
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles Digital Media Centre 

2005-8 

A Case-Based Technique for Tracking Concept Drift in Spam A Case-Based Technique for Tracking Concept Drift in Spam 

Filtering Filtering 

Sarah Jane Delany 
Technological University Dublin, sarahjane.delany@tudublin.ie 

Padraig Cunningham 
Technological University Dublin 

Alexey Tsymbal 
University of Dublin, Trinity College 

See next page for additional authors 

Follow this and additional works at: https://arrow.tudublin.ie/dmcart 

 Part of the Other Computer Engineering Commons 

Recommended Citation Recommended Citation 
Delany, S. et al. (2005) A Case-based Technique for Tracking Concept Drift in Spam Filtering. Knowledge-
Based Systems Vol. 18, nos. 4-5, pp. 187-195. doi:10.1016/j.knosys.2004.10.002 

This Article is brought to you for free and open access by the Digital Media Centre at ARROW@TU Dublin. It has 
been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, 
please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie. 

Funder: Enterprise Ireland 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/dmcart
https://arrow.tudublin.ie/dmc
https://arrow.tudublin.ie/dmcart?utm_source=arrow.tudublin.ie%2Fdmcart%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=arrow.tudublin.ie%2Fdmcart%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


Authors Authors 
Sarah Jane Delany, Padraig Cunningham, Alexey Tsymbal, and Lorcan Coyle 

This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/dmcart/48 

https://arrow.tudublin.ie/dmcart/48


Digital Media Centre

Conference papers

Dublin Institute of Technology Year 

A Case-Based Technique for Tracking

Concept Drift in Spam Filtering

Sarah Jane Delany∗ Padraig Cunningham†

Alexey Tsymbal‡ Lorcan Coyle∗∗

∗Dublin Institute of Technology, Sarahjane.Delany@dit.ie
†University of Dublin, Trinity College
‡University of Dublin, Trinity College
∗∗University of Dublin, Trinity College

This paper is posted at ARROW@DIT.

http://arrow.dit.ie/dmccon/45



— Use Licence —

Attribution-NonCommercial-ShareAlike 1.0

You are free:

• to copy, distribute, display, and perform the work

• to make derivative works

Under the following conditions:

• Attribution.
You must give the original author credit.

• Non-Commercial.
You may not use this work for commercial purposes.

• Share Alike.
If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms
of this work. Any of these conditions can be waived if you get permission from
the author.

Your fair use and other rights are in no way affected by the above.

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike License. To view a copy of this license, visit:

• URL (human-readable summary):
http://creativecommons.org/licenses/by-nc-sa/1.0/

• URL (legal code):
http://creativecommons.org/worldwide/uk/translated-license



1 

A Case-Based Technique for Tracking Concept Drift  

in Spam Filtering 

Sarah Jane Delany1, Pádraig Cunningham2, Alexey Tsymbal2, Lorcan Coyle2 

1Dublin Institute of Technology, Kevin St., Dublin 8, Ireland. 

2Trinity College Dublin, College Green, Dublin 2, Ireland.  

Abstract 

Spam filtering is a particularly challenging machine learning task as the data distribution 

and concept being learned changes over time. It exhibits a particularly awkward form of 

concept drift as the change is driven by spammers wishing to circumvent spam filters. In 

this paper we show that lazy learning techniques are appropriate for such dynamically 

changing contexts. We present a case-based system for spam filtering that can learn 

dynamically. We evaluate its performance as the case-base is updated with new cases. We 

also explore the benefit of periodically redoing the feature selection process to bring new 

features into play. Our evaluation shows that these two levels of model update are effective 

in tracking concept drift.  

Key Words: Concept Drift, Case-Based Reasoning, Spam Filtering  
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1 Introduction 

With the cost of spam to companies worldwide estimated to be ca. $20 billion a year and growing at a rate 

of almost 100% a year [27], spam is a problem that needs to be handled. It is a challenging problem for a 

number of reasons. One of the most testing aspects is the dynamic nature of spam. Something of an arms 

race has emerged between spammers and the spam filters used to combat spam. As filters are adapted to 

contend with today’s types of spam emails, the spammers alter, obfuscate and confuse filters by disguising 

their emails to look more like legitimate email. This dynamic nature of spam email raises a requirement 

for update in any filter that is to be successful over time in identifying spam. 

Lazy learning is good for dynamically changing situations. With lazy learning the decision of how to 

generalise beyond the training data is deferred until each new instance is considered. In comparison to 

this, eager learning systems determine their generalisation mechanism by building a model based on the 

training data in advance of considering any new instances. In this paper we explore the application of 

Case-Based Reasoning (CBR), a lazy machine learning technique, to the problem of spam filtering and 

present our CBR system – Email Classification Using Examples (ECUE). We concentrate in this paper on 

evaluating how ECUE can assist with the concept drift that is inherent in spam.  

CBR offers a number of advantages in the spam filtering domain. Spam is a disjoint concept in that spam 

selling cheap prescription drugs has little in common with spam offering good mortgage rates. Case-based 

classification works well for disjoint concepts whereas Naïve Bayes, a machine learning technique that is 

popular for text classification, tries to learn a unified concept description.  

In addition, there is a natural hierarchy of learning available to a CBR system where the simplest level of 

learning is to simply update the case-base with new instances of spam or legitimate email. The advantage 

of CBR in this first level of learning is that it requires no rebuild of the model as is necessary with other 

machine learning solutions to spam filtering. The second level of learning is to retrain the system by re-
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selecting features that may be more predictive of spam. This level of retraining can be performed 

infrequently and based on newer training data. The highest level of learning, performed even more 

infrequently than feature selection, is to allow new feature extraction techniques to be added to the system. 

For instance, when domain specific features are used in the system, new feature extraction techniques will 

allow new features to be included. In ECUE we use a similarity retrieval algorithm based on Case 

Retrieval Nets (CRN) [19] which is a memory structure that allows efficient and flexible retrieval of cases. 

The benefit of using the CRN for implementing the second and third levels of learning is that it can easily 

handle cases with new features; the fact that these features may be missing on old cases is not a problem. 

This paper begins in Section 2 with an overview of other work using machine learning techniques for 

filtering spam. Section 3 discusses the problem of concept drift and existing techniques for handling 

concept drift. Our case-based approach to spam filtering, ECUE, is presented in Section 4, while Section 5 

presents our evaluation and results of using CBR to combat the concept drift in spam. Section 6 closes the 

paper with our conclusions and directions for future work.  

2 Spam Filtering and Machine Learning 

Existing research on using machine learning for spam filtering has focussed particularly on using Naïve 

Bayes [2-4,20,22]. In addition there has been work using Support Vector Machines (SVMs) [4,9,15] and 

Latent Semantic Indexing [10]. There has also been research using memory based classifiers [3,23]. 

However, this work does not address the issue of concept drift which is inherent in spam and the 

evaluations have been on static datasets. 

One technique used for tracking concept drift is ensemble learning (see Section 3.2) which uses a set of 

classifiers whose individual results are combined to give an overall classification. There has been some 

work on ensemble learning in spam filtering using boosting [4,5] and also a combination of Naïve Bayes 
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and memory based classifiers [24]. These evaluations use static data sets and do not attempt to track 

concept drift. 

3 The Problem of Concept Drift 

This section defines concept drift and discusses approaches to handling concept drift. 

3.1 Definitions and Types of Concept Drift  

A difficult problem with learning in many real-world domains is that the concept of interest may depend 

on some hidden context, not given explicitly in the form of predictive features. Typical examples include 

weather prediction rules that may vary radically with the season or the patterns of customers’ buying 

preferences that may change, depending on the current day of the week, availability of alternatives, 

inflation rate, etc. Often the cause of change is hidden, not known in advance, making the learning task 

more complicated. Changes in the hidden context can induce changes in the target concept, which is 

generally known as concept drift [32]. An effective learner should be able to track such changes and to 

quickly adapt to them. 

Two kinds of concept drift that may occur in the real world are normally distinguished in the literature: (1) 

sudden (abrupt, instantaneous), and (2) gradual concept drift. For example, someone graduating from 

college might suddenly have completely different monetary concerns, whereas a slowly wearing piece of 

factory equipment might cause a gradual change in the quality of output parts [28]. Stanley [28] divides 

gradual drift into moderate and slow drifts, depending on the rate of change. 

Hidden changes in context may not only be a cause of a change in the target concept, but may also cause a 

change in the underlying data distribution. Even if the target concept remains the same but the data 

distribution changes, a model rebuild may be necessary as the model’s error may no longer be acceptable. 

This is called virtual concept drift [31]. Virtual concept drift and real concept drift often occur together or 
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virtual concept drift alone may occur, e.g. in the case of spam categorization. From a practical point of 

view it is not important what kind of concept drift occurs as in all cases, the current model needs to be 

changed. 

3.2 Approaches to Handling Concept Drift 

There are three approaches to handling concept drift: (1) instance selection; (2) instance weighting; and 

(3) ensemble learning (or learning with multiple concept descriptions). In instance selection, the goal is to 

select instances relevant to the current concept. The most common concept drift handling technique is 

based on instance selection and involves generalizing from a window that moves over recently seen 

instances and uses the learnt concepts for prediction only in the immediate future. Examples of window-

based algorithms include the FLORA family of algorithms [32], FRANN [17], and Time-Windowed 

Forgetting (TWF) [25]. Some algorithms use a window of fixed size, while others use heuristics to adjust 

the window size to the current extent of concept drift, e.g. “Adaptive Size” [14] and FLORA2 [32]. Many 

case-base editing strategies in case-based reasoning that delete noisy, irrelevant and redundant cases are 

also a form of instance selection [6]. Batch selection [14] taking groups of instances, may be considered 

as instance selection as well.  

Instance weighting uses the ability of some learning algorithms such as SVMs to process weighted 

instances [14]. Instances can be weighted according to their age and their competence with regard to the 

current concept. Klinkenberg [14] shows in his experiments that instance weighting techniques handle 

concept drift worse than analogous instance selection techniques, which is probably due to overfitting the 

data. 

Ensemble learning maintains a set of concept descriptions, predictions of which are combined using 

voting, weighted voting, or the most relevant description is selected. A number of techniques are used to 

identify the set of concept descriptions including feature construction [26], contextual clustering [11], 

sequential chunks of data [29,30] or groupings based on decreasing periods of time [16, 28]. All 
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incremental ensemble approaches use some criteria to dynamically delete, reactivate, or create new 

ensemble members, which are normally based on the base models’ consistency with the current data. 

Many learning algorithms were used for base models in systems handling concept drift. These include 

rule-based learning [26,30-32], decision trees, including their incremental versions [11,13,16,28-30], 

Naïve Bayes [16,30], SVMs [14], RBF-networks [17], and instance-based learning [1,6,25]. A problem 

with many global eager learners (if they are not able to update their local parts incrementally when 

needed) is their inability to adapt to local concept drift. In the real world, concept drift may often be local, 

e.g. only particular types of spam may change with time, while the others could remain the same. In the 

case of local concept drift, many global models are discarded simply because their accuracy on the current 

data falls, even if they still could be good experts in the stable parts of the data. In contrast to this, lazy 

learning is able to adapt well to local concept drift due to its local nature. Instance-based learning is 

sometimes criticized in that, as non-parametric learning, it needs relatively more instances to get high 

classification accuracy [32]. However, often it is not a problem in practice, as enough instances are 

available. 

The most popular benchmark data for testing concept drift handling systems is represented by the 

STAGGER concepts [26] which are used to test most of the systems [11,16,17,26,28,31,32] or by a 

moving hyperplane [13,16,29,30]. A limitation of these is that they do not allow checking the algorithms’ 

scalability to large problems, which is important as concept drift mostly occurs in big amounts of data 

arriving in the form of a stream. In addition, some real-world problems were used to test concept drift 

handling systems [11,13,14,18,29,30]. An important problem with most of the real-world datasets is that 

there is little concept drift in them, or concept drift is introduced artificially, e.g. by restricting the subset 

of relevant topics for each particular period of time [14,18].  
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4 A Case-Based Approach to Concept Drift 

This section outlines ECUE, our case-based approach to spam filtering. It describes the feature selection, 

case retrieval and case-base editing techniques used.  

In a CBR learner the examples in the training data are represented as cases in the case-base. In ECUE 

each email is a case represented as a vector of attributes or features. Cases are set up with binary features 

implemented as Boolean values. If the feature exists in the email then the case assigns the feature a value 

of true, otherwise the value of the feature is false. It is more normal in text classification for lexical 

features to carry frequency information but our evaluation showed that a binary representation works 

better in this domain. We expect that this is due to the fact that most email messages are short and 

frequency information may result in overfitting.  

4.1 Feature Selection 

The features for each case were identified using a variety of generic lexical features, primarily by 

tokenising the email into words. The emails were not altered to remove HTML tags and no stop word 

removal, stemming or lemmatising was performed. Email attachments were removed. Since the datasets 

were personal it was felt that certain headers may contain useful information, so a subset of the header 

information was included in the tokenisation. No domain specific features were included at this stage 

although previous work has indicated that the efficiency of filters can be enhanced by their inclusion [22].  

Tokenising 1000 emails results in a very large number of features, (tens of thousands of features). Feature 

selection is necessary to reduce the dimensionality of the feature space. We used Information Gain (IG) 

[21] to select the most predictive features as it has been shown to be an effective technique in aggressive 

feature removal in text classification [33]. Our cross validation experiments, varying between 100 and 

1000 features across 4 datasets, indicated best performance at 700 features.  
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4.2 Case Retrieval  

The system uses a k-nearest neighbour classifier to retrieve the k most similar cases to a target case. The 

standard k-NN algorithm individually calculates the similarity of each case in a case-base to the target 

case. This approach is quite inefficient in domains where there is feature-value redundancy and/or missing 

features in cases. Because our spam cases have both of these characteristics we use an alternative 

similarity retrieval algorithm based on CRNs which facilitates efficient and flexible case retrieval. The 

CRN is equivalent, in the cases it retrieves, to the k-nearest neighbour algorithm but, particularly in this 

situation, is more computationally efficient. 

Cases are stored within the CRN as case nodes. A second type of node called an Information Entity (IE) 

node represents a single feature-value pair, e.g. “viagra=true” indicating the presence of the word (feature) 

“viagra” within a case. Case nodes are linked to the IE nodes that represent them using relevancy arcs.  

Each relevancy arc can have a weight that reflects the importance of that IE node or feature-value pair. 

CRNs also have the notion of similarity arcs between similar feature values but this is not used in ECUE 

as the features are all binary. 

A target case activates the CRN by connecting to the IE nodes, via relevance arcs, that represent the 

values of its features. This activation spreads across the net to the case nodes, each of which accumulates a 

score appropriate to its similarity to the target case. The case nodes with the highest activations are those 

most similar to the target case. Figure 1 illustrates our CRN for spam filtering. As the features in our case 

representation are binary, IE nodes are only included for features with a true value. The relevancy arcs are 

all weighted with a weight of 1.  

A serious problem for spam filters is the occurrence of False Positives (FP), legitimate emails classified 

incorrectly as spam. An FP is significantly more serious than a False Negative (FN) (a spam email 

incorrectly classified as legitimate). For many people the occurrence of FPs is unacceptable. Due to this 

fact, the classifier used unanimous voting to determine whether the target case was spam or not. All 
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neighbours returned had to have a classification of spam in order for the target case to be classified as 

spam. This strongly biases the classifier away from FPs.  

4.3 Case-base Management 

The approach to concept drift that we are applying is instance selection. Over time the case-base needs to 

be updated to include new types of spam and non-spam emails. Given the volume of emails that a single 

email user may get each week, there is a need to actively manage the training data. Our previous work on 

case-base editing techniques identified a method of case-base editing that uses the competence 

characteristics of a case-base to remove noisy and redundant cases. This method is called Competence-

Based Editing (CBE) [8].  

CBE initially builds a competence model of the case-base identifying for each case its competence 

properties, i.e. those cases that it contributes to classifying correctly and those it contributes to 

misclassifying. The technique is then a two-stage process. Using these competence properties the first 

stage, the competence enhancement stage, identifies and removes noisy cases. The second stage, the 

competence preserving stage, identifies and removes redundant cases (i.e. cases in the middle of a large 

cluster of cases of the same classification). The advantage of our case-editing method applied to the spam 

domain is that it results in a conservative pruning of the case-base which we found resulted in larger case-

bases but better generalisation accuracy than typical case-editing techniques [8].  

5 Evaluation 

This section presents our evaluation of ECUE. Our results are presented at two levels. Firstly, we present 

an evaluation of the performance of the system at the first level of learning, i.e. simply updating the case-

base with new examples of spam and legitimate email. Secondly, we evaluate the performance of the 
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system when a model rebuild (i.e. when the feature selection process is redone) is carried out periodically. 

The evaluations were offline evaluations using emails collected over an extended period of time. 

5.1 Experimental Setup 

A key objective was to evaluate the performance of a CBR spam filter over a period of time to see how it 

handled the concept drift inherent in spam. Two datasets were used. The datasets were derived from two 

corpora of email; each corpus was derived from the emails sent to individuals over a period of 

approximately eighteen months. Dataset 1 is a collection of emails received by one individual up to and 

including December 2003 and Dataset 2 is a collection of emails received by a different individual up to 

and including January 2004. The legitimate emails include a variety of personal, business and subscribed 

mailing list emails. The emails were ordered in date order.  

A training set of 1000 cases, 500 spam emails and 500 legitimate emails, was set up for each dataset. This 

training data included the last 500 spam and non spam emails received up to the end of February 2003 in 

the case of Dataset 1 and up to the end of January 2003 in the case of Dataset 2. This left the remainder of 

the data for testing. Table 1 shows the profile of the test data across each month for both datasets. 

A case-base was set up for each training dataset using the feature selection process described in Section 

4.1 with 700 features in each case. The classifier used was k-nearest neighbour with k = 3 using 

unanimous voting as discussed in Section 4.2. Each email in the testing datasets, documented in Table 1, 

was presented for classification in date-received order to closely simulate what would happen in a real-

time situation. Results were accumulated and reported at the end of each month.  
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5.2 Evaluation Metrics 

Since an FP is more serious than an FN, accuracy (or error) as a measure of performance, does not give 

the full picture in that there is no transparency with regard to the numbers of FPs and FNs occurring. Two 

filters with similar accuracy may have very different FP and FN rates.  

Previous work on spam filtering uses a variety of measures to report performance. The most common 

performance metrics are precision and recall [10]. Sakkis et al. [23] introduce a weighted accuracy 

measure which incorporates a measure of how much more costly an FP is than an FN. Although these 

measures are useful for comparison purposes, the FP and FN rate are not clear so the true effectiveness of 

the classifier is not evident. For these reasons we will use the rate of FPs, the rate of FNs, and the average 

within class error rate, Error = (FPRate + FNRate)/2 as our evaluation metrics. A final justification for 

using this set of metrics is that it is in line with how commercial spam filtering systems are evaluated on 

the web and in the technical press [12]. 

5.3 CBR vs. Naïve Bayes 

As Naïve Bayes appears to be the machine learning technique of choice for spam filtering (see Section 2) 

we compared ECUE with a Naïve Bayes classifier [7], the results of which are summarised here.  

Experiments on a number of static datasets, (subsets of those described in Section 5.1) showed that neither 

one of the two classifiers Naïve Bayes or the CBR classifier outperformed the other consistently [7]. 

These results appear to confirm other findings on static datasets [3]  

Of more interest were the evaluations performed over a period of time allowing the system to dynamically 

update its training data with examples of spam and legitimate email that were incorrectly classified. A 

number of experiments were performed, varying from making no updates to the original case-base training 

data to updating an edited case-base on a monthly, weekly and daily basis with those emails that were 

misclassified over the specified period. Case-base editing used the CBE technique discussed in Section 
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4.3. Our evaluation showed the best performance occurred when updating an edited case-base on a daily 

basis with any emails misclassified that day. These results are presented in Figure 1.  

The same experiments were performed using a Naïve Bayes classifier on unedited training data. The 

training data could not be edited for the Naïve Bayes classifier as the editing technique is a competence-

based editing technique which uses a k-NN classifier to determine the competence of each case in the 

case-base and analyses the competence properties of the cases to determine which cases should be 

removed. Due to the significance of FPs, the Naïve Bayes classifier was configured to be biased away 

from false positives by setting the classification threshold to 1.0. Figure 1 includes the results of using 

Naïve Bayes. 

Although Naïve Bayes has a better overall error rate over the dataset as a whole with no updating, the 

CBR system performs better in both datasets when dynamically updating the data to learn from incorrectly 

classified emails. It can be seen that daily updating of the training data with misclassified emails improves 

performance of the CBR system but has an overall detrimental effect on the Naïve Bayes classifier. Naïve 

Bayes with daily updates does improve the FP rate more significantly than ECUE but the degradation of 

the FN rate has an overall negative effect on performance. It is worth noting that updating a system using 

Naïve Bayes with any new training data requires a separate learning process to recalculate the 

probabilities for all features. Updating a CBR system, such as ECUE, with new training data simply 

requires new cases to be added to the case-base.  

5.4 Level 1 Learning – Continuous Updating with new Instances 

The objective of this evaluation was to examine at a detailed level the performance of the system with 

continuous updating of an edited case-base with the misclassified emails. The detailed results are 

presented in Figure 2 as (edited cb, daily updates). In order to illustrate the performance improvements 

offered by case-base editing and continuous updating, Figure 2 also includes the results of the full training 

case-base (full cb, no updates) and the edited case-base (edited cb, no updates) when applying all the test data 
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in date order with no updates. Finally, for comparison purposes, Figure 2 includes a more typical window-

based updating procedure (full cb, window-based daily updates). The original (unedited) case-base of 1000 

cases was used and at the end of each day those cases that had been misclassified were added to the case-

base. Then the window-based update procedure was achieved as follows; for each case that was added, 

remove the oldest existing case of the same classification.  

The graphs in Figure 2 illustrate a number of things:  

• The concept drift in the data is evident in both datasets (full cb, no updates). 

• Although case-base editing does not show a decrease in error in Dataset 2, the decrease in FPs is 

significant which is crucial for this domain. 

• Updating the edited case-base daily with misclassified cases shows a significant improvement in 

overall average error across classifications in both datasets and overall FP performance is improved 

in both datasets. 

• Although the overall FP rate is better for window-based updates than for updates to the edited case-

base for Dataset 2, it is considerably worse for Dataset 1. The average error across classifications 

(taking into account the FN rate) is better for updates to an edited case-base across both datasets.  

An issue with continuous updating on the edited case-base is case-base management; although the editing 

process reduces the case-base size initially the size of the case-base grows each month. For Datasets 1 and 

2 the editing process reduces the initial training case-bases to 741 and 575 cases respectively. However, 

the resulting size of the case-base after all the data has been applied (i.e. after 10 months for Dataset 1 and 

12 months for Dataset 2) is 1512 and 2518 respectively. The advantage of the window-based update 

procedure is that the case-base remains at 1000 cases always.  

5.5 Level 2 Learning – Model Rebuild with Feature Reselection  

Our next experiments involved evaluating whether the next level of learning (periodically reselecting 

features) improved the performance gains that we had achieved by continuous updating with misclassified 
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cases. This level of learning involves a complete model rebuild. We chose to reselect features at the end of 

every 3-month period. At the reselect date, a new training set of 1000 emails was constructed. This 

training set consisted of the last 500 spam and 500 non-spam emails received up to the reselect date. 

Features were selected from this training set using the same feature selection process described in Section 

4.1 above. A case-base was built from this training set and was edited using CBE. Emails for the next 3 

months were classified against this new case-base.  

Figure 3 presents the results of applying feature reselection to both daily updates on an edited case-base 

and to window-based daily updates. The graphs in Figure 3 illustrate the following results: 

• Incorporating a periodic feature reselection and model rebuild reduces the average error across 

classifications for both daily update procedures. 

• Applying daily updates to an edited case-base and including 3 monthly feature reselection results in 

lower error rates than using a daily window-based update procedure with feature reselect. 

• Although the error rates reduce in all cases with feature reselection, there is no consistent 

improvement in FP rate for either update technique. 

An advantage of including the feature reselection and case-base editing procedure for daily updates is that 

it controls the size of the case-base. Table 2 shows the size of the case-base after each feature selection 

and case-editing process occurred on the two datasets. In all but one situation, the edited case-base has not 

increased over the 3-month period beyond the size of the original case-base (1000 cases). Thus, the 

frequency with which feature reselection is performed can be configured to manage the size of the case-

base. 

6 Conclusions 

We have shown that using a lazy learner can handle the concept drift inherent in email spam data. Our 

approach is to update the case-base at the end of each day with cases that were misclassified by the system 
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that day and to periodically rebuild the case-base using the most recent cases to reselect features. This 

approach performs better than the typical window-based approach at both levels of model update. 

A further level of learning, to define new domain specific features is also available to our system and will 

be evaluated in future work. The implementation of ECUE (due to the CRN) will allow new features to be 

included in cases to be added to the case-base at times other than model rebuilds. However, since our 

model rebuild involves full feature extraction and reselection, it may not be necessary to exploit the 

potential of the CRN to integrate cases based on different feature sets. 

Future work in this area will also include a comparison of our approach to concept drift with the more 

common ensemble approach to handling concept drift. 
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Captions 

 

Figure 1: The CRN for spam filtering 

 

Table 1: Profile of the testing data 

 

Figure 2: CBR vs. Naïve Bayes with dynamic updating 

 

Figure 3: Results of First Level Learning - Continuous Updating 

 

Figure 4: Results of Second Level of Learning – Feature Reselection 

 

Table 2: Case-base sizes during evaluation with feature reselection 
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Set 1 non 
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Dataset 1: Average Error across classifications
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Dataset 1: Average Error across classifications
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Dataset 1 Dataset 2 

Case-base size after 
feature select & edit 

Size after 3 months of 
updates 

Case-base size after 
feature select & edit 

Size after 3 months 
of updates 

741 821 575 652 

718 842 628 736 

678 1055 661 845 

719 798 (after 1 month) 580 971 
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