
2

3 CHAPTER 3 RF TECHNICAL REVIEW27

3.1 Channel Capacity ..29

3.2 Modulation Techniques ...32

3.3 Link Budget Analysis ..40

3.4 RF Security ..46

3.5 Chapter Summary ..47

4 CHAPTER 4 SYSTEM TESTBED DESIGN49

4.1 Hardware ..49

4.2 Firmware Development Environment ...55

4.3 Software ...58

4.4 Chapter Summary ..60

5 CHAPTER 5 SYSTEM IMPLEMENTATION62

5.1 WLAN implementation ..63

5.2 Image Transmission ..78

5.3 Image compression ..86

5.4 Chapter Summary .. 103

6 CHAPTER 6 DISCUSSION AND CONCLUSIONS .. 105

6.1 Conclusion ... 107

6.2 Future work .. 107

References .. 110

Appendix .. 117

11

networks is the restricted amount of data transmission allowed and the fair

access policy which is enforced. This has the net effect of further limiting the

amount and frequency of data transmissions. Other such public networks

include SigFox® which severely limit the amount and frequency of data

transmission for each end device, and this has been eliminated for

consideration for this use case.

1.1 Problem Definition

This research addressed the problem associated with transmission of large

amounts of data (image) over RF networks designed for low-data volume

transmission. Image transmission over resource-constrained RF systems

present unique challenges in terms of available bandwidth, regulatory

constraints, and available power supply. LPWAN operating in the ISM radio

frequency bands impose further difficulties regarding channel availability and

usage and can be regarded as hostile environments for ensuring reliability of

transmission and guaranteed quality of service (QoS). These systems operate

in ‘Lossy’ environments and some loss of data is expected , further

complicating the reliable reception of large amounts of data such as image

transmission. Battery powered devices used in typical IoT systems operate on

resource constrained hardware and typically transmit low data volumes

periodically in quantities of no more than 250 bytes per transmission. A black

and white image of standard size (QVGA) will contain 76800 bytes of

information and transmission of this large amount of data will be impacted

by power availability and hence battery lifetime. A variable means to

19

end device (UE) is connected to a central gateway which generally has some

form of internet connectivity e.g., Wi-Fi, Lte, Ethernet. Long range is

achieved because of the claimed 157dB Link-Budget availability and a

payload size of 255 Octets. The physical parameters satisfy some of the

requirements for this use case.

2.3 ESP-NOW

Espressif Systems is a public multinational, fabless semiconductor company

established in 2008 focused on developing cutting-edge Wi-Fi and Bluetooth,

low-power artificial intelligence internet of things (AIoT) solutions. The

ESP32 Series SoCs includes a 32-bit MCU and 2.4GHz Wi-Fi and

Bluetooth/Bluetooth LE communications capability with a sleep current of

less than 5µA, making it suitable for battery -powered applications [10]. ESP-

NOW is a communications protocol developed by Espressif based on IEEE

802.11-2012 standard action vendor frame for information technology [11].

This enables multiple devices to communicate with one another without using

Wi-Fi in the 2.4Ghz ISM band. An initial pairing of devices is needed prior

to communication, after which secure, and peer-to-peer communication can

continue without handshaking. This allows fast transfer of data at a rate of 1-

2Mbps for up to 20 devices un-encrypted or 10 devices encrypted per network

[12]. A payload of 250 bytes can be carried using direct sequence spread

spectrum (DSSS) and uses baseband modulation of differential binary phase

shift keying (DBPSK) and differential quadrature shift keying (DQPSK) to

provide the 1Mbps and 2Mbps data rates respectively [13]. During the hand-

shaking mode of system initialisation, if the long-range mode (LR) is enabled

on Tx. and Rx. a bit rate of 125kbps is negotiated if 802.11B mode fails. Each

24

433MHz is 10% (360 sec) as shown in Table 3. C.Pham [16] has tabulated the

TOA for various BW and spreading factors (SF); for payload size of 255

bytes, it ranges from 0.1009 to 9.15 seconds. For a raw uncompressed image

size of 160x120 pixels (ROI for this use case), it takes (19200/255) *0.6333

= 47.68 sec using LoRa mode 7. Compressing the data image improves on this

figure and hence battery life of the end device. In this instance, a compression

scheme tolerant to packet loss is used based on [17] which improves on the

energy consumption involved in popular algorithms such as JPEG, JPEG2000

or SPHIT. It operates on 8x8 pixel blocks using an optimised block

interleaving method, and the image matrix must have the same number of

rows and columns. The image is transmitted in blocks of 250 bytes which

allows for out-of-sequence reconstruction and is tolerant of packet loss. The

computational energy cost is well documented in [17] for this JPEG-like lossy

compression scheme. For this use case, with respect to Table 2 we can satisfy

requirements 1 – 5.

Leila Makkaoui et al. [17] propose a fast zonal discrete cosine transform

(DCT) based image compression algorithm allowing for t rade-off between

energy consumption and image fidelity. Using the DCT energy compaction

property allows the elimination of high frequency coefficients, hence

reducing the number of DCT coefficients to be computed and thus improving

energy consumption. Results were simulated based on a MSP430 16-bit

microcontroller and an 802.15-compliant CC24020 radio transceiver. Their

proposed compression scheme claims improvement of 14% and 18% of energy

consumption compared to classical JPEG compression in the transmiss ion of

25

an 128x128 pixels image. For this use case, with respect to Table 2, we can

satisfy requirements 1-5.

Mookeun Ji (et al.) [18] proposed a scheme which breaks an image into small

grid patches and only transmits the area of the image which has been deemed

to have changed. Suitable for slowly changing scenes such as crop

monitoring, an initial full image is sent as reference , and afterwards, only

grid patches which have changed are sent. Each 160x160 pixel image is

divided into 256 grid patches, each grid consisting of 100 bytes. Transmission

of a formatted packet containing x2 patches , plus overhead, is 203 bytes in

size. Transmission of the initial reference image took 127.5 seconds which

appears to exceed ETSI regulations regarding duty-cycle time limitations. The

end-device hardware used could not regarded as a low-power device i.e.

Raspberry Pi 3 Model B + Arduino Uno + LoRa transceiver. Whilst showing

promise for bandwidth-limited RF systems, the use case application is

restrictive. For this use case, with respect to Table 2, we can satisfy

requirements 1,2,3,4,7.

Rafeeq AL-HASHEMI et al. [19] proposes a semi-lossless image compression

technique using run-length-encoding (RLE). A raw (uncompressed) image of

arbitrary size is obtained, and colours are mapped to a vector of values 0 –

255, where each vector element represents a pixel value. The higher frequency

values, represented by the lower 4-bits of each decimal value, is discarded

and replaced by a value between 0-15. The lower nibble (4-bits) is replaced

with a value which indicates the consecutive number of similar colours (upper

nibble) after which run-length-encoding is performed on the image vector.

The new byte now represents the pixel colour and frequency of occurrence.

28

For this use case, of particular interest are the allowed transmit power levels

and duty-cycle restrictions in Table 3.

Table 3: Regulatory Restrictions

Frequency Band

MHz

Maximum Permitted

Radiated Power /

Field Strength

Mitigation

Requirements

433.05 – 434.79 10 mW ERP Duty cycle: ≤ 10%

868.0 – 868.6 25 mW ERP Duty cycle: ≤ 1%, or

LBT + AFA

2400 – 2483.5 25 mW EIRP None

A duty-cycle restriction of 1% means a maximum on-air time of 36 Seconds

in one hour. Depending on the amount of data to transmit , this will influence

the frequency of transmission allowed for each end -device and base-station if

used as a transmitter. Duty-cycle restrictions can be ignored if other

mechanisms are implemented (within certain frequency bands) to mitigate the

overuse of channel resources, such as listen-before-talk (LBT) and adaptive-

frequency-agility (AFA).

• LBT – Before a device transmits it senses a channel to determine if

there is activity by measuring the received signal strength (RSSI) for

at least 5 msec, if the RSSI is below a set threshold the device can

transmit on that channel, if not then a delay of at least 5 m sec is

implemented and the process is repeated. After a device has transmitted

it will not transmit again on the same channel until an off time of 100

msec. has been observed. A further restriction of 100 seconds of

transmission within one hour also applies on a spectrum of 200 kHz

50

A star type network was eventually chosen for the same reasons, with the

ability to tailor the modulation type to achieve the use case requirements as

shown in Figure 7.

Figure 7: Network Topologies

The topography of the system is shown in Error! Reference source not f

ound..

The microcontroller platform selected (ESP32 DevKit_V4) by Espressif™

systems satisfied the testbed requirements for the end-node device and

gateway device listed in Table 7.

End Devices

(Server)

Gateway(CLIENT)

TCP/IP
Web

LoRa

D7A

ESPNOW

Figure 8:System Topography

51

Table 7: Hardware Requirements

Connectivity UART SPI 802.11 Bluetooth D I/O A I/O

ESP32 Devkit ✓ ✓ ✓ ✓ ✓ ✓

This configuration of the end-node device and gateway shown below in Figure

9 allowed connection of a LoRa® transceiver via a serial peripheral interface

(SPI) and a camera, via a universal asynchronous receiver transmitter

(UART). This arrangement allowed selection of the preferred modulation

type. The camera selected for this configuration was uCam-II (hardware

rev.1.0) by 4D Systems which allowed serial connectivity and access to raw

image data if required. The LoRa® transceiver used is an RFM95 module by

Adafruit Industries connected via SPI.

Figure 9:End Device (Server)

uCAM-II

52

The end-device (Client) configuration in Figure 9 allowed selection of the

modulation scheme (FSK, CSS,802.11) for various use cases. The Gateway

configuration is shown here in Figure 10. Connectivity is achieved via USB

from the development PC.

Figure 10:Gateway Hardware (Client)

 The hardware chosen for development of the image compression scheme

differed slightly because of an issue with unreliable communication

synchronisation action on the uCam-II which caused unnecessary

development delays [37]. This issue appears to have been addressed in later

hardware revisions of the camera. The chosen version of the test bed platform

used a different ESP32 platform for end-devices and 802.11(ESP NOW)

53

modulation scheme is chosen for algorithm development purposes. The

testbed setup for the development work is shown in Figure 11.

The micro-controller module chosen for the end-device (Server) is a variant

of the ESP32 as shown in Figure 12.

Figure 12:ESPCAM

End Device (Server) Gateway (Client)

Figure 11:Test Bed Hardware

54

This device has an OV2640 camera connection port included in a very small

form factor.

The Camera type included with this module has a resolution of UXGA, SVGA

and below, and supports JPEG compression and RAW data modes. A version

of this camera is available as an SPI connected module allowing flexibility in

design for use with different microcontrollers [38].

The Firmware and Software for this project was developed on a desktop PC

running Linux operating system (Ubuntu 18.04.5 LTS). The ESP32 DevKit

devices used for the gateway were connected to the development PC via USB

cable. To allow programming of the end-devices (ESP-32 CAM), a FTDI

device was connected, and a temporary link was placed between pin 10 and

ground for programming. To allow monitoring and debugging of the device,

this link was then removed for normal operation. The FTDI is a high-speed

serial communications device which bridged connectivity between TTL serial

transmissions and USB signals. Because the ESP32 DevKit has on-board USB

connectivity this device was not needed.

SDR (Software Defined Radio)

To enable verification of RF Transmission below 1GHz, a SDR was used to

visualise communications between end-devices and the gateway. The device

used was a NooElec NESDR Mini connected via USB as shown in Figure 13.

This is a modified DVB-T USB dongle tuned for SDR usage within a range

of 25MHz – 1750MHz. The visualisation software used was SDR# (SDR

sharp) running on Windows 10, which allowed a FFT and waterfall display.

Installation instructions can be found here [39].

55

Figure 13:SDR

4.2 Firmware Development Environment

The chosen programming language to develop the necessary firmware was

C++. This was selected because it allows direct access and control of each

micro-controller subcomponent. Direct control of timing elements within the

development of any RF system is necessary to ensure reliability and

repeatability of any developed protocol . A mature eco-system exists for the

development of code for micro-controllers using C++ which facilitated

tweaking of compilation parameters and enabling an efficient code footprint

to be developed. The Integrated development environment (IDE) chosen for

this project was PlatformIO. This permitted cross-platform development of

code using Microsoft Visual Studio Code. Full debugging was enabled with

single-stepping and multiple breakpoints setting. Using an external high

speed serial device, connected to the micro-controller under development

allowed for full hardware and software debugging. Such a device is the

FT2232H Mini Module available from ftdi Ltd. To integrate this device into

PlatformIO, and to get it to communicate correctly proved difficult. Details

of the final connectivity and setup was recorded.

56

FTDI

A drawback of using a high-speed serial device for debugging is the additional

I/O pins required on the device under test (DUT) for connectivity. These

connection pins might be required for other device connectivity such as a

camera, so limited device debugging might only be achievable. Nevertheless,

this is a superb low-cost solution allowing most of the functionality of a full

device emulator. The debugger protocol is built on an industry standard called

JTAG and the Mini Module is supported by OpenOCD [40]. This enables

PlatformIO to communicate with it via a downloadable software driver. Initial

debugging of this system was achieved using such a device and was connected

as shown in Figure 14.

Figure 14:FTDI Connection

57

A full table of connections is found in Table 8

Table 8: FTDI to ESP32 Connection

FT2232H FT2232H ESP32 DevKit JTAG name FT2232H pin

CN2-7 GPIO 13 TCK AD0

CN2-10 GPIO 12 TDI AD1

CN2-9 GPIO15 TDO AD2

CN2-12 GPIO 14 TMS AD3

CN2-1 CN2-11

CN2-3 CN3-12

CN3-1 CN3-3

The ESP32 and the FTDI were connected to the development PC via USB

where dual terminals were opened for debugging and monitoring of the

application under development.

JTAG Driver:

To communicate with the FTDI, some software configuration was necessary

when using Windows. However, all FTDI devices are supported in Ubuntu as

standard. When using Windows, it was necessary to download a virtual COM

port driver (VCP) [41] which caused the USB device to appear as an

additional COM port. It was also necessary to install a USB driver

configuration tool such as ‘Zadig’ [42]. There were also some configuration

settings necessary in PlatformIO project configuration file (platformio.ini).

To use this FTDI required setting the debug tool = minimodule [43]. This

configuration permitted the setting of two hardware breakpoints and multiple

software breakpoints.

58

4.3 Software

The software element of this research consists of the development of several

Java based programs designed to run on a PC under a Linux environment.

These set of programs enabled the remote connectivity of the gateway to be

established using web. Sockets. The protocol used could be either TCP/IP or

UDP on port 3000. Java was chosen because of its ubiquity and ease of

implementation within the Processing [44] programming environment. This

environment allowed easy development of visually orientated applications

and was thus suited to this application . The monitoring of 802.11 traffic was

achieved using WIRESHARK [45] which is a network protocol analyser . A

typical packet capture is shown in Figure 15.

Figure 15:Wireshark packet capture

The final test bed layout is shown in Figure 16.

59

Figure 16:TEST BED Layout

En
d

-D
e

vi
ce

 (
Se

rv
e

r)

W
iF

i

W
iF

i

Es
p

n
o

w
 (

8
0

2
.1

1
)

U
b

u
n

tu

P
la

tf
o

rm
IO

P
ro

ce
ss

in
g

W
in

d
o

w
s

1
0

W

ir
es

h
ar

k
SD

R

SD
R

G
at

e
w

ay
 (

C
lie

n
t)

TE
ST

 B
ED

60

4.4 Chapter Summary

This chapter described in detail the testbed designed to enable end-to-end

testing and evaluation of both RF networks and the image compression

algorithms developed in this research. It included a discussion of three key

components: hardware, integrated development environment and the

software.

The chosen hardware was selected specifically because of the compact

integration of the necessary interfaces required. The hardware

(ESP32/ESP32-CAM) consisted of an integrated camera, Wi-Fi, BLE and

extensive I/O. The processor was a dual core, 32bit device running FreeRTOS

and at low cost. These microcontroller devices were developed by Espressif™

and are the only devices capable of running ESP-NOW protocol. Although

not the most low-power device available, it was selected because of the

availability of on-board resources. This allowed development of suitable

algorithms, and the assessment of resources needed for a basic system design.

The integrated development environment (IDE) selected was suitable for both

Windows and Linux operating systems and used Visual Studio for code

development in C++. This environment allowed software development within

the Arduino framework and was in keeping with a desire to maintain

simplicity and reduce complexity, to enable cross development for lower

power devices such as 8-bit AVR microcontrollers. To ‘visualise’ RF

transmissions in the sub-GHz frequency bands when using LoRa or DASH7,

a software defined radio (SDR) was used with AirSpy software running on a

Linux (UBUNTU) machine. For real -time testing and register watching /

breakpoint setting, a highspeed UART device was connected to the DUT

61

(Device under test) via a JTAG interface. Driver software is freely available

for these devices and integrates with the PlatformIO IDE. Whilst RF networks

are difficult to debug in real -time, the combination of an SDR and Hardware

debugger allow most issues to be detected and resolved. Several testbed

iterations were developed, and the final version is shown in Figure 16. Packet

capture over the air for ESP-NOW was achieved using a freely available

packet analysis software ‘Wireshark’ in association with a Wi-Fi adapter

which is capable of being set to promiscuous mode.

62

5 CHAPTER 5 SYSTEM IMPLEMENTATION

This chapter describes the implementation of a low-power WLAN suitable for

use with a developed image compression algorithm. The chosen RF topology

was a star type network based on an ESP32 type microcontroller platform

which is widely available. The chosen platform allowed the development of

a compression technique suitable for use on a range of micro-controller

platforms. This facilitated easy embedding of the algorithm within an existing

program because of the minimal computational cost and memory

requirements. The test bed used includes the use of ESPCAM (ESP32

Derivative) for the end-device and was chosen for its integrated camera and

WiFi transceiver which required minimum system wiring. The gateway

configuration chosen used two ESP32 DevKits (ESP32 Derivative) but could

be replaced by any capable system which satisfied the requirements, such as

a Raspberry Pi (RPi). I used two ESP32s because it allowed a single use

testbed environment for both the end-device and gateway development

without changing IDE. The selected modulation scheme was DSSS

(ESPNOW) using the embedded WiFi capabilities of the chosen platform.

ESPNOW has been previously described in section 2.3, this section describes

the IDE configuration and firmware development of a working solution for

both the RF network and the image compression algorithm.

63

5.1 WLAN implementation

This research explored various topographical type RF network structures. To

arrive at a suitable network configuration, it was felt that these configurations

should be explored in a practical manner to assess their suitability for the

chosen use case. The two network types selected included an implementation

of an image transmission system developed by C. Pham [16] but ported for

use on an ESP32 type platform. This implementation uses a LoRa® connected

transceiver (Semtech) and operates in the sub1GHz ISM frequency bands. The

other network topology implemented was a mesh type network using the same

LoRA® transceiver as used by C. Pham with the ability to switch between

FSK and CSS type modulation. This implementation allowed a dual data-rate

system to be selected depending on the use case requirements and was

implemented on ESP32 Devkit platform. Both topologies were assessed based

on the RF requirements for this application before a suitable image

compression algorithm was implemented.

Star Topology

To gain experience with using and transmitting image data using resource-

constrained devices, it was decided to implement a suitable existing solution.

A solution developed by C. Pham [16] enabled he transmission of 128x128

byte image (Raw size of 16384bytes) . The image was then compressed using

a modified DCT developed in collaboration with Vincent LECUIRE (CRAN

UMR 7039, Nancy-Universite, France). This method limited the image shape

to the same number of Rows x Columns and did not meet the requirements for

this use case. This method was ported for use on the selected hardware used

64

during this research. The limited image size, lack of ability to select a ROI

and the use of a third-party compression technique restricted the use of this

system for this application. However, the system was successfully

implemented using the hardware shown in Figure 9 for the end-device and

using a RPi as a gateway as shown in Figure 17.

Implementation of this star type communications network highlighted issues

associated with using this revision of the serial connected camera (uCAM-II)

highlighted in 4.1. An example of a captured image using this setup is shown

in Figure 18 using a Quality factor of 10 and is 128x128 bytes in size.

Figure 17:Camera Testing Hardware

Figure 18:128x128 Image

65

Mesh Topology

In the course of this research, mesh topology was implemented and tested to

a limited degree. There is a brief discussion of mesh typology merits and

demerits prior to a description of its implementation in this research. Working

with a mesh type topology allows extended communication range between

end-devices and a gateway, by routing information via a known path or by

automatic route discovery. The information can be transported in a reliable

way where each transmission is acknowledged by the receiver, or

alternatively, in an unacknowledged way. The introduction of new end-

devices can be done automatically allowing a self-healing network to be

deployed, or each device can be introduced to the network in a programmatic

way. The obvious benefits to this type of network include extended range

because of the routing capability of each device , where a transmission is

automatically (or via look-up table) routed to a destination. If the sending

device is not in direct contact with the end device, the transmitted information

is relayed via a device it can communicate with, to the final destination. The

information is thus ‘bounced’ around the network until the delivery of the

information is achieved. Routing information is constantly updated in each

device which allows the introduction or withdrawal of a device f rom the

network and allows for a changing topography within the network. This type

of modular network facilitates RF access to hard-to-reach places where

traditional communication type networks (e.g., Star type) have difficulty in

reaching.

The issues associated with these types of networks make it difficult to

implement if the end-devices are battery powered and large amounts of

66

information are to be transmitted such as image data. Because each device

needs to be awake all the time (in listening mode) to enable them to form part

of the mesh, power supply can be a major issue if these devices are positioned

in a remote area where traditional power sources are absent. The maintenance

and updating of routing tables incurs an overhead which can have a

detrimental effect on data throughput of a system. The re-routing of data,

because of a change in the network topology, or if an end-device ceases to

operate, can cause a ‘flood’ of data within the network especially if the data

is relayed more than once, which is highly likely. Duty-cycle restrictions can

quickly become overwhelmed thus exceeding imposed regulations. The

testing of such systems during development stage is a known issue , mainly

due to the limited physical area within which a network can be deployed.

Automatic routing algorithms are difficult to check in real-world deployment

scenarios and require time to finalise design and gain operational confidence.

These systems are generally simulated to allow routing checks.

Despite these drawbacks, the benefits of a mesh type network were explored

within this research because of the range extension abili ty. The use case

definitions in 1.1, require the ability to transmit Still image data over a large

range (>5km). If this was achievable with a single type of network topology

and meeting the other use case requirements, then a mesh type topography

yields major benefits.

To alleviate the duty-cycle requirements within a mesh type network , this

research explored the development of a network which allows automatic

modulation type selection. This means less time-on-air if a higher throughput

modulation scheme such as FSK is selected. If a device is outside the range

67

Server 2

Client 1

Server 3

Server 1

FSK

capabilities of such a scheme, then automatic selection of CSS type

modulation scheme is adapted. This mesh topology was implemented using

the same hardware as in the test bed as shown in Figure 9 and Figure 10.

Mesh Network Configuration:

This small network consisted of 4 devices interconnected over an RF link as

shown. Server 1 can only access Client 1 via Server 3 and vice-versa. In this

instance the system should automatically choose the modulation type as

shown in Figure 20.

Server 1

Server 2
Server 3

Client 1

Figure 19:Mesh Network Configuration

Figure 20:Mesh connection sequence

68

To implement the system outlined, a firmware library developed by

airspayce.com [39] called RadioHead Packet Radio library for embedded

microprocessors was modified for use with the hardware specified for this use

case. The system firmware was developed within the PlatformIO IDE using

C++ and tested for functionality in both FSK and CSS mode. The decision-

making algorithm to switch between both modulation modes of operation is

shown in Figure 21.

The system was successfully implemented using manual switching between

modulation modes using a fixed packet size of 64bytes. However, on further

analysis it was realised that to remain within the confines of duty-cycle

restrictions, it was necessary to limit the spreading factor of LoRa to SF7 –

SF9. This would reduce the maximum range available and negate the benefits

relative to using FSK, particularly if using large amounts of data (image

Transmission). This is a consequence of the increased overhead associated

with maintaining the integrity of the mesh network. Due to the difficulty in

real world testing of such a system, and because of time constraints, it was

felt that further development was needed to fully evaluate such a concept .

Further investigation would detract from the time needed to develop and

69

implement an image compression algorithm and this avenue of research was

halted.

Figure 21:CSS->FSK Flowchart

start

Default mode = LoRa

Can I connect to any other

end-device using LoRa ?

Send request to other devices to switch to FSK for a defined timeout.

Can I connect to any

other end-device using

FSK?

Send request to connected device to remain in FSK Mode until end of

transmission

Yes

Yes

Yes

No

No

70

Selected Network Topology

A star type network was developed using ESPCAM Platform t o minimise

wiring connectivity issues during development phase , and considering the

issues experienced with the use of uCAM-II camera. Because all the necessary

components were contained within a single module, this enabled robust

hardware development. Connection via a single USB cable allowed the device

to be programmed, debugged, and powered in a simple manner.

The chosen Network protocol selected for development was ESPNOW as

described in 2.3. This schema (Figure 22 enabled connectivity between

devices in multiple ways e.g., many-to-one, one-to-one, or one-to-many.

Although this modulation scheme is based on 802.11, this is a proprietary

protocol and is specific to Espressif™ ESP32 devices. It is a connectionless

type of scheme which allows rapid connection of one device to another which

can have a positive impact on battery life.

ESP-Now

Gateway (Client) End-Device (Server)

Figure 22: ESPNow Schema.

71

Pairing of devices is needed prior to their communication, after pairing is

done, the connection is persistent and no further handshaking is required.

Common elements of programme development will be discussed in the

context of server and client hardware in the following section.

Common Elements:

There are common firmware elements associated with the operation of both

Server and Client hardware platforms. All necessary ESPNOW libraries are

available from Espressif™ and can be freely download into common IDEs

such as Arduino by adding these additional URLs to the board manager within

settings:

https://dl.espressif.com/dl/package_esp32_index.json,
http://arduino.esp8266.com/stable/package_esp8266com_index.json

and then under Tools>Board>Boards Manager search for ESP32 and press install button

when found. This research used PlatformIO (VSCode) as the IDE but using the Arduino

framework.

 The terms master/controller and slave are commonly interchanged with

server and client and in keeping with the nomenclature used by Espressif™,

Controller and slave were used here. There is no concept of this division

within the ESPNOW API as each device can act as controller or slave or both.

The role of devices was defined in the configuration of each device during

setup(), as SoftAP or STA mode can be selected and was selected as shown

in Table 9 [12].

72

Table 9: ESPNow Role

Role IDLE

CONTROLLER

SLAVE

COMBO

The device's role.

IDLE: undefined role

CONTROLLER:

controller SLAVE:

slave COMBO: double

role as controller and

slave

The local device's Role wil l define the

transmitting interface (SoftAP interface

or Station interface) of ESP-NOW.

IDLE: data transmission is not allowed.

CONTROLLER: priori ty i s given to

Station interface

SLAVE: priority is given to SoftAP

interface

COMBO: priority is given to SoftAP

interface

Station interface for Station -only mode

and SoftAP interface for SoftAP-only

mode.

Espressif

The sequence of events needed to initialise and connect devices for both

controller and slave devices are as follows:

1. Initialize the ESP-Now protocol

2. If we are developing a master or a Controller

▪ Add peer (if we are developing a master or Controller)

▪ Define the callback function to know if a message is sent

▪ Send a message

3. If we are developing a slave

▪ Add a callback function to know when a new message is

arriving

To identify each device, use is made of each unit’s MAC address which is

unique to every device.

End-device (Controller) code to establish a basic communications network

was set up as follows:

Several functions were used in this case.

• void InitESPNow()

• void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status)

• void setup()

• void deletePeer()

• bool manageSlave()

73

• void initBroadcastSlave()

• void ScanForSlave()

• void sendData()

• void loop()

On boot-up, void setup() is first called followed by void loop().

1. The mode of the device is set to STA with ‘WiFi.mode(WIFI_STA) ’

because this is a controller device and sends data to a slave device.

2. Disable WiFi because this is ESPNow with WiFi.disconnect();

3. Initialise ESPNow protocol with InitESPNow();

4. Register the function to be called when data is sent with

esp_now_register_send_cb(OnDataSent);

void setup()

{

Serial .begin(115200);

WiFi.mode(WIFI_STA); / /Set device in STA mode to begin with

WiFi.disconnect();

Serial .print("STA MAC: "); Serial .print ln(WiFi.macAddress()); / /

This is the mac address of the Master in Station Mode

InitESPNow(); / / Ini t ESPNow with a fal lback logic

/ / Once ESPNow is successfully Ini t , we wil l register for Send CB to

/ / get the status of Trasnmitted packet

esp_now_register_send_cb(OnDataSent);

74

The void loop() function then runs continuously:

1. Check to see if anyone is listening with ScanForSlave ();

2. Add slave address to peer list if a new device is found and continue.

3. If the device already exists within the peer list, then do something i.e.,

send an image or other data.

4. Wait for 10 sec and repeat (arbitrary).

The slave device consists of two ESP32 Devkits connected via UART to

each other (Figure 23), designated ‘Slave-> Serial’ and ‘Serial->TCP’

void loop() {

 / / In the loop we scan for slave

 ScanForSlave();

 / / If Slave is found, it would be populated in `slave` variable

 / / We wil l check if `slave` is defined and then we proceed further

 i f (slave.channel == CHANNEL) { / / check if slave channel is defined

 / / `slave` is defined

 / / Add slave as peer if i t has not been added already

 bool isPaired = manageSlave();

 i f (isPaired) {

 / / pair success or already paired

 / / DO SOMETHING HERE

 / / wait for 10 seconds to run the logic again

 delay(10000);

 }

 else

 {

 / / slave pair fai led

 Serial .println("Slave pair fai led!");

 }

}

}

75

Figure 23:Serial to TCP Bridge

This configuration separates ESP-Now and normal WiFi. Although each

ESP32 Devkit is Wi-Fi capable, it was not possible to use both modulation

schemes at the same time without resetting the Wi-Fi driver. To solve this

issue, it was decided to separate ESP-Now from Wi-Fi, and relay any data

received by the slave (Slave>Serial1) to a dedicated device which was

connected to a local router (Serial -> TCP). The connection between

devices is over standard serial type port. The serial - > TCP device could

be a more capable platform such as a Raspberry pi which would allow

post-processing to be achieved locally.

Slave Device (Slave->Serial1) code:

Programming steps for a slave device is like that used by the controller.

 Step 1: ESPNow Init on slave.

 Step 2: Update the SSID of slave with a prefix of `slave` .

 Step 3: Set slave in AP mode.

 Step 4: Register the receive callback function and wait for data.

 Step 5: Once data arrives, print it in the serial monitor .

