
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Electrical and Electronic Engineering 

2011-01-01 

Non-Gaussian Analysis of Wind Velocity Data for the Non-Gaussian Analysis of Wind Velocity Data for the 

Determination of Power Quality Control Determination of Power Quality Control 

Jonathan Blackledge 
Technological University Dublin, jonathan.blackledge@tudublin.ie 

Eugene Coyle 
Technological University Dublin, Eugene.Coyle@tudublin.ie 

Derek Kearney 
Technological University Dublin, derek.kearney@tudublin.ie 

Follow this and additional works at: https://arrow.tudublin.ie/engscheleart2 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
Blackledge, J., Coyle, E., Kearney, D.:Non-Gaussian Analysis of Wind Velocity Data for the Determination of 
Power Quality Control. ISAST Transactions on Computing and Intelligent Systems, vol: 3, issue: 1, pages: 
78 - 86, 2011. doi:10.21427/D7FS7T 

This Article is brought to you for free and open access by the School of Electrical and Electronic Engineering at 
ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU 
Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, 
vera.kilshaw@tudublin.ie. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engscheleart2
https://arrow.tudublin.ie/engschele
https://arrow.tudublin.ie/engscheleart2?utm_source=arrow.tudublin.ie%2Fengscheleart2%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=arrow.tudublin.ie%2Fengscheleart2%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


Non-Gaussian Analysis of Wind Velocity Data for
the Determination of Power Quality Control

Jonathan Blackledge, Eugene Coyle and Derek Kearney

Abstract— The quality of power (i.e. the sustainable power
output as a function time) of any wind dependent energy
converter (including wind turbines and wave energy converters) is
determined by many design and environmental factors but time-
dependent variations in the wind speed are arguably the most
important. In this paper we consider a non-Gaussian model for
analysing and then simulating wind velocity data. In particular,
we consider a Lévy distribution for the statistical characteristics
of wind velocity and show how this distribution can be used
to derive a stochastic fractional diffusion equation for the wind
velocity as a function of time whose solution is characterised by
the Lévy index. A Lévy index based numerical analysis is then
performed on wind velocity data for both rural and urban areas
where, in the latter case, the index is shown to have a larger value.
Finally, an empirical relationship is derived for the power output
from a wind turbine in terms of the Lévy index using Betz law
and a similar relationship obtained for a wave energy converter.
In both cases, it is shown how the average power output as a
function of time is (inversely) related to the Lévy index for the
wind velocity. It is concluded that these relationships may have
value in determining the optimal geographical locations for the
construction of wind and wave farms and for monitoring their
performance in terms of power quality control.

Index Terms— Wind turbines, Wave energy conversion,
Stochastic wind velocity model, Non-Gaussian statistics, Lévy
index, Power quality control.

I. INTRODUCTION

Developing appropriate models for assessing and predicting
the quality of power for any renewable energy source is
important throughout the energy industry. Quality of power
modelling is particularly important with regard to wind energy
as the construction of new wind farms is growing rapidly
compared with other renewable energy systems [2]. By 2030,
it is estimated that up to 40% world energy supply will be
based on renewable energy sources and in countries with an
appropriate disposition to generating energy from wind, wave
and tidal power such as the UK and Ireland, the percentage
is expected to be much higher. For example, at the end of
2008, the Republic of Ireland had an installed wind power
capacity of 1245 MW (MegaWatts) which ranks Ireland 15th
in the world in terms of MW installed. This is a marked
increase in the level of wind power generation previously
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available, more than doubling a total of 495 MW in 2005.
In 2008 alone, the rate of growth was 54.6%, amongst the
highest in the world. On July 31, 2009, the output from the
Republic of Ireland’s wind turbines peaked at ∼1000 MW and
during certain times on that day, up to 39% of the countries
demand for electricity was met from wind power alone. By
2010 there was 1,161 MW installed wind power generation
in the Republic of Ireland, with a further 1,415 MW under
contract [1].

Quality of power modelling is often based on a statistical
analysis of the available wind velocity data which is used to
assess optimum regions for the construction of wind farms, for
example [3]. The power generated by a wind turbine is based
on a range of design factors, the most important of which is
the turbine blade area given that, from Betz law, the power P
in Watts is given by [4]

P =
1
2
αρAv3 (1)

where v is the upwind speed (i.e. the wind velocity that is
incident on the turbine) in metres per second (ms−1), A is
the area mapped out by the turbine blades in m3, ρ is the
density of air in kgm−3 and α < 0.593 is the coefficient of
performance. For completeness, a derivation of equation (1) is
given in Appendix A which includes the idealised conditions
upon which this equation is based. Figure 1 shows a schematic
diagram of the increasing size of the blade area (i.e. rotor
diameter) that has and continues to evolve in order to produce
wind turbines with greater power output.

Fig. 1. Schematic diagram of the increasing size in wind turbine blade
area (rotor diameter) from 1985 onward required to provide larger power
yields according to the Betz law in which the power from a wind turbine is
proportional to the blade area (Source: Jos Beurskens ECN).



Although other physical factors such as air temperature and
pressure, angle of attack, etc. are important, given equation (1),
it is clear that the scaling law of the output power with regard
to wind velocity (i.e. P ∝ v3) is the most significant feature
for a given design of a wind turbine with a fixed area and
coefficient of performance [5]. Moreover, the wind velocity is
not something that can be incorporated or controlled in regard
to the design of a wind farm other than through an appraisal of
the optimum position in which to build a wind farm, i.e. where
the average wind velocity is known a priori to be relatively
high. Thus, an understanding of the time variations in the wind
velocity for a given geographical location is of paramount
importance with regard to locating a wind farm and monitoring
its performance in terms of the power quality. This requires
stochastic models to be developed for the power output that
are sensitive to the statistical characteristics of wind speeds
and accurate over different time scales [6]. Developing such
models is of value in both monitoring and predicting power
quality for existing wind farms but also in determining the
optimal geographical locations where such farms should be
constructed. This is the focus for the work reported in this
paper.

The acquisition of wind velocity data over different time
intervals and localities is a common practice together with a
routine statistical analysis of the data. However, the analysis
is almost exclusively based on the assumption that time
variations in the wind velocity are random Brownian processes
and that the rate of change of velocity as a function of time
is Gaussian distributed, i.e. the wind velocity conforms to a
process of diffusion. However, this is not usually the case
as discussed in the following section and in this paper we
develop a non-Gaussian stochastic model for the wind velocity
that is based on a Lévy distribution and a fractional diffusion
equation. This allows us to analyse wind velocity in terms of
the Lévy index and thereby yields an approach for assessing
the quality of power for a wind turbine in terms of this index.
We provide examples of wind velocity data that substantiate
this approach and construct an empirical relationship for the
power output from a wind turbine based on the Lévy index.
We then extend the approach to develop an expression for the
power output from a wave energy converter.

II. STATISTICAL ANALYSIS OF THE WIND SPEED

Figure 2 shows a typical example of plots of the wind
velocity and wind direction as a function of time together with
the associated histograms illustrating a marked difference in
their statistical characteristics. This data shows wind velocities
(in metres per second) and wind directions (in degrees) and
consists of 8000 samples recorded at Dublin Airport, Ireland
over intervals of 1 hour from 00:00:00 on 1 January 2008
to 06:00:00 on 29 November 2008. While data taken over
shorter time scales clearly provides greater accuracy on the
dynamic behaviour of wind speeds, one of the underlying
principles associated with the work reported in this paper,
is that the statistical characteristics of the wind velocity are
self-affine. In other words, the statistical distribution of wind
speeds over all time scales is the same, apart from scaling. This

concept is fundamental to the application of the non-Gaussian
statistical analysis of wind speeds considered in this paper
and, in particular, the introduction of a Lévy distribution for
characterising the statistics of the wind force (i.e. the gradient
of the wind velocity) as discussed in Section III.

The wind velocity v(t) given in Figure 2 has a typical
Rayleigh-type distribution with a mode of 5ms−1 and a
maximum wind velocity of 21.1ms−1. The wind direction has
a marked statistical bias toward higher angles with a primary
mode of 240 degrees which is characteristic of the prevailing
wind direction for the region.

Fig. 2. Plots of the wind velocity (top-left in metres per second) and
wind direction (bottom-left in degrees) and the associated 22-bin and 360-
bin histograms (top-right and bottom-right), respectively.

Figure 3 compares the velocity gradient dtv(t) ≡ dv/dt
(which represents the force generated by the wind for a unit
mass computed using a forward differencing scheme) with
the output from a zero-mean Gaussian distributed random
number stream. By comparing these signals, it is clear that
the statistical characteristics of dtv(t) are not Gaussian. The
plot of dtvt obtained from the wind velocity data clearly
shows that there are a number of rare but extreme events
corresponding to short periods of time over which the change
in wind velocity is relatively high. This leads to a distribution
with a narrow width but longer tail when compared to a
normal (Gaussian) distribution. Non-Gaussian distributions of
this type are typical of Lévy processes which are discussed in
the following section.

III. LÉVY PROCESSES

Lévy processes are random walks whose distribution has
infinite moments. The statistics of (conventional) physical
systems are usually concerned with stochastic fields that have
Probability Density Functions (PDFs) where (at least) the first
two moments (the mean and variance) are well defined and



Fig. 3. Plots of a zero-mean Gaussian distributed stochastic signal obtained
using MATLAB V7 randn function (above) and the gradient of the wind
velocity dtv(t) given in Figure 2 (below).

finite. Lévy statistics is concerned with stochastic processes
where all the moments (starting with the mean) are infinite.
Many distributions exist where the mean and variance are finite
but are not representative of the process, e.g. the tail of the
distribution is significant, where rare but extreme events occur.
These distributions include Lévy distributions [7]. Lévy’s
original approach to deriving such distributions is based on
the following question: Under what circumstances does the
distribution associated with a random walk of a few steps
look the same as the distribution after many steps (except
for scaling)? This question is effectively the same as asking
under what circumstances do we obtain a random walk that
is statistically self-affine. The characteristic function P (k) of
such a distribution p(x) was first shown by Lévy to be given
by (for symmetric distributions only) [7]

P (k) = exp(−a | k |γ), 0 < γ ≤ 2 (2)

where a is a constant and γ is the Lévy index. For γ ≥ 2, the
second moment of the Lévy distribution exists and the sums of
large numbers of independent trials are Gaussian distributed.

If a stochastic process is characterised by a random walk
a distribution governed by p(x) with γ = 2, then the result
is normal (Gaussian) diffusion, i.e. a Brownian random walk
process. For γ < 2 the second moment of this PDF (the mean
square), diverges and the characteristic scale of the walk is
lost. For values of γ between 0 and 2, Lévy’s characteristic
function corresponds to a PDF of the form (see Appendix B)

p(x) ∼ 1
x1+γ

, x→∞

If we compare this PDF with a Gaussian distribution given
by (ignoring scaling normalisation constants)

p(x) = exp(−ax2)

Fig. 4. Comparison between a Gaussian distribution (blue) for a = 0.0001
and a Lévy distribution (red) for γ = 0.5 and p(0) = 1.

which is the case when γ = 2 then it is clear that a Lévy
distribution has a longer tail. This is illustrated in Figure 4.
The long tail Lévy distribution represents a stochastic process
in which extreme events are more likely when compared to
a Gaussian process as illustrated in Figure 3. Moreover, the
length of the tails of a Lévy distribution is determined by the
value of the Lévy index such that the larger the value of the
index is, the shorter the tail becomes. Unlike the Gaussian
distribution which has finite statistical moments, the Lévy
distribution has infinite moments and ‘long tails’. Furthermore,
Lévy processes characterised by a PDF of this type conform
to a fractional diffusion equation [8] as shown in the following
section.

IV. DERIVATION OF THE FRACTIONAL DIFFUSION
EQUATION FOR THE WIND VELOCITY

Let p(x) denote the Probability Density Function (PDF)
associated with the position in a one-dimensional space x
where a particle can exist as a result of a ‘random walk’
generated by a sequence of ‘elastic scattering’ processes (with
other like particles). Also, assume that the random walk takes
place over a time scale where the random walk ‘environment’
does not change (i.e. the statistical processes are ‘stationary’
and do not change with time). Suppose we consider an infinite
concentration of particles at a time t = 0 to be located at the
origin x = 0 and described by a perfect spatial impulse, i.e. a
delta function δ(x). Then the characteristic Impulse Response
Function f of the ‘random walk system’ at a short time later
t = τ is given by

f(x, τ) = δ(x)⊗x p(x) = p(x)

where ⊗x denotes the convolution integral over x. Thus, if
f(x, t) denotes a macroscopic field at a time t which describes
the concentration of a canonical assemble of particles all
undergoing the same random walk process, then the field at
t+ τ will be given by

f(x, t+ τ) = f(x, t)⊗x p(x)

In terms of the application considered in this paper f repre-
sents the space-time varying force of the wind that is incident
on a wind turbine.

From the convolution theorem, in Fourier space, this equa-
tion for f(x, t+ τ) becomes

F (k, t+ τ) = F (k, t)P (k)



where F and P are the Fourier transforms of f and p,
respectively. From equation (2), we note that

P (k) = 1− a | k |γ , a→ 0

so that we can write
F (k, t+ τ)− F (k, t)

τ
' −a

τ
| k |γ F (k, t)

which for τ → 0 gives the fractional diffusion equation

σ
∂

∂t
f(x, t) =

∂γ

∂xγ
f(x, t), γ ∈ (0, 2]

where σ = τ/a and we have used the result

∂γ

∂xγ
f(x, t) = − 1

2π

∞∫
−∞

| k |γ F (k, t) exp(ikx)dk

However, since, for unit mass

f(x, t) =
∂

∂t
v(x, t)

where v denotes the wind velocity, we can consider the
equation

σ
∂

∂t
v(x, t) =

∂γ

∂xγ
v(x, t), γ ∈ (0, 2] (3)

The solution to this equation with the singular initial condition
v(x, 0) = δ(x) is given by

v(x, t) =
1

2π

∞∫
−∞

exp(ikx− t | k |γ /σ)dk

which is itself Lévy distributed. This derivation of the frac-
tional diffusion equation reveals its physical origin in terms of
Lévy statistics.

For normalized units σ = 1 we consider equation (3) for
a ‘white noise’ source function n(t) and a spatial impulse
function −δ(x) so that

∂γ

∂xγ
v(x, t)− ∂

∂t
v(x, t) = −δ(x)n(t), γ ∈ (0, 2]

which, ignoring (complex) scaling constants, has the Green’s
function solution [9]

v(t) =
1

t1−1/γ
⊗t n(t) (4)

where ⊗t denotes the convolution integral over t and v(t) ≡
v(0, t). The function v(t) has a Power Spectral Density
Function (PSDF) given by (for scaling constant c)

| V (ω) |2=
c

| ω |2/γ

where

V (ω) =

∞∫
−∞

v(t) exp(−iωt)dt

and a self-affine scaling relationship

Pr[v(at)] = a1/γPr[v(t)]

for scaling parameter a > 0 where Pr[v(t)] denotes the PDF
of v(t). This scaling relationship means that the statistical

characteristics of v(t) are invariant of time except for scaling
factor a1/γ . Thus, if v(t) is taken to be the wind velocity
as a function of time, then the statistical distribution of this
function will be the same over different time scales whether,
in practice, it is sampled in hours or seconds, for example.

V. LÉVY INDEX ANALYSIS

The PSDF | V (ω) |2 provides a method of computing γ
using the least squares method based on minimizing the error
function

e(c, γ) = ‖2 ln | V (ω) | − ln c− 2γ−1 ln | ω | ‖22, ω > 0

Figures 5 and 6 show the computation of γ(t) for a moving
window of size 1024 elements. The accompanying tables (Ta-
ble I and Table II) provide some basic statistical information
with regard to γ(t) for these data sets. Application of the Bera-
Jarque parametric hypothesis test of composite normality is
rejected (i.e. ‘Composite Normality’ is of type ‘Reject’) and
thus γ(t) is not normally distributed.

Fig. 5. Cork Airport (12/11/2003-1/1/2007) for hourly (averaged) sampled
data. Above: Normalised wind velocity data v(t) (blue) and the Lévy index
γ(t) (red) for a look-back moving window of 1024 elements. Below: 100-bin
histogram of γ(t).

TABLE I
STATISTICAL PARAMETERS ASSOCIATED WITH THE LÉVY INDEX

FUNCTION GIVEN IN FIGURE 5.

Statistical Parameter Value for γ(t)
Minimum Value 1.3001
Maximum value 1.8142
Range 0.5141
Mean 1.5615
Median 1.5613
Standard Deviation 0.0569
Variance 0.0032
Skewness 0.0759
Kertosis 3.1966
Composite Normality ‘Reject’

These result illustrates that the wind velocity function
appears to be a self-affine stochastic function with a mean



Lévy index of ∼ 1.5. Figure 7 shows a simulation of the wind
velocity based on the computation of v(t) in equation (4) for
γ = 1.5. The simulation is based on transforming equation (4)
into Fourier space and using a Discrete Fourier Transform. The
function n(t) is computed using the MATLAB (V7) uniform
random number generator rand with seed = 1.

Fig. 6. Knock Airport (12/11/2003-1/1/2005) for hourly (averaged) sampled
data. Above: Normalised wind velocity data v(t) (blue) and the Lévy index
γ(t) (red) for a look-back moving window of 1024 elements. Below: 100-bin
histogram of γ(t).

TABLE II
STATISTICAL PARAMETERS ASSOCIATED WITH THE LÉVY INDEX

FUNCTION GIVEN IN FIGURE 6.

Statistical Parameter Value for γ(t)
Minimum Value 1.3846
Maximum value 1.7600
Range 0.3754
Mean 1.5777
Median 1.5788
Standard Deviation 0.0510
Variance 0.0026
Skewness -0.1538
Kertosis 3.0764
Composite Normality ‘Reject’

The results given in Figure 5 and Figure 6 are for wind
velocity data obtained in rural areas, i.e. at Cork and Knock
airports, respectively. It is interesting to note that, in urban
areas, the Lévy index may be expected to increase as a result
of the further ‘diffusion’ of the wind velocity through ‘random
scattering’ of the wind from buildings in the local vicinity
when, according the model being considered, γ → 2. An
example of this is given in Figure 8 and Table III in which
the average Lévy index is ∼ 1.72 thereby confirming this
expectation.

VI. POWER QUALITY ESTIMATION FOR WIND ENERGY
GENERATION

Given equation (1) and equation (4), we can obtain an
expression for the power output by a (ideal) wind turbine in

Fig. 7. Simulated normalised wind velocities computed for a Lévy index
γ = 1.5 (above) and the corresponding 100-bine histogram (below)

Fig. 8. Example of urban data analysis using wind velocities recorded at
Dublin Institute of Technology, Kevin Street, Dublin 8 from 14 September
2010 at 22:20:44 to 15 September 2010 at 10:11:51 and sampled in seconds.
Above: Normalised wind velocity data v(t) (blue) and the Lévy index γ(t)
(red) for a look-back moving window of 1024 elements. Below: 100-bin
histogram of γ(t).

TABLE III
STATISTICAL PARAMETERS ASSOCIATED WITH THE LÉVY INDEX

FUNCTION GIVEN IN FIGURE 8.

Statistical Parameter Value for γ(t)
Minimum Value 1.3209
Maximum value 2.1358
Range 0.8149
Mean 1.7236
Median 1.7204
Standard Deviation 0.0944
Variance 0.0089
Skewness 0.1939
Kertosis 3.0374
Composite Normality ‘Reject’



terms of the Lévy index γ as a function of time. Let the noise
function in equation (4) be a simple impulse at an instant in
time so that n(t) = δ(t). Then

v(t) =
1

t1−1/γ

and, from equation (1),

P (t) =
β

t3(1−1/γ)

where β = αρA/2 so that

lnP (t) = lnβ − 3 ln t+
3
γ

ln t

Given that β is a constant, it is then clear that, for any time
t, the magnitude of lnP is determined by γ−1. In this sense,
γ−1 is a coefficient of power quality as a function of time and
we see that, according to this model, power output increases
as γ decreases. Thus, the signal γ(t) given in Figure 5 and
Figure 6, for example, represents a time varying measure of
the average output power at a time τ according to the scaling
law

〈lnP (t)〉τ = a+
b

γ(τ)

where 〈lnP (t)〉τ denotes the (moving) average value of
lnP (t) at a time τ given that

〈lnP (t)〉 =
1
T

T∫
lnP (t)dt

where T is the period of time over which the average value
is computed. The constants a and b are given by

a = lnβ − 3
T

T∫
ln tdt

and

b =
3
T

T∫
ln tdt

respectively.

VII. ENERGY QUALITY ESTIMATION FOR WAVE POWER
GENERATION

We can use a similar approach to that adopted in the last
section to derive a scaling law for the power output by a (ideal)
wave energy converter. However, to do this, we must derive
a solution to the wave equation where the source function
(i.e. the source of wave generation) is determined by the wind
force. From equation (4), the force generated for a unit mass
is given by

f(t) = dtv(t) =
1

t1−1/γ
⊗t dtn(t) (5)

Working in a one-dimensional space, consider the wave equa-
tion (for unit wave speed)(

∂2

∂x2
− ∂2

∂t2

)
u(x, t) = −δ(x)f(t)

where u denotes the wave amplitude and the source function
is taken to have a spatial impulse δ(x). This allows us to

develop a solution in terms for the time evolution of the wave
amplitude. Let

u(x, t) =
1

2π

∞∫
−∞

U(x, ω) exp(iωt)dω

and

f(t) =
1

2π

∞∫
−∞

F (ω) exp(iωt)dω

so that we can write(
∂2

∂x2
+ ω2

)
u(x, ω) = −δ(x)F (ω)

The Green’s function solution to this wave equation is given
by [10]

U(x, ω) =
i

2ω
exp(iω | x |)⊗x δ(x)F (ω)

=
i

2ω
exp(iω | x |)F (ω)

so that

U(ω) ∼ i

2ω
F (ω), ω ∈ [−Ω,Ω], Ω→ 0

This result is based on exploiting the low frequency limit for
sea surface waves in the locality of δ(x) which are taken to
have a bandwidth Ω. Noting that, from equation (5), in Fourier
space,

F (ω) = iωV (ω)

where

V (ω) =

∞∫
−∞

v(t) exp(−iωt)dt

we then have (ignoring scaling)

U(ω) ∼ −1
2
V (ω) = − N(ω)

2(iω)1/γ
, ω ∈ [−Ω,Ω], Ω→ 0

where

N(ω) =

∞∫
−∞

n(t) exp(−iωt)dt

so that in real space, we can write (ignoring scaling)

u(t) = − sin(Ωt)
Ωt

⊗t v(t), Ω→ 0 (6)

The Power Spectral Density Function of u(t) is given by (for
scaling constant c)

P (ω) =| U(ω) |2=
c

| ω |2/γ
, | ω |≤ Ω

and, for a fixed bandwidth Ω, it is clear that the power output
depends upon γ associated with the wind velocity according to
the model compounded in equation (6). Thus we can consider
a time dependent wave power scaling relationship of the form

〈lnP (ω)〉τ = a− b

γ(τ)



where

〈lnP (ω)〉 =
1
Ω

Ω∫
lnP (ω)dω,

a = ln c and b =
2
Ω

Ω∫
lnωdω

VIII. SUMMARY

We have considered a Lévy distributed model and con-
structed a fractional diffusion equation for the wind velocity
whose temporal solution is characterised by the Lévy index.
Analysis of wind velocity data (some examples of which have
been provided in this paper) according to this model shows
that the Lévy index is a time varying non-Gaussian stochastic
function. Based on the data analysed to date, the index appears
to be larger ∼ 1.7 for urban areas compared to rural areas
when γ ∼ 1.5. These results are consistent with the underlying
rationale associated with the model, where, as γ → 2, the
stochastic processes become increasingly diffusive. The model
presented allows times series for wind velocity to be simulated
whose statistical properties are consistent with experimental
data as illustrated in Figure 3, for example. Moreover, based
on the calculations performed in Sections VI and VII, the Lévy
index may provide a useful measure on the power quality
of wind turbines and wave energy generators, respectively.
Further investigations are required to ascertain whether it may
be possible to use the signal γ(t) for short and possibly
long term predictive analysis on power quality following the
methods developed for financial risk management reported in
[11], for example.

APPENDIX A: DERIVATION OF BETZ LAW FOR A WIND
TURBINE

Consider the case where a wind turbine is driven by a
change in the wind velocity from v1 to v2 where v1 and v2 are
the upstream and downstream wind velocities respectively. We
consider the ideal case where: (i) the turbine is an ideal rotor
consisting of an infinite number of blades that do not have
drag; (ii) the direction of the wind velocity on the blades is
perfectly axial rather than at an angle thereby giving maximum
possible performance; (iii) the flow is incompressible; (iv) the
density of air remains constant; (v) there is no heat transfer
from the air to the rotors; (vi) the rotors are mass-less so
that no effect occurs through the angular momentum imparted
to the rotor or flow of air. Under these conditions we can
consider two approaches to generating an expression for the
output power of such an idealized wind turbine. The first is
based on considering the change of energy generated from the
change in the upstream and downstream velocities which is
given by

E =
1
2
m(v2

1 − v2
2), v1 > v2

where m is the mass of air flowing through turbine. The power
P is then determined by the rate of change of this mass since

P =
dE

dt
=

1
2

(v2
1 − v2

2)
dm

dt

But
dm

dt
= ρAv

where ρ is the density of air, A is the area of the turbine and
v is the velocity of wind through the turbine. Thus the power
is given by

P =
1
2
ρAv(v2

1 − v2
2) (A.1)

Another way of deriving an expression for the power is by
considering the force that is generated by the rate of change
of mass. This is given by

F = (v1 − v2)
dm

dt
= (v1 − v2)ρAv

The power is then given by

P =
dE

dt

where dE = Fdx and hence,

P = Fv = ρAv2(v1 − v2) (A.2)

By comparing these two equivalent expressions for the power
P , i.e. equations (A.1) and (A.2) it is clear that

v =
1
2

(v1 + v2)

which is an expression for the average velocity that ‘drives’
the wind turbine in terms of the upstream and downstream
velocities. Using this expression for v we can now write
equation (A.1) as

P (V ) =
1
4
ρA(v1 + v2)(v2

1 − v2
2)

=
1
4
ρAv3

1(1− V 2 + V − V 3)

where V = v2/v1. The maximum value of P (denoted by
Pmax) is then given when

dP

dV
= 0

or
−1 + 2V − 3V 2 = 0

for which Re[V ] = 1/3 so that

Pmax =
1
2
αρAv1

where α = 16/27 = 0.593 is defined as the ‘coefficient of
performance’.

APPENDIX B: EVALUATION OF THE LÉVY DISTRIBUTION

We wish to show that the Characteristic Function

P (k) = exp(−a | k |γ), 0 < γ ≤ 2

is equivalent to a Probability Density Function given by

p(x) ∼ x−(1+γ), x→∞

i.e. we wish to prove the following:

Theorem
1

x1+γ
↔ exp(−a | k |γ), 0 < γ ≤ 2, x→∞



where ↔ denotes transformation from real to Fourier space1.

Proof of Theorem
For 0 < γ < 1, and since the characteristic function is
symmetric, we have

p(x) = Re[f(x)]

where

f(x) =
1
π

∞∫
0

eikxe−k
γ

dk

=
1
π

[ 1
ix
eikxe−k

γ

]∞
k=0

− 1
ix

∞∫
0

eikx(−γkγ−1e−k
γ

)dk


=

γ

2πix

∞∫
−∞

dkH(k)kγ−1e−k
γ

eikx, x→∞

where

H(k) =

{
1, k > 0
0, k < 0

For 0 < γ < 1, f(x) is singular at k = 0 and the greatest
contribution to this integral is the inverse Fourier transform of
H(k)kγ−1. Noting that

F−1

[
1

(ik)γ

]
∼ 1
x1−γ

where F−1 denotes the inverse Fourier transform, and that

H(k)↔ δ(x) +
i

πx
∼ δ(x), x→∞

then, using the convolution theorem, we have

f(x) ∼ γ

iπx

i1−γ

xγ

and thus
p(x) ∼ 1

x1+γ
, x→∞

For 1 < γ < 2, we can integrate by parts twice to obtain

f(x) =
γ

iπx

∞∫
0

dkkγ−1e−k
γ

eikx

=
γ

iπx

[
1
ix
kγ−1e−k

γ

eikx
]∞
k=0

+
γ

πx2

∞∫
0

dkeikx[(γ − 1)kγ−2e−k
γ

− γ(kγ−1)2e−k
γ

]

=
γ

πx2

∞∫
0

dkeikx[(γ−1)kγ−2e−k
γ

−γ(kγ−1)2e−k
γ

], x→∞

1The authors acknowledge Dr K I Hopcraft, School of Mathematical
Sciences, Nottingham University, England, for his advice in respect of this
result.

The first term of this result is singular and therefore provides
the greatest contribution and thus we can write,

f(x) ' γ(γ − 1)
2πx2

∞∫
−∞

H(k)eikx(kγ−2e−k
γ

)dk

In this case, for 1 < γ < 2, the greatest contribution to this
integral is the inverse Fourier transform of kγ−2 and hence,

f(x) ∼ γ(γ − 1)
πx2

i2−γ

xγ−1

so that
p(x) ∼ 1

x1+γ
, x→∞

which maps onto the previous asymptotic as γ → 1 from the
above.
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