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networks is the restricted amount of data transmission allowed and the fair 

access policy which is enforced. This has the net effect of further limiting the 

amount and frequency of data transmissions. Other such public networks 

include SigFox® which severely limit the amount and frequency of data 

transmission for each end device, and this has been eliminated for 

consideration for this use case. 

 

1.1 Problem Definition 

This research addressed the problem associated with transmission of large 

amounts of data (image) over RF networks designed for low-data volume 

transmission. Image transmission over resource-constrained RF systems 

present unique challenges in terms of available bandwidth, regulatory 

constraints, and available power supply. LPWAN operating in the ISM radio 

frequency bands impose further difficulties regarding channel availability and 

usage and can be regarded as hostile environments for ensuring reliability of 

transmission and guaranteed quality of service (QoS). These systems operate 

in ‘Lossy’ environments and some loss of data is expected , further 

complicating the reliable reception of large amounts of data such as image 

transmission. Battery powered devices used in typical IoT systems operate on 

resource constrained hardware and typically transmit low data volumes 

periodically in quantities of no more than 250 bytes per transmission. A black 

and white image of standard size (QVGA) will contain 76800 bytes of 

information and transmission of this large amount of data will be impacted 

by power availability and hence battery lifetime.  A variable means to 
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end device (UE) is connected to a central gateway which generally has some 

form of internet connectivity e.g., Wi-Fi, Lte, Ethernet. Long range is 

achieved because of the claimed 157dB Link-Budget availability and a 

payload size of 255 Octets. The physical parameters satisfy some of the 

requirements for this  use case. 

2.3 ESP-NOW 

Espressif Systems is a public multinational, fabless semiconductor  company 

established in 2008 focused on developing cutting-edge Wi-Fi and Bluetooth, 

low-power artificial intelligence internet of things (AIoT) solutions. The 

ESP32 Series SoCs includes a 32-bit MCU and 2.4GHz Wi-Fi and 

Bluetooth/Bluetooth LE communications capability with a sleep current of 

less than 5µA, making it suitable for battery -powered applications [10]. ESP-

NOW is a communications protocol developed by Espressif  based on IEEE 

802.11-2012 standard action vendor frame for information technology [11]. 

This enables multiple devices to communicate with one another without using 

Wi-Fi in the 2.4Ghz ISM band. An initial pairing of devices is needed prior 

to communication, after which secure, and peer-to-peer communication can 

continue without handshaking. This allows fast transfer of data at a rate of 1- 

2Mbps for up to 20 devices un-encrypted or 10 devices encrypted per network 

[12]. A payload of 250 bytes can be carried using direct sequence spread 

spectrum (DSSS) and uses baseband modulation of differential binary phase 

shift keying (DBPSK) and differential quadrature shift keying (DQPSK) to 

provide the 1Mbps and 2Mbps data rates respectively [13]. During the hand-

shaking mode of system initialisation, if the long-range mode (LR) is enabled 

on Tx. and Rx. a bit rate of 125kbps is negotiated if 802.11B mode fails.  Each 
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433MHz is 10% (360 sec) as shown in Table 3. C.Pham [16] has tabulated the 

TOA for various BW and spreading factors (SF); for payload size of 255 

bytes, it ranges from 0.1009 to 9.15 seconds. For a raw uncompressed image 

size of 160x120 pixels (ROI for this use case), it takes (19200/255) *0.6333 

= 47.68 sec using LoRa mode 7. Compressing the data image improves on this 

figure and hence battery life of the end device. In this instance, a compression 

scheme tolerant to packet loss is used based on [17] which improves on the 

energy consumption involved in popular algorithms such as JPEG, JPEG2000 

or SPHIT. It operates on 8x8 pixel blocks using an optimised block 

interleaving method, and the image matrix must have the same number of 

rows and columns. The image is transmitted in blocks of 250 bytes which 

allows for out-of-sequence reconstruction and is tolerant of packet loss. The 

computational energy cost is well documented in [17] for this JPEG-like lossy 

compression scheme. For this use case, with respect to Table 2 we can satisfy 

requirements 1 – 5. 

Leila Makkaoui et al. [17] propose a fast zonal discrete cosine transform 

(DCT) based image compression algorithm allowing for t rade-off between 

energy consumption and image fidelity. Using the DCT energy compaction 

property allows the elimination of high frequency coefficients, hence 

reducing the number of DCT coefficients to be computed and thus improving 

energy consumption. Results were simulated based on a MSP430 16-bit 

microcontroller and an 802.15-compliant CC24020 radio transceiver. Their 

proposed compression scheme claims improvement of 14% and 18% of energy 

consumption compared to classical JPEG compression in the transmiss ion of 
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an 128x128 pixels image. For this use case, with respect to Table 2, we can 

satisfy requirements 1-5. 

Mookeun Ji (et al.) [18] proposed a scheme which breaks an image into small 

grid patches and only transmits the area of the image which has been deemed 

to have changed. Suitable for slowly changing scenes such as crop 

monitoring, an initial full image is sent as reference , and afterwards, only 

grid patches which have changed are sent. Each 160x160 pixel image is 

divided into 256 grid patches, each grid consisting of 100 bytes. Transmission 

of a formatted packet containing x2 patches , plus overhead, is 203 bytes in 

size. Transmission of the initial reference image took 127.5 seconds which 

appears to exceed ETSI regulations regarding duty-cycle time limitations. The 

end-device hardware used could not regarded as a low-power device i.e. 

Raspberry Pi 3 Model B + Arduino Uno + LoRa transceiver. Whilst showing 

promise for bandwidth-limited RF systems, the use case application is 

restrictive. For this use case, with respect to Table 2, we can satisfy 

requirements 1,2,3,4,7.  

Rafeeq AL-HASHEMI et al. [19] proposes a semi-lossless image compression 

technique using run-length-encoding (RLE). A raw (uncompressed) image of 

arbitrary size is obtained, and colours are mapped to a vector of values 0 – 

255, where each vector element represents a pixel value. The higher frequency 

values, represented by the lower 4-bits of each decimal value, is discarded 

and replaced by a value between 0-15. The lower nibble (4-bits) is replaced 

with a value which indicates the consecutive number of similar colours (upper 

nibble) after which run-length-encoding is performed on the image vector. 

The new byte now represents the pixel colour and frequency of occurrence. 
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For this use case, of particular interest are the allowed transmit power levels 

and duty-cycle restrictions in Table 3. 

 
Table 3: Regulatory Restrictions  

Frequency Band  

MHz 

Maximum Permitted 

Radiated Power / 

Field Strength 

Mitigation 

Requirements 

433.05 – 434.79 10 mW ERP Duty cycle: ≤ 10% 

868.0 – 868.6 25 mW ERP Duty cycle: ≤ 1%, or 

LBT + AFA 

2400 – 2483.5 25 mW EIRP None 

 

A duty-cycle restriction of 1% means a maximum on-air time of 36 Seconds 

in one hour. Depending on the amount of data to transmit , this will influence 

the frequency of transmission allowed for each end -device and base-station if 

used as a transmitter.  Duty-cycle restrictions can be ignored if other 

mechanisms are implemented (within certain frequency bands) to mitigate the 

overuse of channel resources, such as listen-before-talk (LBT) and adaptive-

frequency-agility (AFA). 

• LBT – Before a device transmits it senses a channel to determine if 

there is activity by measuring the received signal strength (RSSI) for 

at least 5 msec, if the RSSI is below a set threshold the device can 

transmit on that channel, if not then a delay of at least 5 m sec is 

implemented and the process is repeated. After a device has transmitted 

it will not transmit again on the same channel until an off time of 100 

msec. has been observed. A further restriction of 100 seconds of 

transmission within one hour also applies  on a spectrum of 200 kHz 
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A star type network was eventually chosen for the same reasons, with the 

ability to tailor the modulation type to achieve the use case requirements as 

shown in Figure 7. 

 

Figure 7: Network Topologies  

  

The topography of the system is shown in Error! Reference source not f

ound.. 

 

 

 

 

 

 

The microcontroller platform selected (ESP32 DevKit_V4) by Espressif™ 

systems satisfied the testbed requirements for the end-node device and 

gateway device listed in Table 7. 

 

End Devices  

(Server)  

Gateway(CLIENT) 

TCP/IP 
Web 

LoRa 

D7A 

ESPNOW 

Figure 8:System Topography  
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Table 7: Hardware Requirements  

Connectivity UART SPI 802.11 Bluetooth D I/O A I/O 

ESP32 Devkit ✓ ✓ ✓ ✓ ✓ ✓ 

 

This configuration of the end-node device and gateway shown below in Figure 

9 allowed connection of a LoRa® transceiver via a serial peripheral interface 

(SPI) and a camera, via a universal asynchronous receiver transmitter 

(UART). This arrangement allowed selection of the preferred modulation 

type. The camera selected for this configuration was uCam-II (hardware 

rev.1.0) by 4D Systems which allowed serial connectivity and access to raw 

image data if required. The LoRa® transceiver used is an RFM95 module by 

Adafruit Industries connected via SPI. 

 

 

Figure 9:End Device (Server)  

 

 

uCAM-II 
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The end-device (Client) configuration in Figure 9 allowed selection of the 

modulation scheme (FSK, CSS,802.11) for various use cases. The Gateway 

configuration is shown here in  Figure 10. Connectivity is achieved via USB 

from the development PC. 

 

Figure 10:Gateway Hardware (Client)  

 The hardware chosen for development of the image compression scheme  

differed slightly because of an issue with unreliable communication 

synchronisation action on the uCam-II which caused unnecessary 

development delays [37]. This issue appears to have been addressed in later 

hardware revisions of the camera. The chosen version of the test bed platform 

used a different ESP32 platform for end-devices and 802.11(ESP NOW) 
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modulation scheme is chosen for algorithm development purposes. The 

testbed setup for the development work is shown in Figure 11. 

 

 

The micro-controller module chosen for the end-device (Server) is a variant 

of the ESP32 as shown in Figure 12. 

 

Figure 12:ESPCAM 

 

End Device (Server) Gateway (Client) 

Figure 11:Test Bed Hardware  
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This device has an OV2640 camera connection port included in a very small 

form factor. 

The Camera type included with this module  has a resolution of UXGA, SVGA 

and below, and supports JPEG compression and RAW data modes. A version 

of this camera is available as an SPI connected module  allowing flexibility in 

design for use with different microcontrollers [38]. 

The Firmware and Software for this project was developed on a desktop PC 

running Linux operating system (Ubuntu 18.04.5 LTS). The ESP32 DevKit 

devices used for the gateway were connected to the development PC via USB  

cable. To allow programming of the end-devices (ESP-32 CAM), a FTDI 

device was connected, and a temporary link was placed between pin 10 and 

ground for programming. To allow monitoring and debugging of the device, 

this link was then removed for normal operation.  The FTDI is a high-speed 

serial communications device which bridged connectivity between TTL serial 

transmissions and USB signals.  Because the ESP32 DevKit has on-board USB 

connectivity this device was not needed. 

SDR (Software Defined Radio) 

To enable verification of RF Transmission below 1GHz, a SDR was used to 

visualise communications between end-devices and the gateway. The device 

used was a NooElec NESDR Mini connected via USB as shown in Figure 13. 

This is a modified DVB-T USB dongle tuned for SDR usage within a range 

of 25MHz – 1750MHz. The visualisation software used was SDR# (SDR 

sharp) running on Windows 10, which allowed a FFT and waterfall display. 

Installation instructions can be found here  [39]. 
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Figure 13:SDR 

 

4.2 Firmware Development Environment 

The chosen programming language to develop the necessary firmware was 

C++. This was selected because it allows direct access and control of each 

micro-controller subcomponent. Direct control of timing elements within the 

development of any RF system is necessary to ensure reliability and 

repeatability of any developed protocol . A mature eco-system exists for the 

development of code for micro-controllers using C++ which facilitated 

tweaking of compilation parameters and enabling an efficient code footprint 

to be developed. The Integrated development environment (IDE) chosen for 

this project was PlatformIO. This permitted cross-platform development of 

code using Microsoft Visual Studio Code.  Full debugging was enabled with 

single-stepping and multiple breakpoints setting. Using an external high 

speed serial device, connected to the micro-controller under development 

allowed for full hardware and software debugging.  Such a device is the 

FT2232H Mini Module available from ftdi Ltd. To integrate this device into 

PlatformIO, and to get it to communicate correctly  proved difficult. Details 

of the final connectivity and setup was recorded. 
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FTDI 

A drawback of using a high-speed serial device for debugging is the additional 

I/O pins required on the device under test (DUT) for connectivity. These 

connection pins might be required for other device connectivity  such as a 

camera, so limited device debugging might  only be achievable. Nevertheless, 

this is a superb low-cost solution allowing most of the functionality of a full 

device emulator. The debugger protocol is built on an industry standard called 

JTAG and the Mini Module is supported by OpenOCD [40]. This enables 

PlatformIO to communicate with it via a downloadable software driver. Initial 

debugging of this system was achieved using such a device  and was connected 

as shown in Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14:FTDI Connection  
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A full table of connections is found in Table 8 

Table 8: FTDI to ESP32 Connection  

FT2232H FT2232H ESP32 DevKit JTAG name FT2232H pin 

CN2-7  GPIO 13 TCK AD0 

CN2-10  GPIO 12 TDI AD1 

CN2-9  GPIO15 TDO AD2 

CN2-12  GPIO 14 TMS AD3 

CN2-1 CN2-11    

CN2-3 CN3-12    

CN3-1 CN3-3    

 

The ESP32 and the FTDI were connected to the development PC via USB 

where dual terminals were opened for debugging and monitoring of the 

application under development. 

JTAG Driver: 

To communicate with the FTDI, some software configuration was necessary 

when using Windows. However, all FTDI devices are supported in Ubuntu as 

standard. When using Windows, it was necessary to download a virtual COM 

port driver (VCP) [41] which caused the USB device to appear as an 

additional COM port. It was also necessary to install  a USB driver 

configuration tool such as ‘Zadig’  [42]. There were also some configuration 

settings necessary in PlatformIO project configuration file (platformio.ini). 

To use this FTDI required setting the debug tool = minimodule [43]. This 

configuration permitted the setting of two hardware breakpoints and multiple 

software breakpoints.  
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4.3 Software  

The software element of this research consists of the development of several 

Java based programs designed to run on  a PC under a Linux environment. 

These set of programs enabled the remote connectivity of the gateway to be 

established using web. Sockets. The protocol used could be either TCP/IP or 

UDP on port 3000. Java was chosen because of its ubiquity and ease of 

implementation within the Processing [44]  programming environment.  This 

environment allowed easy development of visually orientated applications  

and was thus suited to this application . The monitoring of 802.11 traffic was 

achieved using WIRESHARK [45] which is a network protocol analyser . A 

typical packet capture is shown in Figure 15. 

 

 

Figure 15:Wireshark packet  capture  

 

 

The final test bed layout is shown in Figure 16. 
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Figure 16:TEST BED Layout  
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4.4 Chapter Summary 

This chapter described in detail the testbed designed to enable end-to-end 

testing and evaluation of both RF networks and the image compression 

algorithms developed in this research. It included a discussion of three key 

components: hardware, integrated development environment and the 

software. 

The chosen hardware was selected specifically because of the compact 

integration of the necessary interfaces required.  The hardware 

(ESP32/ESP32-CAM) consisted of an integrated camera, Wi-Fi, BLE and 

extensive I/O. The processor was a dual core, 32bit device running FreeRTOS 

and at low cost. These microcontroller devices  were developed by Espressif™ 

and are the only devices capable of running ESP-NOW protocol. Although 

not the most low-power device available, it was selected because of the 

availability of on-board resources. This allowed development of suitable 

algorithms, and the assessment of resources needed for a basic system design. 

The integrated development environment  (IDE) selected was suitable for both 

Windows and Linux operating systems and used Visual Studio for code 

development in C++. This environment allowed software development within 

the Arduino framework and was in keeping with a desire to maintain 

simplicity and reduce complexity, to enable cross development for lower 

power devices such as 8-bit AVR microcontrollers. To ‘visualise’ RF 

transmissions in the sub-GHz frequency bands when using LoRa or DASH7, 

a software defined radio (SDR) was used with AirSpy software running on a 

Linux (UBUNTU) machine. For real -time testing and register watching / 

breakpoint setting, a highspeed UART device was connected to the DUT 
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(Device under test) via a JTAG interface. Driver software is freely available  

for these devices and integrates with the PlatformIO IDE. Whilst RF networks 

are difficult to debug in real -time, the combination of an SDR and Hardware 

debugger allow most issues to be detected and resolved. Several testbed 

iterations were developed, and the final version is shown in Figure 16. Packet 

capture over the air for ESP-NOW was achieved using a freely available 

packet analysis software ‘Wireshark’ in association with a Wi-Fi adapter 

which is capable of being set to promiscuous mode.  
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5 CHAPTER 5           SYSTEM IMPLEMENTATION 

 

This chapter describes the implementation of a low-power WLAN suitable for 

use with a developed image compression algorithm. The chosen RF topology 

was a star type network based on an ESP32 type microcontroller  platform 

which is widely available. The chosen platform allowed the development of 

a compression technique suitable for use on a range of micro-controller 

platforms. This facilitated easy embedding of the algorithm within an existing 

program because of the minimal computational  cost and memory 

requirements. The test bed used includes the use of ESPCAM (ESP32 

Derivative) for the end-device and was chosen for its integrated camera and 

WiFi transceiver which required minimum system wiring. The gateway 

configuration chosen used two ESP32 DevKits (ESP32 Derivative) but could 

be replaced by any capable system which satisfied the requirements, such as 

a Raspberry Pi (RPi). I used two ESP32s because it allowed a single use 

testbed environment for both the end-device and gateway development 

without changing IDE. The selected modulation scheme was DSSS 

(ESPNOW) using the embedded WiFi capabilities of the chosen platform. 

ESPNOW has been previously described in section 2.3, this section describes 

the IDE configuration and firmware development of  a working solution for 

both the RF network and the image compression algorithm. 
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5.1 WLAN implementation 

This research explored various topographical type RF network structures. To 

arrive at a suitable network configuration, it was felt that these configurations 

should be explored in a practical manner  to assess their suitability for the 

chosen use case. The two network types selected included an implementation 

of an image transmission system developed by C. Pham [16] but ported for 

use on an ESP32 type platform. This implementation uses a LoRa® connected 

transceiver (Semtech) and operates in the sub1GHz ISM frequency bands. The 

other network topology implemented  was a mesh type network using the same 

LoRA® transceiver as used by C. Pham with the ability to switch between 

FSK and CSS type modulation. This implementation allowed a dual data-rate 

system to be selected depending on the use  case requirements and was 

implemented on ESP32 Devkit platform. Both topologies were assessed based 

on the RF requirements for this application before  a suitable image 

compression algorithm was implemented.  

Star Topology  

To gain experience with using and transmitting image data using resource- 

constrained devices, it was decided to implement a suitable  existing solution. 

A solution developed by C. Pham [16] enabled he transmission of 128x128 

byte image (Raw size of 16384bytes) . The image was then compressed using 

a modified DCT developed in collaboration with Vincent LECUIRE (CRAN 

UMR 7039, Nancy-Universite, France). This method limited the image shape 

to the same number of Rows x Columns and did not meet the requirements for 

this use case. This method was ported for use on the selected hardware used 
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during this research. The limited image size, lack of ability to select a ROI 

and the use of a third-party compression technique restricted the use of this 

system for this application. However, the system was successfully 

implemented using the hardware shown in Figure 9 for the end-device and 

using a RPi as a gateway as shown in Figure 17. 

 

 

 

 

 

 

 

 

 

Implementation of this star type communications network highlighted  issues 

associated with using this revision of the serial connected camera (uCAM-II) 

highlighted in 4.1. An example of a captured image using this setup is shown 

in Figure 18 using a Quality factor of 10 and is 128x128 bytes in size. 

 

 

 

Figure 17:Camera Testing Hardware  

Figure 18:128x128 Image 



65 

 

Mesh Topology 

In the course of this research, mesh topology was implemented and tested to 

a limited degree. There is a brief discussion of mesh typology merits and 

demerits prior to a description of its implementation in this research. Working 

with a mesh type topology allows extended communication range between 

end-devices and a gateway, by routing information via a known path or by 

automatic route discovery. The information can be transported in a reliable 

way where each transmission is acknowledged by the receiver, or 

alternatively, in an unacknowledged way. The introduction of new end-

devices can be done automatically allowing a self-healing network to be 

deployed, or each device can be introduced to the network in a programmatic 

way. The obvious benefits to this type of network include extended range 

because of the routing capability of each device , where a transmission is 

automatically (or via look-up table) routed to a destination. If the sending 

device is not in direct contact with the end device, the transmitted information 

is relayed via a device it can communicate with, to the final destination. The 

information is thus ‘bounced’ around the network until the delivery of the 

information is achieved. Routing information is constantly updated in each 

device which allows the introduction or withdrawal of a device f rom the 

network and allows for a changing topography within the network. This type 

of modular network facilitates RF access to hard-to-reach places where 

traditional communication type networks (e.g., Star type) have difficulty in 

reaching. 

The issues associated with these types of networks make it difficult to 

implement if the end-devices are battery powered and large amounts of 
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information are to be transmitted such as image data. Because each device 

needs to be awake all the time (in listening mode) to enable them to form part 

of the mesh, power supply can be a major issue if these devices are positioned 

in a remote area where traditional power sources are absent.  The maintenance 

and updating of routing tables incurs an overhead which can have a 

detrimental effect on data throughput of a system. The re-routing of data, 

because of a change in the network topology, or if an end-device ceases to 

operate, can cause a ‘flood’ of data within the network especially if the data 

is relayed more than once, which is highly likely.  Duty-cycle restrictions can 

quickly become overwhelmed thus exceeding imposed regulations.  The 

testing of such systems during development stage is a known issue , mainly 

due to the limited physical area within which a network can be deployed. 

Automatic routing algorithms are difficult to check in real-world deployment 

scenarios and require time to finalise design and gain operational confidence. 

These systems are generally simulated to allow routing checks.  

Despite these drawbacks, the benefits of a mesh type network were explored 

within this research because of the range extension abili ty. The use case 

definitions in 1.1, require the ability to transmit Still image data over a large 

range (>5km). If this was achievable with a single type of network topology 

and meeting the other use case requirements, then a mesh type topography 

yields major benefits. 

To alleviate the duty-cycle requirements within a mesh type network , this 

research explored the development of a network which allows automatic 

modulation type selection. This means less time-on-air if a higher throughput 

modulation scheme such as FSK is selected. If a device is outside the range 
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Server 2  

Client  1 

Server 3  

Server 1  

FSK 

capabilities of such a scheme, then automatic selection of CSS type 

modulation scheme is adapted.  This mesh topology was implemented using 

the same hardware as in the test bed as shown in Figure 9 and Figure 10. 

Mesh Network Configuration: 

 

This small network consisted of 4 devices interconnected over an RF link as 

shown. Server 1 can only access Client 1 via Server 3 and vice-versa. In this 

instance the system should automatically choose the modulation type  as 

shown in Figure 20. 

 

 

 

 

 

 

Server 1 

Server 2 
Server 3 

Client 1 

Figure 19:Mesh Network Configuration 

Figure 20:Mesh connection sequence  
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To implement the system outlined, a firmware library developed by 

airspayce.com [39] called RadioHead Packet Radio library for embedded 

microprocessors was modified for use with the hardware specified for this use 

case. The system firmware was developed within the PlatformIO IDE using 

C++ and tested for functionality in both FSK and CSS mode.  The decision-

making algorithm to switch between both modulation modes of operation is 

shown in Figure 21. 

The system was successfully implemented using manual switching between 

modulation modes using a fixed packet size of 64bytes. However, on further 

analysis it was realised that to remain within the confines of duty-cycle 

restrictions, it was necessary to limit the spreading factor of LoRa to SF7 – 

SF9. This would reduce the maximum range available and negate the benefits 

relative to using FSK, particularly if using large amounts of data ( image 

Transmission). This is a consequence of the increased overhead associated 

with maintaining the integrity of the mesh network.  Due to the difficulty in 

real world testing of such a system, and because of time constraints, it was 

felt that further development was needed to fully evaluate such a concept . 

Further investigation would detract from the time needed to develop and 
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implement an image compression algorithm and this avenue of research was 

halted. 

 

 

 

Figure 21:CSS->FSK Flowchart  
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Selected Network Topology 

A star type network was developed using ESPCAM Platform t o minimise 

wiring connectivity issues during development phase , and considering the 

issues experienced with the use of uCAM-II camera. Because all the necessary 

components were contained within a single module, this enabled robust 

hardware development. Connection via a single USB cable allowed the device 

to be programmed, debugged, and powered in a simple manner.  

The chosen Network protocol selected for development was ESPNOW as 

described in 2.3. This schema (Figure 22 enabled connectivity between 

devices in multiple ways e.g., many-to-one, one-to-one, or one-to-many. 

 

 

 

 

 

 

Although this modulation scheme is based on 802.11, this is a proprietary 

protocol and is specific to Espressif™ ESP32 devices. It is a connectionless 

type of scheme which allows rapid connection of one device to another which 

can have a positive impact on battery life. 

ESP-Now 

Gateway (Client) End-Device (Server) 

Figure 22: ESPNow Schema.  
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Pairing of devices is needed prior to their communication, after pairing is 

done, the connection is persistent and no further handshaking is required.  

Common elements of programme development will be discussed in the 

context of server and client hardware in the following section.  

Common Elements: 

There are common firmware elements associated with the operation of both 

Server and Client hardware platforms. All necessary ESPNOW libraries are 

available from Espressif™ and can be freely download into common IDEs 

such as Arduino by adding these additional URLs to the board manager within 

settings: 

https://dl.espressif.com/dl/package_esp32_index.json, 
http://arduino.esp8266.com/stable/package_esp8266com_index.json 

and then under Tools>Board>Boards Manager search for ESP32 and press install button 

when found. This research used PlatformIO (VSCode) as the IDE but using the Arduino 

framework. 

 The terms master/controller and slave are commonly interchanged with 

server and client and in keeping with the nomenclature used by Espressif™, 

Controller and slave were used here. There is no concept of this division 

within the ESPNOW API as each device can act as controller or slave or both. 

The role of devices was defined in the configuration of each device during 

setup(), as SoftAP or STA mode can be selected and was selected as shown 

in Table 9 [12]. 
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Table 9: ESPNow Role  

Role IDLE 

CONTROLLER 

SLAVE 

COMBO 

The device's role.  

IDLE: undefined role 

CONTROLLER: 

controller SLAVE: 

slave COMBO: double 

role as controller and 

slave 

The local  device's Role wil l define the 

transmitting interface (SoftAP interface 

or Station interface) of ESP-NOW. 

IDLE: data transmission is not allowed. 

CONTROLLER: priori ty i s given to 

Station interface  

SLAVE: priority is given to SoftAP 

interface 

COMBO: priority is given to SoftAP 

interface 

Station interface for Station -only mode 

and SoftAP interface for SoftAP-only 

mode.  

Espressif  

 

The sequence of events needed to initialise and connect devices for both 

controller and slave devices are as follows: 

1. Initialize the ESP-Now protocol 

 

2. If we are developing a master or a Controller 

▪ Add peer (if we are developing a master or Controller) 

▪ Define the callback function to know if a message is sent 

▪ Send a message 

 

3. If we are developing a slave 

▪ Add a callback function to know when a new message is 

arriving 

 

To identify each device, use is made of each unit’s MAC address which is 

unique to every device. 

End-device (Controller)  code to establish a basic communications network 

was set up as follows: 

Several functions were used in this case.  

• void InitESPNow()  

• void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status)  

• void setup()  

• void deletePeer()  

• bool manageSlave()  
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• void initBroadcastSlave()  

• void ScanForSlave()  

• void sendData()  

• void loop() 

On boot-up, void setup() is first called followed by void loop().  

 

 

 

 

 

1. The mode of the device is set to STA with  ‘WiFi.mode(WIFI_STA) ’ 

because this is a controller device and sends data to a slave device.  

2. Disable WiFi because this is ESPNow with WiFi.disconnect();  

3. Initialise ESPNow protocol with InitESPNow(); 

4. Register the function to be called when data is sent with  

esp_now_register_send_cb(OnDataSent);  

 

 

 

void setup()  

{ 

Serial .begin(115200);  

WiFi.mode(WIFI_STA);  / /Set  device in STA mode to begin with  

WiFi.disconnect();  

Serial .print("STA MAC: ");  Serial .print ln(WiFi.macAddress()); / /  

This is the mac address of the Master in Station Mode  

InitESPNow(); / /  Ini t  ESPNow with a fal lback logic  

 

/ /  Once ESPNow is successfully Ini t ,  we wil l  register for Send CB to  

/ /  get  the status of Trasnmitted packet  

esp_now_register_send_cb(OnDataSent);  
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The void loop() function then runs continuously: 

 

1. Check to see if anyone is listening with  ScanForSlave (); 

2. Add slave address to peer list if a new device is found and continue. 

3. If the device already exists within the peer list, then do something i.e., 

send an image or other data.  

4. Wait for 10 sec and repeat (arbitrary). 

The slave device consists of two ESP32 Devkits connected via UART to 

each other (Figure 23), designated ‘Slave-> Serial’ and ‘Serial->TCP’ 

void loop() {  

    / /  In the loop we scan for slave  

  ScanForSlave();  

  / /  If Slave is found, it  would be populated in `slave` variable  

  / /  We wil l  check if `slave` is defined and then we proceed further  

  i f  (slave.channel  == CHANNEL) { / /  check if slave channel is defined  

    / /  `slave` is defined  

    / /  Add slave as peer  if i t  has not  been added already  

    bool  isPaired = manageSlave();  

    i f  (isPaired) {  

      / /  pair success or already paired  

 / /  DO SOMETHING HERE 

      / /  wait  for 10 seconds to run the logic again  

      delay(10000);  

      } 

        else 

        { 

      / /  slave pair fai led  

      Serial .println("Slave pair fai led!");  

        } 

 

 

   

} 

} 
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Figure 23:Serial to TCP Bridge 

This configuration separates ESP-Now and normal WiFi. Although each 

ESP32 Devkit is Wi-Fi capable, it was not possible to use both modulation 

schemes at the same time without resetting the  Wi-Fi driver. To solve this 

issue, it was decided to separate ESP-Now from Wi-Fi, and relay any data 

received by the slave (Slave>Serial1) to a dedicated device which was 

connected to a local router (Serial -> TCP). The connection between 

devices is over standard serial type port. The serial - > TCP device could 

be a more capable platform such as a Raspberry pi which would allow 

post-processing to be achieved locally. 

Slave Device (Slave->Serial1) code: 

Programming steps for a slave device is like that used by the controller. 

   Step 1: ESPNow Init on slave. 

   Step 2: Update the SSID of slave with a prefix of `slave` . 

   Step 3: Set slave in AP mode. 

   Step 4: Register the receive callback function and wait for data. 

   Step 5: Once data arrives, print it in the serial monitor . 


