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Abstract –  

 

Energy Performance Certificates (EPCs) are issued when dwellings are constructed, sold or 

leased in the EU.  Where the cost of obtaining the required data is prohibitive, EPC assessors use 

nationally applicable default-values.  To ensure that dwellings are not assigned a wrongly-higher 

EPC rating, a standardised thermal bridging transmittance coefficient (Y-value) is typically 

adopted for all existing dwellings while worst-case overall heat loss coefficients (U-values) are 

used. Default U-values are applied to a specific building element type (roof, wall, floor etc.) 

based on building codes and regulations applicable at time of construction. Due to significant 

building fabric upgrades, default U-values are considerably higher than real U-values.  This 

constitutes a systematic ‘default effect’ error typical of large national EPC datasets.  For the 

dataset considered thermal default use overestimates potential primary energy savings from 

upgrading by 22% in dwellings constructed when thermal building regulation applied and by 

70% in dwellings built before thermal building regulations.  A methodology has been developed 

that derives from an EPC dataset, a method for calculating a realistic energy-improvement 

payback when use of pessimistic default U-values is unavoidable.   

 

Keywords Default Effect, Prebound Effect, Default U-values, Energy Performance Gap, 

Thermal Energy Peformance Gap, Energy Performance Certification, Detached Dwellings, Irish 

Housing Stock, Building Energy Rating 
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2S Two Storey 

CAO  Central Statistics Office 
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EU-27/28 Total EU member countries as of time of publication of referenced work 

RB Reference Building 
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RD Reference Dwelling 

SAP Standard Assessment Procedure (UK) 

SEAI Sustainable Energy Authority of Ireland (formerly Sustainable Energy Ireland - 

SEI) 

SyAv Synthetically Average 

TABULA Typology Approach for Building Stock Energy Assessment  

U-value Overall heat transfer coefficient (W/m
2
K) 

Y-value Thermal bridging transmittance coefficient (W/m
2
K) 

 

1.0 Introduction 

 

Households consume 27% of end-use energy in the EU 28 (Eurostat, 2016).  The extent and 

duration of the dominance  of the thermal characteristics of pre-existing houses on this energy 

use depends on construction rates, floor areas and specifications of new dwellings (Simpson et 

al., 2016). Average replacement rates for existing housing stocks in the European Union (EU) 

are less than 0.1% (Bell, 2004) so the majority of Europe’s existing dwellings will remain in 

2050 (Visscher et al., 2016).  In the United Kingdom, for example, around 75% of dwellings that 

will exist in 2050 have already been constructed (Ravetz, 2008).   Achieving lower energy use 

and associated greenhouse gas emissions thus requires energy refurbishment of these existing 

dwellings; together with greater efficiency and harnessing renewable technologies in the 

generation of energy supplied to houses (Kohler and Hassler, 2002; Lowe, 2007; Roberts, 2008; 

Schaefer et al., 2000; Simpson et al., 2016; Weiss et al., 2012).  

 

Knowledge about cost-effective energy-saving measures can encourage behaviour that reduces 

household energy costs (Gram-Hanssen et al., 2007; Tuominen and Klobut, 2009).  The Energy 

Performance of Building Directive (EPBD) [Directive 2002/91/EC] drives policy to accelerate 

reducing energy consumption in European building stocks (Majcen et al., 2013a).   The EPBD 

mandates comparable Energy Performance Certificates (EPCs) for buildings constructed, sold or 

leased across the European Union (EU) (EU, 2002a, b). An EPC is accompanied by an Advisory 
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Report that recommends energy efficiency improvements feasible from both technical and 

economical perspectives (Pérez-Lombard et al., 2009; SEAI, 2013; Stein and Meier, 2000).  

However even economically advantageous recommendations are not always adopted 

(Christensen et al., 2014; Gram-Hanssen et al., 2007; Tuominen and Klobut, 2009).  One barrier 

is that homeowners anticipate financial savings smaller than estimated in the Advisory Report 

(Gram-Hanssen, 2014), undermining the credibility of the report.  To overcome this barrier, the 

estimated reduction in energy consumption from a specific energy-saving intervention in a 

particular dwelling as given by the EPC, should reflect the actual decrease in energy 

consumption (EU, 2002b; Majcen et al., 2013a; Majcen et al., 2013b). 

 

1.1 Energy Performance Certification  

 

Energy classification of dwellings differs across the EU Member States (MSs) (Arcipowska et 

al., 2014; Arkesteijn and van Dijk, 2010; BPIE, 2010; Pérez-Lombard et al., 2009).  In Ireland 

(SEAI, 2012b) and in the UK (SAP, 2012) this classification is based on calculated annual 

delivered and primary energy consumptions together with carbon dioxide emissions for 

standardised occupancy.  The procedure balances energy required for space heating, ventilation, 

water heating and lighting with energy generated by building integrated photovoltaic and solar 

thermal systems.  An EPC: 

 Presents a calculated building’s energy performance rating on a scale of A (which should 

have the lowest fuel bills) to G  (Pérez-Lombard et al., 2009).  

 Uses the same A-to-G scale to rate a dwelling’s greenhouse gas emissions. 

 
National EPC methodologies need to have:  

 Credibility and accuracy, so that, for a given climate, buildings with better ratings use 

less energy (Pérez-Lombard et al., 2009; Sousa et al., 2017; Stein and Meier, 2000). 

 Balance applicability to a wide variety of buildings with lack of specificity to each single 

building (Arkesteijn and van Dijk, 2010). 
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 Clarity that enables users to understand a) the overall result and b) the effect of 

improvement choices on the EPC (Arkesteijn and van Dijk, 2010; Stein and Meier, 

2000). 

 Reproducibility, so that for a specific building the method used gives the same result 

independent of the assessor (Arkesteijn and van Dijk, 2010; Pérez-Lombard et al., 2009). 

 Transparency that ensures energy ratings are consistent (Arkesteijn and van Dijk, 2010; 

Pérez-Lombard et al., 2009; Stein and Meier, 2000). 

 Cost-effectiveness by avoiding labour intensive data acquisition (Arkesteijn and van 

Dijk, 2010), and poorly user-interfaced or complex simulation programs that require 

extensive training (Pérez-Lombard et al., 2008). 

 

Trade-offs between reproducibility, accuracy, assessor expertise and costs are necessary (BPIE, 

2010).  During an EPC assessment, where accurate building data acquisition would be 

excessively labour-intensive and/or invasive, national specified default values are used by an 

assessor. Default values are normally pessimistic to (Arkesteijn and van Dijk, 2010); 

 avoid a better-than-merited energy rating, 

 enable homeowners to know the energy advantage of carrying-out upgrading retrofits, 

 encourage homeowners to record energy upgrades that inform EPCs, and  

 propel assessors to seek-out information to provide an accurate energy rating. 

Input data based on worst-case default values (Hull et al., 2009; Majcen et al., 2013b; Míguez et 

al., 2006; Pérez-Lombard et al., 2009; SEAI, 2013; Stein and Meier, 2000; Sunikka-Blank and 

Galvin, 2012; Yohanis et al., 2008) for thermal envelope characteristics, external temperatures, 

internal loads, system efficiencies and occupancy patterns together with specified ‘standard’ 

conditions leads to discrepancies, as shown in Fig. 1, between EPC-rated predicted and measured 

(Sunikka-Blank and Galvin, 2012) domestic energy consumptions (Cozza et al.; Gram-Hanssen, 

2014; Majcen et al., 2013b; Pérez-Lombard et al., 2009).  

 

As shown in Fig. 1, space heating energy consumption above 136 kWh/m
2
/a is typical of less 

energy-efficient, older, un-refurbished dwellings (Lapillonne et al., 2012a; Simpson et al., 2016).  

The 67% of European housing built prior to 1980 (Norris and Shiels, 2004) predate the 

introduction of meaningful thermal building regulations to housing. In the absence of empirical 
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data, default ‘as-built’ overall thermal transmittance coefficients (U-values) of dwelling 

envelopes across Europe (inter alia Austria, Ireland, Italy, Poland, Spain, Sweden and the UK) 

are determined by (Ahern, 2019; Arcipowska et al., 2014; BPIE, 2010; Rasooli et al., 2016; van 

den Brom et al., 2017); 

 whether a roof, wall or floor is being considered, 

 for pre-thermal regulation dwellings, the date of construction, 

 for post-thermal regulation dwellings, prevailing applicable draft building regulations. 

 

 

Fig. 1 How the prebound and rebound effects may limit energy saving to be less than 

envisaged
1
 (Sunikka-Blank and Galvin, 2012) 

 

 

The characteristics of older dwellings are often less readily documented than for those 

constructed recently (Rasooli et al., 2016; Skea, 2012) leading to default values being employed 

(Ahern, 2019; Arkesteijn and van Dijk, 2010) . As shown in Table 1, use of default values may 

lead the projected EPC to predict higher than realisable energy refurbishment improvements 

(Ahern, 2019; Ahern et al., 2016; Arkesteijn and van Dijk, 2010; Majcen et al., 2013b; van den 

Brom et al., 2017), particularly for older pre-refurbishment dwellings (Arkesteijn and van Dijk, 

2010; Cozza et al.).  For this 'prebound effect', illustrated in Fig. 1, theoretical predicted energy 

                                                 
1
 Actual values based on measured values [see Ref Sunikka-Blank, M., Galvin, R., 2012. Introducing the prebound 

effect: the gap between performance and actual energy consumption. Building Research & Information 40, 260-

273.] 
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consumption is overestimated in average and less energy-efficient dwellings (i.e. space heating 

consumption of 136 kWh/m
2
/a or greater) (Majcen et al., 2013b) with occupants consuming 30% 

less heating energy on average than predicted  by the EPC (Sunikka-Blank and Galvin, 2012).  

 

Predicted energy use can also be underestimated in new or retrofitted dwellings that should have 

a space heating consumption of 100 kWh/m
2
/a or less; as shown in Fig. 1.  This is explained 

partly by a ‘rebound effect’ (Berkhout et al., 2000) that ensues because in thermally-upgraded 

dwellings, higher internal comfort temperatures are more affordable leading energy consumption 

to increase by 10 to 35% (Galvin and Sunikka-Blank, 2016) rather than reduce (Clinch and 

Healy, 1999; Clinch and Healy, 2003; Cozza et al.; Druckman et al., 2011; Herring, 2006; 

Lomas, 2010; Majcen et al., 2013b).  As illustrated by Table 1, prebound and rebound effects 

lead to energy savings significantly less than envisaged.   

 

As sub-optimal or partial refurbishments can render future energy performance improvements 

more difficult or expensive (Sandberg et al., 2016), the EPBD requires refurbishments are 

assessed against cost-optimal criterion to (EuroACE, 2013; Simpson et al., 2016);   

i) ensure coherent and well-planned refurbishment standards that avoid low-cost but sub-

optimal improvements, and 

ii) invest in interventions that will recoup their life-cycle costs.  

Rather than calculate the cost-optimal interventions for every single building, EPBD guidelines 

(EU, 2012b) require a set of reference buildings (RBs) for each EU member state representative 

of typical national or regional building stocks (Ahern et al., 2016; Ballarini et al., 2014; Corgnati 

et al., 2013).  RBs can be used to produce overall energy saving extrapolations for the total 

building stock (Ahern et al., 2016; Ballarini et al., 2014; EU, 2012a; Ferrari et al., 2019).   

Thermal refurbishments of Irish housing have resulted in 58% of walls and 67% of roofs having 

significant levels of insulation in 2014 (Ahern and Norton, 2019b), this has led to; (i) less 

association between a dwelling’s age and its energy efficiency, and (ii) currently-used default U-

values being outmoded.  Pessimistic as-built default U-values under-rank the energy 

performance of circa 90% of dwellings, under-ranking 100% of  walls and 82% of roofs  (Ahern, 

2019; Ahern et al., 2016). Under-ranking pre-regulation dwellings contributes to the prebound 

effect (Ahern and Norton, 2019a; Ahern et al., 2016).  Procedures used in Ireland (Ahern et al., 
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2013; Badurek et al., 2012) along with those in Italy (Loga et al., 2010), Spain (Iortega, 2011) 

and Austria (Amtmann, 2010) use stock-aggregation methodologies to calculate overall national 

residential stock energy consumption using as-built or base-default U-values applied to equally 

default dwelling typologies classified by construction period.  

 

In the 27 EU member states in 2009 (EU 27), space heating consumed 68% of energy used in the 

residential sector, accounting for 210 million tonnes of oil equivalent (Mtoe) or 244.23 TWh  

(Lapillonne et al., 2012b).  Of the overall heat lost from dwellings 80 to 90% is by heat transfer 

through the building fabric;  8 to 16% is through air infiltration and 4 to 16% is through thermal 

bridges (Ahern, 2019; Ahern and Norton, 2019a). 

 

Thermal bridges, with a significantly higher thermal conductivity than is average in the dwelling 

(Cash, 1997),  occur because of (i) geometry (e.g. a corner,) (ii) structural requirements (e.g., 

lintels, foundation, party wall, wall ties etc.), and (iii) construction practice (e.g. no edge 

insulation in ground floor). Thermal bridges are classified as; a) repeating, b) non-repeating c) 

random (Xtratherm, 2014).  A Y-value describes the sum of all the non-repeating thermal 

bridging heat transfer coefficients (HTB) divided by the total exposed area of the building 

envelope (Aexp), and is expressed as W/m
2
K. A Y-value is added to an average U-value to 

account for the thermal bridges (Xtratherm, 2014). A singular standardarised Y-value, not 

relevant to the building type (Little and Arregi, 2011), typically adopted in EPC methodologies 

for all existing dwellings (SEAI, 2012a), overestimates  (Andrews, 2011; Little and Arregi, 

2011) or underestimates (Pittam and O’Sullivan, 2017)  heat loss due to thermal bridging so must 

be calculated.   

 

In Ireland (SEAI, 2016a) and in the UK (DCLG_UK, 2013) publicly-available EPC 

methodologies are used to calculate the energy classification of dwellings.  Ireland has an 

established, regulated and publically available EPC database (Arcipowska et al., 2014). In the 

Irish housing stock, the percentage of dwellings constructed before the mid 1970’s, before 

building regulations required increased levels of thermal insulation (CSO, 2006; SEAI, 2012b), 

mirror European housing stocks generally (Norris and Shiels, 2004). The motivation of this work 
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is to examine the Irish EPC dataset to quantify the potential overestimation of energy-led 

refurbishments from use of pessimistic default U-values and standardised Y-values.
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Table 1 Illustration of how use of default use results in unrealistically short payback periods (Arkesteijn and van Dijk, 2010) 

 

  

Pessimistic 
default       

employed? 

Energy 
Performance 

Rating 

Payback period 
for thermal 

upgrade 
measures 

Building 
Certification 
Information 
available? 

Yes No High Realistic 

No Yes Low 
Unrealistically 

short 
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P a g e  | 11 

2.0 Methodology 

 

34% of the EU 28 population lived in detached houses in 2013 (Eurostat, 2015). Ireland’s 

predominant house typology, comprising 18% of the total dwelling stock are rural detached, 

oil-heated dwellings (Ahern et al., 2016). This dwelling typology is adopted as a case study 

Reference Dwelling (RD) as while Ireland has the highest proportion of single family 

dwellings in Europe (Economidou et al., 2011), countries such as the UK, Greece, Norway 

and the Netherlands have similar profiles (see Fig. 2) 

 

EPCs in Ireland are generated through the “Dwelling Energy Assessment Procedure” (DEAP) 

software administered by the Sustainable Energy Authority of Ireland (SEAI).  SEAI made 

the detailed national empirical EPC dataset publicly available in 2014 (SEAI, 2014).   

463,582 dwellings representing 31.7% of the total dwelling stock constructed up to 2006 that 

had received an EPC by August 2014 were examined in (Ahern and Norton, 2019a), as 

shown in Table 2 and elucidated in Table 3, to describe the single-family detached dwelling 

stock through 35 number Synthetical Average
2
 (SyAv) default-free RDs representative of the 

Irish national building stock (Ahern et al., 2016; Ballarini et al., 2014; Corgnati et al., 2013). 

 

Thermal default use was compared with empirically-derived thermal envelope data for their 

effect on the EPC rating of dwellings. A representative selection set of four pre and post 

thermal regulations largely default-free RDs [2 x single storey (1S) and  2  x two storey (2S)], 

totalling eight RDs, were selected from Table 2 for input to the Irish national EPC 

methodology, DEAP. As highlighted in Table 2, RDs representing the highest quantity of 

dwellings (N) were selected as detailed in Table 5. The selection set represents 206,183 

dwellings accounting for 50.7% of national detached dwellings in Ireland (see Table 5). 

 

Energy use for the SyAv RDs were calculated using DEAP, employing EPC data in Tables 2 

and 3. The energy use for the SyAv RDs were hence recalculated assuming; 

                                                 
2
 Based on the statistical analysis of a large building sample the “Synthetical Average Building” (SyAv) 

approach identifies an “archetype” defined as “a statistical composite of the features found within a category of 

buildings in the stock” IEA_ECBCS, 2004. Stock Aggregation,  Methods for the evaluation the environmental 

performance of building stocks, in Annex 31 - Energy-related environmental impact of buildings, in: IEA-

ECBCS (Ed.). International Initiative for a   Sustainable Built Environment (iiSBE, Ontario, Canada.  
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(i) national default U-values by period of construction
3
 (see Table 4), and  

(ii) the standard national thermal bridging default Y-value of 0.15 W/m
2
K.   

iii) a randomly-selected, north-east/south-west (NE/SW) orientation, 

iv) double-glazed windows with 10% frame area, 

v) 300 litre DHW calorifier with cylinder thermostat, 

vi) no incandescent lightbulbs,  

vii) 21
o
C living room temperature, 

viii) no sides of the dwelling were sheltered.  

 

Fig. 2 Distribution of single-family and apartment buildings in Europe (Economidou 

et al., 2011) 

 

 

                                                 
3
 Categorisations in Table 3 span across traditional periods of construction used by Irelands national calculation 

methodology, DEAP – construction periods with highest frequency of dwellings within a category were selected 

for default comparison (see Table 5) and Section 4.2.4 in [39] for more detail 

Cou

ntry 

Portion of total dwelling stock 

Single-family dwellings Apartments 
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Table 2 Empirical default free characterisation of single (1S) and two-storey (2S) reference dwellings depicting Ireland’s 
predominant housing typology (Ahern and Norton, 2019a) 
 

% (m3) Surf. Area/Vol.

C
at

eg
o

ry

x

Window Floor Roof Wall Wall Roof Floor Window Door

Ground 

floor 

height

First 

floor 

height

Window 

Ratio Volume

Compactness of 

Building 

Envelope Oil

Solid 

Fuel

1 5839 2.06 0.33 0.19 0.28 0.08 10 153 150 149 27 3.74 2.57 N/A 18% 382.93 1.26 3.19 75% 16%

2 26266 2.72 0.40 0.13 0.29 0.09 10 110 134 133 25 3.54 2.53 N/A 23% 336 1.2 3.47 75% 19%

3 10519 2.78 0.4 0.33 0.29 0.09 10 111 135 134 25 3.57 2.53 N/A 23% 340 1.2 3.42 75% 16%

4 10819 2.79 0.41 0.33 0.42 0.09 10 110 135 133 25 3.56 2.53 N/A 23% 338 1.2 3.44 74% 18%

5 33542 2.83 0.55 0.13 0.29 0.09 10 102 126 127 25 3.21 2.52 N/A 25% 320 1.2 3.51 75% 18%

6 335 2.84 0.57 0.13 0.46 0.09 10 102 126 126 24 3.19 2.52 N/A 24% 318 1.2 3.62 68% 27%

7 9730 2.84 0.57 0.35 0.46 0.09 10 102 126 126 24 3.19 2.52 N/A 24% 318 1.2 3.62 68% 27%

8 8566 2.82 0.57 0.2 0.6 0.10 10 102 127 128 26 3.25 2.53 N/A 26% 324 1.19 3.25 69% 26%

9 11264 2.73 0.71 0.13 0.39 0.09 13.07 102 111 111 22 3.2 2.58 N/A 21% 285 1.22 2.72 66% 29%

10 13973 3.13 0.69 0.13 0.4 0.09 12.21 101 119 119 24 3.2 2.54 N/A 24% 302 1.21 2.85 69% 26%

11 10219 3.16 0.71 0.43 0.39 0.09 12.57 101 116 116 23 3.2 2.56 N/A 23% 295 1.22 2.80 68% 27%

12 20164 3.2 0.73 0.45 1.6 0.09 13.03 102 112 111 22 3.2 2.58 N/A 21% 286 1.22 2.73 70% 25%

13 3007 2.86 0.43 0.13 0.3 0.09 14.02 100 95 95 15 3.06 2.59 N/A 15% 246 1.25 2.51 59% 34%

14 2165 2.85 0.76 0.13 0.29 0.09 14.75 100 95 95 15 3.1 2.59 N/A 15% 248 1.25 2.52 58% 34%

15 2947 2.86 0.76 0.13 1.41 0.09 13.79 100 95 95 14 3.03 2.58 N/A 14% 246 1.25 2.51 59% 33%

16 12696 2.87 0.76 0.65 1.4 0.09 12.89 100 94 94 14 2.96 2.58 N/A 14% 244 1.26 2.50 59% 33%

17 9255 3.4 0.76 0.57 1.43 0.09 12 100 96 96 15 3.2 2.6 N/A 15% 250 1.24 2.53 58% 35%

18 2984 2.89 0.53 0.22 0.15 0.09 12 104 95 94 14 2.87 2.6 N/A 13% 244 1.27 2.49 59% 31%

19 6847 2.89 0.8 0.22 0.53 0.09 12 104 95 94 14 2.87 2.6 N/A 13% 244 1.27 2.49 59% 31%

20 2633 2.89 0.8 0.98 0.53 0.09 12 104 95 94 14 2.87 2.6 N/A 13% 244 1.27 2.49 59% 31%

21 5091 4.93 0.8 0.98 0.53 0.09 12 104 95 94 14 2.87 2.6 N/A 13% 244 1.27 2.49 59% 31%

1 8344 2.08 0.34 0.22 0.29 0.08 10.00 173 129 118 34 3.96 2.55 N/A 20% 564 0.81 3.19 75% 16%

2 21596 2.62 0.40 0.25 0.29 0.09 10.00 160 131 115 32 3.85 2.54 2.04 20% 528 0.84 3.34 74% 17%

3 28377 2.81 0.47 0.26 0.45 0.09 10.00 155 131 115 32 3.67 2.53 1.99 21% 520 0.84 3.50 72% 21%

4 1329 2.81 0.47 0.90 0.47 0.09 10.00 157 130 116 33 3.69 2.53 2.02 21% 527 0.83 3.47 72% 21%

5 40353 2.84 0.51 0.25 0.30 0.09 10.00 152 129 115 33 3.56 2.52 1.98 21% 519 0.84 3.53 71% 24%

6 4814 2.83 0.52 0.24 0.71 0.09 10.00 152 126 116 34 3.51 2.51 2.03 22% 527 0.82 3.25 69% 23%

7 26778 2.92 0.71 0.26 0.37 0.09 13.13 154 110 102 29 3.42 2.53 2.16 19% 480 0.84 2.66 64% 30%

8 1770 3.03 0.71 0.89 0.41 0.09 12.00 153 123 116 36 3.39 2.54 2.13 23% 542 0.80 2.88 70% 25%

9 15848 3.17 0.74 0.98 1.56 0.09 14.06 153 111 103 30 3.36 2.55 2.16 19% 486 0.83 2.68 63% 31%

10 23511 2.94 0.72 0.28 1.27 0.08 12.88 168 105 98 24 3.68 2.54 2.31 15% 476 0.84 2.50 65% 29%

11 2728 2.89 0.73 1.18 1.97 0.08 14.00 179 110 103 25 3.82 2.56 2.37 14% 508 0.83 2.49 59% 31%

12 10084 2.88 0.74 1.14 1.42 0.08 14.25 157 96 89 21 3.65 2.46 2.24 14% 418 0.88 2.49 62% 32%

13 5718 2.89 0.73 1.18 1.13 0.08 12.00 179 110 103 25 3.82 2.56 2.37 14% 508 0.83 2.49 59% 31%

14 6807 4.73 0.73 1.18 1.97 0.08 12.00 179 110 103 25 3.82 2.56 2.37 14% 508 0.83 2.49 59% 31%
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Quantity (N)

Thermal transmittance; U-Value 

(W/m2K)

Air permeability 

(m3/(h.m2))

105616

Heating fuel 

sourceArea (m2) Height (m)
Thermal 

bridging; Y-

value 

(W/m2K)

Heat loss through building fabric Geometry

O
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u
p
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Table 3 Summary reference dwelling report complying with EU Commission Delegated 
Regulation 244/2012  
 

  Quantity Description and/or source 

Primary 

energy 

conversion 

factors 

electricity 2.19 (SEAI, 2016b, 2017) 

Carbon 

emission 

factors 

electricity (kgCO2/kWh) 
0.473  

 

(Ahern, 2019; SEAI, 

2016b, 2017) 

Oil (kerosene) 

(kgCO2/kWh) 

0.257  

 

Coal 

(kgCO2/kWh) 

0.341 

 

Climatic 

conditions 

location Mullingar, Ireland 
 

heating degree-days 2,389 

Mullingar Weather Station 

- degree days below 15.5
o
C 

(occupied and unoccupied 

period) (Eireann, 2017) 

weather file IWEC2 file (Ahern, 2019) 

terrain  Rural 
Nearby buildings not 

accounted for. 

Geometry 

length x width x height 

(m
3
) 

Varies 

 

See Table 2 

Related to the 

heated/conditioned air 

volume. 

number of floors 

See Table 2 

S/V (surface-to-volume) 

ratio (m
2
/m

3
) 

ratio of window area over 

total building envelope 

area (%) 

Orientation 
N, S, E, W, NE, NW, SE, 

SW 
(Ahern, 2019) 

Internal 

gains 

use Single-family houses 

According to the building 

categories proposed in 

Annex 1 to Directive 

2010/31/EU  

average thermal gain per 

occupant 

(W/m
2
/occupant) 

93 

 

CIBSE Guide A (CIBSE, 

2006) 

delivered lighting 

energy(kWh/m
2
/yr) 

1,149 

 

EPC database (Ahern, 

2014)   
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Table 3 (cont.) Summary reference dwelling report (cont.) complying with EU 
Commission Delegated Regulation 244/2012 

  Quantity 
Source and/or 

description 

Building 

Elements 

average U-

value 

(W/m
2
K) 

 

wall 

See Table 2 roof 

window 

living area as a % of total 

floor area 

16 

 

EPC database 

(Ahern, 2014)  

thermal 

bridges 

total length 

(m) 

See Table 2 

 
average linear 

thermal 

transmittance 

(W/mK) 

thermal 

mass 

factors 

Utilisation 

(J/m
2
K) 

200 

 See Section 

4.2.3.4 in (Ahern, 

2019) 
Intermittent 

heating 

(J/m
2
K) 

111 

 

type of shading systems Curtains   

average g-value of glazing 0.76 

Wood/PVC 

Double 6mm air-

filled glazing 

average U-value 

3.1 W/m
2
K (Ref: 

Table S9 DEAP 

(SEAI, 2012b)) 

Windows Draught 

Stripped (%) 

94 

 

 

(Ahern, 2014) 

 

infiltration rate [(m
3
/(hm

2
) 

at 50Pa] 

See Table 2 
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Table 4 Default U-values by period of building regulation in Ireland (SEAI, 2017)  

 

 

Applicable Age Band 

Default U-values (W/m
2
K) 

Roof Wall Floor 

Date 

Regulation 

Introduced 

N/A <1978 2.3 2.1 1.2 

1976 (Draft) 1978-1982 0.4 1.1 0.6 

1981 (Draft) 1983-1993 0.4 0.6 0.6 

1991 1994-1999 0.35 0.55 0.45/0.6* 

1997 2000-2004 0.35 0.55 0.45/0.6* 

2002 2005-2006 0.25 0.37 0.37 

* 0.45 = ground floor and 0.6 = exposed/semi-exposed floor 

3.0 Results  

 

For dwellings with a NE/SW orientation primary energy consumption associated with both 

primary and secondary heating systems increased by 31% for post-thermal regulation 

dwellings and 92% for pre-thermal regulation dwellings when default U-values and a 

standardised Y-value is assumed. As shown in Table 6, thermal default use was found to (i) 

increase the total rated primary energy consumption of the dwelling by 22% in post-thermal 

regulation dwellings and 70% in pre-thermal regulation dwellings, and (ii) increase CO2 

emissions by a corresponding 23% in post thermal regulation dwellings and 72% in pre-

thermal regulation dwellings. As illustrated by Fig. 3 and detailed in Table 5, use of thermal 

default U-values and a standardised Y-value will result in a significantly lower-than-merited 

energy rating, particularly for pre-thermal regulation dwellings. 
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Table 5 Summary of DEAP methodology outputs for selected empirical ‘E’ and default ‘D’ reference dwellings  

Main 

water 

htg. 

sys.

Pumps 

& Fans

Energy 

for 

lghtingg

E D E D E/D E/D E/D E D E D E D E D E D

1S,2 26266 2000-2004 16777 22516 3439 4610 5972 541 1708 28436 35347 213.81 265.77 7221 9033 54.29 67.92 C3 D2

1S,5 33542 1983-1993 19951 24263 4086 4966 5845 541 1626 32049 37240 252.35 293.23 8175 9537 64.37 75.09 D1 D2

2S,2 21596 2000-2004 21268 27905 4355 5710 7709 541 3012 36885 44877 160.37 195.12 9325 11420 40.54 49.65 C1 C2

2S,5 40353 1983-1993 22468 30480 4600 6235 7709 541 3007 38325 47971 166.63 208.57 9703 12232 42.19 53.18 C1 C3

1S,10 13973 1967-1977 18584 42324 3807 8652 5671 541 1520 30124 58709 253.14 493.35 7680 15176 64.54 127.53 D1 G

1S,12 20164 1950-1966 27401 40746 5607 8330 5493 541 1420 40461 56530 364.52 509.28 10400 14614 93.69 131.65 E2 G

2S,7 26778 1967-1977 23837 54297 4879 11096 7303 541 2668 39228 75905 192.3 972.08 9968 19585 48.86 96.01 C2 E2

2S,10 23511 Before 1900 32432 53636 6633 10961 7170 541 2600 49375 74907 251.91 382.18 12635 19330 64.46 98.62 D1 F

206183

Primary Energy [kWh/y]

EPC Rating

Main space 

heating 

system

Secondary 

space 

heating 

system Total

Pre 

thermal 

regulation

per m2 of 

floor area

per m2 of 

floor area

CO2 Emissions [kg/y]

Total

Post 

thermal 

regulation

Category 

from 

Table 2

Quanity 

(N)

Period of 

Construction
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 Table 6 Summary of DEAP methodology outputs for selected empirical ‘E’ and default ‘D’ reference dwellings 

 

E D Increase

Average 

Increase 

pre and 

post 

regulation E D Increase

Average 

Increase 

pre and 

post 

regulation E D Increase

Average 

Increase 

pre and 

post 

regulation

1S,2 26266 2000-2004 20216 27126 34% 28436 35347 24% 7221 9033 25%

1S,5 33542 1983-1993 24037 29229 22% 32049 37240 16% 8175 9537 17%

2S,2 21596 2000-2004 25623 33615 31% 36885 44877 22% 9325 11420 22%

2S,5 40353 1983-1993 27068 36715 36% 38325 47971 25% 9703 12232 26%

1S,10 13973 1967-1977 22391 50976 128% 30124 58709 95% 7680 15176 98%

1S,12 20164 1950-1966 33008 49076 49% 40461 56530 40% 10400 14614 41%

2S,7 26778 1967-1977 28716 65393 128% 39228 75905 93% 9968 19585 96%

2S,10 23511 Before 1900 39065 64597 65% 49375 74907 52% 12635 19330 53%

Period of 

Construction

Pre 

thermal 

regulation

Post 

thermal 

regulation

Category 

from 

Table 2

Quanity 

(N)

Primary Energy [kWh/y]

31%

92%

22%

70%

Space Heating System Total

CO2 Emissions [kg/y]

23%

72%

Total
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Fig. 3 Total primary energy consumption and associated energy rating for selected 
empirical and default reference dwellings as calculated by the DEAP methodology 
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4.0 Discussion  

 

EPCs are the most prominent source of information on the energy performance of the EU’s 

building stock (Arcipowska et al., 2014) influencing property renovation and purchasing 

decisions (Charalambides et al., 2019).  Use of thermal default U-values and a standardised Y-

value results in significantly increased rated primary energy consumption and CO2 emissions 

attributable to dwellings compared with energy consumption calculated using empirical EPC 

data (Ahern, 2019).   

 

Pre-thermal regulation as-built default U-values assume no thermal insulation of the dwelling 

envelope (Ahern, 2019). The use of pessimistic thermal defaults combined with the reality of 

significant thermal upgrading of pre-thermal regulation dwellings has led to significantly higher 

rated primary energy consumption (average of 92% when compared to empirical data) associated 

with the space heating system.  This results in a 70% increase in rated primary energy associated 

with the dwelling with a corresponding 72% predicted increase in rated CO2 emissions produced.   

 

Fig. 4 illustrates the energy ratings for EPCs in Ireland.  At the less energy efficient end of the 

scale (D1 to G), the range between ratings is more significant than at the more efficient of the 

scale (A1 to C3).   Referring to Table 5 and Fig. 3, the label attributed to the pre-regulation 

dwellings employing defaults ranges from 3 to 5 ratings lower that if empirical information was 

used. This is particularly remarkable as this phenomenon occurs at the lower end of the rating 

scale (D1 to G) where the range between ratings is at its greatest. 

 

 

 

 

 

 

 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

P a g e  | 21 

21 

 

 

 

Fig. 4 Energy Performance Certification (Building Energy Rating) labels in Ireland 
 

 

 

As default U-values for post-regulation dwellings are calculated assuming thermal insulation to 

be present, the discrepancy in calculated rated primary energy associated with the heating system 

as shown in Table 6, at an average of 31%, while less than that of post-thermal regulation 

dwellings is still significant. This leads to a 22% increase in rated primary energy associated with 

the dwelling with a corresponding 23% predicted increase in rated CO2 emissions. As in the case 

of pre-thermal regulation dwellings there is a corresponding increase in the energy-rating label 

when empirical data is used, ranging from 1 to 2 ratings between the C1 and D2 ratings (see 

Fig.4).  

 

Use of thermal defaults therefore results in a significantly lower than merited energy rating, 

particularly for pre-thermal regulation dwellings. 
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5.0 Stochastically-based EPC payback calculation  

 

Extracted from the Irish national EPC dataset (Ahern, 2014) ,  a typical frequency distribution 

for dwelling wall and roof  U-values by construction period shows the thermal characteristics to 

be bi-modally distributed.   Referring to Fig. 5: 

 ‘Mode 2’ building elements are walls and roofs as constructed with original U-values of 

0.6 to 2.3 W/m
2
K. 

 ‘Mode 1’ dwellings are thermally-upgraded building elements with lower U-values 

ranging between 0.1 to 0.59 W/m
2
K.  

 As more thermal upgrades are completed, more building elements U-values will fall 

within Mode 2 than Mode 1.  

 The standard deviation for Mode 2 is greater than that of Mode 1 demonstrating that 

retrofits harmonise levels of thermal insulation.   

 There are statistically anomalous spikes in the data split-across time-periods in both pre 

and post-regulation dwellings, in the tail of the Mode 2 empirical U-value distribution for 

exposed building elements such as walls and roofs relating to default U-value selection 

(Ahern, 2019; Ahern et al., 2016).  The frequency of selection across construction 

periods, together with default U-value selection being independent to building element 

type, implies that building assessors often select base-default U-values by construction 

period rather than calculating actual elemental U-values.   
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Fig. 5 Illustrative typical frequency distribution of wall and roof U-values (Ahern, 2019)  

 

 

Payback periods, when thermal-defaults are employed are calculated as shown in Fig.6 (a).  

Referring to Fig.6 (a): 

 When carrying out an estimation of the payback realisable through retrofit interventions, 

the desired retrofit U-values to be achieved occurs statistically, around the mean of Mode 

1 dwellings, denoted (Y). The value for (Y) is thus known.   

 Default U-values by period of construction, denoted (X), are employed where the wall U-

value is “unknown”.   

 Shorter than realisable payback periods result from the unrealistic scale of improvement 

from the assumed pessimistic default U-values (X) to the refurbished U-values (Y). 

 

Accordingly, it is recommended that where default U-values have been employed in a payback 

calculation that a more likely, stochastically based payback period, as described in Fig.6 (b) is 

also offered to the homeowner. Referring to Fig.6 (b): 
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 Mean ‘Mode 2’ U-values, denoted (X’), by period of construction can be established by 

using maximum likelihood estimation of the parameters of the distribution (described in 

detail in (Ahern et al., 2016)). 

 It is recommended that these statistically derived (X’) values replace the pessimistic 

default (X) value in the payback calculation to offer a more likely payback period to the 

homeowner. 
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Fig. 6 (a & b) Basis and recommendation for payback period calculation arising from 
thermal refurbishments when base-default U-values are used 
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6.0 Limitations of this study 

 

The EPC database employed (Ahern, 2014)  to characterise the default-free empirical RDs may 

present a favourable characterisation of the dwelling stock as homeowners must obtain an EPC 

to qualify for a state-led grant schemes.  The estimated percentage of state-grant aided thermally 

refurbished dwellings in the database is 24% (Ahern, 2019; Ahern and Norton, 2019a); reduced 

from 50% in 2010 (Badurek et al., 2012).   Where information within the database was found to 

be questionable or unreliable, the composition of the reference dwelling was informed instead 

through other available data and expert enquiries.   Thus the quality of the characterisation relies 

on subjective expert judgment (Heo et al., 2012).  Due to lack of information on the composition 

of dwelling stocks, this has been a common approach (Ahern et al., 2013; Corgnati et al., 2013; 

EU, 2012a; Heo et al., 2012; Loga et al., 2016; Mata et al., 2014).  To facilitate a comparison the 

calculations for theoretical predicted energy consumption are carried out at a singular 

orientation.  It is likely that the values will change at different orientations.  

 

7.0  Recommendations 

 

To enable a more informed retrofitting strategies; reports of the assessor should; 

 highlight how building element U-values were determined,  

 state how accurate they estimate those values to be, and  

 carry-out a sensitivity analysis highlighting the impact their assumptions may have on 

the energy label and/or potential energy savings resulting from thermal upgrades.   

 

Alternatively, homeowners could be offered the more likely, stochastically based, payback 

period for the refurbishment works, described in Section 5. 
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8.0 Conclusions 

 

Using (i) Ireland’s predominant single-family housing typology as a case study dwelling, (ii) a 

transparent generalisable methodology to create a stock model from a large empirical Energy 

Performance Certification (EPC) database, employing default-free reference dwellings (RDs) 

was defined in (Ahern and Norton, 2019a) using a ‘bottom-up’ approach.   Using the RD’s 

created in  (Ahern and Norton, 2019a)  this research quantifies the overestimation of calculated 

rated energy use of dwellings characteristed by thermal default U-values and standardised Y-

values compared with calculated energy use of dwellings characterised by empirical U-values 

and calculated Y-values. 

Use of pessimistic thermal default U-values and standardised Y-values significantly increases 

rated primary energy consumption and CO2 emissions attributable to a dwelling when compared 

with a rating calculated using empirical data.  Use of thermal defaults over estimates the total 

rated primary dwelling energy consumption by 22% in post-thermal regulation dwellings and 

70% in pre-thermal regulation dwellings.  The associated overestimation in rated CO2 emissions 

at 23% in post thermal regulation dwellings and 72% in pre-thermal regulation dwellings, 

mirrors primary rated energy consumption figures.  Use of thermal defaults therefore results in a 

significantly lower-than-merited energy rating, particularly for pre-thermal regulation dwellings. 

 

Where pessimistic default thermal transmittance values are necessarily employed, this work 

recommends a more appropriate method of payback calculation,  use of the method will help 

narrow the energy performance gap by increasing the accuracy and hence credibility of the EPC 

and its associated advisory report so enabling investment in energy efficiency for the residential 

sector. 

 

Acknowledgement: This research was supported by MaREI, the SFI Research Centre for 

Energy, Climate and Marine [Grant No: 12/RC/2303-P2] 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

P a g e  | 28 

28 

 

 

References  

 

Ahern, C., 2014. Ireland's predominant housing typology dataset, DOI: 

http://dx.doi.org/10.17632/8mbtkgmw3n.2#file-db50bf33-891e-4400-b8c7-d7abfd87e8bf 
 
Ahern, C., 2019. Introducing the default effect: reducing the gap between theoretical prediction and 
actual Energy consumed by dwellings through characterising data more representative of national 
dwelling stocks, PhD thesis, https://arrow.dit.ie/engdoc/115/, Building Engineering, Technological 
University Dublin, Ireland. 
 
Ahern, C., Griffiths, P., O'Flaherty, M., 2013. State of the Irish Housing stock - Modelling the heat losses 
of Ireland's existing detached rural housing stock & estimating the benefit of thermal retrofit measures 
on this stock. Energy Policy 55, 139-151. 
 
Ahern, C., Norton, B., 2019a. A generalisable bottom-up methodology for deriving a residential stock 
model from large empirical databases. Energy and Buildings (Under review -  ENB_2019_1545) (2019). 
 
Ahern, C., Norton, B., 2019b. Thermal energy refurbishment status of the Irish housing stock. Energy and 
Buildings 202, 109348. 
 
Ahern, C., Norton, B., Enright, B., 2016. The statistical relevance and effect of assuming pessimistic 
default overall thermal transmittance coefficients on dwelling energy performance quality in Ireland. 
Energy and Buildings 127, 268 - 278. 
 
Amtmann, M., 2010. TABULA - Reference buildings - The Austrian building typology. Austrian Energy 
Agency, Vienna, Austria 
<http://episcope.eu/fileadmin/tabula/public/docs/scientific/AT_TABULA_ScientificReport_AEA.pdf>. 
 
Andrews, M., 2011. Thermal Bridging. Energy Savings Experts <http://www.energy-saving-
experts.com/wp-content/uploads/2011/07/Thermal-Bridging-Part-L1A-landscape-version-.pdf>. 
 
Arcipowska, A., Anagnostopoulos, F., Mariottini, F., Kunkel, S., 2014b. Energy Performance Certificates 
across the EU - A mapping of national approaches. Buildings Performance Institute Europe (BPIE), 
Brussels. 
 
Arkesteijn, K., van Dijk, D., 2010. Energy performance certification for new and existing buildings - 
Differences in approach, the role of choice in CEN standards application, viewed March 2016, 
<http://www.buildup.eu/sites/default/files/content/P156_EN_CENSE_New_and_existing_buildings.pdf>
. 
 
Badurek, M., Hanratty, M., Sheldrick, W., 2012. TABULA Scientific Report, Ireland. Energy Action, Dublin, 
Ireland viewed April 2014, 
<http://episcope.eu/fileadmin/tabula/public/docs/scientific/IE_TABULA_ScientificReport_EnergyAction.
pdf>. 

http://dx.doi.org/10.17632/8mbtkgmw3n.2%23file-db50bf33-891e-4400-b8c7-d7abfd87e8bf
https://arrow.dit.ie/engdoc/115/
http://episcope.eu/fileadmin/tabula/public/docs/scientific/AT_TABULA_ScientificReport_AEA.pdf
http://www.energy-saving-experts.com/wp-content/uploads/2011/07/Thermal-Bridging-Part-L1A-landscape-version-.pdf
http://www.energy-saving-experts.com/wp-content/uploads/2011/07/Thermal-Bridging-Part-L1A-landscape-version-.pdf
http://www.buildup.eu/sites/default/files/content/P156_EN_CENSE_New_and_existing_buildings.pdf
http://episcope.eu/fileadmin/tabula/public/docs/scientific/IE_TABULA_ScientificReport_EnergyAction.pdf
http://episcope.eu/fileadmin/tabula/public/docs/scientific/IE_TABULA_ScientificReport_EnergyAction.pdf


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

P a g e  | 29 

29 

 

 

 
Ballarini, I., Corgnati, S.P., Corrado, V., 2014. Use of reference buildings to assess the energy saving 
potentials of the residential building stock: The experience of TABULA project, Energy Policy 68, 273-
284. 
 
Bell, M., 2004. Energy Efficiency in existing buildings: The role of the building regulations,  Royal Institute 
of Chartered Surveyors - Foundation Construction and Building Research Conference. RICS Foundation, 
Leeds Metropolitan University. 
 
Berkhout, P.H.G., Muskens, J.C., W. Velthuijsen, J., 2000. Defining the rebound effect. Energy Policy 28, 
425-432. 
 
BPIE, 2010. Energy Performance Certificates across Europe - From design to implementation, Brussels, 
Belgium. 

Cash, 1997. Thermal Bridging: An investigation of the heat loss effects of thermal bridges common in 
Irish construction practice, Building Services. Dublin City University, Dubin. 
 
Charalambides, A., Maxoulis, C., Kyriacou, O., Blakeley, E., Soto Francis, L., 2019. The impact of Energy 
Performance Certificates on building deep energy renovation targets. International Journal of 
Sustainable Energy 38, 1-12. 
 
Christensen, T.H., Gram-Hanssen, K., de Best-Waldhober, M., Adjei, A., 2014. Energy retrofits of Danish 
homes: is the Energy Performance Certificate useful? Building Research & Information 42, 489-500. 
 
CIBSE, 2006. CIBSE Guide A; Environmental Design. CIBSE, London. 
 
Clinch, J.P., Healy, J.D., 1999. Alleviating fuel poverty in Ireland, a program for the 21st century. 
International Journal of Housing Science 23, 203-215. 
 
Clinch, J.P., Healy, J.D., 2003. Valuing improvements in comfort from domestic energy-efficiency retrofits 
using a trade-off simulation model. Energy Economics 25, 565-583. 
 
Corgnati, S.P., Fabrizio, E., Filippi, M., Monetti, V., 2013. Reference buildings for cost optimal analysis: 
Method of definition and application. Applied Energy 102, 983-993. 
 
Cozza, S., Chambers, J., Patel, M.K., Measuring the thermal energy performance gap of labelled 
residential buildings in Switzerland, Energy Policy. 
 
CSO, 2006. Census of population. www.cso.ie, Central Statistics Office. 
 
DCLG_UK, 2013. English Housing Survey, in: Government, D.f.C.a.L. (Ed.). Department for Communities 
and Local Government, London, UK <https://www.gov.uk/government/collections/english-housing-
survey>. 
 

file:///G:/My%20Drive/Research/Papers/Quantifying%20the%20default%20effect/www.cso.ie
https://www.gov.uk/government/collections/english-housing-survey
https://www.gov.uk/government/collections/english-housing-survey


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

P a g e  | 30 

30 

 

 

Druckman, A., Chitnis, M., Sorrell, S., Jackson, T., 2011. Missing carbon reductions? Exploring rebound 
and backfire effects in UK households. Energy Policy 39, 3572-3581. 
 
Economidou, M., Atanasiu, B., Despret, C., Maio, J., Nolte, I., Rapf, O., 2011. Europe’s buildings under 
the microscope - A country-by-country review of the energy performance of buildings. Buildings 
Performance Institute Europe (BPIE), Brussels, Belgium, viewed Feb. 2015,  
<http://www.institutebe.com/InstituteBE/media/Library/Resources/Existing%20Building%20Retrofits/E
uropes-Buildings-Under-the-Microscope-BPIE.pdf>. 
 
EU, 2002a. Accompanying document to the proposal for a recast of the energy performance of buildings 
directive (2002/91/EC) summary of the impact assessment in: Commission, E. (Ed.), COM (2008) 780 
final, SEC (2008) 2864. European Commission, Brussels, Belgium. 
 
EU, 2002b. Energy performance of buildings, P5_TA (2002) 0459. The European Parliament, Brussels. 
 
EU, 2012a. Commission Delegated Regulation (EU) No. 244/2012 of 16 January 2012 supplementing 
Directive 2010/31/EU of the European Parliment and of the council on the energy perofrmance of 
buildings by establishing a compartive methodology framework for calculating cost-optimal levels of 
minimum energy performance requirement for buildings and building elements. Official Journal of the 
European Union 244/2012. 
 
EU, 2012b. Guidelines accompanying Commission Delegated Regulation (EU) No. 244/2012 of 16 
January 2012 supplementing Directive 2010/31/EU of the European Parliament and of the council on the 
energy performance of buildings by establishing a comparative methodology framework for calculating 
cost-optimal levels of minimum energy performance requirements for buildings and building elements. . 
Official Journal of the European Union. 
 
EuroACE, 2013. Factsheet on Cost-Optimality. The European Alliance of Companies for Energy Efficiency 
in Buildings, Brussels, Belgium, viewed April 2016,  
<http://www.euroace.org/LinkClick.aspx?fileticket=mB-AuwiKfcQ%3D&tabid=155>. 
 
Eurostat, 2015. Housing Statistics, viewed Nov 2015, <http://ec.europa.eu/eurostat/statistics-
explained/index.php/Housing_statistics#Type_of_dwelling>. 
 
Eurostat, 2016. Consumption of Energy. Directorate-General of the European Commission, Luxembourg, 
viewed April 2016, <http://ec.europa.eu/eurostat/statistics-
explained/index.php/Consumption_of_energy#End-users>. 
 
Ferrari, S., Zagarella, F., Caputo, P., D'Amico, A., 2019. Results of a literature review on methods for 
estimating buildings energy demand at district level. Energy 175, 1130-1137. 
 
Galvin, R., Sunikka-Blank, M., 2016. Quantification of (p)rebound effects in retrofit policies – Why does it 
matter? Energy 95, 415-424. 
 
Gram-Hanssen, K., 2014. Retrofitting owner-occupied housing: remember the people. Building Research 
& Information 42, 393-397. 

http://www.institutebe.com/InstituteBE/media/Library/Resources/Existing%20Building%20Retrofits/Europes-Buildings-Under-the-Microscope-BPIE.pdf
http://www.institutebe.com/InstituteBE/media/Library/Resources/Existing%20Building%20Retrofits/Europes-Buildings-Under-the-Microscope-BPIE.pdf
http://www.euroace.org/LinkClick.aspx?fileticket=mB-AuwiKfcQ%3D&tabid=155
http://ec.europa.eu/eurostat/statistics-explained/index.php/Housing_statistics#Type_of_dwelling
http://ec.europa.eu/eurostat/statistics-explained/index.php/Housing_statistics#Type_of_dwelling
http://ec.europa.eu/eurostat/statistics-explained/index.php/Consumption_of_energy#End-users
http://ec.europa.eu/eurostat/statistics-explained/index.php/Consumption_of_energy#End-users


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

P a g e  | 31 

31 

 

 

 
Gram-Hanssen, K., Bartiaux, F., Michael Jensen, O., Cantaert, M., 2007. Do homeowners use energy 
labels? A comparison between Denmark and Belgium. Energy Policy 35, 2879-2888. 
 
Heo, Y., Choudhary, R., Augenbroe, G.A., 2012. Calibration of building energy models for retrofit analysis 
under uncertainty. Energy and Buildings 47, 550-560. 
 
Herring, H., 2006. Energy efficiency—a critical view. Energy 31, 10-20. 
 
Hull, D., Ó Gallachóir, B.P., Walker, N., 2009. Development of a modelling framework in response to new 
European energy-efficiency regulatory obligations: The Irish experience. Energy Policy 37, 5363-5375. 
 
IEA_ECBCS, 2004. Stock Aggregation,  Methods for the evaluation the environmental performance of 
building stocks, in Annex 31 - Energy-related environmental impact of buildings, in: IEA-ECBCS (Ed.). 
International Initiative for a  Sustainable Built Environment, Ontario, Canada. 
 
Iortega, 2011. Use of Building Typologies for Energy Performance Assessment of National Building Stock 
- Existent experiences in Spain. Valencian Institute of Building, Valencia, Spain. 
Kohler, N., Hassler, U., 2002. The building stock as a research object. Building Research & Information 
30, 226-236. 
 
Lapillonne, B., Sebi, C., Pollier, K., 2012a. Energy Efficiency trends for households in the EU. Enerdata - 
An analysis based on the ODYSSEE Database. 
 
Lapillonne, B., Sebi, C., Pollier, K., Mairet, N., 2012b. Energy Efficiency Trends in Buildings in the EU - 
Lessons from the ODYSSEE/MURE projects, in: ADEME (Ed.), ODYSSEE-MURE Project, France. 
 
Little, J., Arregi, B., 2011. Thermal Bridging - Understanding its critical role in energy efficiency. Building 
Life Consultancy 
<http://www.josephlittlearchitects.com/sites/josephlittlearchitects.com/files/jla_publications_thermal_
bridging.pdf>. 
 
Loga, T., Diefenbach, N., Balaras, C., Sijanec Zavrl, M., Corrado, V., Corgnati, S., Despretz, H., Roarty, C., 
Hanratty, M., Sheldrick , B., Cyx, W., Popiolek, M., Kwiatkowski, J., GroB, M., Spitxbart, C., Georgiev, Z., 
Iakimova, S., Vimmer, T., Wittchen, K., Kragh, J., 2010. Use of Building Typologies for Energy 
Performance Assessment of National Building Stocks. Existent Experiences in European Countries a 
Common Approach - First TABULA Synthesis Report. Institute Wohnen and Umwelt, Darmstadt, 
Germany <http://www.building-typology.eu/downloads/public/docs/report/TABULA_SR1.pdf>. 
 
Loga, T., Stein, B., Diefenbach, N., 2016. TABULA building typologies in 20 European countries—Making 
energy-related features of residential building stocks comparable. Energy and Buildings 132, 4-12. 
Lomas, K.J., 2010. Carbon reduction in existing buildings:a trandisciplimary approach. Building Research 
and Information 38, 1-11 . 
 
Lowe, R., 2007. Addressing the challenges of climate change for the built environment. Building 
Research & Information 35, 343-350. 

http://www.josephlittlearchitects.com/sites/josephlittlearchitects.com/files/jla_publications_thermal_bridging.pdf
http://www.josephlittlearchitects.com/sites/josephlittlearchitects.com/files/jla_publications_thermal_bridging.pdf
http://www.building-typology.eu/downloads/public/docs/report/TABULA_SR1.pdf


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

P a g e  | 32 

32 

 

 

 
Majcen, D., Itard, L., Visscher, H., 2013a. Actual and theoretical gas consumption in Dutch dwellings: 
What causes the differences? Energy Policy 61, 460-471. 
 
Majcen, D., Itard, L.C.M., Visscher, H., 2013b. Theoretical vs. actual energy consumption of labelled 
dwellings in the Netherlands: Discrepancies and policy implications. Energy Policy 54, 125-136. 
 
Mata, É., Sasic Kalagasidis, A., Johnsson, F., 2014. Building-stock aggregation through archetype 
buildings: France, Germany, Spain and the UK. Building and Environment 81, 270-282. 
 
Met Eireann, 2017. Monthy Data. Met Eireann, Dublin, Ireland, viewed 17th Jan. 2017, 
<http://www.myendnoteweb.com/EndNoteWeb.html?func=new&> 
 
Míguez, J.L., Porteiro, J., López-González, L.M., Vicuña, J.E., Murillo, S., Morán, J.C., Granada, E., 2006. 
Review of the energy rating of dwellings in the European Union as a mechanism for sustainable energy. 
Renewable and Sustainable Energy Reviews 10, 24-45. 
 
Norris, M., Shiels, P., 2004. Regular National Report on Housing Developments in European Countries 
Synthesis Report in: Department of the Environment, H.a.L.G.I. (Ed.). www.housingunit.ie, Dublin, 
Ireland. 
 
Pittam, J., O’Sullivan, P.D., 2017. Improved prediction of deep retrofit strategies for low income housing 
in Ireland using a more accurate thermal bridging heat loss coefficient. Energy and Buildings 155, 364-
377. 
 
Pérez-Lombard, L., Ortiz, J., González, R., Maestre, I.R., 2009. A review of benchmarking, rating and 
labelling concepts within the framework of building energy certification schemes. Energy and Buildings 
41, 272-278. 
 
Pérez-Lombard, L., Ortiz, J., Pout, C., 2008. A review on buildings energy consumption information. 
Energy and Buildings 40, 394-398. 
 
Rasooli, A., Itard, L., Ferreira, C.I., 2016. A response factor-based method for the rapid in-situ 
determination of wall’s thermal resistance in existing buildings. Energy and Buildings 119, 51-61. 
Ravetz, J., 2008. State of the stock—What do we know about existing buildings and their future 
prospects? Energy Policy 36, 4462-4470. 
 
Roberts, S., 2008. Altering existing buildings in the UK. Energy Policy 36, 4482-4486. 
Sandberg, N.H., Sartori, I., Heidrich, O., Dawson, R., Dascalaki, E., Dimitriou, S., Vimm-r, T., Filippidou, F., 
Stegnar, G., Šijanec Zavrl, M., Brattebø, H., 2016. Dynamic building stock modelling: Application to 11 
European countries to support the energy efficiency and retrofit ambitions of the EU. Energy and 
Buildings 132, 26-38. 
 
SAP, 2012. The (UK) Government Standard Assessment Procedure for Energy rating of Dwellings, in: 
Chance, E.C. (Ed.), Watford, UK. 
 

http://www.myendnoteweb.com/EndNoteWeb.html?func=new&
file:///G:/My%20Drive/Research/Papers/Quantifying%20the%20default%20effect/www.housingunit.ie


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

P a g e  | 33 

33 

 

 

Schaefer, C., Weber, C., Voss-Uhlenbrock, H., Schuler, A., Oosterhuis, F., Nieuwlaar, E., Angioletti, R., 
Kjellsson, E., Leth-Peterson, S., Togeby, M., Munksgaard, J., 2000. Effective Policy Instruments for Energy 
Efficiency in Residential Space Heating - an International Empirical Analysis (EPISODE), JOULE III, 
Contract JOS3-CT97-0014, viewed Oct 2012, <http://elib.uni-
stuttgart.de/opus/volltexte/2000/726/pdf/IER_FB_71_Episode.pdf>. 
 
SEAI, 2012a. DEAP Thermal Bridging Factor Application, Dublin, Ireland 
<http://www.seai.ie/your_building/ber/ber_faq/faq_deap/building_elements/thermal_bridging_applica
tion_instructions.pdf>. 
 
SEAI, 2012b. Dwelling Energy Assessment Procedure (DEAP), Irish official method for calculating and 
rating the energy performance of dwellings, Version 3.2.1. SEAI, Dublin, Ireland. 
 
SEAI, 2013. Introduction to DEAP for professionals. SEAI, Dublin, Ireland, viewed Apr. 15, 
<http://www.seai.ie/Your_Building/BER/BER_Assessors/Technical/DEAP/Introduction_to_DEAP_for_Pro
fessionals.pdf>. 
 
SEAI, 2014. National BER Research Tool viewed August 2014, 
<https://ndber.seai.ie/BERResearchTool/Register/Register.aspx>.. 
 
SEAI, 2016a. DEAP Software download. SEAI, March 2016, 
<http://www.seai.ie/your_building/epbd/deap/download/>. 
 
SEAI, 2016b. Derivation of Primary Energy and CO2 Factors for Electricity in DEAP, viewed Dec 16, 
<http://www.seai.ie/Your_Building/BER/BER_FAQ/FAQ_DEAP/DEAP-Elec-Factors-2016.pdf>. 
 
SEAI, 2017. What are the carbon emission factors used? 
 
Simpson, S., Banfill, P., Haines, V., Mallaband, B., Mitchell, V., 2016. Energy-led domestic retrofit: impact 
of the intervention sequence. Building Research & Information 44, 97-115. 
 
Skea, J., 2012. Research and evidence needs for decarbonisation in the built environment: a UK case 
study.  40, 432-445. 
 
Sousa, G., Jones, B.M., Mirzaei, P.A., Robinson, D., 2017. A review and critique of UK housing stock 
energy models, modelling approaches and data sources. Energy and Buildings 151, 66-80. 
Stein, J.R., Meier, A., 2000. Accuracy of home energy rating systems. Energy 25, 339-354. 
 
Sunikka-Blank, M., Galvin, R., 2012. Introducing the prebound effect: the gap between performance and 
actual energy consumption. Building Research & Information 40, 260-273. 
 
Tuominen, P., Klobut, K., 2009. Deliverable 3.1 Country Specifc Factors - Report of Findings in WP3, 
IDEAL - EPBD. VTT Technical research Centre of Finland, Finland, viewed Mar. 15, 
<https://www.bre.co.uk/filelibrary/pdf/projects/country_specific_factors.pdf>. 
 

http://elib.uni-stuttgart.de/opus/volltexte/2000/726/pdf/IER_FB_71_Episode.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2000/726/pdf/IER_FB_71_Episode.pdf
http://www.seai.ie/your_building/ber/ber_faq/faq_deap/building_elements/thermal_bridging_application_instructions.pdf
http://www.seai.ie/your_building/ber/ber_faq/faq_deap/building_elements/thermal_bridging_application_instructions.pdf
http://www.seai.ie/Your_Building/BER/BER_Assessors/Technical/DEAP/Introduction_to_DEAP_for_Professionals.pdf
http://www.seai.ie/Your_Building/BER/BER_Assessors/Technical/DEAP/Introduction_to_DEAP_for_Professionals.pdf
https://ndber.seai.ie/BERResearchTool/Register/Register.aspx
http://www.seai.ie/your_building/epbd/deap/download/
http://www.seai.ie/Your_Building/BER/BER_FAQ/FAQ_DEAP/DEAP-Elec-Factors-2016.pdf
https://www.bre.co.uk/filelibrary/pdf/projects/country_specific_factors.pdf


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

P a g e  | 34 

34 

 

 

van den Brom, P., Meijer, A., Visscher, H., 2017. Performance gaps in energy consumption: household 
groups and building characteristics. Building Research & Information, 1-17. 
 
Visscher, H., Sartori, I., Dascalaki, E., 2016. Towards an energy efficient European housing stock: 
Monitoring, mapping and modelling retrofitting processes. Energy and Buildings 132, 1-3. 
 
Weiss, J., Dunkelberg, E., Vogelpohl, T., 2012. Improving policy instruments to better tap into 
homeowner refurbishment potential: Lessons learned from a case study in Germany. Energy Policy 44, 
406-415. 
 
Xtratherm, 2014. Thermal Bridging & Y-Value Calculator. 

Yohanis, Y.G., Mondol, J.D., Wright, A., Norton, B., 2008. Real-life energy use in the UK: How occupancy 
and dwelling characteristics affect domestic electricity use. Energy and Buildings 40, 1053-1059. 

 



Declaration of interests 
 
√  The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
 

√ The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests:  
 

 

 

 
 

C.Ahern and B.Norton 

*Declaration of Interest Statement


	Energy Performance Certification: Misassessment Due to Assuming Default Heat Losses
	Recommended Citation

	tmp.1576075715.pdf.QWWUK

