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a b s t r a c t

Research into the development of solar and visible light active photocatalysts has been significantly
increased in recent years due to its wide range of applications in treating contaminants of emerging
concern (CECs), endocrine disrupting compounds (EDCs), bacteria and cyanotoxins. Solar photocatalysis
is found to be highly effective in treating a wide range of CECs from sources such as pharmaceuticals,
steroids, antibiotics, phthalates, disinfectants, pesticides, fragrances (musk), preservatives and additives.
Similarly, a number of EDCs including polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), bi-
sphenol A (BPA), organotins (OTs), volatile organic compounds (VOCs), natural and synthetic estrogenic
and androgenic chemicals, pesticides, and heavy metals can be removed from contaminated water by
using solar photocatalysis. Photocatalysis was also found effective in treating a wide range of bacteria
such as Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhi and Micrococcus lylae. The
current review also compares the effectiveness of various visible light activated TiO2 photocatalysts for
treating these pollutants. Doping or co-doping of TiO2 using nitrogen, nitrogen–silver, sulphur, carbon,
copper and also incorporation of graphene nano-sheets are discussed. The use of immobilised TiO2 for
improving the photocatalytic activity is also presented. Decorating titania photocatalyst with graphene
oxide (GO) is of particular interest due to GO's ability to increase the photocatalytic activity of TiO2. The
use GO to increase the photocatalytic activity of TiO2 against microcystin-LR (MC-LR) under UV-A and
solar irciation is discussed. The enhanced photocatalytic activity of GO–TiO2 compared to the control
material is attributed to the effective inhibition of the electron–hole recombination by controlling the
interfacial charge transfer process. It is concluded that there is a critical need for further improvement of
the efficiency of these materials if they are to be considered for bulk industrial use.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Rigorous investigations of titanium dioxide [1–7] have been
carried out ever since Fujishima and Honda discovered its ability
to split water using a TiO2 anode and Pt counter electrode in 1972
[8]. Frank and Bard also highlighted its use as a photocatalyst in
the area of water remediation in 1977 [9]. TiO2 is important in a
wide range of commercial applications [10], as a pigment in cer-
tain formulations such as paints [11,12], toothpastes and sun-
creams [13,14] due to its strong white colour and also in various
applications such as water splitting [15,16], self-cleaning [17–20],

sterilisation [21], anti-fogging [22], lithography [23], degradation
of organic compounds [24,25], and metal corrosion prevention
[26,27]. Titanium dioxide occurs in nature in three different
crystalline forms; anatase, brookite and rutile, with rutile being
the most abundant and thermodynamically stable [28]. Yet it is
anatase that exists as the most photoactive phase because of its
improved charge-carrier mobility and the higher number of sur-
face hydroxyl groups [29]. Photocatalysis is widely stated as the
process of using light to activate a substrate (such as a semi-
conductor photocatalyst), in order to accelerate or facilitate pho-
toreactions but with the catalyst remaining unconsumed
[20,30,31]. A photocatalytic reaction is initiated when a photo-
excited electron is promoted from the filled valence band (VB) of
semiconductor photocatalyst to the empty conduction band (CB)
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as the absorbed photon energy, hν, equals or exceeds the band gap
of the semiconductor photocatalyst (Fig. 1). This reaction results in
leaving behind a positive hole in the valence band and a negative
electron in the conduction band, thus creating an electron–hole
pair (e�–hþ) [32]. The positive hole in the valence band can oxi-
dize the OH� or water at the surface to produce hydroxyl radical
(�OH) which acts as extremely powerful oxidant of organic pol-
lutants. The photo-excited electron located in the conduction band
is reduced to form the superoxide radical anion (O2

��) upon re-
action with oxygen and hydroperoxide radical (�OOH) upon fur-
ther reaction with Hþ [33]. These reactive oxygen species (ROS)
are pivotal in the degradation of organic compounds.

Stoichiometric anatase titania is active in the near-UV, limiting
its utility to environments with a significant ultraviolet light flux.
It is chemically and photo-chemically stable, but having a rela-
tively large band gap of 3.2 eV, it is only activated upon irradiation
with photons of light in the UV domain (Z387 nm), and thus the
light utilization efficiency to solar irradiation and visible light is
limited [31]. Of the solar spectrum, only 4–5% is UV light with
visible light making up approximately 40%. Therefore, in order to
enhance the solar efficiency of TiO2 under solar irradiation, at-
tempts were made to extend the absorption range of titanium
dioxide into the visible-light region [2,34–37]. Some methods used
to improve the efficiency of TiO2 are impurity doping [38,39],
sensitisation [40], surface modification [41], and fabrication of
composites with other materials [42]. Modified TiO2 can differ
from standard TiO2 in several ways including light adsorption,
charge recombination dynamics, surface structure and charge,

interfacial charge transfer kinetics, and adsorption of target pol-
lutants [42]. The role of the dopants in forming the resulting
material needs to be considered. The use of cations (usually me-
tals) for the doping of TiO2 was generally avoided due to their
tendency to increase charge carrier recombination centres [29],
and the generation of secondary impurity phases which inevitably
reduces the photo-activity of titania [43]. It was also suggested
that despite the decrease in band gap energy, metals were not
always successfully introduced into the TiO2 framework, and that
the remaining metals on the outside surface sheltered the photo-
reaction sites [44]. Significant attention has been directed at re-
ducing the band gap and in turn increasing the visible light ac-
tivity of TiO2 by doping with a range of non-metal elements in-
cluding nitrogen [34,45–49], carbon [43,50–53], sulphur [54–56],
phosphorous [57], boron [58,59], oxygen [60], and fluorine [61,62],
along with heterojunctions [63–67] and combinations of these
elements [68–73].

2. Advances in the development of visible light active
photocatalysts

Noble metals such as Ag [74–76], Au [75–77], Pt [78] and Pd
[79] and/or combinations of these metals with each other or other
materials have also been studied extensively for their properties
and their contribution toward visible light absorption. Ag was of
particular interest due to its well-known properties of improving
the photocatalytic efficiency under visible light irradiation by
acting as an electron trap and delaying the recombination of the
electron–hole pair through the promotion of the interfacial charge
transfer. Seery et al. reported the enhanced photocatalytic activity
with Ag doping of TiO2 due to the ability of Ag to trap the excited
e� , limiting the recombination rate and thus allowing the gen-
eration of more �OH which results in enhanced photocatalytic
ability of the material [80]. Nolan et al. observed that silver na-
noparticles exhibit a high level of absorbance in the visible light
region (Fig. 2A) and further proposed a mechanism for the visible
light absorbance by Ag TiO2 seen in Fig. 2B below [81]. It has been
suggested that it is the surface plasmon resonance of the silver
nanoparticles and the surface oxidised Ag that are responsible for
the visible light responsiveness of TiO2. This work also observed
that a weakening in the titania bridging complex in the presence
of silver encouraged the anatase to rutile transition which, in turn,
may affect the photocatalytic activity of the prepared material.

In more recent years, efforts to combine Ag with other mate-
rials as composites for use in areas such as water disinfection and

Fig. 1. Schematic illustration of the photocatalytic process. (Banerjee, Dionysiou
and Pillai, Appl. Catal. B Environ. 176–177 (2015) 396). Copyright 2015, reprinted
with permission from Elsevier.

Fig. 2. (A) Diffuse reflectance spectrum of silver nanoparticles b) Schematic diagram showing the mechanism for light absorption of Ag nanoparticles. (Nolan , Seery, Hinder,
Healy and Pillai, J. Phys. Chem. C 114 (2010) 13026) reprinted with permission from American Chemical Society.
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self-cleaning cotton textiles have been studied [82–84]. One such
material is that of Ag/AgCl [82], which exhibited much higher
reactivity under visible light due to the surface plasmon resonance
of the Ag-NPs and the production of Cl� through oxidation of Cl
ions by the holes which are themselves reactive radical species
capable of oxidising organic pollutants. A composite of Ag–AgI–
TiO2/CNFs [83] was studied by Yu et al. [83]. The combined effect
of the plasmon resonance of metallic Ag nanoparticles resulting in
visible light responsiveness, the oxidation of the Ag and I (Iodine)
resulting in the generation of reactive radical species and the
presence of carbon nanofibers (CNFs) contributing to a high ab-
sorbance capacity and high conductivity of the composite made
this a material of interest in the area of environmental
remediation.

Due to problems associated with metal doping, non-metal
elements were studied comprehensively in the hope of achieving
visible light active stable titanium dioxide. Non-metal doping, as
mentioned above, has been the subject of extensive analysis with
nitrogen, carbon and different non-metal combination systems
being of most interest for visible light enhancement [85]. Ever
since Sato in 1986 reported visible light responsive activity after
the incorporation of nitrogen in a titania precursor sol [86], ni-
trogen has been seen as the most promising dopant due to the
high stability of nitrogen and the comparable atomic sizes of ni-
trogen and oxygen. Asahi et al. suggested that the effective band
gap narrowing was the result of successful doping of nitrogen into
substitutional sites due to the mixing of 2p orbitals of N and O
[87]. Serpone et al. [88] later suggested that it was the formation of
defects associated with oxygen vacancies that was responsible for
the visible light activity. Di Valentin et al. [89] studied the effect of
nitrogen doping in great detail using density functional theory
(DFT) and suggested several routes of nitrogen doping including
substitutional and interstitial sites with the generation in discrete
energy levels above the valence band often referred as a midgap
state. Regardless of the numerous studies based on nitrogen
doping, the electronic structure and the exact species responsible
for visible light activation of the doped material remains con-
troversial but is found to be dependant on the route of prepara-
tion. Carbon was also an element of increased interest over the
years with several publications focusing on the electronic struc-
ture of carbon doped TiO2. Etacheri et al. [64] studied carbon
doped TiO2 heterojunctions for antibacterial activity. From their
study, XPS analysis was conducted on pure anatase and C-doped

TiO2 to investigate the influence of carbonate impurities on the
electron structure of TiO2. It was seen that the widths of the va-
lence bands of the two materials were equal, pointing to almost
similar mobilities of photo-generated charge carriers (Fig. 3A). It
was also deduced that the observed visible light activity was due
to the formation of localised C 2p interband states of the carbonate
ions in the band gap, located approximately 0.26 eV above the
valence band (Fig. 3B).

Heterojunction photocatalysts, such as the anatase–rutile sys-
tem, exhibit characteristics preferential for the production of en-
hanced visible light activity. These systems promote the effective
transfer of photo-excited electrons from the conduction band of
anatase to that of rutile and favour electron–hole separation (see
Fig. 4). Pillai and co-workers have successfully prepared several
anatase–rutile systems doped with non-metals, including nitro-
gen, a nitrogen and sulphur co-doping system and a carbon doped
system resulting in anatase–brookite heterojunction mentioned
above [48,55,63-65,70]. It was noted that the combined effect of
superior electron–hole separation and substitutional doping by
nitrogen promoting band gap narrowing was found to have an
enhancing effect on the photocatalytic behaviour of the hetero-
junction [63]. When analysing a co-doped system of S,N–TiO2

anatase–rutile heterojunction [63], it was the formation of S 3p, N
2p and πn N–O states between the conduction band and the va-
lence band that was responsible for its band gap narrowing. The
efficient electron–hole separation within this system was ascribed
as the most important factor for the superior visible light induced
photocatalytic activity of the heterojunction.

The use of these solar and visible light active photocatalysts in
the treatment of contaminants of emerging concern (CECs), en-
docrine disrupting compounds (EDCs), bacteria and cyanotoxins
are to be discussed in detail in this review.

3. Visible light active TiO2 photocatalysts for treating con-
taminants of emerging concern (CEC)

The acknowledgement of the ever increasing issue of con-
taminants of emerging concern (CECs) has increased in recent
years. CECs come from a broad spectrum of sources such as but not
limited to pharmaceuticals [90], steroids [91], antibiotics [92–94],
phthalates [95], disinfectants [96], pesticides [97], fragrances
(musk) [98,99], preservatives and additives [100]. From definition,

Fig. 3. (A) VB XPS spectra of (a) anatase and (b) carbon-doped anatase-brookite hetero-junctions prepared (B) Localised impurity levels for C-doped TiO2. (Etacheri, Michlits,
Seery, Hinder and Pillai, ACS Appl. Mater. Interfaces 5 (2013) 1663. Copyright 2010, reprinted with permission from American Chemical Society.
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the issue with CECs is that they are synthetic or naturally occur-
ring chemicals but are not commonly monitored in the environ-
ment. These have the potential or are suspected to cause adverse
ecological and/or human health effects. CECs may be either che-
micals that have been around for a long time but have not been
suspected of having negative environmental effects, or new
emerging products of which their properties, effects, and en-
vironmental implications may not be fully known. One main
concern with the identification of these CECs in the environment is
that it is clear that existing wastewater treatment processes are
ineffective in their removal [101,102]. Removal of CECs using
conventional treatment methods (e.g. physical, chemical or bio-
logical) is inefficient and the operation cost is significantly high.
Additionally, a number of EU directives such as 85/337/EEC, 91/
271/EEC, 76/464/EEC, 2010/75/EU and 2006/118/EC limit the use of

conventional technologies due to their ineffectiveness and in-
complete bio-degradation of the waste products. Here we will
discuss the use of TiO2 as a material of interest in the degradation
of these contaminants.

Several publications have highlighted the use of TiO2 in the
removal of contaminants from wastewater systems [103–112].
Miranda-Garcia et al. studied the use of immobilized TiO2 in the
destruction of fifteen selected emerging contaminants in simu-
lated and real effluent wastewater using solar irradiation (Fig. 5)
[113]. Typically, TiO2 is used in a suspension (slurry) form making
its removal from the treated water difficult. To avoid this compli-
cation, immobilized TiO2 on a borosilicate glass support was uti-
lized. The immobilized TiO2 was seen to not only degrade most of
the 15 contaminants, but also showed great reusability even after
5 reuses in the simulated water system. Using real effluent water,

Fig. 4. : Schematic diagram showing electron transfer in anatase–rutile heterojunctions in visible light photocatalysts. (Etacheri, Seery, Hinder and Pillai, Inorg. Chem. 51
(2012) 7164.) Copyright 2012, reprinted with permission from American Chemical Society.

Fig. 5. Structure of selected emerging contaminants. (Miranda-García et al. Applied Catalysis B: Environmental 103 (2011) 294–301). Copyright 2015, reprinted with per-
mission from Elsevier.
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the pollutant degradation time using immobilised TiO2 was
shorter or equal to that using TiO2 in suspension.

One pollutant in particular, carbamazepine (CBZ), proved to be
a persistent compound, rarely or not at all degraded in wastewater
treatment plants. Carbamazepine is a derivative of dibenzazepine,
structurally similar to tricyclic antidepressants, used primarily in
the treatment of epilepsy, relief of neuralgia and psychotic dis-
orders. With CBZ deemed to be a danger to aquatic life including
bacteria, algae, invertebrates and fish, and with its presence de-
tected in influent, effluent and sludge samples from wastewater
treatment plants (WWTPS) [114], methods to increase the removal
of this pollutant are required. Using solar irradiation, Haroune
et al. were able to show effective degradation of CBZ and three of
its metabolites; carbamazepine epoxide (CBZ-E), acridine (AI) and
acridone (AO), using TiO2 photocatalysis. They further suggested
that the impact of factors such as pH, ionic strength and natural
organic matter play a role in either enhancing or inhibiting this
removal [115]. Efforts to shift the band gap of TiO2 to the visible
region were also explored to enhance the CBZ degradation under
solar conditions. By coating a thin film of N-doped TiO2 onto a
glass slide, Mamane et al. hoped to shift the light absorption edge
from UV to visible light in order activate the photocatalytic de-
gradation of chemical and biological pollutants using solar light
[116]. It was revealed that even though a shift toward absorbance
of longer wavelengths of light occurred, the shift was not large
enough to allow the absorption of visible light resulting in low
reactivity over 400 nm. Hydroxylated reaction intermediates of
CBZ showed attacks on the aromatic ring by hydroxyl radicals. Tri-
doping TiO2 with dopants such as C, N and S to produce visible
light active TiO2 was explored by Wang et al. [117]. Using this
method, a successful band gap reduction occurred producing a
material with a band gap of 2.67 eV. Using a visible-LED photo-
reactor utilizing a 450 nm light source, a 68% CBZ removal was
seen over 120 min. As the water supply is only present in WWTPs
for a relatively short amount of time, quick removal of these pol-
lutants is preferred.

4. Photocatalytic treatment of endocrine disrupting com-
pounds (EDCs)

Endocrine disrupting compounds (EDCs) are chemicals that
have xenobiotic or exogenous origins that can interfere and alter
the function of the endocrine system and consequently cause ad-
verse health effects in animals and humans [118–125]. Several
substances have already been classified as or as having the po-
tential to be EDCs (Fig. 6), including compounds from the groups
of polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs),
organotins (OTs), volatile organic compounds (VOCs), pesticides,

and heavy metals [126–133].
Other substances of interest are natural and synthetic estro-

genic and androgenic chemicals [134,135]. These chemicals have
found to exist in wastewater, surface water, sediments, ground-
water, and even drinking water and have been attributed to dis-
turbances in the reproductive systems of humans and wildlife
[136]. Since conventional wastewater treatment methods have
been proven to be ineffective at removing or degrading these
chemicals, various other avenues of research must be investigated
as potential removal routes [137–140]. The use of TiO2 under
visible light and solar light irradiation is reported here.

Bisphenol A (BPA) is a synthetic compound known to be an
EDC. With uses primarily in the production of plastics including
the lining of food and beverage packaging and baby bottles, and
the potential for BPA to impose estrogenic and toxicological risks,
significant attention has been made in recent years to remove this
threat [141–146]. Using nitrogen doped TiO2 hollow spheres,
Subagio et al. was able to produce a 90% removal of BPA using vis-
LED conditions (465 nm) when compared to TiO2 and hollow
spheres individually [147]. It was reported that the incorporation
of the hollow spheres into the N–TiO2 system led to the devel-
opment of an enhanced surface area and an increased porosity
which in turn allowed for the development of an increased pho-
tonic efficiency. Alkaline conditions were deemed to be favourable
during the analysis with the production of hydroxyl radicals being
attributed to the improved degradation results. Wang et al. re-
ported the use of a co-doping system, CN–TiO2, against BPA using
visible light irradiation [148]. In this report, the group suggested
that it is the synergistic properties that appear when combining C
and N that were responsible for the increased photocatalytic
ability of the prepared materials. The mesoporous system with a
high surface area provided favourable conditions for the diffusion
and adsorption of the BPA molecules. A 96% removal of BPA after a
two hour period, with complete elimination after five hours, was
seen. It was surmised that when using white light, as opposed to
other blue, green and yellow LEDs a higher amount of valence
band electrons were excited to the conduction band, leading to an
improved photocatalytic degradation rate. The results of the study
by Wang et al. are in agreement with those of Subagio et al. in that
an increase in pH led to the greater number of hydroxyl radicals
available. It was also noted that when the pH was increased to an
alkaline state, a repulsion of the BPA molecules from the CN–TiO2

surface was detected, leading to the conclusion that a more cir-
cumneutral pH, 5opHo9, was optimum for BPA degradation.
Composite systems of nitrogen doped TiO2 supported on activated
carbon (AC) under solar irradiation [149] and Cu–TiO2 under
visible light irradiation [150] have also been studied as potential
technologies for BPA removal from aqueous systems.

Hormone steroids are naturally present in the environment due
to their excretion by animals and humans [151,152] and efforts
have been made to detect and identify their presence in waste-
water sources [153]. Natural estrogenic steroids are secreted from
the ovary and placenta by humans and animals and examples of
such are estrone (E1) and 17β-estradiol (E2). 17-α-ethynylestra-
diol, a commonly used synthetic estrogenic steroid, is excreted
into the environment through the use of oral contraceptive pills
and is known to be responsible for altering the reproduction of fish
and effecting the sustainability of some fish species [154–157].
Numerous studies into the removal of this steroid from various
water sources have been conducted [158], including the use of UV
irradiation [159–161] and more recently, solar irradiation with the
photocatalyst TiO2 [135,139,161–163]. Oliveira et al. [135] studied
the use of a TiO2/WO3 system, deposited on electrodes, for the
remediation of EE2 from aqueous solutions using solar irradiation.
Three systems were analysed; heterogeneous photocatalysis (HP),
electrochemically-assisted heterogeneous photocatalysis (EHP)Fig. 6. Chemical structures of selected EDCs.
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and photolysis, with the EHP system proving to be the most effi-
cient system. Upon the addition of a photo-anode (Pt wire) into
the solution, set at 0.7 eV, EE2 removal was seen to increase
possibly due to the suppression of the electron–hole recombina-
tion under these conditions. The results concluded that the addi-
tion of the WO3–TiO2 improved the sunlight harvesting cap-
abilities of the system and enhanced the photo-induced charge
separation due to the relative positions of the TiO2 and WO3

conduction bands and valence bands.
DDT (dichlorodiphenyltrichloroethane) is an organochlorine

insecticide primarily used between the 1940s to the 1970s with
initial uses in the treatment of malaria, typhus, and the other in-
sect-borne human diseases. After concerns arose about its effect
on both wildlife and human health, and its tendency to bioaccu-
mulate in the food chain, prohibitions and restrictions began for
the use of this compound. After being banned in 1972, over 100
countries signed the Stockholm Convention on Persistent Organic
Pollutants (POPs) in 2001, committing to the elimination of 12
POPs including DDT, with an increase to 160 committed countries by
2008. Other than the allowance of the World Health Organisation
(WHO) who permitted the use of DDT for indoor removal of malaria,
DDT is only permitted for use when no other safe, effective or af-
fordable methods are available [164]. DDT is seen to directly affect
the liver, the central and the peripheral nervous systems [165]. The
removal of this compound and its derivatives has been studied in
recent years using both UV [165,166] and visible light photocatalysis
[167] in aqueous solutions. Using an N-doped TiO2 prepared using
diethandamine (DEA) as the dopant source, Ananpattarachai et al.
[167] showed the degradation of DDT under both UV and visible light
irradiation. Analysing both methods, visible light showed a 6 times
higher rate of removal than use of UV light, with 100% of DDT re-
moved. This highlighted the use of photocatalysis in the remediation
of DDT in environmental water supplies with further promise of its
use in real contaminated water systems.

Atrazine (ATR), a regularly used herbicide, is frequently found
in the effluent of wastewater treatment plants [102,168] and is a
common soil and water pollutant. ATR is an EDC of importance
due to its potential to have disruptive impacts on the reproductive
gland formation of amphibians. As with other pollutants, con-
ventional methods of water treatment are impractical as only
partial elimination of ATR can be seen. The use of metallopor-
phyrins supported on TiO2 as a potential system for ATR removal
utilising visible light has been studied. Granados-Oliveros et al.
[169] prepared, analysed and compared metalloporphyrin systems
with four different metal centres; Cu(II), Fe(III), Zn(II) and metal-
free, for their photocatalytic degradation activities. It was deemed
that a system of copper(II) tetra (4-carboxyphenol) porphyrin
(TcPPCu(II)) was the best photocatalyst with 82% reduction in ATR
after a one hour period (Fig. 8). Study of the ROS production from
this system indicated that O2

�� alone was not responsible for the
reactivity, yet upon the addition of H2O2 into the reaction solution,
increased reactivity was seen. It was deduced that the H2O2 was
reduced by O2

�� and/or ecb to the �OH species which in turn in-
creased reactivity. It was surmised that the �OH attacked the
amino alkyl groups freeing organic radicals generated from a very
quick hydrogen atom abstraction from the substrate. Inter-
mediates II, III and IV were produced from a subsequent alkylic
oxidation reaction followed by a dealkylation to produce the V, VI
and VII intermediate products (Fig. 7). This report suggests that as
no photoproducts were observed from the dehalogenation of ATR
by electron transfer, it can be said that the �OH are responsible for
the ATR oxidation process. NF doped TiO2 systems have also been
analysed for ATR elimination under visible and solar irradiation
[170,171].

5. Photocatalytic anti-bacterial action

The use of semiconductors as effective anti-bacterial materials
has been greatly documented in the past [29,172–175]. Here we
discuss recent publications in the field which utilise visible light
responsive titanium dioxide in order to make it a viable route for
applications in industries such as environmental, hospital and
wastewater treatment. Several different doping systems including
nitrogen [176], nitrogen–silver [72,177], nitrogen–copper [47],
sulphur [178], carbon [64], nickel [179], copper [179] and more
recently graphene nano-sheet [180] doped TiO2 (the term doping
is loosely used here for addition, decoration, doping, incorporation
etc.) have been prepared and analysed for their inactivation of
various bacteria strains such as Staphylococcus aureus, Bacillus
subtilis, Escherichia coli, Salmonella typhimurium, and Micrococcus
lylae. It is widely reported that the photocatalytic killing me-
chanism of bacteria starts with damaging the cell membrane re-
sulting in the subsequent leakage of internal bacterial components
from the damaged sites. Subsequently, the leaked cell debris is
oxidised by photocatalytic reactions. Pulgarin's group have re-
ported in great detail the effects nitrogen and sulphur doping of
TiO2 and its killing of E. Coli as the bacteria of choice [181–184]. In
their earlier work, they suggested that a co-doped TiO2 using
thiourea as a source of N and S was a viable system for E. Coli
destruction [181]. Upon thermal treatment of the materials, 400 or
500 °C, they were able to determine that the differing thermal
temperatures produced differing doping species. The authors were
able to conclude from their study that it is the nature of the doping
(substitutional or interstitial N-doping and cationic or anionic
S-doping), surface hydroxylation, and the particle size that plays a
role in the ROS formation. With continuous study of this system,
the group suggested that under visible light irradiation, it is the
formation of the superoxide anion radical O2

�� and the singlet
oxygen (1O2), produced by photo-promoted electron from the N
and S localised states, which are responsible for E. Coli inactivation
[182,183]. Solar irradiation was also studied by Pulgarin's group for
its ROS generation [184]. It was determined that under UV light,
the inactivation of E. Coli was due to preferred hydroxyl radical
(�OH) formation through water oxidation by photo-induced

Fig. 7. Reaction by-products of atrazine degradation using visible light irradiation.
(Granados-Oliveros et al., Appl. Catal. B Environ. 89 (2009) 448). Reprinted with
permission from Elsevier.
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valence band holes. Etacheri et al. [64] reported that a carbon
doped TiO2 anatase–brookite heterojunction in the ratio of 80/20
provided sufficient inactivation of S. aureus under visible light ir-
radiation. Significant band gap narrowing was caused by the for-
mation of additional energy levels by carbonate ions which in turn
resulted in superior photocatalytic and antibacterial activities.
Examples of the anti-bacterial action of the material are seen in
Fig. 8. It is the slower rate of electron-hole recombination that
explains the increased activity of the C–TiO2. When studying the
roles of the ROS, the H2O2 produced from the reaction of surface
absorbed H2O or OH� reacts with �OH to form the protonated
superoxide radical �HO2 that functions like O2

�� to inactivate
bacterial cells. The proposed mechanism of anti-bacterial action is
given in Fig. 9. Here it is shown that upon activation with light, an
electron is promoted from the valence band to the conduction
band providing a positive hole in the valence band and an electron
in the conduction band. The generated ROS such as O2

�� , 1O2, �OH,

H2O2 and �HO2 result in the decomposition of bacteria. From these
studies it can be concluded that it is not only the material of in-
terest that needs to be considered but also the types and con-
centrations of ROS being generated under solar/visible light
conditions.

6. Photocatalytic treatments of cyanotoxins

Cyanobacteria or blue–green algae (blooms) are photosynthetic
bacteria that share some properties with algae and are naturally
present in lakes, streams, ponds, and other nutrient rich surface
waters. By consuming oxygen in the environment, they create a
hypoxic condition which causes die-off in plants and animals.
There are several factors that influence the growth of these
blooms. These include light intensity, total sunlight duration, nu-
trient availability such as nitrogen and phosphorous, water

Fig. 8. Example of anti-bacterial action by titania photocatalysts. (A) Evonik-Degussa P-25 with no light. (B) C-doped anatase-brookite heterojunctions with no light.
(C) Evonik-Degussa P-25 catalyst with visible light irradiation. (D) C-doped anatase-brookite hetero-junctions with visible-light irradiation. Reproduced from Etacheri,
Michlits, Seery, Hinder and Pillai, Appl. Mater. Interfaces 5 (2013) 1663–1672; Reprinted with permission from American Chemical Society.

Fig. 9. Proposed mechanism of anti-bacterial action by photocatalysis. (Podporska-Carroll et al. Appl. Catal. B Environ. 176–177 (2015) 70). Copyright 2015, reprinted with
permission from Elsevier.
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temperature, pH and water flow [185]. Under favourable condi-
tions of light and nutrients, some species of cyanobacteria produce
toxic secondary metabolites, known as cyanotoxins. These have
many harmful effects in relation to human [186,187], animal [188]
and environmental health. Microcystins are stable, water-soluble
molecules and are rapidly absorbed by the liver resulting in
harmful results such as cell necrosis, haemorrhage and death
[189].

In recent years, significant attention has been given to the ever
rising problem of these cyanotoxins occurring in aquatic sources,
especially those that serve as sources of drinking water supply
[189–201]. Choi et al. [202] in 2007 reported that when using a
visible light active (VLA) N–TiO2 material under acidic conditions
(pH 3.5), the adsorption and photocatalytic degradation of MC-LR
is greatly improved. It was proposed that electrostatic attraction
forces between MC-LR and N–TiO2 are increased when MC-LR has
an overall negative charge due to the dissociation of its free car-
boxylic groups and N–TiO2 is positively charged under these
conditions. Due to the very short lifetime of the hydroxyl radicals
and that the reaction mainly occurs with adsorped species, the
improved surface adsorption of MC-LR to the TiO2 surface is cen-
tral to MC-LR degradation. It has been determined that MC-LR
degradation occurs at four sites of the structure; the aromatic ring,
the methoxy group, conjugated double bond of the Adda group
and the cyclic structure of the Mdha amino acid. Antoniou et al.
[203] studied the use of immobilised TiO2 as a photocatalyst for
MC-LR and reported that the preferred site of hydroxyl radical
attack for MC-LR is the conjugated double bonds of the Adda
moiety, which is also suggested in the work of Anderson et al.
based on the use of visible light irradiation in the degradation of
the MC-LR compound [204] (Fig. 10). Antoniou et al. discusses two
different mechanistic steps which occur upon the reaction of �OH
with the diene bonds producing hydroxyl adducts; hydroxyl ad-
dition and hydroxyl substitution [205] (Fig. 11). Initial incorpora-
tion of the �OH into the double bond results in the formation of an
allyl radical, with subsequent �OH reacting with the carbon centre.
The double hydroxylation occurs at any of the double bond pairs
available. A mixture of products may form upon electrophilic re-
actions of the conjugated dienes, caused by the various resonance
configurations that the allyl radical can take. The product formed
depends on the stability of the allyl radical. Isomerisation at the
C4–C5 or C6–C7 of the diene bond of the Adda chain is due to the
�OH addition mechanism and not the effect of light irradiation.

Hydroxyl substitution is responsible for the OH substitution for
hydrogen of C7 forming enol–MC-LR. This product rapidly under-
takes several reactions including isomerization to a more stable
tautomer of ketone–MC-LR. This further undergoes a series of
oxidative induced bond cleavage mechanistic steps resulting in a
hydroxyl derivative. During the study of the degradation pathway
of MC-LR, the group concluded that the main �OH mechanistic
steps were hydroxylation through addition or substitution with
simultaneous isomerization, oxidation and oxidative bond clea-
vage [205].

The synthesis of a visible light active NF–TiO2 material with a
reduced effective band gap of 2.85 eV (435 nm) with the addition
of a fluorosurfactant and with improved physiochemical proper-
ties such as surface area, crystal size and porosity has been re-
ported [206]. It was suggested that an anatase/brookite hetero-
junction was partly responsible for the increased photocatalytic
efficiency due to the quick interparticle electron transfer between
the constituent titania nanocrystals that slows down recombina-
tion losses. The brookite surface allows for improved water ad-
sorption and consequently increases the photo induced hydro-
philic conversion and surface reactivity through the formation of
abundant �OH integral for pollutant adsorption on the photo-
catalyst surface. Further research into the utilization of visible light
active NF–TiO2 as a model material for the destruction of MC-LR
has been carried out in further detail by Pelaez et al. [206–208]. In
several published papers by this group, details on the role of water
quality parameters, material doping and the formation of ROS
have been discussed. Under favourable acidic conditions, it was
found that by sparging a solution of pollutant and photocatalyst
with oxygen, an increase in the presence of hydroxyl radicals and
singlet oxygen can be detected [207]. This is due to the production
of superoxide anion radicals through the scavenging effect of
conduction band electrons by the dissolved O2 molecules. Upon
the reduction of oxygen, the rate of ROS production is decreased
due to the increased rate of recombination taking place. In-
corporation of different additives to improve and/or control the
physiochemical properties of the photocatalyst was also studied.
The addition of Evonik/Degussa P25 into visible light active NF–
TiO2 was found to play a significant role in improving BET surface
area, pore volume, porosity and the total TiO2 mass content in the
film [208]. Triantis et al. [209] reported the mineralisation of MC-
LR under various light sources. When irradiated with visible light
over a wavelength of 4410 nm, standards such as Evonik/Degussa

Fig. 10. Structure of microcystin-LR. (J. Andersen et al. Applied Catalysis B: Environmental 154–155 (2014) 259–266). Reprinted with permission from Elsevier.
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P25 and TiO2 were seen to be completely inactive whereas the
degradation of the toxin was easily achieved by N–TiO2 due to a
red-shift of the energy band gap to the visible light region (2.3 eV).
Liu et al. [210] also studied the activity of visible light active co-

doped TiO2 (C–N TiO2) with the effective narrowing of the band
gap by carbon and nitrogen. Favourable structural and textural
characteristics such as small crystalline size, anatase formation,
increased porosity and a high specific surface area with successful
inhibition of the anatase to rutile phase transformation were
considered the reasons for the increased photocatalytic activity of
these materials for MC-LR degradation. Zhao et al. [211] showed
that a visible light active NF–TiO2 proved to be effective in the
destruction of 6-hydroxymethyl uracil (6-HOMO), a model com-
pound (Fig. 12) for the cyanotoxin Cylindrospermopsin (CYN).

This study also compared the effectiveness of the different
doping systems including PF–TiO2 and S–TiO2. It was seen that of
the three systems, PF–TiO2 had the largest shift towards the visible
light region (2.68 eV), yet it was less effective than NF–TiO2

(2.75 eV). The suggested reason for this was that doping with PF
resulted in poorer structural properties and a faster electron–hole
recombination rate. The slower recombination rate of the NF–TiO2

system allowed for the production of ROS products which in turn
promoted the destruction of this compound. The active species
found in this study was the superoxide radical anion (O2

��) at the
conduction band which as discussed before, can result in the

Fig. 11. Attack of hydroxyl radicals on the conjugated carbon double bonds of Adda. Reproduced from Environ. Sci. Technol. 42 (2008) 8877–8883; with permission from
American Chemical Society.

Fig. 12. Chemical representation of cylindrospermopsin (CYN) and the model compound 6-hydroxymethyl uracil (6-HOMU). Adapted from Zhao et al., Catal. Today 224
(2014) 70; Copyright 2014, reprinted with permission from Elsevier.

Fig. 13. Visible light photocatalytic processes for the destruction of 6-hydro-
xymethyl uracil. Adapted from Zhao et al., Catal. Today 224 (2014) 70; Copyright
2014, reprinted with permission from Elsevier.
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generation of hydroxyl radicals through the reaction of oxygen
with H2O2 (Fig. 13). This indicated that molecular oxygen is re-
quired for degradation as an ecb� trap and/or in the production of
O2

�� . S�TiO2 was proven to be an inactive system for this reac-
tion. This study furthered the knowledge and the roles of ROS in
doped and co-doped titanium dioxide photocatalysts.

Graphene oxide (GO) is a material of particular interest for the
doping of TiO2 due to its abundant anchoring sites for binding
with the photocatalysts. Fotiou et al. [212] attempted to use GO to
increase the photo-activity of TiO2 against MC-LR under UV-A and
solar irradiation (Fig. 14). From the characterisation of the GO
doped materials, it can be clearly seen that the resulting material
absorbs light from the whole visible region. After a period of 1 h
irradiation using solar irradiation, Degussa P25 was seen to fully
degrade MC-LR with GO–TiO2 closely behind with 97% followed by
another standard Kronos (95%) and reference TiO2 (18%). The im-
proved activity of GO–TiO2 compared to the reference TiO2 was
attributed to the effective inhibition of the electron–hole re-
combination route due to the interfacial charge transfer process.
The doping with GO provided carbon for the substitution of oxy-
gen (Ti–O–C) which in turn provided new energy states deep in
the TiO2 band gap resulting in visible light absorption. Inter-
mediate products produced by GO–TiO2 degradation of MC-LR
were identified using LC-MS. These intermediates were de-
termined to be mostly identical to those identified by P25 under
UV-A suggesting that the photo-generation mechanism takes
place through a common active species, �OH. The reaction me-
chanism suggested was in accordance with that provided by An-
toniou previously confirming that the responsible reaction steps
are hydroxyl addition and hydroxyl substitution [205]. Further
studies where the materials were tested against MC-LR in surface
water supplies have shown that GO–TiO2 is almost as effective as
in ultra-pure water, highlighting the promising use of this material
in water treatment systems.

7. Conclusions

Research into the development of solar and visible light active
photocatalysts for the treatment of contaminants of emerging
concern (CECs), endocrine disrupting compounds (EDCs), bacteria
and cyanotoxins has been discussed in detail throughout this re-
port. The use of conventional water treatment technologies against

these contaminants are limited due to their ineffectiveness and
incomplete bio-degradation of the waste products as outlined in a
number of EU directives such as 85/337/EEC, 91/271/EEC, 76/464/
EEC, 2010/75/EU and 2006/118/EC. Therefore, the effective utilisa-
tion of solar and visible light for the destruction of these pollutants
has great potential. As discussed, upon activation with light of a
suitable wavelength, reactive oxygen species (ROS) such as O2

�� ,
1O2, �OH, H2O2 and �HO2 are produced with the ability to degrade
organic compounds. It was found that it is not only the material of
interest that needs to be considered but the production of ROS
being generated under solar/visible light conditions is also vital. It
can be concluded that there is a critical need for further improve-
ment of the efficiency of these materials for bulk industrial use.
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