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ABSTRACT 

 

This paper presents the acoustic performance of small scale crumb rubber concrete (CRC) panels in 

terms of the sound absorbance and insulation at low (63, 125, 250 & 500 Hz) and high (1000, 2000, 

4000 and 5000 Hz) frequencies. Acoustic tests were conducted with differing levels of fine aggregate 

replacement with crumb rubber (7.5 and 15%) with four different grades following freezing and 

heating. Analysis of the workability, compressive strength and density are also presented. 

 

The results found that CRC performed well in terms of sound absorbance particularly with higher 

proportions (15% here) and grades of crumb rubber. As an insulator, the CRC was comparable with 

plain concrete with only marginal differences observed. Effects of freezing and heating were shown to 

have no significant influence on the insulation properties. The insulation performance for all concretes 

was found to improve at high frequencies. 

 

The results demonstrate that CRC has potential as an external building cladding to absorb sound 

around high-rise urban structures but requires full-scale testing on site. This approach offers an 

environmental friendly solution to the ongoing problem of used tyres.  

 

 

 

 

 

KEYWORDS  Crumb rubber concrete; acoustics; absorption; reflection; frequency 
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1. INTRODUCTION 

 

Noise pollution is an ongoing issue for inhabitants of urban and industrial areas but is often not 

adequately addressed by Building Regulations or Planning Authorities. Dense materials like concrete 

are often used as external cladding as a means to prevent the passage of sound transmission into the 

property by reflection. However, when sound waves strike concrete cladding panels for example, they 

are reflected away but are not reduced in magnitude and become problematic in enclosed spaces such 

as apartment complexes, factories and narrow streets (Figure 1). This can lead to a variety of 

problems such as masking warning signals, increasing the possibility of hearing loss and can be a 

factor in work-related stress [1, 2]. The city of Vancouver has published a noise control manual which 

outlines the issues with this challenge [3]. In it they outline the origins of urban noise, its problematic 

nature (like reflected sound between buildings) and what can be done to reduce it, including the use of 

sound absorbing and damping materials and vibration isolation. A study commissioned by the city 

showed the average noise levels for residences along a busy street ranged from 67-70dB over a 24-

hour period.  

 

Lightweight materials such as foam or fabric are often too porous to reflect sound which passes 

through and its energy converted to heat with a reduction in magnitude. This approach is often used in 

cinemas and recording studios to reduce the reverberation time of the room. While effective 

internally, lightweight materials are not suitable externally so concrete is still the preferred material. 

 

Each year 2-3 billion tyres are scrapped in the US with similar quantities in Europe. It is estimated 

that approximately 40 million tyres are discarded per year in the UK [4]. Ireland produces over 35,000 

tonnes of waste tyres which are banned from many landfill sites and may not be burned [5]. With 

decreasing disposal options and increasing production, the volume of used tyres is becoming a major 

waste management issue. Stockpiled tyres lead to many health, environmental and economic risks 

through air, water and soil pollution, littering the landscape and represent a serious fire hazards as 

once set alight they emit harmful chemicals [4,5]. 

 

The use of crumb rubber concrete (CRC) produced from different sizes including fine (1-6mm) and 

course (6-19mm), of broken down waste tyres to replace a portion of natural aggregates in concrete 

mixes has been the subject of much research [4,6-13]. However, the literature shows that the use of 

CRC is impractical in many structural applications due to significant reductions in strength [10, 13-

15]. Despite the limited mechanical properties of CRC, there is a market for non-structural concrete 
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products with medium to low strength requirements. Sound absorbing substances and barriers are 

frequently used as a way to mitigate ambient noise and make use of a recyclable waste product. CRC 

is a durable composite material capable of absorbing and reflecting sound [16] and if used on the 

exterior of a structure can shield the occupants from ambient street noise. High rise apartment 

occupiers for example are often overlooking busy streets with high noise levels, often uncomfortably 

high, passing into dwelling spaces. 

 

This paper investigates the potential of CRC to improve the acoustic performance of small scale slabs. 

These findings have the potential to be incorporated into larger exterior building cladding systems (in 

the form of exterior panels as an absorbent material) to decrease noise transmission in urban or built 

up environments. 
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2 CONCRETE ACOUSTIC PROPERTIES 

 

Sound is a form of energy which travels through solids, liquids or gasses in longitudinal waves by 

vibrating particles oscillating in a body. These waves expand outwards with the intensity distributed 

over a larger area as it dissipates. The greater the particles vibrate within the medium, the more energy 

passes through it. There are two types of audible sounds; airborne and impact. Airborne sounds 

(speech, loudspeakers, musical instruments, etc.) cause waves to travel through the air but not solids. 

However, they produce vibrations within the structure which cause particles in the air on the opposite 

side to vibrate allowing them to be heard. Impact sounds (footsteps, closing doors, falling objects, 

etc.) vibrate through walls and floors and lead to airborne noise in adjacent rooms [17]. Noise and 

sound are often interchanged but are quite different with the former being subjective and dependant 

on the receptor. This concept of subjectivity is what many designers must take into account when 

considering noise in a structure, particularly in urban settings. As it is difficult to reduce the volume or 

production of sound in these environments, noise mitigation measures are often put in place to reduce 

the level of annoyance. Insulation, reflection or isolation methods along with dense barriers are better 

able to reflect sound energy where lighter materials can absorb noise and contain it. 

 

The acoustic properties of concrete are defined as its ability to reduce the transmission of sound 

through it. The density of standard concrete mixes can, in relatively small thicknesses, provide 

sufficient mass to reflect sound. Previous research [18-20] has defined concrete as a good insulator 

which, due to its high density, can reflect up to 99% of sound energy [21]. However, plain concrete is 

a poor sound absorber which can lead to echoes within enclosed spaces. 

 

2.1 CRC acoustic properties  

The level of sound absorption is expressed as the absorption coefficient. An extremely dense material, 

which reflects 100% of sound away, has an absorption coefficient of 0. Typical absorption 

coefficients for common construction materials are shown in Table 1. 

 

Previous work has shown [22] that absorption coefficients for materials containing crumb rubber 

range from 0.3-0.7 which categorises it as a good absorber. Combining it with concrete has the 

potential of increasing the absorption qualities while reducing the level of reflected sound. Previous 

work in this area [19, 20, 22, 23] found sound absorption is improved with the inclusion of crumb 

rubber. 
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Crumb rubber as a sound absorber for highways has been used in many parts of Arizona by 

incorporating it into bituminous mixes to reduce the noise produced by vehicular traffic. It is reported 

that over 80% of all asphalt in the state contains rubber asphalt accounting for roughly 12 million end-

of-life tyres [24]. Research [25] has shown that the sound absorption qualities of asphalt are 

significantly improved over time with the inclusion of crumb rubber in lightweight pavements due to 

greater energy absorption despite the well published reductions in compressive and tensile strength. 

This is supported by other work [26-28] who found the levels of vibration damping were 230% 

greater in CRC with a 15% replacement of fine aggregate compared to standard concrete. 

 

Crumb rubber has also been added into concrete blocks producing a lighter, more flexible and durable 

absorbing material with a 20% fine aggregate substitute [29]. Investigations into the performance of 

CRC in different environments found that the use of air entraining admixtures increases the durability 

against freeze thaw action [30-33]. A study into the compressive behaviour of CRC subjected to 

excessive heat [15] (25°C to 600°C) demonstrated a significant improvement in energy absorption 

particularly with smaller grades of rubber and lower fine aggregate replacements. Unlike regular 

aggregates such as sand & gravel, crumb rubber is highly elastic and has the ability to temporarily 

deform under pressure and loading [7, 24] with ductility increases as much as 90% and corresponding 

enhanced energy dissipation. 

 

Increased volumes of rubber result in reduced CRC densities. As material acoustic properties are 

largely dependent on its density, lighter ones (such as CRC with high levels of crumb rubber) will 

absorb more sound. This in turn will reduce the concretes ability to reflect sound energy [21-23]. CRC 

panels have the potential be used on office buildings as exterior cladding or on the perimeter of 

balconies due to its lightweight and energy absorbing qualities. The degree of compaction of CRC 

also influences sound absorption [23] as larger grades will absorb more when sufficiently compacted 

in concrete as a larger surface area of the rubber will be exposed. Concrete cladding panels are 

widespread due to the protection they offer to the structure from the elements, the high quality 

appearance and ease of placement. CRC cladding panels could also be used as an alternative to protect 

structures with the added advantage of reducing the overall weight. Figure 2 shows how the acoustic 

performance of a high-rise building could be improved by the application of exterior CRC panels 

particularly around balconies which also reduces the level of reflected noise. Similar proposals have 

been shown in [3]. 
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3 EXPERIMENTAL PROGRAMME 

 

3.1 Mix Proportions 

The concrete cast for this study included one control mix incorporating only CEM I cement and a 

number of other mixes containing dust, 1-3mm, 2-6mm and 10-19mm crumb rubber grades from a 

local supplier, Figure 3, with fine aggregate replacement levels of 7.5 and 15%. A summary of the 

concrete cast is reported in Table 2. All of the mixes had a fixed water to cement (w/c) ratio of 0.47 

and a cementitious material content of 475kg/m3. Following a number of trial mixes, the final 

proportions were determined so that a slump between 50-100mm (S1 class slump) [34] could be 

achieved. The mix proportions are summarised in Table 3. 

 

3.2 Materials 

CEM I cement complying with BS EN 197-1, Cement: Composition, Specifications and Conformity 

Criteria for Common Cements [35] was used as the cementitious material. Both the fine and coarse 

aggregates were obtained from local sources in Ireland. The fine aggregate used was medium graded 

sand and the coarse aggregate was crushed limestone with a maximum size of 20 mm. Before mixing, 

the water absorption of the aggregates was determined and the water added to the concrete was 

adjusted accordingly to cater for this. 

 

3.3 Preparation of samples 

The concrete was manufactured using a pan mixer. For each mix in Table 1, 9 panels 

(245x245x100mm) and 6 cubes (100x100x100mm) were cast to determine the acoustic performance 

and compressive strength (at 7 and 28 days) respectively. Each mix had a volume of 0.078m3 

including 20% for wastage. 

 

After mixing, the concrete was poured in 50mm thick layers, into the moulds with each layer vibrated 

on a vibrating table for a time until no more air bubbles were visible on the surface. Curing of the 

concrete was provided by placing a polythene sheet over the specimens for 24 hours to trap moisture 

that evaporates from the surface. Following demoulding, the samples were placed in water in a curing 

tank at 20 (± 1)0C until they were tested. Figure 4 shows the stainless steel moulds (a) before and (b) 

after casting. 
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3.4 Tests carried out 

 

3.4.1 Workability 

The workability (i.e. consistence) of the concrete was measured immediately after its manufacture in 

terms of slump in accordance with BS EN 12350-2 for testing fresh concrete [36]. 

 

3.4.2 Compressive strength 

The compressive strength was determined by crushing three 100mm cubes at 7 and 28 days for each 

mix in accordance with BS EN 12390-3 for testing hardened concrete [37]. 

 

3.4.3 Sound absorption 

The sound absorption coefficients were measured using the random incidence method where the 

reverberation time of a room was recorded with and without the samples present. As the conditions 

within the room remain constant any difference in sound absorption is directly related to the sample 

being present and can be calculated. The reverberation times here were calculated based on the 

average time from 10 tests with (T1, sec) and without (T2, sec) the sample. The room volume, (V, m3) 

and surface area (A, m2) of the sample were also measured. 

 

The test was conducted by creating a sharp sound in the hard-surfaced room (Figure 5) which was 

recorded by the speakers on an Apple laptop using the free to download Audacity® acoustic software 

with time taken for the sound intensity to dissipate by 60dB measured. The hard-surfaced laboratory 

was adjacent to an anechoic (non-echoing) chamber (Figure 5) which is completely insulated. The 

anechoic chambers walls and ceiling are covered with sound absorbent material (Figure 6) designed to 

absorb and scatter noise. 

 

To calculate the random incidence absorption coefficient (α) of the concrete panels, the Sabine 

equation (Equation 1) was used, where c is the speed of sound in air (343m/s). Sabine acoustics makes 

the following assumptions:  

 sound in the room is diffuse; 

 the sound energy intensity is constant throughout; 

 sound absorption is spread equally over the surfaces of the room; 

 the dimensions of the room are similar and square shaped. 
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α=
55.3V
cSA

�
1

T2
-

1
T1
� Equation 1 

 

3.4.4 Sound Insulation 

The sound insulation of the CRC was measured by recording the level sound intensity (dB) through 

the various concrete panels located in a duct between two rooms (Figure 5) using a range of low (63, 

125, 250 & 500 Hz) and high (1000, 2000, 4000 and 5000 Hz) frequencies using a Type 4224 Brűel 

and Kjaer sound source. A sound of 65dB was generated in the hard-surfaced room which was 

recorded in the anechoic chamber after it passed through the concrete sample. The samples were 

placed into the duct (Figure 7(a)) and surrounded by a dense putty to reduce the transmission of sound 

around the sides of the sample (Figure 7(b)) and the above measurement repeated. The measured 

sound intensity (dB) after it passed through the sample was recorded using a Brűel and Kjaer Type 

2250 light microphone on a 1m high tripod (Figure 7(c)) to assess its insulation properties. The above 

was repeated ten times for each panel and the results averaged. 

 

Three samples from each crumb rubber grade were tested before and after simulated adverse 

weathering conditions by heating in an oven at 750C for 24 hours. Three more were tested following 

freezing for 24 hours at -150C with the remainder subject to normal laboratory conditions (15±50C) to 

assess the acoustic performance of CRC in these conditions as its improved durability in these 

environments has been previously reported [32, 38]. 
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4. RESULTS AND DISCUSSION 

 

4.1 Workability 

The slump values are reported in Figure 8 which shows a decrease in workability with increasing 

crumb rubber grades and proportions. This is most likely due to the reduced ‘flowability’ of the larger 

particles which has been seen in previous work [30-33] which recommend using a higher w/c ratio for 

greater volumes of rubber in the mix. Decreases in slump from 125-25mm were reported [30] when 

the crumb rubber content increased from 0 to 120kg/m3. A similar trend can be seen here with an 

approximate drop of 50% observed when compared to the control. Increases in slumps where also 

found [31] when smaller grades of rubber crumb was used as a fine aggregate replacement up to a 

maximum value of 15%. However, it has also been shown [39,40] that increasing the crumb rubber 

content in concrete resulted in decreased workability due to reduced inter-particle friction between the 

rubber and other mix constituents which also lowered the unit weight of the plastic mix. 

 

Figure 8 also shows a noticeable drop in slump for mix 1E (7.5% fine aggregate replacement, 2-6mm 

crumb rubber). It is believed this is due to the incorrect water content added to this particular mix 

which also had an effect on the compressive strength. 

 

4.2 Compressive strength 

The compressive strength results are presented in Figure 9. As shown (and as expected), there is a 

decrease in the strengths of all CRC samples. Also, for every grade size shown, the compressive 

strength is less in the 15% fine aggregate replacement levels than in the lower. Similar strength 

reductions were observed with the same fine aggregate replacement by crumb rubber [41]. While the 

compression strength of the control exceeds the characteristic strength (35N/mm2), the CRC did 

perform well with the majority of the mixes meeting or exceeding the design requirement at 28 days. 

It has been shown [40-43] that significant reductions in compressive strength can be avoided when the 

crumb rubber replacement level does not exceed 20% of the total aggregate content and minimised 

below 15%. 

 

It can be seen that the strength of mix 1E (7.5% fine aggregate replacement, 2-6mm crumb rubber) 

was significantly higher than the others. This is believed to be due to two reasons. Firstly, as 

discussed above and seen in Figure 8, the water content for this mix was incorrect and lower than 

required. Secondly, upon further investigation, it was discovered that the crumb rubber in these cubes 
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were not evenly distributed during mixing, as a consequence of the inadequate water content. Figure 

10 demonstrates this uneven distribution compared with another cube with adequate dispersal. Rubber 

particles in concrete can migrate to the centre of test samples after vibration which can lead to non-

uniform distribution with higher failure stress levels. As crumb rubber particles are hydrophobic, one 

might expect them to coagulate and flock together. This issue was not observed in any of the other 

cubes following crushing and may have been caused by inadequate compaction during vibration 

leading to the rubber particles not distributing properly. 

 

4.3 Density 

As shown in Figure 11, there is a decrease in density of the CRC samples compared with the control. 

This is due to the lower relative density of CRC than plain concrete with natural aggregates which has 

been previously observed [7, 9, 13, 24, 29] particularly when fine aggregates were replaced. CRC also 

has higher air contents than plain concrete [25, 44] which is confirmed here by the increased density 

of the 7.5% fine aggregate replacement CRC’s for every crumb rubber grade used. This reduced 

weight is desirable in a number of architectural applications including facades, precast elements and 

in concrete toppings on metal decks [43, 46]. 

 

4.4 Sound absorption 

The sound absorption co-efficient’s for the different CRC and plain concrete samples in the laboratory 

environment are shown in Figure 12. The absorption coefficient of the CRC ranges from 0.013 and 

0.2 compared with 0.018 in the plain concrete which is similar to previous work in this area [7]. The 

results indicate that the level of absorption is greater for those concretes with higher volumes and 

larger grades of rubber. For instance, the 7.5% replacement of fine aggregate by dust yielded an 

absorption co-efficient of 0.013 compared to 0.018 from the control. However, as the size and volume 

of particles increase, the opposite is true as the larger surface area and heavier graded rubber is 

capable of absorbing more sound. For instance, there is an absorption coefficient increase of 623%, 

107%, 33% and 21% between the 7.5% and 15% replacement levels for the dust, 1-3mm, 2-6mm and 

10-19mm crumb rubber particles respectively. This increased absorption demonstrates that both 

volume and grading of rubber affect the CRC’s acoustic absorbance properties. 

 

The absorption co-efficient’s for the panels following freezing and heating are shown in Figure 13. As 

may be seen, the general trends shown in Figure 12 are repeated demonstrating that irrespective of the 

environments, CRC maintains it absorption qualities. The results also indicate a slightly reduced 
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absorption for the frozen than heated concretes which may be due to a thin ice layer forming at the 

surface which limits the sound absorbing capability of the concrete. However, this has a minor effect 

and compared with the control sample, the absorption quality remains high. 

 

Investigations of the sound absorption properties of CRC panels with fine aggregate replacement 

levels of 10%, 20% and 30% with low (125, 250 and 500Hz) and high (1000, 2000 and 4000Hz) 

frequencies [41] was found to have superior sound absorption properties than plain concrete 

particularly within the higher frequency range. The results from this study are shown in Figure 14 

with the three grades of crumb rubber used namely No. 6 (passing ASTM sieve No. 6), No. 26 

(passing ASTM sieve No. 26) and a combination of both, No. 6+26. The results demonstrate an 

improvement in absorbance with increasing frequency. 

 

Density of a material is often considered to be the important factor that governs the sound absorption 

behaviour of the material. Previous studies showed an increase in sound absorption with higher 

frequencies and density. The addition of crumb rubber has been found [41,44] to have a minor 

reduction in void content which is believed to be due to the impervious nature of crumb rubber which 

lowers the concretes porosity. 

 

4.5 Sound Insulation 

The results from the low and high frequencies sound insulating tests using the laboratory based slabs 

are shown in Figures 15 and 16 respectively. For the lower frequencies, the results indicate similar 

sound insulation properties with the control sample particularly at 63 and 125Hz where the level of 

sound retained both is approximately 15 and 11dB respectively. However, the control sample appears 

to be a slightly better insulator that the CRC at the higher frequencies (250 and 500Hz) with a 3-4dB 

improvement throughout due to the longer wavelengths allowing it to penetrate a larger surface area. 

Previous research [41, 44] has shown that higher density materials have improved insulation 

properties with the lower densities for all CRC’s than the control (Figure 11). It is not surprising, 

therefore, that their insulating properties are poorer, albeit marginally. 

 

The higher frequencies (Figure 16) have shown improved sound insulation properties for all concretes 

tested. As with the lower frequencies, the plain concrete is shown to be marginally better as an 

insulation material than CRC with an average of 5dB improvement in sound retention for the 1000, 

2000 and 4000Hz frequencies. However, the results are very similar at 8000Hz. 
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The results indicate that while CRC has slightly reduced sound insulation properties than plain 

concrete, in combination with the improved absorptions seen in Figures 12-13, it can be effective in 

reducing noise in urban settings. It can also be seen that despite the higher densities in the heavier 

graded CRC, its sound reflective properties are similar to the lighter samples.  

 

Figures 17 and 18 shows the insulation properties of the samples subjected to low and high sound 

frequencies respectively following freezing to -150C. The results demonstrate no noticeable difference 

with the laboratory-based findings. One would expect a difference in results due to the creation of ice 

in the pore space which would accelerate the transmission of sound. Additional putty was required 

around the concrete to fill the gaps in the tunnel due to a minor reduction in volume due to freezing. 

 

Similarly with the frozen samples, Figures 19 and 20 show little difference between the concrete 

insulation properties following heating to 750C. When concrete is heated it is subject to thermal 

expansion while its weight remains constant so its density per unit volume decreases with a 

corresponding increase in sound penetration per unit area. There is a minor decrease in insulation 

capacity for the 10-19mm rubber grades which may have been due to some minor surface cracking 

observed in the concrete, as shown in Figure 21. 

 

Previous work into the freezing and thawing of CRC [32,47] found with an increases in tyre rubber, 

the freezing and thawing durability decreased. The authors concluded that although CRC had higher 

air contents, the large-size and non-uniform distribution of trapped air voids might be a possible 

reason for their lack of improvement over plain concrete especially for higher proportions. The results 

here demonstrate that standard plain concrete perform better as an insulator in all environments albeit 

marginally with no significant difference with the CRC throughout. 
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5 CONCLUSIONS 

 

On the basis of the various investigations carried out to assess the acoustic performance of small scale 

CRC panels the following conclusions have been drawn: 

 

(1) CRC has been found to be more effective than plain concrete in absorbing sound in low, normal 

and high temperature environments. Better absorption co-efficients were observed for higher rubber 

replacement levels (15% here) and grades (2-6mm & 10-19mm). This is due to the higher densities of 

these concretes which is an important factor governing sound absorption behaviour. 

 

(2) CRC performance as an insulator was comparable to plain concrete with marginal differences 

between both. It has shown here that all concretes perform better as an insulator for higher frequency 

sound due to the wider surface affected. As with the absorption study, there was no noticeable 

difference in insulation behaviour in the three environments. However, in conjunction with the 

improved sound absorbance, the results demonstrate CRC can be effective in reducing noise in urban 

settings. A minor decrease in the insulation performance of CRC in the elevated temperature was 

observed on the largest rubber grade (10-19mm) due to some minor cracking on the surface.  

 

(3) The workability of the concrete was decreased as the crumb rubber grade and proportion increased 

and reduced the ‘flowability’. As expected, the compressive strength of the CRC was decreased for 

every grade and particularly for the higher replacement levels. However, the majority of the CRC did 

exceed the characteristic strength and previous work has shown that compressive strengths can be 

maintained provided the replacement level does not exceed 20%. Uneven distribution of the crumb 

rubber in one sample was found to be due to an inadequate water content and vibration. 

 

(4) The density of the CRC was found to be lower than the plain concrete. This is due to the higher air 

contents and reduced relative densities of the crumb rubber than natural aggregates, particular when 

fine aggregates have been replaced. 
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Figure 1 Reflections of sound waves in an enclosed narrow street 

 

  

Sound source 

Reflected sound 
Building    Building 

 



20 

 

 

 

 

 

 

 

 

 

Figure 2 Example applications of a CRC cladding system on high rise structures to limit the 

transmission of sound into inhabitants (taken from [3]) 
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(a) Dust (<1mm) (b) 1-3mm 

 

 

(c) 2-6mm (d) 10-19mm 

 

Figure 3 Different crumb rubber sizes used 
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Figure 4 Preparation of the mould and concrete before (a) and after (b) casting 
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Figure 5 Plan of acoustic laboratory 
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Figure 6 Anechoic chamber 
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Figure 7 Sound insulation apparatus 
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Figure 8 Slump values 
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Figure 9 Compressive strength results 
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(a) (b) 

 

Figure 10 2-6mm CRC with 7.5% fine aggregate replacement levels showing (a) poor and (b) 

good distribution 

 

  



29 

 

 

 

 

Figure 11 Density values 
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Figure 12 Sound absorption co-efficients for CRC and plain concrete 
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Figure 13 Sound absorption co-efficients for CRC and plain concrete following heating and 

cooling 
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Figure 14 Sound absorption coefficient of crumb rubber concrete panel [41] 

 

  



33 

 

 

 

 

Figure 15 Sound insulating results with low frequencies (63, 125, 250 and 500Hz) in laboratory 

conditions 
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Figure 16 Sound insulating results with high frequencies (1000, 2000, 4000 and 8000Hz) in 

laboratory conditions 
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Figure 17 Sound insulating results with low frequencies following freezing 
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Figure 18 Sound insulating results with high frequencies following freezing 
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Figure 19 Sound insulating results from low frequency following heating 
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Figure 20 Sound insulating results from high frequency following heating 
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Figure 21 Minor surface cracking observed on the 10-19mm CRC samples following heating 
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Table 1  Average absorption coefficients for common construction materials 

Material Sound absorption co-efficient 

Concrete 0.02-0.06 

Unpainted blockwork 0.02-0.05 

Hardwood 0.3 
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Table 2  Summary of concrete cast 

Mix ID No. of Panels Crumb rubber 

grade 

Fine aggregate 

replacement levels 

1A 9 
Dust 

7.5 

1B 9 15 

1C 9 
1-3mm 

7.5 

1D 9 15 

1E 9 
2-6mm 

7.5 

1F 9 15 

1G 9 
10-19mm 

7.5 

1H 9 15 

2A 9 None 0 
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Table 3  Mix proportions 

Mix 

ID 

Mass of Ingredients (kg/m3) 

Water CEM 

I 

FA CA Dust 1-3mm 2-6mm 10-19mm 

10mm 20mm 

1A 225.6 475 527.3 555 555 42.7 - - - 

1B 225.6 475 484.5 555 555 85.5 - - - 

1C 225.6 475 527.3 555 555 - 42.7 0 - 

1D 225.6 475 484.5 555 555 - 85.5 0 - 

1E 225.6 475 527.3 555 555 - - 42.7 - 

1F 225.6 475 484.5 555 555 - - 85.5 - 

1G 225.6 475 527.3 555 555 - - - 42.7 

1H 225.6 475 484.5 555 555 - - - 85.5 

2A 225.6 475 570 555 555 - - - - 

FA – Fine aggregate, CA – Course Aggregate 
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