Total negatives (N) — total on-fatal

ok~ w

In addition, recall was used to estimate quality by presenting the percentage of actual
fatals classified as fatals. Confusion matrices were generated for each model using the
SPSS Modeler analysis node. Two confusion matrices were generated for each model,
one for training and one for test data. Recall was extrapolated from the confusion
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matrices. As part of the modelling process, the modelling data was split into two
datasets. These datasets were described as training and testing data.
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Figure 3. 6 Test design using resampling and Chaid modelling technique

SPSS Modeler has a capability called partitioning which automates the splitting of
training and test data. The aim of partitioning is to provide a mechanism to test model
quality. Models are built using training data and quality is estimated using test data. On
the partition node, the training to test ratio must be selected. For this research
experiment, the ratio was 80% training and 20% test. This means that the model was
built from 80% of the available data and tested on the remainder.

The above design outlines a modelling framework which was used for all of the
selected modelling techniques and allowed testing and performance metrics to be
extracted for assessment. In the next chapter, the modelling techniques selected, their
parameter settings and expected behaviour are discussed.

3.5.3 Model build

As previously discussed three modelling techniques were selected C5.0 and Chaid
decision trees and Bayes net. When building each model, SPSS Modeler provided the
option to calibrate model settings. Standard parameter settings were set for each
modelling technique. Each technique was used to build models using training data and
sampling combinations.
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3.5.4 Model assessment

The objective of this chapter was to outline how the technical performance of models
produced as part of this experiment was to be assessed. The SPSS Modeler analysis
node was used to generate a confusion matrix. This node produced the confusion
matrix in a table format which was easy to interpret and extract data from. The
performance measures extracted from the confusion matrix were then recorded in a
spreadsheet.

Accuracy

For each model under assessment, accuracy was considered the proportion of fatal and
non-fatal which were classified correctly. Accuracy is calculated as follows:

Accuracy = (Count of TP + Count of TN) / (Count of P + Count of N).

For infrequent events there is often an adverse link between focus on recall at the
expense of accuracy. Accuracy tends not to be the key concern when attempting to
predict infrequent events as the focus is on predicting when infrequent event will occur
rather than when it won’t occur (Weiss & Hirsh, 2000). For this experiment, the focus
was on predicting fatal accidents therefore recall was the priority as it measures the
proportion of fatals classified as fatals. Data preparation and sampling techniques
focussed on the fatal accident prediction rather than fatal and non-fatal prediction. It
was therefore expected that accuracy rates may be low for this experiment, especially
where sampling techniques had been applied. While overall accuracy of the models
was assessed, the performance measure which was of most interest was recall.

Recall

Recall is the percentage of fatal accidents classified as fatals (Han, et al., 2011, p. 368).
It is calculated as follows:

Recall = (Count of TP)/((Count of FN)+(Count of TP))

This was a key measure for this experiment which focussed on fatal accident
prediction, recall was considered more important than accuracy as it identifies the true
positive rate or proportion of fatal accidents correctly classified.

Precision

Precision is a measure of exactness being the percentage of fatals classified as fatals
which are actually fatals or true positives (Han, et al., 2011, p. 368). Precision is
calculated using the following formula:

Precision = (Count of TP)/((Count of TP)+(Count of FP))

Precision performance for prediction of infrequent events can be low when the focus is
on prediction of the infrequent event. Sampling techniques to improve the recall for
fatal accidents are likely to negatively affect the precision result as there “tends to be
an inverse relationship between precision and recall” (Han, et al., 2011, p. 368).

55



Accuracy, recall and precision were extrapolated from the confusion matrix and were
the key metrics from which comparisons were based. Performance was reviewed using
the confusion matrix data. It was expected that the model estimates extrapolated from
the confusion matrices for the training and test should be similar. The test estimate
should underperform the training estimate as the modelling technique had never seen
the test data. A large difference in performance can indicate a model which has under
or overfitted the data. Overfitting occurs when a model fits the data too well and fails
to generalise to new data. Underfitting occurs when a model fails to capture the
underlying trend in the data and therefore fails to predict. Both under and over fitting
lead to poor predictions.

To assist with the evaluation of models, the SPSS Modeler evaluation node was used
to assess performance visually. The evaluation node generated an ROC curve and this
ROC curve was used to visually assess the difference in classification accuracy
between the training and test data.

3.6 Model Evaluation

In the model evaluation phase, the models and the processes followed to create the
models as well as their practical use was reviewed.

3.6.1 Evaluation results

At this phase, the models were tested for usefulness towards achieving the goals of this
research experiment. The main goals were to predict fatal traffic accidents and identify
the factors which were most likely to predict fatal traffic accidents. As previously
mentioned, recall was considered the most important measure given the focus on
identifying fatal accidents. However, this focus on fatal was expected to impact on the
performance results for accuracy and precision. To more thoroughly examine the
performance of the models, the models were tested using 2013 STATS19 accident
dataset or validation data. Two types of evaluation were conducted i.e. a technical and
non-technical evaluation.

The technical evaluation used the same performance measures used at model
assessment, except the performance results related to validation data. This data was
separate from the previous model training and test data and related to a recent period in
time. This made the evaluation more robust as it represented new data which the
models have not previously seen.

The non-technical evaluation related to the interpretability of the model. In the case of
decision trees, it should be possible to extract business rules from the selected model
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and use the rules to understand the relationships between the factors which contribute
to fatal traffic accidents.

The final part of the results evaluation was to explicitly state whether the research goal
of identifying the factors which were most likely to accurately predict fatal traffic
accidents was achieved. Also consideration was given to other useful factors identified
from each model.

3.6.2 Subsequent model improvements

At this stage the modelling work completed to date was reviewed and any flaws in
workmanship were identified. The review process was outlined, findings highlighted
and any issues identified which required immediate attention were addressed.

3.6.3 Key findings

This was the final step in the evaluation phase. The model was assessed to see whether
the objective of predicting fatal accidents was achieved. A review of the model results
was completed to identify the factors most likely to contribute to fatal traffic accidents
or consideration was given to repeat some of the steps in the experiment methodology
with a view to improving the quality of the models.

3.7 Conclusion

Experiment design was a key element of this dissertation as it outlined the
methodology followed when implementing the experiment. Understanding the selected
data and preparation of the data prior to model build helped to improve the quality and
understanding of the information extracted from the models. Building the models was
expected to be an iterative process in order to identify the optimum performing model.
A consistent approach to model evaluation assisted in analysis and comparison of
model results and performance.
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4  EXPERIMENT IMPLEMENTATION

4.1 Introduction

This research activity was focused on finding patterns in traffic accident characteristics
which are specific to fatal traffic accidents. Initially, the descriptive statistics relating
to fatal traffic accidents were created and explored to assist with data understanding
prior to data construction. After data construction, predictive modelling techniques
were selected and model designs were constructed. The modelling techniques selected
for this experiment were from the decision tree and Bayesian families. C5.0 and Chaid
decision trees and Bayes net were selected. These techniques were used to build
classifiers to classify fatal traffic accidents. Following model build, twenty seven
models were assessed using technical criteria and three were selected for further
evaluation. The best three models were evaluated using technical and non-technical
criteria. These models were used to better understand the factors which contribute to
fatal traffic accidents.

l_ Data descriotion
l_ Data exoloration

Data quahty and

Data
Understanding cleanse

4.2 Data Understanding

In data understanding, fatal accidents from the STATS19 data were explored to
understand and discover patterns which relate to fatal traffic accidents. Descriptive
statistics were used to summarise and describe data. Descriptive statistics were
constructed using the SPSS Modeler and the audit node. These statistics were used to
understand frequency counts, data groups and the distribution of data in each field
reviewed. All descriptive statistics described in this chapter relate to an observation
period from the year 2005 to 2012 inclusive. Data from this observation period was
also used to build predictive models in the model build chapter. Table 4.1 presents the
main fields which were explored.
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Table 4. 1 STATS19 fields explored

Field name Field description Source/Derived field
Speed limit Road speed limit E.g. 30 mph Source
Police force Police force who attended the scene Source
Road type Type of road e.g. single carriageway Source
Junction detail Junction detail e.g. crossroads Source
Junction control How a junction is controled e.g. automatic traffic signal Source
Light conditions Light conditions e.g. day light Source
Weather conditions Weather conditions e.g. "fine no high winds" Source
Road surface conditions |Road surface conditions e.g. "dry" Source
Urban/rural Urban or rural location Source
Date Accident occurred date Source
Time Accident occurred time Source
Day day of the week E.g. "Monday" Derived
Week no. of year The week number of the year E.g. "48" Derived
Month name The month of the year e.g. "June" Derived
Quarter no. of year The quarter of the yeare.g. 4 Derived
Period of day The part of the day e.g. "Night" and "Late morning” Derived
Weekend indicator An indicator which states accident occur/dii not occur on weekend  |Derived

In order to develop an understanding of the data contained in the fatal dataset, it was
necessary to load the data described in Table 4.1 into SPSS Modeler. Using SPSS
Modeler and the data audit node, key fields were reviewed and important attributes,
characteristics and prevalent features in the data were noted. The following chapter
outlines the key summarised statistics by key field as produced by the data audit node.

Police force

Police force describes the police force which attended the scene of the accident
recorded. In Fig. 4.1, the police with the top five largest proportions of accidents are
Metropolitan Police, Thames Valley, Strathclyde, West Yorkshire and Greater
Manchester. The fatality frequency ranges from 12 to 1410. The average fatality
frequency is 355. Of the fifty one police forces included in the database, forty two
recorded fatalities between 1% and 3.3%. The three main outliers were the City of
London, Thames Valley and the Metropolitan Police with 0.07%, 4.2% and 7.8%
respectively. The database does not provide any detail in relation to the population size
covered by the various police forces, therefore, fatality percentage cannot on its own
confirm a high risk area.
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Value
Metropalitan Police T
Thames Valley_]
Strathclyde ]
West Yorkshire 7]
Greater Manchester ]
Sussex_]
Kent_]
Devon and Cornwall _]
West Midlands 7]
Essex_ ]
West Mercia]
Avon and Somerset_]
Hampshire ]
Lancashire 7]
Marth Yorkshire Z]
Leicestershire ]
Staffordshire]
Lincolnshire ]
Morfalk ]
Cheshire]
Cambridgeshire ]
Mottinghamshire ]
South Yorkshire ]
Derbyshire ]
Surrey_]
MorthumbriaZ]
Humberside]
South Wales ]
Hertfordshire ]
Marthamptonshire ]
Dyfed-Powys ]
Wiltshire ]
Merseyside ]
Grampian]]
Warwickshire]
Cumbrial]
Lathian and Borders ]
North Wales]
Suffolk]
Gloucestershire]]
Dorset]
MNorthern]
Tayside ]
Durham]]
Bedfordshire]
Gwent]
Cleveland]
Central]
Fife]

Dumfries and Galloway]

City of Londaon|

7.78
424
3.27
326
3.06
3.03
3.02
am
2 86
279
2.69
2.69
2 58
2.39
2.38
221
219
219
2.05
201
2.0
1.82
1.82
1.77
1.74
1.74
1.71
1.66
1.66
1.62
1.58
1.54
1.52
1.51
1.48
1.4
1.37
1.36
1.36
1.32
1.2
1.1
1.09
1.0
0.95
0.79
0.59
0.53
0.48
0.45
0.07

343

Figure 4. 1 Fatal accident proportion by policing region

Date and time

1410
768
592
590
554
549
547
545
518
505
438
433
464
433
431
400
g7
397
arz
365
362
348
330
321
316
15
309
30
300
294
286
279
276
274
264
253
249
246
248
240
217
201
197
181
173
143
106
96
a7
81
12

The fatal accident data records contain date and time information. These fields are
granular and no useful information was found in these fields. (Wah, et al., 2012) in
recent research, considered accident events in terms of the day an event occurred and
time of event. They grouped day and time so they were considered as part of the week
such as weekday and day period such as rush hour. To explore the relationship
between fatal accident and date and time in the STATS19 data, the original date and
time fields were grouped into derived fields. The new derived fields are described in
Table 4.2.

60



Table 4. 2 Derived date/time fields

Derive dateftime field Field description

Quarter of year three monthly intervals grouped as 1, 2, 3 and 4.

Month of year calendar month as month name.

Week number of year 7 day intervals grouped week 1 - 52.

Period of the day time of day grouped as morning, afternoon and evening.

Weekend Friday, Saturday and Sunday grouped as T. All other weekdays grouped as F.

In Fig. 4.2 the traffic accident proportions for each month are presented. The average
fatality frequency per month is 1,510. The majority of months were within 10% of this
average. Fatality frequencies in February, March and April were over 8% lower than
the average whereas August, October and November are over 8% above the average.
August accounted for the highest number of fatalities at 1,634.

Value FProporion % Count
August a.02 1634
October 8.98 1627

Movember 8.89 1611

September 374 1584
December 8.67 1670
July a5 1540
January 3.26 1497
May 8.24 1493

June 8.04 1457
March 775 1404
April TT2 13949
February | 1300

Figure 4. 2 Proportion of fatalities per month

In Fig. 4.3 “T” refers to accidents which occurred on weekends (Friday, Saturday and
Sunday) and “F” refers to accidents which occurred on week days. This analysis
indicated that the risk of fatality is higher on weekdays, however, proportionally
weekdays includes four days and weekends include three days.

Walue FProportion &0 Zount
F | 51.328 9308
T | 43 62 2208

Figure 4. 3 Proportion of fatality on weekend days

In Fig. 4.4 fatal traffic accidents which occur at different times of the day are shown.
Approx. 50% of accidents occurred in the afternoon and evening with the highest risk
of fatality in the afternoon.

Value Propartion % Count
AfterMoon____ 1] 27.01 4393
Evening____ ] 225 4077
Late Morning 19.87 3600
Early Morning 17.69 3205
Might 1292 2341

Figure 4. 4 Proportion of fatalities by time of day
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Road type

Fig. 4.5 presents fatal accidents which occurred on different road types. The majority
of fatal accidents occurred on single carriageways and dual carriageways. Three times
as many fatal accidents occur on single carriageways when compared to dual
carriageways. The proportions presented in Fig. 4.5 indicate that there was a
significantly higher risk of fatality on carriageways when compared to all other road

types.

Value Proportion %% Count
Single carriageway 75.99 13766
Dual carriageway_____ | 20.34 3685
Roundabout]] 1,64 297
One way street] 1.07 193
Slip road] 0.62 113
Unknown ] 034 G2

Figure 4. 5 Proportion of fatalities by road type
Road surface

Fig. 4.6 presents fatal accidents which occurred on different road surfaces. “Dry”
account for 67%. “Wet or damp” account for 31%. There were at least twice as many
“Dry” accidents as “Wet or damp” accidents.

Value Propartion B Count
Dry | 66.78 12087
Wetordamp_____ | 30.8 5580
Frostaorice] 177 321
Snow] 0.36 B
Flood over 3cm. deep| 0.23 41
Data missing or out of range| 0.06 1

Figure 4. 6 Proportion of fatalities by road surface
Junction detail

Fig. 4.7 outlines fatalities which occurred relative to junctions. 64% of fatalities did
not occur at or near a junction. T or staggered junctions accounted for 21% of fatalities
and therefore were considered to be the highest risk junction type. Of the remaining
junction types, cross roads were the most significant at 5% with the remaining junction
types at less than 3% each.

Yalue Proportion 5% Count
Mat at junction or within 20 metres | 63.82 11561
T or staggered junction 20.89 3785
Crossroads ] 548 993
Private drive or entrance ] 2.8 508
Other junction ] 2.2 400
Roundabout] 2.08 377
Slip road] 1.68 304
More than 4 arms (not roundabout) ] 073 133
Mini-roundabout] 0.3 55

Figure 4. 7 Proportion of fatalities by junction detail type
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Light conditions

As per Fig. 4.8, 58% of fatal traffic accidents occurred in daylight and 42% occurred in
darkness. Of fatal accidents which occurred in darkness, over half occurred when
lights were lit. This analysis indicates that fatality risk in “Daylight” was more than
twice as likely as during the “Darkness - lights lit”.

Yalue Proportion % Count
Daylight | 58.33 10567
Darkness - lights it ] 21.14 3829
Darkness - no lighting | 19.0 34472
Darkness - lighting unknown ] 0.97 175
Diarkness - lights unlit] 0.57 103

Figure 4. 8 Light conditions
Weather conditions

82% of fatal traffic accidents occurred in fine conditions with no high winds as
displayed in Fig. 4.9. 10% occurred in rain conditions with no high winds. Other
weather conditions ranged from 0.02% to 1.9% of fatal accidents.

YValue Proportion % Count
Fine no high winds 8249 14944
Raining no high winds ] 9.69 17585
Fine + high winds ] 1.89 342
Other] 1.61 282
Raining + high winds ] 1.53 277
Unknown] 1.31 238
Fog or mist] 0.08 178
Snowing no high winds] 0.41 75
Snowing + high winds | 0.07 12
Data missing or out of range| 0.0z 3

Figure 4. 9 Wind conditions
Urban or rural conditions

65% of fatalities occurred in rural areas while 35% occurred in urban areas as outlined
in Fig. 4.10. This analysis indicated that fatality risk in rural areas is over 1.8 times
more likely.

Value FProportion & Count
Rural | 64.74 11728
Urban | 3526 G388

Figure 4. 10 Urban or rural conditions

4.3 Data Exploration

The previous chapters considered each field individually. In the exploratory analysis,
the SPSS Modeller web analysis node describes the relationships between fields.
Aggregations are counts of the number of occurrences of a relationship between two
fields. Those with the strongest relationship are presented as thicker lines.
Aggregations were constructed in Structured Query Language (SQL), a standard
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language which helps to query data, and were used to validate findings. Fig. 4.11
displays the strongest data relationships identified in the STATS19 data.

Aﬂergoon °
Early Mgrnmg Da;j\lght Darkness - no lighting

Evening
L] L

) T or staggered junction
Late Maorning
]

o

Mot at junction orwithin 20
Pmetres

Wet or damp
LN ]
Dual = - —
1A Calllagewa%lngle carriageway -~ ——Fine no high winds
Rural Urban
QCL_JUNCTION_DETAIL_DESC @ CL_LIGHT_CON_DESC @ CL_PERIOD_OF_DAY @CL_POLICE_FORCE_DESC O CL_ROAD_SURFACE_DESC
QCL_ROAD_TYPE_DESC @ CL_URBAN_RURAL_DESC O CL_WEATHER_DESC @CL_WEEKEND

Figure 4. 11 Initial data relationships identified

The relationships identified, ordered by strength i.e. the number of times the
relationship occurred, are as follows:

1. 11,653 fatalities occur in fine weather with no high winds on dry road surface
conditions.

2. 11,370 fatalities occur on single carriageways in fine weather with no high
winds.

3. 9,364 fatalities occur in fine weather with no high winds and do not occur at

junctions.

8,778 fatalities occur on single carriageways and not at junctions.

8,735 fatalities occur in rural areas and not at junctions.

8,257 fatalities occur in daylight and on single carriageways.

7,094 fatalities occur in daylight and in dry road surface conditions.

6,422 fatalities occur in day light and not at junctions.

3,258 fatalities occur on single carriageways and at T or staggered junctions.

10 2,675 fatalities occur in urban area when its dark and light are lit.

11. 2,625 fatalities occur on dual carriageways and not at junctions.

© o N R

This exploration identifies individual strong relationships between two data fields. The
limitation of this initial exploration is that it does not identify multi-layer relationships.
It does, however, highlight significant data points which are useful for the model
building phase. Some features in the STATS19 dataset, which seem to be good
predictors of fatal traffic accidents, are similar to the features considered by (Wah, et
al., 2012) as significant factors contributing to severe motor cycle accidents. These
include weather, light and road conditions.
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4.4 Data Quality and Cleanse

As discussed in chapter 3, the STATS19 dataset is widely used for traffic accident
statistics in the UK and is considered good quality with regard to accuracy and
completeness. Fatal accidents are specifically noted as being well recorded and
complete. Given the STATS19 data quality had already been independently assessed
as high, the requirements for standard data quality and data cleanse techniques was
reduced for this experiment. As a result, fatal accident data was considered clean, well
recorded and complete.

A review of fatal accident incidents was assessed for completeness and correctness.
For fatal accident incidents in STATS19, all fields were complete, however, a small
proportion of missing data had already been categorised as missing by the Department
of Transport. From a completeness point of view, this was positive, however, missing
and unknown data will add little to the predictive capability of the model. The SPSS
data audit node was used to identify missing and correct data. No incorrect data was
identified.

Data
Preparation

Data zelection and
transorm ation

Data construction

4.5 Data Selection and Transformation

Before feature selection, data relating to the observation period was grouped into fatal
and non-fatal. Fatal were the fatal accidents and non-fatal were serious and slight
accidents. A single target was created in SPSS for fatal and non-fatal. The target was
required so Chaid could separate fatal and non-fatal and in addition group predictor
information. The Chaid decision tree is based on the Chi-squared statistic of proportion
which splits data into groups. In this experiment research, these groups are used to
construct training data.

Once the target was defined, the next step was to select the data points which had the
most predictive importance and group the data points more effectively to improve
predictive performance. This phase is referred to as data transformation.
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4.5.1 Selecting candidate features for data transformation

In chapter 3, Fig. 3.4 described the discretisation process followed for this experiment.
Chaid was configured to target fatal and non-fatal in order to instruct Chaid which
characteristics to target. The Chaid technique was run against the STATS19 data
allowing the tool to identify patterns in the data relating to fatal and non-fatal. A
decision tree was induced which presented the relationship of fatal and non-fatal to the
key predictors. The key predictors at the top of the decision tree were noted together
with the category levels at each branch and the process was repeated six times. SPSS
Modeler decision trees are large with multiple branches and therefore are difficult to
present in a single chart. Fig. 4.12 displays an extract of the target of fatal as 1 and
non-fatal as 0, and showing “Road Surface” as the top of the tree as the key initial
predictor.

Node 1
_Categery

e DRLE YRNING OF Sl 0 rarge —4 0 0 88 |\5;A:—
= € D81
Tolw 282 4
Node 2
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oy 1%0 §7TH21 11211
. 207 28
Toln 2413 148
Nodes
Colegery N _n
Food over Jim, deep; Sroa— % 0 M NI
3 g212 a3
oln %8 23122
Node C
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FARGE™ M2 VM - = - —
o Ter | saa| Adl Pvsiuesd0CO, Cr-aguares35) 02, 0%l
Q7¢ 2
Toral 22 0C0 $223%
{ Node 4
i Calegory |
e Prost Of K@ 1"e M7 1148d
. K 22} e
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Figure 4. 12 Extract Chaid decision tree

After executing this procedure, a short list of candidate predictors and groups
identified was compiled. The most important predictors identified for old groups and
new groups are listed in Table 4.3. Old groups are the original groups provided in the
STATS19 data and the new groups were identified using Chaid as being the most
homogeneous based on their characteristics. In addition a combination of old and new
groups was also considered in case the combination could help improve prediction
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accura

cy and interpretability. In the next phase in data construction, training data was

constructed using old groups, new groups as well as the combination of old and new
groups. In the data construction stage, these are referred to as normal data i.e. no
reduction, reduced data and semi reduced data respectively.

Table 4. 3 Most important predictors, old groups and new groups

|Predictor 0ld group New group Predictor 0Old group new group
Road type Data missing or out of range Missing data and One way slip group Light conditions |Darkness - lighting unknown [Lighting groupl
One way street/Slip road Darkness - lights unlit
Roundabout One way, round about and unknown group Data missing or out of range
One way street Darkness - lights lit Lighting group2
Slip road Darkness - no lighting
Unknown Daylight
Single carriageway Single carriageway group 'Weather Fine no high winds Mo high winds group
Dual carriageway Dual carriageway group Raining no high winds
Road surface |Frostorice Frost or ice group Snowing no high winds
Wet or damp Wet or damp group Fine + high winds High winds group
Dry Dry Group Raining + high winds
Data missing or out of range Missing data group Snowing + high winds
Flood over 3cm. deep Flood or snow group Fog or mist Fog or mist or other group
Snow Other
Mud Mud, oil or diesel group Unknown Unknown group
0il or diesel Data missing or out of range |Data missing or out of range group
Junction detail |Crossroads Groupl Urban/rural Urban Urban
Other junction Groupl rural rural
Private drive or entrance Groupl Unallocated Unallocated
Roundabout THEN Groupl
Slip road THEN Groupl
Data missing or out of range Group2
Mini-roundabout Group2
More than 4 arms (not roundabout) Group2
Not at junction or within 20 metres Group3
T or staggered junction Group4

4.6 Data Construction

Three

datasets were constructed named normal, reduced and semi reduced data.

Normal used old group data, reduced used new group data and semi reduced used a
combination of old and new group data as defined in chapter 3.

Table
reduce

Traini
The pr
1.

Table 4. 4 Groups used to construct normal, reduced and semi reduced data

Predictor Normal Reduced Semi reduced
Road type Old group new group Old group
Road surface Old group new group new group
Junction detail Old group new group new group
Light conditions Old group new group Old group
Weather Old group new group Old group
Urban/rural Old group new group new group

4.4 describes the predictors and group combinations used to construct normal,
d and semi reduced training data.

ng data construction
ocess followed to construct each of the three training datasets is outlined below:

Application logic was built to return the “old group” or “new group” data for
each predictor and its related factors as outlined in Table 4.4.

The type of training data was selected e.g. normal, reduced or semi-reduced.
Using the data selected in step 2, fatal traffic accidents only were filtered for
the observation period, 2005-2012. A dataset for fatal cases only was
constructed based on the six predictors outlined in Table 4.4.
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4. Application logic was written to calculate the frequency count for each unique
fatal accident factor combination. The frequency count was used to identify the
number of times a particular combination occurred. The output of this step was
a fatal accident dataset, with frequency count for each combination.

5. Application logic was then written to construct all factor combinations using
the predictors in Table 4.4.

6. Application logic was written to construct an additional dataset which was the
difference between the output of steps 4 and 5. This dataset was the non-fatal
accident dataset. The frequency count for the non-fatal combinations was zero.

7. The output of steps 4 and step 6 were merged to form the training dataset.

In the steps above, where application logic is mentioned, the logic was constructed on
an Oracle database and Oracle database views were created to get group values for
normal, reduced and semi reduced data. Oracle stored procedures were used to
construct the training data.

Select Modelling Technique

Test design Model Building

MModel build

Model Assessm ent

4.7 Model Build

For the purpose of this research, predictive models were built from three training
datasets, normal, reduced and semi reduced, as described in the previous chapter. Nine
models were constructed for each classification model for C5.0 decision tree, Chaid
decision tree and Bayes net. The models created, with the reference modelling
technique and relevant sampling technique, are listed in Table. 4.5.

Each dataset was noted as imbalanced in favour of the majority class which was non-
fatal. 1t was therefore a key stage of this research to rebalance the datasets prior to
building the predictive models. The techniques used for rebalancing were:

. Majority reduction

. Minority boosting
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Table 4. 5 Experiment classification model listing

Ref.  Modelling Technique
M1 Chaid Normal
M2 Chaid Normal
M3 Chaid Normal
M4 Chaid Reduced
M5 Chaid Reduced
M6 Chaid Reduced
M7 Chaid Semi Reduced
M8 Chaid Semi Reduced
M9 Chaid Semi Reduced
M10 Bayes net Normal
M11 Bayes net Normal
M12 Bayes net Normal
M13  Bayes net Reduced
M14 Bayes net Reduced Majority reduction
M15 Bayes net Reduced Minority boosting
M16 Bayes net Semi Reduced No resampling
M17  Bayes net Semi Reduced Majority reduction
M18 Bayes net Semi Reduced Minority boosting

Sampling Technique
No resampling
Majority reduction
Minority boosting
No resampling
Majority reduction
Minority boosting
No resampling
Majority reduction
Minority boosting
No resampling
Majority reduction
Minority boosting
No resampling

M19  C5.0 Normal No resampling
M20 C5.0 Normal Majority reduction
M21  C5.0 Normal Minority boosting
M22  C5.0Reduced No resampling
M23  C5.0Reduced Majority reduction
M24  C5.0 Reduced Minority boosting
M25  C5.0Semi Reduced No resampling
M26  C5.0Semi Reduced Majority reduction
M27  C5.0Semi Reduced Minority boosting

SPSS Modeler sampling capabilities were used to reduce the majority class so that
both non-fatals and fatals would represent approximately 50% of the newly formed
“majority reduction” dataset. A similar technique was applied to increase the minority
class, fatals, to 50% of a new “minority boosting” dataset. Twenty seven training
datasets were initially constructed from combinations of the following data and
sampling techniques:

. Normal, reduced and semi-reduced data
. Majority reduction, minority boosting and no resampling

Each observation in normal, reduced or semi reduced data was classified as fatal or
non-fatal. A positive frequency indicated fatal and a frequency of zero for non-fatal.

To build a classification model, an outcome variable or target is required. The
outcome variable differentiates between fatal and non-fatal. Initially, a categorical
outcome was created similar to the approach followed by (Wah, et al., 2012). Zero
frequencies indicate non-fatal, low indicates fatal in the frequency range 1-20. All
other frequencies are high. Modelling zero, low and high frequency accidents produced
good prediction results, however, model results were difficult to interpret. It was
therefore decided to treat accident outcome as a dichotomous outcome. This meant that
the outcome was true or false. A positive frequency was true while a zero frequency
was false. An accident outcome of true indicated fatal while an outcome of false
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indicated non-fatal. Using this approach, initial prediction results and model
interpretability improved.

For this experiment accident outcome was dichotomous so must be either fatal or non-
fatal. This outcome was set as the prediction target and was used to direct model
training. Normal, reduced and semi reduced data was the base data used to build
models. Sampling techniques complimented the base data by addressing class
imbalance issues and shaped the data aiming to build better predictive models.

Predictive models were built following the test design described in chapter 3 and
training, test and validation datasets were created. The SPSS Modeler partition node
was used to create training and test data. Validation data, also referred to as hold out
data, was created separately. Validation data was used to comprehensively test the
model by evaluating performance measures using a dataset not previously seen by the
model. Training data was used to build models, modelling performance was estimated
on test data and validation data was used to provide an unbiased estimate of model
performance. Data and modelling techniques were combined to build predictive
models. Model performance was assessed using the confusion matrix. Additional
measures such as accuracy, recall and precision were extrapolated. Accuracy was the
accident classification rate for fatal and non-fatal accidents. Recall was the key
measure of interest for this experiment and was used to measure the true fatal
classification rate.

The parameter settings applied in SPSS Modeler for each modelling technique used for
this research experiment are described below. The settings that are applicable to all
models are described in Table 4.6 and settings specific to C5.0, Chaid and Bayes net
are outlined in Tables 4.7, 4.8 and 4.9 respectively.

Table 4. 6 SPSS settings applicable to all models

Parameter Value Description
Use partitioned data TRUE Only use the training partition to build the model
Calculate predictor importance TRUE Calculate each predictor importance and present on
predictor importance chart

Table 4. 7 SPSS C5.0 specific settings

Parameter Value Description
Output type Decision tree |This setting instructed C5.0to create a decision tree
ruleset is alternative setting
Mode Simple Presets C5.0 settings This is the basic configuration for
C5.0
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Table 4. 8 SPSS Chaid specific settings

Parameter Value Description
Levels below root 5 Number of times the sample will be split
Alpha for splitting 0.05 Significance level for splitting nodes
Alpha for merging 0.05 Significance level for for merging categories
Maximim iterations for 100 Maximum number of iteration before stopping even if
convergence convergence did not occur
Use Bonferroni adjustment TRUE Adjusted significance levels when testing category

combinations

Chi-square Pearson Use Pearson to calculate the Chi-square statistic
Minimum records in parent 2% Minimum proportion of records which should be in a
branch parents node before splitting
Minimum records in child 1% Minimum proportion of records which should be in a child
branch node before splitting

Table 4. 9 SPSS Bayes net specific settings

Parameter Value Description

Structure type TAN Build a Tree Augmented Naive Bayes network model

Parameter learning method Likelihood |Use likelihood to control estimating conditional
probabilities between nodes

Mode Simple

Use only complete records TRUE This setting instructs Bayes net to only use complete
records

Independence test likelihood |Use likelihood ratio to assess if paired observations are

ratio independent

Significance level 0.01 This setting is used by the independence test to set a cut

off value

Initially, models were assessed for technical performance using accuracy, recall,
precision measures and ROC curves. These measures were created for training, test
and validation data. Validation data was based on data from STATS19 for 2013,
however, this data was not used to train models. The results from validation data were
therefore unbiased. The next chapter discusses the experiment evaluation. Models were
assessed and compared based on performance and evaluation measures and
interpretability.

4.8 Conclusion

This chapter describes the stages of the experiment implementation. An understanding
of the data was developed by analysing the data in the STATS19 dataset. Initial
relationships in the data were explored using SPSS Modeler web analysis node. The
data quality assessment was completed prior to grouping the data into two target
values, fatal and non-fatal. Data transformation was completed using Chaid to group
data more effectively to improve the predictive performance of the target values.
Training data was constructed for normal, reduced and semi reduced data. C5.0, Chaid
and Bayes net models were built for each and sampling techniques for majority
reduction, minority boosting and no resampling which were applied. Twenty seven
models in total were built using SPSS Modeler.
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5 EXPERIMENT EVALUATION

Perform ance evaluation

Subsequent —
modelim provemetts

Eeyfindings Model
Evaluation

5.1 Introduction

A summary of twenty seven model results are presented in this chapter. Nine models
were trained for each of the three training datasets, normal, reduced and semi reduced.
Performance was assessed using technical measures including accuracy, recall and
precision, which were previously discussed. The technical performance for the twenty
seven models is initially assessed and the results are summarised in a confusion matrix,
together with an overview of the models by classification techniques and ROC curves.

Validation performance results are based on unbiased data and therefore were a true
measure of performance. The best performing model for each classification techniques
in the assessment phase were selected and the three selected models are further
evaluated using validation data based on 2013 STATS19 which the model had not
previously seen. Evaluation involved technical and non-technical performance testing
and was completed based on accuracy, recall and precision in line with the model
assessment. Non-technical evaluation assessed the models interpretability and checked
if the model addresses the experiment objectives. Following consideration of the
evaluation results, model improvements were tested to identify if improved
performance may be possible and considered for future research. Finally, the key
findings from the experiment evaluation were discussed and the conclusion
summarises the chapter.

5.1 Model Assessment on Training and Test Data

A summary of twenty seven model results are presented in this chapter. Nine models
were trained for each of the three training datasets, normal, reduced and semi reduced.
These twenty seven models were initially assessed for their technical performance and
the results were summarised. The initial technical performance of the models was
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assessed based on both the training and test data, giving two results per model. A
confusion matrix was used to extrapolate accuracy and recall performance. The
confusion matrix and an ROC curve were used to visually assess the difference in
performance between training and test data.

5.1.1 Assessment confusion matrix

A confusion matrix was produced from SPSS Modeler analysis node for training and
test data for each modelling technique and sampling technique and for the three
datasets, normal, reduced and semi reduced. Table 5.1 and 5.2 below summarise the
confusion matrices produced by SPSS Modeler and shows the accuracy and recall
performance measures for the twenty seven models for training and test data
respectively.

M1
M2
M3

M4
M5
M6

M7
M8
M9

M10
M11
M12

M13
M14
M15

M16
M17
M18

M19
M20
M21

M22
M23
M24

M25
M26
M27

Table 5. 1 Confusion matrix and performance measures for training data

Training data

Modelling Technique

Chaid Normal
Chaid Normal
Chaid Normal

Chaid Reduced
Chaid Reduced
Chaid Reduced

Chaid Semi Reduced
Chaid Semi Reduced
Chaid Semi Reduced

Bayes net Normal
Bayes net Normal
Bayes net Normal

Bayes net Reduced
Bayes net Reduced
Bayes net Reduced

Bayes net Semi Reduced
Bayes net Semi Reduced
Bayes net Semi Reduced

C5.0 Normal
C5.0 Normal
C5.0 Normal

C5.0 Reduced
C5.0 Reduced
C5.0 Reduced

C5.0Semi Reduced
C5.0Semi Reduced
C5.0Semi Reduced

Sampling Technique
No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

™
N/A
668

81,953

110
186
1,825

N/A
501
24,582

137
702
91,467

95
193
1,938

131
557
26,634

N/A
658
91,608

N/A
182
1,971

N/A
512
26,725

FP FN
N/A 702
105 34
10,848 9,659
34 89
3 13
306 140
N/A 563
8 62
4,272 2,135
- 565
46 -
4462 131
5 104
21 6
187 29
3 4
61 6
1,714 95
N/A 702
% 44
831
N/A 199
3B 17
98
N/A 563
90 51
639 -

TN
91,534
631
80,686

2,038
178
1,766

27,022
561
22,750

91,534
634
87,072

2,067
183
1,885

27,019
497
25,308

91,534
598
90,703

2,072
160
1,974

27,022
492
26,383

p
N/A
702
91,612

199
199
1,965

N/A
563
26,717

702
702
91,598

199
199
1,967

563
563
26,729

N/A
702
91,608

N/A
199
1,971

N/A
563
26,725

N
N/A
736
91,534

2,072
214
2,072

N/A
644
27,022

91,534
680
91,534

2,072
204
2,072

27,022
558
27,022

N/A
694
91,534

N/A
195
2,072

N/A
582
27,022

Accuracy
N/A
0.903
0.888

0.946
0.881
0.890

N/A
0.880
0.881

0.994
0.967
0.975

0.952
0.933
0.947

0.984
0.940
0.966

N/A
0.900
0.995

N/A
0.868
0.976

N/A
0.877
0.988

Recall
N/A
0.952
0.895

0.553
0.935
0.929

N/A
0.890
0.920

0.195
1.000
0.999

0.477
0.970
0.985

0.233
0.989
0.996

N/A
0.937
1.000

N/A
0.915
1.000

N/A
0.909
1.000

Precision
N/A
0.864
0.883

0.764
0.838
0.856

N/A
0.858
0.852

1.000
0.939
0.953

0.950
0.902
0.912

0.978
0.901
0.940

N/A
0.873
0.991

N/A
0.839
0.953

N/A
0.850
0.977
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Table 5. 2 Confusion matrix and performance measures for test data

Test data
Modelling Technique Sampling Technique TP FP FN N P N Accuracy Recall Precision
Chaid Normal No resampling N/A N/A 174 22,790 N/A N/A N/A N/A N/A
Chaid Normal Majority reduction 164 2,879 10 19,911 174 22,790 0.874 0.943 0.054
Chaid Normal Minority boosting 152 2,772 22 20,018 174 22,790 0.878 0.874 0.052
Chaid Reduced No resampling 28 12 38 531 66 543 0.918 0.424 0.700
Chaid Reduced Majority reduction 61 75 5 468 66 543 0.869 0.924 0.449
Chaid Reduced Minority boosting 61 88 5 455 66 543 0.847 0.924 0.409
Chaid Semi Reduced No resampling N/A N/A 150 6,825 N/A N/A N/A N/A N/A
Chaid Semi Reduced  Majority reduction 126 870 24 5955 150 6,825 0.872  0.840 0.127
Chaid Semi Reduced  Minority boosting 131 1,135 19 5690 150 6,825 0.835 0.873 0.103
Bayes net Normal No resampling 24 - 150 22,790 174 22,790 0.993 0.138 1.000
Bayes net Normal Majority reduction 167 1,207 7 21,583 174 22,790 0.947 0.960 0.122
Bayes net Normal Minority boosting 167 1,095 7 21,695 174 22,790 0.952  0.960 0.132
Bayes net Reduced No resampling 29 - 37 543 66 543 0.939 0.439 1.000
Bayes net Reduced Majority reduction 64 70 2 473 66 543 0.882 0.970 0.478
Bayes net Reduced Minority boosting 64 69 2 474 66 543 0.883 0.970 0.481
Bayes net Semi Reduce No resampling 31 - 119 6,825 150 6,825 0.983 0.207 1.000
Bayes net Semi Reduce Majority reduction 143 664 7 6,161 150 6,825 0.904 0.953 0.177
Bayes net Semi Reduce Minority boosting 144 405 6 6,420 150 6,825 0.941  0.960 0.262
C5.0 Normal No resampling N/A N/A 174 22,790 N/A N/A N/A N/A N/A
C5.0 Normal Majority reduction 159 3,004 15 19,786 174 22,790 0.869 0.914 0.050
C5.0 Normal Minority boosting 122 375 52 22,415 174 22,790 0.981 0.701 0.245
C5.0 Reduced No resampling N/A N/A 66 543 N/A N/A N/A N/A N/A
C5.0 Reduced Majority reduction 56 126 10 417 66 543 0.777 0.848 0.308
C5.0 Reduced Minority boosting 53 46 13 497 66 543 0.903 0.803 0.535
C5.0 Semi Reduced No resampling N/A N/A 150 6,825 N/A N/A N/A N/A N/A
C5.0 Semi Reduced Majority reduction 123 1,208 27 5,617 150 6,825 0.823 0.820 0.092
C5.0 Semi Reduced Minority boosting 117 185 33 6,640 150 6,825 0.969 0.780 0.387

As described in chapter 3, fatality events were grouped into six counts as follows:

1
2
3

True positives (TP):

False positives (FP):

True negatives (TN):

4
5
6

False negatives (FN):

Total positves (P):

Total negatives (N):

Twenty two models succeeded in classifying accidents for all the six counts TP, FP,
FN, and TN for both training and test data. However, five models, as summarised in
Table 5.3, were unable to extract prediction for fatals accidents and TP and FP are
shown as N/A. All these cases occurred with no resampling, resulting in over half of
the no resampling models failing to classify fatal accidents. This suggests underfitting
where the models failed to capture the underlying trend in the data and failed to extract
prediction. These five models were therefore excluded from any further analysis in this

experiment.
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Table 5. 3 Models with unsuccessful prediction

Training data Test data
Modelling Technique Sampling Technique TP FP FN TN TP FP FN TN
M1 |Chaid Normal No resampling N/A N/A 702 91,534 N/A N/A 174 22,790
M7 |Chaid Semi Reduced No resampling N/A N/A 563 27,022 N/A N/A 150 6,825
M19 |C5.0 Normal No resampling N/A N/A 702 91,534 N/A N/A 174 22,790
M22 |C5.0 Reduced No resampling N/A N/A 199 2,072 N/A N/A 66 543
M25 |C5.0 Semi Reduced No resampling N/A N/A 563 27,022 N/A N/A 150 6,825

For the six Chaid and C5.0 no resampling models, only Chaid reduced produced a
prediction. All Bayes net models produced a prediction result for all three sampling
techniques. For training data, TP and TN counts far exceeded FP and FN counts
indicating that in general the models classified fatals and non-fatals correctly. For the
test data, although TP was generally classified accurately, the model identified a high
count of FP indicating that non-fatal accidents in the test data held similar
characteristics to fatal accidents. Positively FN counts were low indicating that the
model does not often misclassify fatal as non-fatals.

Accuracy

Accuracy is the proportion of accidents classified correctly. For the 27 models,
referenced M1 to M27, accuracy was calculated based on the formula:

Accuracy = (Count of TP + Count of TN) / (Count of P + Count of N)

Accuracy performance reported on the training data, as outlined in Table 5.1, ranged
from 0.868 to 0.995 indicating that in general the models are classifying accidents to a
high level of accuracy. For test data accuracy ranged from 0.823 to 0.993, however
there was one outlier at 0.777. In similar recent research by (Wah, et al., 2012)
classifying motor cycle accident occurrences using CART decision tree, training
accuracy was reported as 0.8337 and test accuracy was 0.7812. Accuracy ranges for
this experiment result were in line with (Wah, et al., 2012) and on this basis overall
model accuracy for training and test data was considered acceptable and no further
remodelling was completed. Interestingly, accuracy for test data was lower than
training data in (Wah, et al., 2012) experiment as well as in this experiment which
indicates slight overfitting.

Recall

Recall, sometimes referred to as the true positive rate, is the proportion of fatals
classified as fatals and is calculated using the following formula:

Recall = (Count of TP)/((Count of FN)+(Count of TP))

No resampling recall results were poor for this experiment as the base data favours the
majority class or non-fatal and recall focuses on fatal accident results. Where the
majority reduction and minority boosting sampling techniques were applied, recall
rates significantly improved with rates for training data ranging from 0.890 to 1.000
and for test data ranging from 0.701 to 0.970. This indicates that rebalancing in favour
of the fatal class was effective.
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Precision

Precision is a measure of exactness being the percentage of fatals classified as fatals
which are actually fatals or true positives. Precision is calculated using the following
formula:

Precision = (Count of TP)/((Count of TP)+(Count of FP))

For training data precision ranged from 0.838 to 1.000 where the model has extracted
patterns from the data. However, for test data precision rates dropped significantly
ranging from 0.052 to 0.700, with the exception of the three Bayes net no resampling
models which achieved 1.000. Where precision was low, the test data produced good
recall results which is in line with (Han, et al., 2011, p. 368) who identified the inverse
relationship between precision and recall.

5.1.2 Model assessment
Chaid model review

Two Chaid models were eliminated from the model assessment as they did not
produce fatal accident prediction. Five of the seven remaining Chaid models scored
0.88 to 0.89 accuracy for training data, with the highest Chaid models achieving 0.903
and 0.946. Recall for Chaid models generally produced good results for training data
with the lowest of 0.890 and the highest of 0.952 with the exception of “M4 reduced
no resampling”. M4 produced recall of only 0.553 although it had the highest accuracy
for Chaid models of 0.946. Chaid models accuracy for test data ranged from 0.835 to
0.918 which is marginally less than the training data result. As with training data,
recall achieved good results with test data recall ranging from 0.840 to 0.943 with the
exception of M4 whose recall was 0.424 in keeping with the training data results.

Bayes net model review

Bayes net models performed well for accuracy with training data results ranging from
lowest of 0.933 to highest of 0.994. All Bayes net models succeeded in fatal accident
prediction. No resampling models produced the highest level of accuracy for Bayes net
models, however, recall was poor at a low of 0.195 and a high of 0.477. Positively,
both majority reduction and minority boosting sampling performed well for training
data for both accuracy and recall with ranges of 0.933 to 0.975 and 0.970 and 1.000
respectively. For test data, Bayes net models performed well for accuracy although
accuracy for reduced models was slightly lower for test data. Accuracy results for test
data ranged from 0.882 to 0.993. Recall results generally ranged from 0.953 to 0.970,
however, no resampling also performed poorly as in the training data ranging from
0.138 to 0.439.

C5.0 model review

Three Chaid models were eliminated from the model assessment as they did not
produce fatal accident prediction. The remaining six C5.0 models scored 0.868 to
0.995 accuracy, with "M21 normal minority boosting" achieving the highest of 0.995.
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Minority boosting sampling produced 1.000 accuracy for all three models for training
data and these three models also achieved the highest accuracy from 0.976 to 0.995.
The remaining models also performed well for recall ranging from 0.909 to 0.937. For
test data, accuracy scores were slightly less, ranging from 0.777 to 0.981, although still
good. As with training data, "M21 normal minority boosting™ achieved the highest
result. The modelling techniques and sampling techniques achieved the exact same
order of accuracy in training and test data as outlined in Table 5.4.

Table 5. 4 C5.0 models accuracy results

Modelling Sampling Taining Data  Test Data
Ranking Technique Technique Accuracy Accuracy
1 C5.0 Normal Minority boosting 0.995 0.981
2 C5.0Semi Reduced Minority boosting 0.988 0.969
3 C5.0 Reduced Minority boosting 0.976 0.903
4 C5.0 Normal Majority reduction 0.900 0.869
5 C5.0Semi Reduced Majority reduction 0.877 0.823
6 C5.0 Reduced Majority reduction 0.868 0.777

For test data, recall for “minority boosting” models did not perform as well as in the
training data and in contrast the three models were lowest ranging from 0.701 to 0.914.
This suggests an overfitting situation where the classifier perfectly fits the training data
and therefore the model can lose capability to generalise to situations not presented in
the training data (Wah, et al., 2012, p. section B). As expected model results for the
test data generally under-performed the training data as the modelling techniques had
not previously seen the test data.

5.1.3 ROC assessment

The ROC curve shows the trade-off between the proportion of fatal accidents correctly
classified as fatal and the proportion of non-fatal accidents incorrectly classified as
fatal. This is commonly described as the true positive rate or sensitivity against the
false positive rate or 1-specificity. The closer the curve follows the Y axis and then
tails off to the right, the more accurately the model classifies fatal accidents and the
less likely to incorrectly classify a non-fatal accident as fatal (Han, et al., 2011, p. 374).
Similarly, the larger the space between the 45 degree line and curve, the more accurate
a model is. This space is referred to as the area under the curve (AUC). A high AUC
indicates good recall. In general the ROC results for the 22 models performed well for
ROC assessments and the ROC curves for training and test data were not significantly
different. Fig. 5.1 is an example of the ROC results for both training and test data
presented for C5.0 models for normal data and majority reduction sampling
techniques. Both charts demonstrate that the true positive rate is high and the false
positive rate is low, therefore indicating the model classifies fatalities well and unlikely
to misclassify non-fatals as fatals.
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Figure 5. 1 Accurate ROC curve

Although some ROC curves did not perform as well for test data, as in Fig. 5.2 below,
the result still indicates good performance although the risk of false positives

increased.
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Figure 5. 2 Less accurate ROC curve

5.2 Model Evaluation with Validation Data

Once the model assessment was complete, further evaluation was performed to test the
usefulness of the models towards achieving the research experiment goal of identifying
the factors most likely to accurately predict fatal traffic accidents. The prediction
accuracy was further examined by testing the models using a 2013 STATS19 accident
dataset or validation data. The 27 models described in chapter 4, which were the basis
of training and test data assessment, were copied to create new models in order to test

the 2013 validation data.
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Table 5. 5 Validation model listing

Ref. Modelling Technique  Sampling Technique
V1 Chaid Normal No resampling
V2 Chaid Normal Majority reduction
V3 Chaid Normal Minority boosting
V4 Chaid Reduced No resampling
V5 Chaid Reduced Majority reduction
V6 Chaid Reduced Minority boosting
V7 Chaid Semi Reduced No resampling
V8 Chaid Semi Reduced Majority reduction
V9 Chaid Semi Reduced Minority boosting
V10 Bayes net Normal No resampling
V11 Bayes net Normal Majority reduction
V12 Bayes net Normal Minority boosting
V13 Bayes net Reduced No resampling
V14 Bayes net Reduced Majority reduction
V15 Bayes net Reduced Minority boosting
V16 Bayes net Semi Reduced No resampling
V17 Bayes net Semi Reduced Majority reduction
V18 Bayes net Semi Reduced Minority boosting
V19 C5.0 Normal No resampling
V20 C5.0 Normal Majority reduction
V21 C5.0 Normal Minority boosting
V22 C5.0 Reduced No resampling
V23 C5.0 Reduced Majority reduction
V24 C5.0 Reduced Minority boosting
V25 C5.0 Semi Reduced No resampling
V26 C5.0 Semi Reduced Majority reduction
V27 C5.0 Semi Reduced Minority boosting

The same process for data construction was followed as outlined in chapter 4. The new
models created are listed in Table 5.5. A confusion matrix was produced for the
validation data for each modelling technique and for the three datasets, normal,
reduced and semi reduced. A technical and non-technical evaluation was completed for
the validation data. The technical evaluation was based on accuracy and recall as
calculated based on the confusion matrix summary. The non-technical evaluation was
based on a review of the interpretability of the models.

5.2.1 Confusion matrix evaluation

The confusion matrix for the validation data and the accuracy, recall and precision

performance measures calculated are outlined in Table 5.6. As in training and test
assessment, five models were unable to extract prediction for fatals accidents.
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V1
V2
V3

'
V5
V6

V7
V8
V9

V10
Vil
V12

V13
V14
V15

V16
V17
V18

V19
V20
V21

V22
V23
V24

V25
V26
V27

Table 5. 6 Confusion matrix and performance measures for validation data

Validation data

Modelling Technique

Chaid Normal
Chaid Normal
Chaid Normal

Chaid Reduced
Chaid Reduced
Chaid Reduced

Chaid Semi Reduced
Chaid Semi Reduced
Chaid Semi Reduced

Bayes net Normal
Bayes net Normal
Bayes net Normal

Bayes net Reduced
Bayes net Reduced
Bayes net Reduced

Bayes net Semi Reduced
Bayes net Semi Reduced
Bayes net Semi Reduced

C5.0 Normal
C5.0 Normal
C5.0 Normal

C5.0 Reduced
C5.0 Reduced
C5.0 Reduced

C5.0 Semi Reduced
C5.0Semi Reduced
C5.0 Semi Reduced

Sampling Technique
No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

No resampling
Majority reduction
Minority boosting

i) FP
N/A  N/A
261 2,087
253 1,739
8 172
112 410
108 393
N/A  N/A
21 1178
23 1,346
124 161
264 2,219
264 2,189
8 129
13 430
113 433
123 165
232 1,438
232 1,498
N/A  N/A
259 2,016
244 1,117
N/A  N/A
110 446
108 321
N/A  N/A
230 1,385
218 928

FN
266
5
13

31

234
13
11

142

234

16

TN

2,541
454
802

349
111
128

1,832
654
486

2,380
322
352

91
88

1,667
394
334

2,541
525
1,424

521
75
200

1,832
447
904

N/A
266
266

113
113
113

N/A
234
234

266
266
266

113
113
113

234
234
234

N/A
266
266

N/A
113
113

N/A
234
234

N

N/A
2,541
2,541

521
521
521

N/A
1,832
1,832

2,541
2,541
2,541

521
521
521

1,832
1,832
1,832

N/A
2,541
2,541

N/A
521
521

N/A
1,832
1,832

Accuracy
N/A
0.255
0.376

0.680
0.352
0.372

N/A
0.424
0.343

0.892
0.209
0.219

0.752
0.322
0.317

0.866
0.303
0.274

N/A
0.279
0.594

N/A
0.292
0.486

N/A
0.328
0.543

Recall
N/A
0.981
0.951

0.726
0.991
0.956

N/A
0.944
0.953

0.466
0.992
0.992

0.752
1.000
1.000

0.526
0.991
0.991

N/A
0.974
0.917

N/A
0.973
0.956

N/A
0.983
0.932

Precision
N/A
0.111
0.127

0.323
0.215
0.216

N/A
0.158
0.142

0.435
0.106
0.108

0.397
0.208
0.207

0.427
0.139
0.134

N/A
0.114
0.179

N/A
0.198
0.252

N/A
0.142
0.190

The five models, which failed to extract prediction for fatal accidents, had no
resampling technique applied to the data and the five models, listed in Table 5.7, were
excluded from any further analysis.

Table 5. 7 Validation models with unsuccessful prediction

Ref.
V1
V7
V19
V22
V25

Validation data

Modelling Technique
Chaid Normal
Chaid Semi Reduced
C5.0 Normal
C5.0 Reduced
C5.0 Semi Reduced

Sampling Technique

No resampling
No resampling
No resampling
No resampling
No resampling

TP

N/A
N/A
N/A
N/A
N/A

P
N/A
N/A
N/A
N/A
N/A

FN
266
234
266
113
234

N
2,541
1,832
2,541

521
1,832

The performance metrics for accuracy and recall for each of the remaining 22 models
is graphically presented in Fig. 5.3. It is clear from the graph that there is a significant
variance between the results achieved for accuracy and recall for the models when
applied to the validation data.
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Figure 5. 3 Validation recall and accuracy results
Accuracy

Accuracy relates to ability of the model to classify fatal and non-fatal accidents
correctly. As discussed in chapter 3, accuracy rates for infrequent events such as fatal
accidents may be low where sampling techniques are applied given the models are
built to focus on fatal accident prediction. Accuracy rates for the validation model have
a vast range from 0.209 to 0.892. The top performing models are all Bayes net models
and all have no resampling. “V10 normal”, “V16 semi reduced” and “V13 reduced”
performed most accurately with 0.892, 0.866 and 0.752 respectively. Sixteen models
achieved less than 50% accuracy with accuracy ranging from 0.209 to 0.486. These
results mean that the models had some difficulty correctly classifying accidents as fatal
or non-fatal with unseen data. The model classifies fatals quite well and the number of
false negatives is relatively low. Where the model struggles is in accurately classifying
the non-fatals, with a large number of false positives being identified. The accuracy on
training and test data was in general good so the poor performance on validation data
suggests additional factors in the unseen data which the model could not recognise.
Fig. 5.4 presents the count of accidents classified by each model for TP, FP and FN
from the validation data.
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Figure 5. 4 Validation count TP, FP & FN

The data construction was focussed on fatal accident classification and the models
worked well in achieving that task as can be seen from the low number of false
negatives. However, data points for fatal and non-fatal accidents were quite similar
and, based on the low accuracy performance, further review and analysis of the data
points in the STATS19 may help to identify additional data groupings or
characteristics which could reduce the misclassification of non-fatals as fatals. Further
understanding of the data points would require consultation with subject matter experts
to add deeper data understanding.

Recall

Eighteen of the twenty two models had recall over 0.9 indicating that most models had
a good fatal accident classification rate. The models which did not perform as well did
not have sampling techniques applied, indicating that data rebalance was important for
classifying infrequent events like fatal accidents. The models which produced the best
recall on validation data were “V14 Bayes reduced majority reduction”, “V12 Bayes
normal minority boosting” and “V18 Bayes semi reduced minority boosting” with
1.000, 0.992 and 0.9991 respectively. For each of these models accuracy was noted as
poor but recall was good with the cause of poor accuracy being high false positive
counts.

Overall the models performed well for recall for validation data meaning most fatal
accidents were correctly classified as fatal by each model. Given recall of fatal
accidents was a key focus of the data preparation phase, the high level of recall is a
positive result. Fig. 5.5 outlines the overall recall performance across all models for
validation data.
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Figure 5. 5 Recall performance by model
Precision

For the validation data, evidence of the inverse relationship between precision and
recall was displayed. Precision rates were consistently low and ranged from 0.106 to
0.435. For most models recall was high so the low precision performance was
expected. (Weiss & Hirsh, 2000) outlined that for infrequent events relatively low
precision rates may be considered acceptable as long as many of the target events are
predicted. For this experiment, the precision rates were considered acceptable due to
the high recall rates achieved.

ROC Curve

The ROC curve shows the trade-off between the proportion of fatal accidents correctly
classified as fatal and the proportion of non-fatal accidents incorrectly classified as
fatal. Unsurprisingly the ROC curves, were quite different to the curves produced for
training and test data. Fig. 5.6 shows the ROC curve for the best performing model
“V14 Bayes reduced majority reduction”. As the false positives were more significant
in the validation data, the curve indicated less accurate prediction as there was less area
under the curve (AUC).
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Figure 5. 6 ROC curve model V14
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Top Performing Models

Table 5.8 summarises the top performing models from this experiment based on their
combined performance in relation to accuracy and recall. Although the experiment was
focussed on fatal accident prediction, the models ability to accurately identify fatals
and non-fatals correctly was also important to minimise the false positives and
negatives. The top performing models are discussed and analysed in more detail in the
following section.

Table 5. 8 Confusion matrix and performance measures for top performing models

Modelling Technique Sampling Technique TP FP FN ™ P N Accuracy Recall
V13 Bayes net Reduced No resampling 85 129 28 392 113 521 0.752 0.752
V21 (5.0 Normal Minority boosting 244 1,117 22 1,424 266 2,541 0.594 0.917
V4  Chaid Reduced No resampling 82 172 31 349 113 521 0.680 0.726

5.2.2 Model 1: V13 Bayes net reduced no resampling
Technical evaluation

“V13 Bayes net reduced no resampling” was selected as a top performing model as it
was balanced between accuracy and recall. Accuracy of 0.752 means the model was
good at classifying fatal and non-fatal accidents. Recall, being the proportion of fatal
accidents which were classified as fatal, was 0.752 and means the model was good at
classifying fatal accidents as fatal. This model misclassified 28 fatals and 129 non-
fatals. This represented 25% of fatals and 25% of non-fatals meaning the model
classified the majority of fatals and non-fatals correctly. A higher recall would have
resulted in improved fatal accident prediction, however, based on the results of other
models, this may have led to a higher proportion of false positives. ROC curves for
training and test are presented in Fig. 5.7. The validation ROC in Fig. 5.8 suggests the
model overfitted the data as the TP and FP rates were not as good as training and test.
The validation result was good with a large area under the curve indicating fatals are
classified well but false positives risk was apparent.
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Figure 5. 7 Training & test ROC for Bayes net reduced no resampling
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Figure 5. 8 Validation ROC for Bayes net reduced no resampling

Non-Technical evaluation

Fig. 5.9 presents importance of individual predictors for “V13 Bayes net reduced no
resampling”. Road type and road surface account for 33% and 27% importance
respectively. Urban/rural account for 16% of importance and junction detail 12% with
weather conditions at 9% and light at 2%. For this model, road type and road surface
were the most important individual predictors and were the most likely factors for fatal

accident occurrence.

Predictor Importance
Target: TARGET

CL_ROAD_TYPE_
DESC_REDUCED

CL_ROAD_SURFACE_
DESC_REDUCED

CL_URBAN_RURAL _
DESC

CL_JUNCT_DETAIL_
DESC_REDUCED

CL_WEATHER_DESC_
REDUCED

CL_LIGHT_GON_
DESC_REDUCED
T T
00 02 04

Figure 5. 9 Bayes net reduced no resampling predictor importance

Fig. 5.10 presents the Bayesian network for the model and highlights the strongest
relationships as deeper colour nodes on the graphical model. Road surface and road
type were the darkest coloured predictors and therefore the most important predictors

of fatal accident for this model.
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Figure 5. 10 Bayes net reduced with no resampling

The Bayes net model identified three relationships as identified by the directional
arrows. Road type and road surface were identified as the key individual indicators of
fatal accident therefore the two related relationships will be further discussed.

The first relationship linked road surface to urban/rural as outlined in Table 5.9. A
target of 1 represents a fatal accident.

Table 5. 9 V13 road surface and urban/rural conditional probability

Conditional Probabilities of
CL_URBAN_RURAL_DESC

Parents Probability
CL_ROAD _SURFACE DESC_ TARGET Rural Unallocated Urban
Dry Group 1 0.49 0.00 0.51
Dry Group 1] 0.29 0.43 0.27
Flood or snow group 1 0.62 0.00 0.38
Flood or snow group 4] 032 0.34 0.34
Frost or ice group 1 0.54 0.00 0.46
Frost orice group o] 0.30 0.38 0.32
Missing data group 1 0.67 0.00 0.33
Missing data group 1] 033 0.33 0.34
Mud, oil or diesel group o] 0.34 0.34 0.32
Wet or damp group 1 0.55 0.00 0.45
Wet or damp group o] 0.28 0.42 0.30

Table 5.10 presents the conditional probability of road surface causing an accident.
“Dry group” at 41% had the highest probability of contributing to the cause of a fatal
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accident. “Wet or damp group” at 32% was the second most significant contributing
factor.

Table 5. 10 V13 road surface conditional probability

Conditional Probabilities of
CL_ROAD_SURFACE_DESC_REDUCED

Parents Prohability

TARGET Dry Group Flood orsnow group Frost or ice group Missing data group Mud, oil or diesel group Wet or damp group

1 0.41 0.11 0.13 0.03 0.00 0.32

0 0.158 0.18 017 0.18 0.18 0.14

The key relationship predictors from the model can be deduced by combining the
results in Tables 5.9 and 5.10. “Dry group” road surfaces had the highest probability of
occurrences and 51% were most likely in urban with 49% in rural areas. For “wet or
damp group”, the reverse relationship existed with rural more probable at 55% and
urban at 45%. It could therefore be deduced that fatal accidents are more probable in
urban areas where the road surface is dry and in rural areas when the road surface is
wet or damp.

The second relationship linked light conditions to road type. As outlined in Table 5.11,
single carriageway groups were identified as the most probable for lighting group 1
and 2 at 42% and 51% respectively. Unfortunately, although a strong relationship was
identified extraction of a meaningful insight was difficult as the lighting groups as
described in Table 5.12, do not provide any distinct factors. Lighting groups were
selected using Chaid decision tree to identify most homogeneous groupings, however,
group 2 relates to darkness-lights lit, darkness-no lighting or daylight, which would
cover the vast majority of lighting conditions and therefore too generalised to extract
insight. In order to establish usable insights, data groupings would need to be revisited
and could be improved with the knowledge of a subject matter expert as described in
future work and research in chapter 6.

Table 5. 11 V13 light condition and road type conditional probability

Conditional Probabilities of
CL_ROAD_TYPE_DESC_REDUCED

Parents Probability
CL_LIGHT_CON_DESC_REDUCED TARGET Dual carriageway group Missing dataga[:ﬂpOne way slip  One “:::. ,“:::r:dg?uh:;t and Single carriageway group
Lighting group2 1 0.36 0.00 0.22 0.42
Lighting group2 0 0.25 029 0.25 022
Lighting group1 1 0.31 0.00 0.18 0.51
Lighting group1 0 0.25 0.25 0.26 024

Table 5. 12 Lighting groups description

Original value MNew value
Lighting group1 Darkness - lighting unknown, Darkness - lights unlit or Data missing or out of range
Lighting group2 Darkness - lights lit, Darkness - no lighting or Daylight
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5.2.3 Model 2: V21 C5.0 normal minority boosting
Technical evaluation

“V21 C5.0 normal minority boosting” was selected as a top performing model as it had
very good recall at 0.917 and better accuracy than most models at 0.594. The high
recall meant the model was very good at classifying fatal accidents as fatal, however, it
did not perform so well classifying non-fatals correctly. The model identified a
significant number of false positives although classification of fatals was much better
with a smaller number of false negatives. This model misclassified 1,117 non-fatals or
44% and 22 fatals or 8%. Overall the model performed well at classifying fatal
accidents as fatal. However, the large volume of misclassified non-fatals was the main
reason for lower accuracy. While rebalancing the data in favour of the rare class led to
higher recall, it also meant that the model had difficulty identifying fatal and non-fatal
accidents correctly.

ROC curves for training, test and validation are presented below in Fig. 5.11 and 5.12.
In Fig. 5.12, the line tails off to the right earlier than in Fig. 5.11 and the area under the
curve in Fig. 5.12 is less than in Fig. 5.11 indicating that, proportionally, there were
more FPs or non-fatals misclassified as fatals in the validation data than in training or
test data. The validation ROC in Fig. 5.12 suggests the model overfitted the data as the
TP and FP rates were not as good as training and test. Reducing the FP rate would
require revisiting the data construction stage by looking at alternative data groupings.
Guidance from a subject matter expert could greatly increase the identification of
relevant groupings.
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Figure 5. 11 Training & test ROC for C5.0 normal minority boosting
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Figure 5. 12 Validation ROC for C5.0 normal minority boosting
Non-Technical evaluation

Fig. 5.13 presents importance of individual predictors for model “V21 C5.0 normal
with minority boosting”. This model identified only 2 important predictors being road
type at 54% and junction detail at 46%.

Predictor Importance
Target: TARGET

CL_ROAD_TYPE_DESC

CL_JUNCT_DETAIL_DES
c

CL_WEATHER_DESC

CL_LIGHT_CON_DESC

CL_ROAD_SURFACE_
DESC

CL_URBAMN_RURAL_D Eg

T T
oo 02 0.4

Figure 5. 13 V21 C5.0 normal minority boosting predictor importance

V21 C5.0 model learns rules from the data and presents them in a decision tree format.
These rules can then be used to make predictions by scoring new or validation data
against the decision tree model. A limitation of SPSS Modeler is, although its decision
tree functionality is strong, extraction of the decision tree hierarchical presentation is
difficult, especially where large numbers of nodes exist, a similar limitation was
experienced by (Wah, et al., 2012). Fig. 5.14 displays the V21 C5.0 model with the
most significant node or root node presented on the left i.e. fatal (1) and non-fatal (0).
The first predictor was then identified and for this model was urban and rural. Next the
most important nodes for both urban and rural were identified, being road surface and
road type respectively. For each node the proportion of fatal (1) and non-fatal (0) were
presented. The decision tree continues in a similar fashion until the last predictor in the
model was identified and was presented as the final node on the branch.
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Figure 5. 14 Extract C5.0 normal minority boosting decision tree

The top rules for fatal accidents extracted from the V21 model are listed in Table 5.13.
The ranking and frequency count are based on the training data as this is the driver for
the model rule definitions and these are used to classify fatal accidents for validation
data. The rule indicates if the conditions are met, a fatal accident is likely to occur.

Table 5. 13 V21 top rules based on training data

Training Data Urban/
Ranking Rule Ref. Frequency Confidence Rural
Rank1 Rule 180for 1 3,682 0.993 Urban
Rank2 Rule125for 1 3,271 0.998 Urban
Rank3 Rule 79for 1 2,742 0.998  Rural
Rank4 Rule50for 1 2,614 0.998  Rural
Rank5 Rule3for 1 2,232 0.995 Rural
Rank 6 Rule 187for 1 2,228 0.997 Urban
Rank 7 Rule 24for 1 1,988 0.984  Rural
Rank 8 Rule 117for 1 1,961 0.998 Urban

The top four urban and four rural rules which indicate the likelihood of a fatal accident
are summarised in Fig. 5.15 and 5.16 respectively.

E- Rule 180 for 1 (3,652; 0.993)

if CL_URBAN_RURAL_DESC = Urban

CL_LIGHT_COMN_DESC = Darkness - lights lit

CL_WEATHER_DESC in [ "Other” "Raining + high winds™ "Fine no high winds” "Fine + high winds” "Raining no high winds™ "Snowing no high winds™ ]
CL_ROAD_SURFACE_DESC in ["Wet or damp™]

CL_ROAD_TYPE_DESC in["Single carriageway™ ]

then 1
B Rule 125 for 1 (3,271, 0.998)
if CL_URBAN_RURAL_DESC = Urban

and CL_LIGHT_COM_DESC = Daylight
and CL_WEATHER_DESC in ["Fine no high winds™ ]
“and  CL_ROAD_SURFACE_DESCin["Dry"]
and CL_ROAD_TYPE_DESC in [ "Slip road™ "Single carriageway” "Dual carriageway” "One way street” ]
then 1

B Rule 187 for 1 (2,228, 0.997)

if CL_URBAN_RURAL_DESC =Urban

and CL_LIGHT_COM_DESC = Daylight

and CL_WEATHER_DESC in [ "Raining + high winds" "Fine no high winds” "Raining na high winds" ]
"and  CL_ROAD_SURFACE_DESC in["Wet or damp™]

and CL_ROAD_TYPE_DESC in ["Single carriageway™ ]

then 1
B- Rule 117 for 1 (1,961, 0.988)
Lif CL_URBAN_RURAL_DESC = Urban

¢ and CL_LIGHT_COM_DESC = Darkness - lights lit
{ and CL_WEATHER_DESC in [“Fine no high winds" ]
""" and CL_ROAD_SURFACE_DESCin["Dry"]
and CL_ROAD_TYPE_DESC in ["Single carriageway” "Dual carriageway” "One way street” ]

then 1

Figure 5. 15 V21 C5.0 top urban rules
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E| Rule 79for 1 (2,742, 0998
Poir CL_URBAN_RURAL_DESC = Rural
and CL_ROAD_SURFACE_DESC in ["Wet or damp™]
and CL_ROAD_TYPE_DESC in ["Single carriageway™ |
""" and CL_LIGHT_CON_DESC in ["Darkness - no lighting” "Daylight” "Darkness - lights lit"]
and CL_JUMCT_DETAIL_DESC in [ "Mot at junction ar within 20 metres”]
i then 1
E| RuIeSUfor 1 (2,614; 0,998
CL_URBAM_RURAL_DESC = Rural
CL_WEATHER_DESC in ["Fine no high winds™]
CL_ROAD_SURFACE_DESCin["Dry"]
CL_ROAD_TYPE_DESC in ["Single carriageway™ ]
CL_LIGHT_COMN_DESC in ["Darkness - no lighting” "Daylight” "Darkness - lights lit" ]
: 1
E| RuIeSfor 1 (2,232, 0.995
Pof CL_URBAN_RURAL_DESC = Rural
and CL_WEATHER_DESC in ["Fine no high winds" ]
i and CL_ROAD_SURFACE_DESCin["Dry"]
""" and CL_ROAD_TYPE_DESC in ["Dual carriageway”™ ]
and CL_LIGHT_COMN_DESC in ["Darkness - no lighting™ "Daylight” "Darkness - lights lit" "Darkness - lighting unknown™ ]
then 1

E| Rule 24 for 1 (1,985, 0

CL_| URBJ\N RURJ\L DESC =Rural

CL_LIGHT_COMN_DESC =Darkness - no lighting

CL_WEATHER_DESC in["Other” "Fine no high winds™ "Fog or mist” "Unknown™ "Raining no high winds™ "Snowing no high winds™]
CL_ROAD_SURFACE_DESC in [ "Wet or damp”]

CL_ROAD_TYPE_DESC in ["Dual carriageway” |

1

Figure 5. 16 V21 C5.0 top rural rules

Once the rules from the training model were identified, the validation data was scored
against the model. Table 5.14 summarises the top ten rules with the highest prediction
for fatal traffic accidents extracted from the validation dataset, based on the highest
frequency counts, and compared to the rule ranking for the training data. Confidence
indicates the likelihood of the predicted outcome once all of the conditions in the rule
are true.

Table 5. 14 14 V21 C5.0 top 10 rules for validation data

Validation Training
Validation Target Predicted 1st Frequency data

Ranking Value Value Rule Ref. Predictor Count Confidence ranking
Rank 1 1 1 150 Rural 501 0.998 Rank 4
Rank 2 1 1 1 125 Urban 230 0.998 Rank 2
Rank 3 1 1 179 Rural 211 0.998 Rank 3
Rank 4 1 1 13 Rural 148 0.995 Rank 5
Rank 5 1 1 1 117 Urban 119 0.998 Rank 8
Rank 6 1 1 1180 Urban 63 0.993 Rank 1
Rank 7 1 1 188 Rural 37 0.998
Rank 8 1 1 1 187 Urban 34 0.997 Rank 6
Rank 9 1 1 124 Rural 28 0.984 Rank 7
Rank 10 1 1 126 Rural 27 0.987

The V21 decision tree, outlined in Fig. 5.14, identified urban and rural as the 1%
predictors. All of the top rules ranked in the training data remained strong predictors
for the validation data although the order had changed. As training data was based on
data from 2005 to 2012 some alteration in prevalent predictors would be expected as
fatal traffic accident characteristics change over time. However, it is positive that there
has not been a fundamental change in the top predictors.
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The top two rules for urban are outlined in Table 5.15. In both cases the target and the
predicted value were both fatal. Rule 1_125 predicts that in urban areas, in daylight,
where fine weather and no high winds with dry roads that fatal accidents are most
likely to occur on single carriageway. In 2013 STAT19 data, this represented 197
counts of fatal accidents from the total 230 identified in the data. Rule 1_117 predicts
that in urban areas, in darkness but lights lit, where fine weather and no high winds on
dry roads that, again, fatal accidents are most probable on single carriageway, with 94
of the total fatal accident count for this rule.

Table 5. 15 V21 C5.0 top urban rule description

Validation
1st Frequency
Rule Ref. Predictor 2nd Predictor 3rd Predictor 4th Predictor Sth Predictor Count Confidence
1125 Urban Daylight Fine no high winds Dry Dual carriageway 28
One way street 4
Single carriageway 197
Slip road 1
230 0.998
1117 Urban  Darkness - lights lit Fine no high winds Dry Dual carriageway 23
One way street 2
Single carriageway 94
119 0.998

The top two rules for rural are outlined in Table 5.16. Rule 1_50 predicts that in rural
areas, where fine weather and no high winds, with dry roads on single carriageway that
fatal accidents are most likely to occur in daylight represented by 374 counts of fatal
accidents from the total 501 identified in the data. Rule 1_79 predicts that in rural
areas, with wet or damp roads, on single carriageway, not at or within 20 metres of a
junction that fatal accidents are most probable during daylight, with 110 of the total
fatal accident count of 211 for this rule.

Table 5. 16 V21 C5.0 top rural rule description

Validation
Rule 1st Frequency
Ref.  Predictor 2nd Predictor 3rd Predictor 4th Predictor Sth Predictor Count Confidence
1.50 Rural  Fine no high winds Dry Single carriageway Darkness - lights lit 31
Darkness - no lighting 96
Daylight 374
501 0.998
179 Rural Wet or damp Single carriageway Darkness - lightslit ~ Not at junction/<20 metres 18
Darkness - no lighting  Not at junction/<20 metres 83
Daylight Not at junction/<20 metres 110
211 0.998

The V21 decision tree is quite broad on first review with many of the predictors further
down the branches appearing general and difficult to extract specific factors to predict
fatal traffic accidents. However, reviewing the top rules and comparing against the
validation data provides insights which are clearer to understand and a more
meaningful link between predictors. Although the C5.0 normal minority boosting
model, did not perform well on accuracy, recall was very good and the rules extracted
provided a clear understanding of key factors that can predict fatal traffic accidents.
The model rules created based on training data performed well when scored against the
2013 STATS19 validation data.
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5.2.4 Model 3: V4 Chaid reduced no resampling

Technical evaluation

V4 Chaid reduced no resampling” was selected as a top performing model as it had
better accuracy than most models and good recall at 0.680 and 0.726 respectively.
Recall and accuracy results were not significantly different but the model performed
well at classifying fatal accidents as fatal. Misclassifications were lower than the
previously discussed V21 C.50 model, however 172 or 33% of non-fatals were
misclassified as fatal and 31 or 27% of fatals were misclassified as non-fatal. Data
reduction succeeded in extracting predictions from the data which was not originally
possible. The model performed well and produced largely balanced results for
accuracy. ROC curves for training, test and validation are presented for this model in
Figs. 5.17 and 5.18. The V4 ROC curves behaved quite similarly to the V21 C5.0
model, with evidence that the model overfitted the validation data, represented by a
smaller AUC.
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Non-Technical evaluation

Fig. 5.19 presents individual predictor importance for “V4 Chaid reduced with no
resampling”. Road surface and light conditions were the most important predictors
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accounting for 34% and 22% respectively. Road type accounted for 18%, junction
detail 12%, weather 7% and urban/rural the remaining 6%.

Predictor Importance
Target: TARGET

CL_ROAD_
SURFACE_DESC_
REDUCED

CL_LIGHT_COM_
DESC_REDUCE

CL_JUMCT_DETAIL
DESC_REDUCED

CL_URBAM_RURAL
DESC

0.0

T T
0.2 0.4

Figure 5. 19 V4 Chaid reduced no resampling predictor importance

As with V21, V4 model learns rules from the data and presents them in a decision tree
format. Fig. 5.20 displays the V4 Chaid model with the most significant node or root
node presented on the left i.e. fatal (1) and non-fatal (0). The first predictor was then
identified and for this model was road surface.
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Figure 5. 20 Extract Chaid reduced no resampling decision tree

The V4 Chaid model only produced five rules for fatal accidents extracted from
training data as listed in Table 5.17. The frequency count for this model are low as the

94



model is based on less training data due to the reduction technique applied and no
sampling technique was applied to correct any imbalance.

Table 5. 17 V4 top rules based on training data

Training Data
Ranking Rule Ref. Frequency Confidence
Rank 1 Rule 1for 1 35 0.829
Rank 2 Rule 5for 1 33 0.545
Rank 3 Rule 4for 1 27 0.667
Rank 4 Rule 3for 1 26 1.000
Rank 5 Rule 2for 1 23 0.826

The five rules identified which indicate the likelihood of a fatal accident are
summarised in Fig. 5.21.

B Rule 1for 1 (35, 0.529
Lf CL_WEATHER_DESC_REDUCED in [ "lUnknown group” "Fag or mist or other group”™ "High winds group” ]
CL_URBAM_RURAL_DESC in ["Urban” "Rural”]
CL_ROAD_SURFACE_DESC_REDUCED in [ "Wet or damp group™ "Dry Group™ ]
CL_ROAD_TYPE_DESC_REDUCED in [ "Single carriageway group” "Dual carriageway group” ]
CL_JUNCT_DETAIL_DESC_REDUCED in ["Group3”]
1
1 (23, 0.826
CL_WEATHER_DESC_REDUCED in ["Mo high winds group™ ]
CL_URBAM_RURAL_DESC in["Urban” "Rural”]
CL_ROAD_SURFACE_DESC_REDUCED in [ "Wet or damp group™ "Dry Group™]
CL_ROAD_TYPE_DESC_REDUCED in [ "Single carriageway group” "Dual carriageway group” ]
CL_LIGHT_CON_DESC_REDUCED in [ “Lighting group1™]
1
1 (26;1.0
CL_WEATHER_DESC_REDUCED in ["MNo high winds group™ ]
CL_URBAM_RURAL_DESC in["Urban” "Rural”]
CL_ROAD_SURFACE_DESC_REDUCED in [ "Wet or damp group™ "Dry Group™ ]
CL_ROAD_TYPE_DESC_REDUCED in [ "Single carriageway group™ "Dual carriageway group” ]
CL_LIGHT_CON_DESC_REDUCED in [ "Lighting group2™]
1
B Rule 4for 1 (27, 0.667

if CL_WEATHER_DESC_REDUCED in ["No high winds group™ ]

and CL_URBAMN_RURAL_DESC in ["Urban” "Rural™]
--and CL_ROAD_SURFACE_DESC_REDUCED in [ "Wet or damp group” "Dry Group”]

and CL_ROAD_TYPE_DESC_REDUCED in [ "One way, round about and unknown group” ]

I

then 1
El- Rule 5for 1 (23, 0.545
if CL_URBAM_RURAL_DESC in["Urban” "Rural”]

and CL_ROAD _SURFACE_DESC_REDUCED in [ "Frost orice group”™ "Flood or snow group™]
and CL_LIGHT_COMN_DESC_REDUCED in [ "Lighting group2™]
Tand CL_ROAD_TYPE_DESC_REDUCED in [“Single carriageway group” “Dual carriageway group” ]
and CL_JUNCT_DETAIL_DESC_REDUCED in["Group3"]
then 1

Figure 5. 21 V4 Chaid model rules

The rules produced from the V4 model were very general and did not provide a clear
insight into the key predictors of fatal traffic accidents. In addition the rules produced
did not follow the decision tree key predictors and confidence scores are inconsistent.
This indicates that fatal traffic accidents was not well represented in the training data
and, without the application of a sampling technique, the imbalance was not corrected
and therefore the rules produced were limited and broad in scope. On review of the
reduced data set, only 9% of data related to fatal accidents and given the overall
sample size this means although rules were identified in the data they may not
generalise well.
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Reduced Data
Target Value Frequency % of Reduced data
0 2,072 91%
1 199 9%
2,271

The V4 Chaid reduced no resampling decision tree, although performed better than
many other models, did not produce actionable insights and would be unlikely to
generalise well to a larger dataset. For decision trees to be effective, the non-technical
evaluation is just as important, as without rules which can be well understood and
generalised, good accuracy and recall cannot be actioned.

5.3 Subsequent Model Improvements

Although the focus of this experiment was on fatal accident recall, the accuracy results
were very poor for many models evaluated. As previously discussed in chapter 3, when
prediction is focussed on infrequent events, sampling techniques applied to improve
the prediction of the infrequent event can negatively impact accuracy. In order to
identify whether changes in parameters could improve model accuracy, two further
parameter settings were selected to rebuild a sample of models. Boosting and
Likelihood ratio instead of Pearson were selected as parameters for the model rebuild.
Boosting can be used to enhance model accuracy by building models in sequence and
learning from misclassifications to improve subsequent models and weighting to
produce one overall prediction. Boosting impacts on the training time, however, for
decision trees can significantly improve accuracy and the parameter is available in
both C5.0 and Chaid.'? For Chaid, SPSS Modeler offers Pearson and Likelihood ratio
to calculate the Chi-squared ratio. Pearson was used for the original model build and is
generally a faster calculation. Likelihood ratio is considered more robust and is the
preferred method for small samples. Initial consideration was given to selecting
models for rebuild based on the top performing models. However, “V13 Bayes net
reduced no resampling” performed well for accuracy and recall so was not included in
the rebuild. “V21 C5.0 normal minority boosting” was selected to rebuild using
boosting. “V4 Chaid reduced no resampling” was selected to rebuild using boosting
and Likelihood ratio instead of Pearson. As the initial rebuild of V4 using Likelihood
ratio did not produce any changes in results, “V5 Chaid reduced majority reduction”
and “V6 Chaid reduced minority boosting” were selected to rebuild using Likelihood
ratio, to identify if the parameter would impact where resampling techniques had been
applied. Table 5.18 outlines the results for accuracy and recall for the rebuilt models
and the variance in results when compared to the original models.

12 1BM, 2012. SPSS Modeler C5.0 Node Model Options. http://www-
01.ibm.com/support/knowledgecenter/SS3RA7 15.0.0/com.ibm.spss.modeler.help/c50
modeltab.htm, Accessed 10 11 2014].
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RB4 Boosting Chaid reduced no resampling

When boosting was applied to M4/V4 models, a new model “RB4 Boosting Chaid
reduced no resampling” was created. All other parameters remained as per the original
models. As outlined Table 5.18 results for training and test data improved for both
accuracy, recall and precision. For validation data, accuracy dropped 0.079 but led to a
substantial improvement in recall by 0.212 to 0.938 with only a slight reduction in
precision of 0.022.

Table 5. 18 Boosting and likelihood ratio results

Boosting
Training data Test data Validation data
Model Modelling Sampling Parameter
Ref. Technique Technique Setting | Accuracy Recall Precision| Accuracy Recall Precision| Accuracy Recall Precision
RB4 Chaid Reduced No resampling Boosting 0.985 0.915 0.910 0.946 0.712 0.770 0.601 0.938 0.301
M4/V4 |Chaid Reduced No resampling N/A 0.946  0.553 0.764 0.918 0.424 0.700 0.680 0.726 0.323
Variance Boosting vs original M4/V4 0.039  0.362 0.146 0.028 0.288 0.070 |- 0.079 0.212 - 0.022
RB21 C5.0 Normal Minority boosting Boosting 0.999 1.000 0.999 0.992 0.661 0.494 0.684 0.880 0.215
M21/V2|C5.0 Normal Minority boosting N/A 0.995 1.000 0.991 0.981 0.701 0.245 0.594 0.917 0.179
Variance Boosting vs original M21/V21 0.004 - 0.008 0.011 - 0.040 0.248 0.090 -0.038 0.036
Likelihood
Training data Test data Validation data
Model Modelling Sampling Parameter
Ref. Technique Technique Setting | Accuracy Recall Precision| Accuracy Recall Precision| Accuracy Recall Precision
RL4 Chaid Reduced No resampling Likelihood 0.946  0.553 0.764 0918 0.424 0.700 0.680 0.726 0.323
M4/V4 |Chaid Reduced No resampling Pearson 0.946  0.553 0.764 0.918 0.424 0.700 0.680 0.726 0.323
Variance Likelihood vs original M4/V4 - - - - - - - - -
RL5 Chaid Reduced Majority reduction Likelihood 0.888  0.899 0.865 0.854 0.894 0.418 0.385 0.973 0.221
M5/V5 |Chaid Reduced Majority reduction Pearson 0.881 0.935 0.838 0.869 0.924 0.449 0.352 0.991 0.215
Variance Likelihood vs original M5/V5 0.006 - 0.035 0.027 |- 0.015 - 0.030 - 0.030 0.033 -0.018 0.007
RL6 Chaid Reduced Minority boosting Likelihood 0.896 0.874 0.910 0.887 0.879 0.487 0.446 0.956 0.238
M6/V6 |Chaid Reduced Minority boosting Pearson 0.890 0.929 0.856 0.847 0924 0.409 0.372  0.956 0.216
Variance Likelihood vs original M6/V6 0.007 - 0.055 0.053 0.039 - 0.045 0.078 0.074 0.022

RB21 Boosting C5.0 normal minority boosting

Boosting was applied to M21/V21 models, where minority boosting sampling
technique was applied, and “RB21 Boosting C5.0 normal minority boosting” was built.
Variances for RB21 were not as significant as for RB4 with improvements in accuracy
and precision in training and test data but reduction in recall for test data. Accuracy
and precision improved by 0.090 and 0.036 respectively for validation data although
recall reduced by 0.038 to 0.880.

RL4 Likelihood Chaid reduced no resampling

Likelihood ratio parameter was selected for M4/V4 instead of Pearson and a new
model “RL4 Likelihood Chaid reduced no resampling” was created, however, the
change in parameter had no impact on the model results. In order to assess if the
parameter could impact the two other Chaid reduced models, M5/V5 and M6/V6 were
selected for rebuild.
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RL5 Likelihood Chaid reduced majority reduction

A new model “RL5 Likelihood Chaid reduced majority reduction” was created for
M5/V5. Although a slight improvement in accuracy was produced for training data and
validation data, recall for training, test and validation reduced slightly. Precision
improved slightly for training and validation data with a slight reduction for test data.

RL6 Likelihood Chaid reduced minority boosting

A new model “RL6 Likelihood Chaid reduced minority boosting” was created for
M6/V6. Accuracy and precision improved for all three data sets with the largest
improvement of accuracy 0.074 in validation data. There was no change to the
validation recall result, however, a slight reduction for training and test data.

Selection of optimal models, sampling techniques and parameters to identify the best
prediction models is an iterative process with trial and error and repeated evaluation.
The focus of this experiment was to identify whether C5.0 and Chaid decision trees
and Bayes net, using three sampling techniques could extract prediction for fatal traffic
accidents. Due to time constraints, three modelling techniques and three sampling
techniques were selected applying SPSS Modeler standard parameters. As identified
from the new models built and evaluated in this chapter, changes in parameters settings
can have a positive impact on the results achieved. Suggested further work will be
discussed in future work and research in chapter 6.

5.4 Key Findings

Based on the validation data evaluation, the following key findings were extracted
from the experiment results:

e Decision trees did not perform well when no sampling technique was applied,
with only one of six models predicting fatal accidents.

e Where no resampling was applied and prediction was achieved, accuracy
results were higher than average although recall was significantly lower.

e (5.0 models where minority boosting was applied achieved very good recall
and although accuracy rates were low they were better than all other models
with sampling.

e Chaid reduced models with sampling techniques achieved the highest precision
across models and maintained high recall results and although accuracy was
low it was above the average accuracy for models with sampling.

e Bayes net models achieved prediction results for all nine models. Where
sampling techniques were applied recall was excellent, however, accuracy rates
and precision rates were significantly reduced.
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e For most models the application of sampling techniques to improve recall
resulted in the classification of high volumes of false positives and therefore
consistently low precision rates.

Key contributory factors identified

The approach taken to identify the key contributory factors was to review the top
performing models. As mentioned in chapter 2, contributory factors identified depend
on the characteristics of the data. The STATS19 accident dataset contains mainly
environmental characteristics.

For the decision trees the model rules were extracted and reviewed. Unfortunately,
although rules were extracted from the V4 Chaid model, they were quite general. As
no resampling was completed, this model found it difficult to identify meaningful
underlying patterns. The “V21 C5.0 normal minority boosting” decision tree model
identified 196 rules for fatal accidents from the training data. When the model was
applied to validation data 73 rules for fatal traffic accidents were highlighted. Table
5.19 displays the ranking of the most prevalent rules for validation and training.
Interestingly the top five rules for training data were in the top six validation data rules
although ranking had changed.

Table 5. 19 V21 C5.0 top ranked rules for validation and training data

Validation Training Data
Rule Ref.  Data Ranking Ranking Ranking Change

150 1 4 Increased to top rule
1125 2 2 No Change

179 3 3 No Change

13 4 5 Increased one place
1117 5 8 Increased three places
1 180 6 1 Decreased five places

The contributory factors identified for the top six rules are summarised in Table 5.20.
Fatal accidents occurred most frequently on rural single carriageways, on dry roads
with fine weather with no high winds. Interestingly as discussed in the literature
review in chapter 2, (Wah, et al., 2012) identified clear weather and dry road surface
condition as being the strongest predictors of serious and fatal traffic accidents for
motorbikes in Malaysia. Although lighting features are included in the rule there are no
distinguishing features. This rule implies that in rural areas road surface and weather
conditions are not the key cause of fatal accidents as most accidents occur when
conditions are favourable. In urban areas, fatal accidents occur most frequently during
daylight, on dry road surfaces and when weather is fine with no high winds. When
multiple road types are listed it is difficult to identify a strong contributory factor. As
with rural areas, fatal accidents are most likely to occur when favourable weather and
road surface conditions exist.
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Table 5. 20 V21 C5.0 top rules for validation data

Rank| Rule Ref.| Urban/ Lighting Weather | Road surface Road type Junction
Rural Detail
1 Rule 50 | Rural | Darkness - no lighting, | Fine no high Dry Single carrriageway
Daylight, Darkness - winds
lights lit
2 | Rule 125] Urban Daylight Fine no high Dry Slip road,
winds Single carriageway,

Dual carriageway,
One way street

3 | Rule79 | Rural | Darkness - no lighting, Wet or damp | Single carrriageway Not at
Daylight, Darkness - junction or
lights lit within 20
metres
4 Rule 3 Rural | Darkness - no lighting, | Fine no high Dry Dual carriageway
Daylight, Darkness - winds

lights lit, Darkness-
lighting unknown

5 | Rule 117 Urban Darkness light lit Fine no high Dry Single carriageway,
winds Dual carriageway,
One way street

6 | Rule 180 | Urban Darkness light lit Fine, Wet or damp | Single carrriageway
Raining,
Snowing no
high winds,

As discussed in 5.2.2 “V13 Bayes net reduced no resampling” identified road surface
as the key meaningful indicators of fatal accident. Fatal accidents are most probable on
dry road surfaces and only marginally more likely to occur in urban areas. A second
contributory factor was identified where for wet or damp road surfaces fatal accidents
the risk of a fatal accident increased for rural areas.

When comparing the both the C5.0 and Bayes net models, the contributory factors
identified are consistent in that road surface and urban/rural are identified as the
strongest predictors for both models. Although C5.0 provides more details on the
relationship between factors, the ranking of key factors ties with the Bayes net key
probabilities of factors contributing to fatal accident. Some factors were grouped into
higher level groups which meant some rules are quite general resulting in a loss of
meaningful insight. Further work could focus on ensuring more meaningful groups are
assigned in the data preparation phase which could enhance the insights from the
models.

5.5 Conclusion

The focus of this experiment was to build models which could predict fatal accidents
and to identify contributory factors to fatal accidents. Models were built to focus on
fatal accident classification. In this chapter, the models were assessed using training
and test data and evaluated using STAT19 2013 data which the models had not
previously seen. Most models achieved a high level of recall and correctly classified
fatal accidents. By focussing the models on fatal classification, many misclassified
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non-fatal accidents as fatal where similar features existed and therefore low accuracy
and precision rates were produced. Boosting and likelihood ratio were tested for the
top models and the parameter changes resulted in some performance improvements.
Applying further sampling techniques may improve the models overall performance,
however, due to time constraints they were not included in the scope of this
experiment.

The key findings are based on the evaluation phase and highlight the effectiveness of
sampling techniques in achieving high fatal accident recall. The key contributory
factors for C5.0 and Bayes net are consistent and were road surface and urban/rural.
The rules identified from the C5.0 decision tree are easy to understand and could
provide insight into the relationships between factors. Further work should focus on
grouping data into more meaningful features which could identify more actionable
insights from the experiment.
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6 CONCLUSION AND FURTHER RESEARCH

6.1 Introduction

This chapter summarises the research completed as part of the experiment. The scope
and objectives of the research are revisited and the achievement of those objectives and
contributions to the body of knowledge are briefly discussed. The experiment approach
is evaluated and limitations are discussed. Future work and research which could
enhance the experiment is also briefly discussed.

6.2 Research Definition & Research Overview

The main objective of this research was to apply three classification techniques, C5.0
and Chaid decision trees and Bayes net, to predict fatal road traffic accidents based on
a UK road safety dataset and to evaluate the model performance. Secondly, to identify
the key contributory factors of fatal traffic accidents from the predictive models.

The research completed as part of this dissertation, commenced by reviewing academic
literature related to road traffic accidents, data mining and predictive analytics. The
understanding gained from this research, was incorporated into the design,
implementation and evaluation of the research experiment and methodology adopted
was based on CRISP-DM. The focus of the model design and build was to classify
fatal traffic accidents and sampling techniques were adopted to improve fatal accident
recall. The research achieved the following aims:

e data mining and predictive analytics literature was reviewed to identify suitable
predictive and evaluation techniques relevant to traffic accident and infrequent
event prediction

e the STATS19 data was analysed and data transformation was performed in
order to prepare the data for modelling

e the design and implementation of the C5.0 and Chaid decision trees and Bayes
net models achieved prediction for fatal traffic accidents

e the model performance was evaluated and changes to model parameters were
tested and evaluated

e key findings from the experiment were identified and the model results were
interpreted to extract the key contributory factors identified.

6.3 Contributions to the Body of Knowledge

After conducting the experiment and evaluating the results achieved, some findings
could contribute to the body of knowledge.
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e Using Chaid decision tree for supervised discretisation proved effective in
identifying homogeneous subgroups in the data to a standard which would be
useful for subject matter expert consideration. Chaid would serve as a good
first level data transformation and the results would be presented in a manner
which non-technical individuals would easily understand.

e The experiment demonstrated that classification techniques can be used to
predict infrequent events once sampling techniques are applied.

e SPSS Modeler proved an effective tool for the experiment implementation for
the data preparation phase and model build.

e Applying sampling techniques to classification models to address class
imbalance can be effective in improving recall, however, consideration must
be given to the resulting impact on accuracy and precision.

e Ranking the rules extracted from decision trees and summarising the key
predictors in a standard format proved an effective means of understanding,
interpreting and comparing key predictors. The literature review was limited
with regard to methodologies or approaches to non-technical evaluation or
interpretability of classification models.

6.4 Experimentation, Evaluation and Limitation

The intention of this experiment was to establish whether classification techniques
would be effective in the prediction of fatal traffic accidents. In order to assess whether
C5.0, Chaid or Bayes net performed better at meeting the objective, the scope of the
experiment was limited to applying consistent parameters throughout the experiment.

This initial experiment design and approach to data preparation and model build
proved successful in meeting the objective of predicting fatal accidents as was shown
by the evaluation of the validation data. Recall results for validation data were very
good, however, accuracy and precision performance was poor in many cases, with
classification of non-fatals as fatals or false positives being the main performance
issue.

A decision made as part of the initial experiment design was to focus on fatal accident
prediction. This decision guided the data preparation and model build implementation.
At the data discretisation stage, two target values of fatal and non-fatal were set. Two
classes of STATS19 data, serious and slight accidents, were grouped as non-fatal.
Given the extent of the false positives in the evaluation, the model struggled to classify
accurately when similar features existed for fatal and non-fatal. It is likely that some of
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the serious accident class would have similar characteristics to fatal and this may be
the cause of the high degree of false positives. It would have been better to rerun the
experiment with three target values, fatal, serious and slight to establish if the model
accuracy and precision rates would have improved, however, time constraints did not
permit the rerun.

Instead of the experiment rerun, five additional models were built to test if changing
parameters in the model build would improve the performance. Boosting was applied
to the top C5.0 and Chaid models and Likelihood ratio instead of Pearson was applied
to three Chaid models. The results showed some improvements in accuracy and
precision and highlight that applying other sampling techniques or parameter settings
may have improved accuracy and precision.

Literature review proved more challenging and time consuming than initially planned.
Research identified generally related to specific narrow research questions or with a
focus on statistical techniques. Methodologies, definitions and best practice papers
were difficult to identify which limited the scope for relevant references with books
providing the main source of explanation and research papers providing evidence
based specific research.

A key limitation of the data understanding and preparation phase was the lack of
consultation with a subject matter expert. Road traffic accidents characteristics and
causes are widely varied and more meaningful groupings could have been extracted
from the STATS19 dataset with practical knowledge of the field. Reliance was
therefore placed on Chaid to identify homogenous groupings. It is likely that
identification of meaningful contributory factors was limited by the data groupings. At
the evaluation stage, interpretation of some decision tree rules proved difficult where
factors within the rule were so wide ranging as to lose meaning for example lighting.

6.5 Future Work & Research

Future work and research is based on limitations identified as part of the experiment
implementation and possible techniques to overcome them. An opportunity to apply
the experiment to another research problem is also considered.

Changes to current experiment design

As previously discussed, rerunning the experiment with three target values instead of
two may help to improve the false positive issue identified in this experiment. This
would involve commencing the experiment from the initial data selection stage and
redefining the target values as fatal, serious and slight instead of fatal and no-fatal as in
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the current research. In addition consideration of the data groups by a subject matter
expert may provide additional insights which could help extract more meaningful
contributory factors.

The experiment could also be expanded to consider the results obtained for serious and
slight accidents and identify the related key predictors and contributory factors. This
experiment extracted data from the STATS19 accident dataset. There are two other
STATS19 datasets maintained vehicle and casualty and integrating the three datasets
may provide additional insights. Unfortunately due to time constraints and insufficient
data knowledge, it was not considered as part of this research experiment.

Support vector machine (SVM)

Research has demonstrated that SVM has been successful in improving the accuracy of
cancer classification where clustering was applied before classification (Wahed, et al.,
2012). As accuracy was the key limitation of this research experiment evaluation, this
technique is of interest. Similarly if clustering was applied to traffic accident data, a
rare event like cancer, before applying a classification technique, like SVM, the
prediction accuracy may be improved. SVM classification is available in SPSS
Modeler.

Consider applying the experiment to Irish road accidents

The experiment was completed based on the UK STATS19 data due to the availability,
quality and wide use of the data. However, the experiment could also be applied to the
Irish road accidents, although the scope may need to be widened as fatal accident
volumes may not be sufficient. Road safety trends are in line with trends in the UK, as
outlined in Fig. 6.1, with similar proportion of deaths by road user group.
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Figure 6. 1 Trends in Ireland road traffic accident deaths
Source: (The World Health Organisation, 2013, p. 130)
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In order to assess the readiness in Ireland to meet the experiment requirements, a brief
questionnaire was prepared and forwarded to a road safety professional in Ireland. The
results of the questionnaire are presented in Appendix 1. From the reply it appears that
road safety data is consistently recorded and reported and some consideration has
already been given to the application of predictive analytics to road safety in Ireland.

6.6 Conclusion

This final chapter considers the experiment completed as part of the research and
results achieved. The initial objectives achieved are outlined, together with
contributions to the body of knowledge identified during the course of the research.
The experiment achievements and limitations are discussed. Future work which could
help overcome limitations in this experiment or add to the research learning is
considered.

The experiment met many of the initial objectives and although accuracy performance
was poorer than expected, fatal traffic accidents prediction was successful.
Consideration has been given to further work which could improve the experiment
results.
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APPENDIX 1 - ROAD SAFETY QUESTIONNAIRE

This questionnaire was completed by a road safety professional in Ireland and was
intended to assess the whether this experiment could be applied to Irish road traffic
accident data.

1. Please provide a brief description for the basis of your understanding or involvement in the field road
traffic accidents e.g your current role, previous experience.

Current roles is as an analyst in NRA Safety section. I have worked in the safety section for nearly 10 years. I have worked
in the NRA since Nov 2001 and before that in Dublin Corporation for 4 years and before that ESB International for about
another 4 years. My primary work responsibilities are about spatial analysis of road traffic cellision in Ireland but I also
contribute to European research via my work on the project exe board of CEDR (Conference of European Road Directorates)

2. InIreland, is data relating to traffic accidents maintained in a single central database or drawn from a
number of data sources?

Broadly speaking data related to road traffic collisions is either collected by the Police or Hospitals. For example The
responsibility for collecting road traffic collision lies with An Garda Siochana (AGS). All road traffic incidents reported on
AGS and entered on the PULSE system by trained operators (GISC, Castlebar call centre) via phone call from Garda
members. Since 2014 the data entered by GISC is available to the Road Safety Authority (RSA) via the government VPN.
The RSA are responsible for collating and publishing the annual "Road Collision Facts". The National Roads Authority also
receive collision , post Jan 2014, collision pulse data via the VPN. Local authorities traditional receive data via the Local
Government Management Agency (LGMG). The RSA have to date provided the LGMD a flat files of collision data on CD to the
LGMA for distribution to the local authorities.

3. Please provide a brief description of the traffic accident incidents data sources.

Currently the PULSE data is the primary source of all traffic incidents both injury related (Fatal, Serious and Minor as well
as reported material damage collisions). Local authorities also complete a LA16 (one page form) for every fatal collision.
Typically an engineer for the local authority meets a member of the Garda investigation team on site and the Garda
provides some basic information about the time, date, road weather conditions etc. the engineer does a visual check of
signs, road markings, line of sights etc. Each lecal authority is responsible for ensuring these LA16 forms are completed.
The CCMA (City And County Managers Association are briefed at regular intervals about the completion rates of these LA16
forms) Hospital data. the HIPE (Hospital In-Patients Enquiry system) data records various attributes associated with a
persons medical treatment post road traffic collisions. http://www.higa.ie/healthcare/health-information/data-
collections/online-catalogue/hospital-patient-enquiry

4. Please outline who is generally responsible for recording and maintaining the traffic accident data for
data sources above.

The police are responsible for recording all reported road traffic collision onto PULSE. The local authorities are
responsible for completing LA16s The HSE, I assume, are responsible for coding the HIPE data/records.

5. Please indicate below if any of the following traffic accident data is recorded in the traffic accident
database(s):

Road Type

Casualty severity

Time of accident
Weather conditions
Casualty age

Casualty gender

Accident location/address
County

Vehicle type

Road surface

There are number other attributes recorded on The PULSE system for example, driver actions, The primary collision type
(head-on, rear end right turn etc.), the trip purpose, if road works were present or not. A list of the tables used in the PULSE
system should be available on request from AGS

110



6. Are you aware if data is maintained or reported specific to fatal road traffic accidents in Ireland?

Yes

7.If Yes, please provide a brief description of the fata traffic accident data maintained or reported?

For each fatal collision a forensic investigation is conducted of trained Garda and compiled into reports including detailed
scales drawings of the collision scene. I assume GNTB collate these documents. An LA16 is to be completed by the local
authority for each fatal collision within their administrative area. The senior engineer or director of transport services is
responsible for ensuring these forms are completed. The PUISE data is update by the Police (via Castlebar call centre). If a
serious injury unfortunately turns out to be a fatality (International 3 day definition protocel) then the investigating Garda
will amend the PULSE record accordingly.

8. In your knowledge, has the data quality of the road traffic accident database been reviewed or
analysed?
Yes

9._If Yes, please provide a brief description of your understanding of the data quality analysis prepared?

The NRA sponseored research into the data collected by Ireland on road traffic collision and benchmarked the type of
information collected in other countries A summary of the reports are available online ...
http://www.nra.ie/safety/research/irish-collision-data-revi/Collision-Data-and-International-Benchmarking.pdf
http://www.nra.iefsafety/research/irish-collision-data-revi/Collision-Contributory-Factors.pdf

10. Based on your knowledge or use of traffic accident date, please outline your assessment of the quality
of road traffic accident data?

Ireland road collision data is improving. The completeness of records has greatly improved since the introduction of the
new 2014 PULSE system. The type and detail of the information sought by Police is amongst the best (as noted in the Risk
Solution report cited above in Q9) I understand that there have been attempts to like the hospital and Police data in the
past and this has not been as successful as hoped. At a European Level there is a move towards a commen definition of
road injuries using an existing trauma scale called MIAS (Maximum Abbreviated Injury Sale). However despite the current
deficiencies in the ability to link hospital data to police data there have been papers produced providing very useful insights
using Irish data ... http:/fwww.itrn.ie/uploads/Short%20and% 20Caulfield.pdf

11. Is there a formal reporting format for traffic accident data?

Yes

12. If Yes, please provide a brief description of the format for reperting traffic accident data?

I'm not entirely clear what you mean by this question. Since 2014 the trained operators in GISC "talk" the investigation
Garda member through the collision asking and prompting, where appropriate, through the PULSE screens and complete the
data entry for each collision reported to AGS. There are incidents where the Police are not informed of ... see Short and
Caulfield paper cited above in Q10

13.Is there a formal reporting frequency or timeline for traffic accident data?

Yes

14. If Yes, please provide a brief description of the frequency or timeline for reporting traffic accident
data.

As above ...
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15. Who is generaly responsible for reporting traffic accident data?

The RSA are responsible for collating the raw collision data (from those road traffic collisions reported to AGS) into an
annual publication. e.g.
http:/fwww.rsa.ie/Documents/Road%205afety/Crash% 205tats/2011_Road_Collision_Fact_Book.pdf

16. In line with your understanding, please list the main users of traffic accident data?

Within the NRA and from an engineering road safety perspective the road collision data is used (in conjunction with
exposure data in the form of veh km travelled) to rank the safety of the road network. see link below for further details
http:/fwww.nra.ie/safety/design-manual-roads-and-b/nra-hd15-network-safety-r/ AGS use the collision data to target
speed enforcement and the location of "Safety Camera Zones". The RSA use the road collision data for updating and
improving police around all aspects of road safety.

17.In Ireland, are traffic accident statistics published?

Yes

18. If Yes, please provide a brief description of the statistics published?

The RSA publish annual statistics. See link in Q 15 The NRA publish road cellision rates for the national road network on
their web site. See link below http://www.nra.ie/safety/design-manual-roads-and-b/nra-hd15-network-safety-
rfHD15_AvgCollisionRates.pdf

19. Please outline who is generally responsible for publishing traffic accident statistics?

With the current Road Safety Strategy (2013 to 2020) there are numerous actions related to the publication of data and
the responsible agency. In general it is the RSA who are responsible for publishing the collision statistics

20. Are traffic accident data or statistics in Ireland analysed to identify contributory factors?

Yes

21.

If Yes, please provide a brief description of the analysis prepared to identify traffic accident contributory
factors?

Annually the road collision facts contain a breakdown of collisions by contributory actions (e.g. exceeded safe speed,
Improper overtaking, failed to signal etc.) as well as as Collision classified by Weather, Surface Condition, Road Character
and by whether skidding occurred or not at the scene of the collision, to name but a few..

22. What are the main objectives of this analysis?

To help explain some of the event that make have contributed to the collisions. For example during the engineering
review of the "Network Safety Ranking” - see link below - engineers review patterns of collision to help target where
engineering countermeasure are most likely to reduce the severity and frequency of collisions eccurring on the national
road network. http://www.nra.ie/safety/design-manual-roads-and-b/nra-hd15-network-safety-r/

23. Who are the main users of this traffic accident data analysis?

Very similar to Q16 on the main users of the collision data. There and many different types of analysis that are conducted
using the collision data and I've mentioned some published analysis both on the RSA and NRA sites. In general the analysis
is used internally and by other stakeholders within road safety as well as some users from academia.

24, What tools are used to analyse traffic accidents?

In HD15 there as spatial tools used to manipulate the various data sources such as GIS but also the is Excel and Access
employed to produce the HD15 reports. these are distributed via SharePoint o the road safety engineers for review. SQL
sever is used to create table views of the PUSLE data in the first instance.

25. Are traffic accident statistics reported to the European Union?

Yes

26. If Yes, please provide a brief description of the statistics reported to the European Union and the
format?

Again the road Safety Strategy covers a number of actions and these include reporting to Eurostat. IRTAD and the ETSC
are also commonly update with Irish road collision details.
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27. Are you aware if predictive analytics is currently being used in the filed of road safety prevention in
Ireland?

Yes

28. If Yes, please provide a brief description of predictive analytics work underway?

Models of collision rates are commonly used to establish if intervention , particularly engineering countermeasures will
have a positive impact on future road safety for users. Currently the NRA are involved in with CERD partners in a number of
safety research programmes including PRACT (Predicting Road Accidents - A Transferable methodology across Europe). See
link below http://www.practproject.eu/

29. Are you aware of any future plans to use predictive analytics for road safety prevention in Ireland?

Yes

30. If Yes, please provide a brief description of predictive analytics planned work.

As above

31. What benefits, if any, would you consider predictive analytics could offer to road safety prevention in
Ireland?
By madelling likely scenarios intervention can be tested to see if they can provide a positive safety outcome.

32. Please outline what limitations you could foresee in applying predictive analytics to road safety
prevention in Ireland?
Transferability of a moedel from one jurisdiction to another
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