
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Masters Engineering

2021-12-07

Optimum Implementation of Compound Compression of a Optimum Implementation of Compound Compression of a

Computer Screen for Real-Time Transmission in Low Network Computer Screen for Real-Time Transmission in Low Network

Bandwidth Environments Bandwidth Environments

Conor Paxton
Technological University Dublin, x00043062@mytudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/engmas

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Paxton, C. (2021). Optimum Implementation of Compound Compression of a Computer Screen for Real-
Time Transmission in Low Network Bandwidth Environments. Technological University Dublin. DOI:
10.21427/SYPS-P748

This Theses, Masters is brought to you for free and open access by the Engineering at ARROW@TU Dublin. It has
been accepted for inclusion in Masters by an authorized administrator of ARROW@TU Dublin. For more
information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engmas
https://arrow.tudublin.ie/engthe
https://arrow.tudublin.ie/engmas?utm_source=arrow.tudublin.ie%2Fengmas%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=arrow.tudublin.ie%2Fengmas%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Optimum Implementation of Compound

Compression of a Computer Screen for Real-Time

Transmission in Low Network Bandwidth

Environments

A Thesis Presented For the Award of Masters by Research by

Conor Paxton B.eng

Technological University Dublin – Tallaght Campus

Department of Electronic Engineering

For Research Carried Out Under the Guidance of

Mr. Richard Gahan

Submitted to Technological University Dublin

January 2021

1

DECLARATION

I certify that this thesis which I now submit for examination for the award of Masters by
Research, is entirely my own work and has not been taken from the work of others, save and to
the extent that such work has been cited and acknowledged within the text of my work.
This thesis was prepared according to the regulations for graduate study by research of the
Technological University Dublin (TU Dublin) and has not been submitted in whole or in part for
another award in any other third level institution.
The work reported on in this thesis conforms to the principles and requirements of the TU
Dublin's guidelines for ethics in research.
TU Dublin has permission to keep, lend or copy this thesis in whole or in part, on condition that
any such use of the material of the thesis be duly acknowledged.

Signature __________________________________ Date _______________
Candidate

2

Acknowledgements

I would like to thank my project supervisor Mr Richard Gahan for the help, guidance

and confidence that he has given me. I would also like to thank Mr. Patrick O’ Friel,

Brian Keogh, James Wright and all from the Department of Electronic Engineering.

I would like to thank my family for believing in me.

I would especially like to thank Lisa Smyth for putting up with me.

Lastly, I would like to thank Dillon Waters, Michael King, Kai Wu and the rest of my

peers from my undergraduate years.

3

CONTENTS CONTENTS

Contents

1 Introduction 9

1.1 Background . 9

1.2 Motivation . 12

1.3 Research Question . 13

2 Literature Review 14

3 Human Visual System and Colour 27

3.1 The Human Visual System . 27

3.2 Colour Space . 29

3.3 Chroma Sub Sampling . 35

3.3.1 Conclusion on Chroma Subsampling 39

4 Compound Image 40

4.1 Image Data Classes . 41

4.1.1 Smooth Class . 42

4.1.2 Sparse Class . 44

4.1.3 Text Class . 46

4.1.4 Fuzzy Class . 47

4.1.5 Picture Class . 49

4.2 Conclusion On Compound Image . 51

5 Classification 53

5.1 The Discrete Wavelet Transform . 53

6 Compression 60

6.1 Lossless Compression . 64

6.1.1 Run Length Encoding . 64

6.1.2 LZ 77 Algorithm . 67

6.1.3 Lempel Ziv Welch Encoding 68

6.1.4 Huffman Encoding . 76

6.1.5 Arithmetic Encoding . 83

4

CONTENTS CONTENTS

6.2 Lossy Compression . 87

6.2.1 Image Quality Assessment . 87

6.2.2 Block Transform Encoding . 92

6.2.3 The Discrete Cosine Transform 92

6.2.4 Comparing speed performance of 3 discrete cosine transform

methods . 100

6.2.5 Quantization . 101

6.2.6 The Discrete Wavelet Transform 103

7 Compression File Formats 111

7.1 JPEG . 111

7.2 PNG . 114

8 Video Encoding 118

8.1 H.264 . 118

9 Compound Compression Algorithm 120

9.1 Classification . 121

9.1.1 Comparing Presented Classification Algorithm to the Work pre-

sented by Wu [48] . 142

9.1.2 Colour Counting Analysis . 144

9.1.3 Conclusion on Compound Image Classification Using Discrete

Wavelet Transform and Colour Counting Analysis 155

9.2 Lossless Compression . 157

9.2.1 Smooth Block Compression 157

9.2.2 Lempel-Ziv Welch Compression 159

9.2.3 Deflate Compression . 163

9.2.4 Conclusions on Deflate Compression on Compound Image Data

Classified as Sparse and Text 167

9.2.5 Differential Index Map Coding 167

9.2.6 Conclusions on Compression Performance of Differential Index

Map Coding . 182

9.2.7 Compression and Speed Performance Comparsion: Lempel-Ziv

Welch Vs Differential Indel Map Coding Vs Deflate 183

5

CONTENTS CONTENTS

9.2.8 Conclusion on Lossless Compression testing 188

9.3 Lossy Compression . 189

9.3.1 Chroma Sub Sampling Testing 190

9.3.2 Comments on Chroma Sub Sampling Methods 193

9.3.3 Performing the Two-Dimensional Discrete Cosine Transform as

Two One-Dimensional Transforms 194

9.3.4 Quantization of Discrete Cosine Transform Coefficients 195

9.3.5 Reordering Discrete Cosine Transform Coefficients 197

9.3.6 Performing Zero Run Length Encoding on Reordered Quantized

Discrete Cosine Transform Coefficients 198

9.3.7 Testing Discrete Cosine Transform Based Compression on Blocks

that have been Classified as Fuzzy and Picture 200

9.3.8 Conclusions on Fuzzy Block Quantization 202

9.3.9 Conclusions on Picture Block Quantization 204

9.3.10 Entropy Encoding Discrete Cosine Transform Based Compressed

Data . 205

9.3.11 Discrete Wavelet Transform based Compression: Blocks Clas-

sified as Text with High Unique Pixel Count 207

9.3.12 Comments on Accuracy and Speed of Discrete Haar Wavelet

Transform . 209

9.3.13 Threshold Value Selection for Discrete Haar Wavelet Transform

Compression . 209

9.3.14 Encoding Non Zero Discrete Wavelet Transform Coefficients

After Thresholding . 210

9.3.15 Conclusions on Lossy Compression Testing 215

9.4 Algorithm Configuration . 217

9.5 Results . 220

9.6 Discussion . 221

10 Results Summary 223

11 Conclusion 225

11.1 Future Work . 226

12 Code 227

6

CONTENTS CONTENTS

12.1 Data Structures . 227

12.2 Classification Algorithm . 229

12.3 Discrete Cosine Transform Code . 236

12.4 Deflate Interface . 240

12.5 Differential Index Map Coding Functions 242

12.5.1 Discrete Wavelet Transform Functions 252

12.6 OpenCV and FFMPEG Code . 254

13 Appendix 255

7

CONTENTS CONTENTS

Abstract

Remote working is becoming increasingly more prevalent in recent times. A large part

of remote working involves sharing computer screens between servers and clients.

The image content that is presented when sharing computer screens consists of both

natural camera captured image data as well as computer generated graphics and text.

The attributes of natural camera captured image data differ greatly to the attributes

of computer generated image data. An image containing a mixture of both natural

camera captured image and computer generated image data is known as a compound

image.

The research presented in this thesis focuses on the challenge of constructing a com-

pound compression strategy to apply the ‘best fit’ compression algorithm for the

mixed content found in a compound image. The research also involves analysis and

classification of the types of data a given compound image may contain.

While researching optimal types of compression, consideration is given to the com-

putational overhead of a given algorithm because the research is being developed for

real time systems such as cloud computing services, where latency has a detrimental

impact on end user experience.

The previous and current state of the art videos codec’s have been researched along

many of the most current publishing’s from academia, to design and implement a

novel approach to a low complexity compound compression algorithm that will be

suitable for real time transmission.

The compound compression algorithm will utilise a mixture of lossless and lossy

compression algorithms with parameters that can be used to control the performance

of the algorithm.

An objective image quality assessment is needed to determine whether the proposed

algorithm can produce an acceptable quality image after processing. Both traditional

metrics such as Peak Signal to Noise Ratio will be used along with a new more modern

approach specifically designed for compound images which is known as Structural

Similarity Index will be used to define the quality of the decompressed Image.

In finishing, the compression strategy will be tested on a set of generated compound

images. Using open source software, the same images will be compressed with the

previous and current state of the art video codec’s to compare the three main metrics,

compression ratio, computational complexity and objective image quality.

8

1 INTRODUCTION

1 Introduction

1.1 Background

The basic components of a personal computer consist of hardware, software and

peripherals for a user to interact with, such as a display, keyboard and a mouse. The

user interacts with the computer, via peripherals, using applications written in a high

level computing language which is then interpreted to a low level machine language.

The operating system (OS), is a low level software that manages the underlying

hardware resources through the hardware abstraction layer (HAL). The HAL provides

drivers enabling the commands the operating system interprets from user applications,

to run on the hardware. A high level overview of the system architecture for a personal

computer is presented in figure 1.

USER

APPLICATIONS

OPERATING
SYSTEM

HARDWARE
ABSTRACTION

HARDWARE

PERSONAL COMPUTER ARCHITECTURE

PERIPHERALS

Figure 1: Basic Architecture of a Personal Computer

With continual growth in power and performance in microprocessor technology, even

the most basic personal computer is powerful enough to run most software needed in

large enterprises and institutions of higher education, without ever using all potential

resources.

Virtual desktop infrastructure (VDI), refers to a system where a server will generate

instances of the core software components that run on a computer such as the OS and

applications and deploy it in a container known as a ’virtual machine’. An instance

of a virtual machine can then be accessed remotely by a user, who can interact with

it through peripherals, and work at it as though it were a personal computer. The

virtual machines are controlled on the server by the hypervisor and share the resources

of the server. There are many benefits to this type of deployment, some of which are:

• The users device that accesses the virtual machine, typically called a thin client,

9

1.1 Background 1 INTRODUCTION

does not need its own resources, as they are on the server side. This means that

a low power device can be used which is generally much more energy efficient.

• The cost of hardware is reduced, as the thin clients do not need to be continu-

ously upgraded, even as software becomes more resource intensive.

• Multiple instances of virtual machines can be generated, for deployment on

different platforms using different operating systems and applications.

• Mobility is enhanced as the virtual machine can be accessed through the server

from anywhere and work as though the client is at a local desktop.

• Security is enhanced as all data is stored centrally. Thin clients typically do

not have a hard disk, so sensitive data can only be accessed through correct

protocol

• Maintenance and software updates can be undertaken procedurally. All virtual

machines running on the server can be up to date and coherent with each other,

running the latest software revisions or, if needed regress to a more stable state,

which means less down time for an enterprise.

HARDWARE

HYPERVISOR

HARDWARE

HYPERVISOR

OERATING
SYSTEM

APPLICATIONS

VIRTUAL MACHINE 3

OERATING
SYSTEM

APPLICATIONS

VIRTUAL MACHINE 2

OERATING
SYSTEM

APPLICATIONS

VIRTUAL MACHINE 1

OERATING
SYSTEM

APPLICATIONS

VIRTUAL MACHINE 4

OERATING
SYSTEM

APPLICATIONS

VIRTUAL MACHINE 5

OERATING
SYSTEM

APPLICATIONS

VIRTUAL MACHINE 6

CLOUD STORAGE

SERVERSERVER

DESKTOP VIRTUALISATION WITH MULTIPLE SERVERS AND SHARED CLOUD STORAGE

Figure 2: A Multiple Server Virtual Desktop Infrastructure Generating Virtual Ma-

chines on Several Operating Systems

Figure 2 Shows a high level overview of a virtual desktop infrastructure. As previously

mentioned, the hypervisor takes control over the available resources and distributes

10

1.1 Background 1 INTRODUCTION

them among the instances of the virtual machines. The virtual machines can be

moved from one host server to another, which will provide additional benefits in load

balancing and the underlying resilience of the infrastructure. The virtual machine

will still operate, irrespective of which server it is hosted from.

In figure 2, the different colours of the virtual machines represent different types of

distributions which are tailored to the clients needs, depending on the type of software

application that is needed. This has the benefit of provisioning resources efficiently,

reducing overheads, such as licensing for specific software and power consumption.

The need for storage may be realised using network or cloud storage which has the

added benefits of security as the data is centralised, machines can be deployed faster

and the extra benefits of continual backups, in case of malicious attacks or accidents.

There are many challenges in the deployment of a successful virtual desktop infras-

tructure. Four of the main challenges are:

• User latency

• Transmission bandwidth

• complexity

• Subjective image quality of the decoded image on the user side.

As the desktop image is being generated on the server and sent to the user remotely

over the network, this will generate latency for the user. If the latency is too high it

will result in a negative impact for the user. The ITU-T recommendation G.114 [40]

suggests that one way traffic from server to source should be in bounds of approxi-

mately 50 ms, to avoid negative impact with respect to latency for the end user.

The raw file size for a single image frame of resolution 1080p is 1920x1080 pixels

is 6.2MB. at 30 frames per second, the data rate is 1.492Gbs which would not be

possible to transmit on a band limited network.

There are some advanced compression methods such as High efficiency video encoding

(HEVC) [39] That can achieve good compression, however rely on intensive processing,

which may not be suitable for low powered simple thin client systems.

To reduce the file size before transmission, the file must be compressed on the server

side and decompressed on the client side. This process will introduce latency, as

it will take time to compress and decompress. It may introduce distortion in the

decompressed image on the client side, if the compression that is used is a lossy type

of compression.

11

1.2 Motivation 1 INTRODUCTION

1.2 Motivation

A survey from The International Data Group on cloud computing [17], states that

in 2020, over 81% of medium to large enterprises have adopted cloud based solutions

for computing and software applications, which is up from 73% in 2018. This shows

signs of a steady continued growth in this sector.

From the 2020 Cisco Global Networking Trends Report [5], video data will account

for over 82% of business internet traffic.

With recent advancements in screen technology, Ultra High Definition (4K) displays

are becoming more popular in the consumer market. However, the raw bit rate for

a 4096x2160 display, with refresh rate of 30FPS, and 24bit 4:4:4 colour depth, is

8.91Gbps. This would need significantly larger storage and would require extensive

bandwidth to transmit, which may not fit the constraints of a bandwidth limited

network such as the internet.

Remote desktop services and virtual desktop infrastructure are a mature technology.

However, in the authors experience, the deployment of such technologies in areas

such as institutions of higher education, are limited. This may be due to a number

of reasons, one of which may be the cost of licences per ”seat” at a virtual machine.

Companies such as Citrix offer virtual desktop infrastructure and remote desktop

applications with excellent results for the end user in terms of both quality of image

and low in latency. However, such companies use proprietary software and licens-

ing agreements with companies such as Microsoft for using their Remote Desktop

Protocol(RDP).

The benefits of using Remote Desktop Protocol is that the screen rendering on the de-

coder side has prior knowledge of elements of the Window Application Programming

Interface (API) and can generate platform specific graphical user interface (GUI) ele-

ments, reducing the need to transmit as much data across the network. As previously

mentioned, using this technology requires a paid licence, which could prove infeasible

for a given institution or enterprise.

Another disadvantage of using proprietary software, is that it may restrict the virtual-

isation to a limited amount of operating systems. For instance, in a given institution,

there may be a need to use applications specific to Microsoft Windows, while an-

other department may need access to Macintosh operating system applications, while

another may want to use any number of Linux distributions.

An alternative to the above may be use a system based on Virtual Network Protocol

(VNC) [34]. VNC is a display based application allowing remote display of a rendered

screen using a Remote Frame Buffer (RFB) protocol, where the only data transmitted

from the user side is mouse and keyboard data. VNC has no prior information of the

rendered screen image to be decoded, it works by encoding a frame and transmitting

a series of difference frames over time, which are updated regularly. It treats the

12

1.3 Research Question 1 INTRODUCTION

rendered image as a whole bitmap and updates the areas that have changed, as the

user is working with the application. An advantage of using VNC is that it is totally

platform agnostic, allowing the user to work on a multitude of platforms, only limited

to what the server is able to virtualize. There are companies who deliver VNC

technology through software as service (SAAS), such as RealVNC which require a

paid subscription to use the service.

The motivation for this research project is to research and design a compound im-

age compression algorithm and compare it to known solutions using image quality

assessment metrics. The goal is to research and use compression algorithms that use

unrestricted licensing and open source software so that the work done in this project

can be given back to the community, without obstruction from licensing agreements.

1.3 Research Question

This research proposes to answer the following questions:

1 Can the data contained in a compound image, such as the data typically dis-

played on a computer screen, be classified accurately based on specific attributes

that would be suited for specific types of compression.

2 Can a compound compression and decompression algorithm be created that is

capable of compressing the mixed content of a compound image effectively, to

meet band limited network constraints.

3 Will the proposed algorithm be suitable for real time services such as a virtual

desktop infrastructure.

4 Will the decoded image after processing be of an acceptable subjective and

objective quality. To determine the metrics that can be used to define if an

image is of acceptable quality.

5 Will the proposed compound compression algorithm be comparable to the cur-

rent state of the art.

6 Will the proposed compound compression algorithm be free from restrictive

licensing dependencies.

13

2 LITERATURE REVIEW

2 Literature Review

There are multiple frameworks in which one could implement a compound compres-

sion strategy. A common theme is to first implement a classification algorithm that

can identify different types of data in an image, such as computer generated graphics,

text and continuous tone image . The classification algorithm will identify areas of an

image containing specific types of data based on attributes such as sharp transitions

in smooth areas for computer generated data or low gradient change among neigh-

bouring pixels for continuous tone image. The location of the different types of data

found within a compound image is stored and used in the compression stage to apply

optimised compression algorithms for a given area of the image containing a specific

type of data. The three most notable approaches to classification are object-based,

layer-based and block-based classification.

Object-based classification extracts objects of an image exactly along their boundary,

of any arbitrary shape, using complex image processing techniques such as edge detec-

tion. These objects could be compressed using an optimized compression algorithm

for a given type of object. This type of classification is the most computationally

intensive and may not be suitable for time critical applications.

de Queiroz [6] describes a Mixed Raster Content (MRC) layer based classification

and compression framework, which is used in pdf type compressors such as djVU [2].

This method splits an image into multiple rectangular layers, namely background,

foreground and binary mask and applies different types of compression to each layer.

Figure 3: A Simple Image Split Into the three Layer Mixed Raster Content Model

Figure 3 shows a simple image split into 3 layers. In practice an image can be split

into any multiple of these three layers, depending on the amount of objects in the

image. The binary mask layer is what is used to tell which pixels from what layer are

the final image.

In [2] the background and foreground layer are compressed using a proprietary discrete

wavelet transform, the IW44, which can efficiently compress the data in a lossy way,

14

2 LITERATURE REVIEW

with little discernible impact with respect to subjective image quality. The binary

mask layer is compressed with a variant of JBIG2 [21] called JB2, which compresses

the data using a type of arithmetic coding at a much higher resolution as to preserve

the quality of text and graphic information.

Crucial to this approach is the segmentation process, which is based on a K-means

clustering algorithm. While this works very well on images that could be considered

low in complexity, with fewer colours and lack of continuous tone image (such as non

camera captured images), Said et al [36] note that certain objects can get mismatched

in the layers (text over image, or natural image with sharp transients). This can lead

to poor compression performance for a given layer. Ding et al [9] also note that the

complexity of generating the mask layer, and implementation of the IW44 transform

make it unsuitable for time critical applications and therefore, this approach is not

pursued in this thesis.

In their work on a ”Simplified Segmentation for Compound Image Com-

pression”, Said, et al [36], implement a block based classification scheme that will

compress blocks with text with jpeg-LS variant and blocks containing picture with

lossy jpeg variant. They note while block-based classification may not be as suc-

cessful at classifying as object based classification, due to all pixels in a block being

classified as the same type, even if object boundaries occur within a block, the effects

can be mitigated by using a small enough block size. This type of classification and

compression is well suited for efficiency and for using multiple standard compression

algorithms together to form a compound compression algorithm.

Figure 4: Classification and Compression process, Said et al [36]

Figure 4 shows the implementation in Said et al [36]. The literature does not give

the specifics on exactly how the classification is performed on the block itself, simply

stating a block is classified due to its distribution of pixels. However, the framework

15

2 LITERATURE REVIEW

shows that the algorithm also takes into account neighbouring blocks when deciding

on what type the current block is. This can be beneficial in helping distinguishing

complex pictorial blocks from text/graphic type blocks.

From their research on a ”Block-Based Fast Compression for Compound Im-

ages” [9] Ding et al develop a block-based strategy to to further classify a compound

image into more than just text and image blocks, as in Said et al’s work.

Ding notes that large areas of a compound image, such as a computer screen is

constituted by smooth, single colour areas as well as text, graphic and pictorial data.

As such, the compound image is to be classified into four distinct types of data

blocks: smooth, text, picture and hybrid blocks. The attributes of each type of block

are defined by the gradient histogram of each type of block, where the gradient is

defined as the rate of change between neighbouring pixels.

The pixels of a block are first grouped into three classes, low-gradient, medium-

gradient and high gradient-pixels. Ding notes that smooth blocks will only contain

low gradient pixels and show a single peak on the low-pixel histogram, while text

blocks will contain several peaks at the low and high gradient histograms. Picture

blocks contain mainly mid-gradient pixels, while hybrid blocks (which can contain

both natural image and text, or sharp transitions), contain a mix of both hi-gradient

and mid-gradient peaks.

16

2 LITERATURE REVIEW

Figure 5: Process flow of the classification used in Block Fast Compression Algorithm

Figure 5 shows the classification process in Ding’s Block Fast Compression algorithm.

The ”T” values are threshold values that have been chosen through empirical testing.

Ding chooses a unique compression algorithm for each type of block. Smooth Blocks

are defined by having a single dominant colour, so all colours in a smooth block are

quantized to the dominant colour, which is coded with an arithmetic coder.

A Jpeg-like encoding is used for picture blocks, as it is a proven efficient coder for

natural continuous tone image.

Ding Notes that text blocks contain several dominant colours which are needed to

ensure the textual characters are readable. Ding chooses up to 4 dominant colours

from each block, the colours close to the dominant colours within a given threshold

distance, are quantized to that dominant colour. After quantization, the pixels are

converted to an index between 0-4, where 0,1,2 and 3 are the dominant colours and the

rest of the pixels that are outside of the thresholds are encoded with 4. The indexed

pixels are compressed in a raster scan order, where the current pixel, X in Figure 6

can have up to 5 different neighbouring values. As there are 3 indexes associated for

17

2 LITERATURE REVIEW

each pixel, there are 125 different contexts that can be encoded by the arithmetic

encoder. The indexes are encoded and if the index value is 4, then the pixel values

are encoded instead. This is a good approach, however, due to the raster scan order

Figure 6: The causal pixel neighbourhood for encoding indexed pixels in Block Fast

Compression Algorithm

encoding, it does not fully take advantage of the spatial correlation of pixels in text

blocks have in both the horizontal and vertical direction, which is developed in [23]

and further again in the research presented in this thesis.

Finally, the hybrid blocks of an image are compressed with a discrete wavelet trans-

form coder, using a Haar transform. Ding notes that discrete cosine transform coding

used in JPEG [18] work well on compacting the energy in low frequency signals, such

as the slowly varying pixel values of natural image. As hybrid blocks can contain

sharp transients, this can lead to poor compression performance and ringing arte-

facts, if transformed with a DCT. Using short wavelet bases such as the Haar wavelet

provides is useful in reducing ringing artefacts for blocks that contain high frequency

information and gives good compression performance, at the expense of poor com-

pression performance for the low frequency information. Ding shows in his research

that, when using the Haar transform for hybrid blocks and the discrete cosine trans-

form for picture blocks, the resulting image shows a significant improvement in terms

of visual quality and PSNR compared to using a discrete cosine transform alone.

Ding’s research on text block coding can be seen as the basis for an efficient alterna-

tive in compressing compound images. In his work ”Enable Efficient Compound

Image Compression in H.264 AVC Intra Coding”[10], Ding develops the Base

Colour and Index Map (BCIM) Compression algorithm and incorporates it into the

H.264 video codec framework. The benefits of implementing BCIM as a new method

in H.264 intra mode are two fold: The first is the algorithm uses less computation

compared to performing a discrete cosine transform, thus is more efficient for time

critical applications. The second benefit is the use of the ”Rate Distortion Optimisa-

tion” algorithm in the H.264 framework. This algorithm is a good choice at discerning

which blocks should be compressed with the Base Colour and Index map, or the other

standard methods in H.264.

In Base Colour and Index Map, as in the previous incarnation, the dominant colours

of a text block are used to create an index map and the index map is then encoded

18

2 LITERATURE REVIEW

using context adaptive binary arithmetic coding.

For this, Ding uses a two pass quantization technique. The first pass is a local

quantization to cluster the pixel values into groups, which will give a more defined

structure to the index map. The second step is to further quantize the pixels to form

the dominant or base colours. there can be up to 8 base colours used per block.

Figure 7: Generating the index Map from an 8x8 block of pixels, using Base Colour

and Index Map Algorithm

The generation of an index map from a block of pixels can be observed in figure

7. The index map is compressed in a raster scan order using the Context Adaptive

Binary Arithmetic Coding (CABAC) of H.264. Ding has shown impressive results

with the implementation of this algorithm, with an improvement in Peak Signal to

Noise Ratio (PSNR) and bit-rate (bpp) over traditional H.264 for compound image

compression. However, by compressing the blocks in a raster scan order, Ding has not

fully exploited the correlation of the index map in both the vertical and horizontal

position, which is a trait that will be developed in the research presented in this work.

Like Ding, Lan et al [23] take the approach of exploiting the H.264 framework for

compound image compression in their work in ”Compress Compound Images in

H.264 by Fully Exploiting Spatial Correlation”, [23]. Their approach incor-

porates Base Colour and Index Map coding along with another new method called

”Residual Scalar Quantization” for intra-mode coding. The residual scalar quanti-

zation method is based on the intra-prediction method inherent in H.264. However

in H.264, boundary samples of a block of pixels are first low passed filtered before

prediction, because this method will be applied to areas of the screen that may con-

tain pixel values with lower correlation such as window boarders, or graphic areas,

the values are directly used for prediction. Prediction involves subtracting the pixel

values of the current block from a block in its neighbourhood to produce whats called

19

2 LITERATURE REVIEW

a residual. After prediction, the residual is directly quantized and encoded.

Lan et al show impressive results for their work and note a significant improvement

in Peak Signal to Noise Ratio, compared to standard H.264, as much as a 10dB,

however, this comes at a cost of added complexity to the algorithm.

The complexity of H.264 for classification and processing of compound images is

also noted by Juliet in his work ”Efficient Block Prediction-Based Coding of

Computer Screen Images with Precise Block Classification”[22]. In his work,

Juliet proposes a single-pass classification algorithm that classifies an image into tex-

t/graphic blocks or picture/background blocks. Juliet successfully accomplishes this

by using the statistical properties of a block of pixels that has been transformed using

a Discrete Wavelet Transform.

Juliet implements a block based approach, where a given compound image is seg-

mented into 8x8 non overlapping blocks. A discrete wavelet transform is performed

on a single channel per block to decompose it into four sub-bands. The sub-bands are

essentially filter banks that can be used to determine specific properties of the block

based on statistical calculations.

Figure 8: Decomposing an 8x8 pixel block into four sub bands using one level Discrete

Wavelet Transform

Figure 8 shows the decomposition process using a discrete wavelet transform. There

are two stages: the first stage filters the block into low and high pass bands and down

samples the block by a factor of two. The low-pass coefficients contain an approxi-

mation of the original image, while the high-pass coefficients contain the details. The

second stage applies the same technique along the rows which effectively decomposes

20

2 LITERATURE REVIEW

the block into four sub-bands. Juliet notes that text characters are dominated by

strokes in 3 positions, vertical, horizontal and diagonal and after decomposition, the

sub-bands LH,HL,HH can be used to identify these directional characteristics respec-

tively. The discrete wavelet transform is a powerful tool and will be discussed in

greater detail further on in this Thesis

After decomposition, Juliet calculates the standard deviation of each sub-band. If the

value is above a given threshold in either of the LH,HL,HH sub-bands, the block is

classified as a text/graphics block, else it is classified as a picture/background block.

Text blocks are coded losslessly by first using a prediction method, where the residual

block is coded using a Huffman coder, while the picture blocks are coded using a JPEG

style encoding. Juliet compares his work to JPEG, JPEG2000 and H.264 intra-mode

coding and shows gains in both Peak Signal to Noise Ratio and bit-rate, without an

increase in computational complexity.

Wu [48] builds upon the classification algorithm presented by Juliet in his work

”Block Based Classification Method for Computer Screen Images ”. Wu

further classifies the types of blocks within a compound image, into five categories:

Smooth, Sparse, Text, Fuzzy and Picture. The first 3 block types contain computer

generated data, whilst the last two typically contain continuous tone natural camera

captured data.

The distinction between blocks classified as sparse and as text is within the structure

contained within the block. A sparse block is a highly structured block that contains

few colours and highly defined areas, which would typically be elements of a graphical

user interface, such as window boxes, etc. The distinction between blocks classified

as fuzzy and blocks classified as picture is the texture characteristics of the the block.

Blocks classified as fuzzy contain slowly varying pixel values that are similar, with no

discernible pattern. An example would be a block taken from a picture of the sky or

grass or sand, etc. A block classified as a picture block may be more structured, with

higher localised variance among the pixel values.

The classification algorithm presented by Wu implements a discrete wavelet transform

to classify the blocks of a compound image. To help improve the speed performance

of the classification process by reducing the amount of times the discrete wavelet

transform is performed, two prediction strategies are implemented. Wu implements

a prediction strategy for text blocks and a prediction strategy for smooth blocks.

The prediction strategy for smooth blocks checks if the block directly to the left and

the block directly above a given block have been classified as a smooth block. If

the condition is true, a given block can be predicted as a smooth block. The same

strategy is used for text blocks. To negate the propagation of error due to a given

block being misclassified, a lattice approach is taken, where every second block can

only be predicted. To ensure a predicted block is accurate, a refined colour counting

approach is then applied to a predicted block. A single row and column is selected in

21

2 LITERATURE REVIEW

the block and the unique pixel values are counted. If the amount of unique colours is

below an empirically tested threshold value, the prediction is a success. If the unique

values are above a given threshold value, the discrete wavelet transform classification

process will be applied to the block.

The classification algorithm presented in the research by Wu has been shown to

be highly accurate and is the basis of the classification implemented in this thesis.

The classification stage of the compound compression presented in this research is

compared to the work presented by Wu further on in this Thesis.

Wang et al, propose a compound compression strategy which uses dictionary based

coding and the H.264 framework in their work ”Compound Image Compression

Based on unified LZ and Hybrid Coding” [45]. Their work leverages the ability

of the GZIP compression algorithm to efficiently compress repetitive patterns inherent

in computer generated image data and H.264 efficiency at compressing natural image.

Central to GZIP is the Deflate algorithm [7], which uses Lempel-Ziv 77 (LZ77) dic-

tionary coding [51] and Huffman coding [16]. The Deflate algorithm is also used in

the lossless image compression format Portable Network Graphics (PNG), however it

is performed in a raster scan order over the full row of an image. As Wang et al are

using a block based approach, they modify the scanning procedure to work on blocks

instead of rows. They note from empirical testing, greater compression gains are

achieved by compressing in a ”packed” pixel format, rather than each colour channel

separately.

Figure 9: Showing the difference between a packed pixel format versus a planar pixel

format

22

2 LITERATURE REVIEW

Figure 9 illustrates the difference between a packed pixel format and a planar pixel

format. Wang et al also modify the scan direction, based on their empirical test-

ing, they found that processing a block column-wise rather than row-wise improves

compression performance.

Wang et al note the computational overhead of GZIP-like coding is a fraction of

the computational complexity of H.264, so for their proposed method they choose to

simultaneously compress each block with both GZIP-like coding and H.264 coding

and use a metric based on rate-distortion optimisation to choose between the output

of each method to encode in the final bit stream. However, as the GZIP-like coding

is lossless, the distortion will be zero, so they modify the algorithm to accommodate

for this.

23

2 LITERATURE REVIEW

Figure 10: Overview of the Unified LZ and Hybrid Coding framework

Figure 10 shows an overview of Wang et al algorithm. They show impressive gains

in both compression performance and Peak signal to noise ratio over standard H.264

and GZIP, however their strategy does have added computational complexity by si-

multaneously using both H.264 and GZIP-like compression. As they have noted in

their research, the computational complexity of GZIP is a fraction of H.264, if They

chose an approach that could analyse a given block before the compression stage, they

could reduce the computational complexity greatly by only using a single compression

algorithm per block.

Chen et al examine the benefits of using multiple types of transforms in their work

A Staircase Transform Coding Scheme for Screen Content Coding” [4]. In

24

2 LITERATURE REVIEW

their work they note that modern video codec’s make use of prediction coding, where

the transform is performed on the residual of a prediction. However the prediction

residuals for screen content may vary dramatically from the residual of natural tone

image. The prediction residuals for screen content can take the form of impulse or

staircase signals because of the sharp transitions due to text and graphical content in

smooth regions. They note that The Discrete Cosine Transform basis functions cannot

accurately represent these staircase signals and so look to other types of transforms

that can accurately and efficiently represent these basis. The staircase transforms

used in this research are the Haar transform and the Walsh-Hadamard transform,

both of which are actually discrete wavelet transforms.

Conclusion

There are three clear goals of a successful compound image compression strategy that

would be used in modern day cloud services such as virtual desktop infrastructure

and Desktop as a service.

• The system must be able to efficiently compress the data such that it meets the

network bandwidth requirements.

• The system must be low in computational complexity. Using less resources

enables a greater amount of instances that can be used by end users.

• Decoding should be less computationally expensive than the encoding process,

such that it can be performed by devices with limited resources, limiting the

amount of latency for the end user to an acceptable level.

• The system must be able to produce an acceptable output image in terms of

both objective and subjective quality, such that the end user is fully able to

descern the data within the image, free from obstruction.

It is clear from the material presented in this literature review that no single compres-

sion strategy fully succeeds in realising the three goals simultaneously, so a certain

balance needs to struck. It is then even more important to fully understand the data

within a compound image such that the overall system can be optimised to a good

balance.

While block-based compression strategies may not be as optimal in classification as

object-based classification, they make up for this in their efficiency and ability to

incorporate proven compression techniques such as JPEG style compression based on

DCT coding for natural image. But there are attributes of the compound image such

as text, smooth regions and graphics that are not suitable for transform coding and

if compressed by these methods, will introduce distortion artefacts, degrading the

25

2 LITERATURE REVIEW

quality of the output image, as well as incurring additional latency to the end user,

due to calculation of the transform for each block.

A block-based compression strategy has the ability to incorporate other compression

algorithms more suited to these types of computer generated data. However, this

gives rise to another challenge, that is, how to choose which type of compression to

apply to each block?

Using the pixel histogram and gradient is a good method but requires three his-

tograms, along with a clustering algorithm. Using the Rate Distortion Optimisation

algorithm in H.254 and HEVC requires multiple passes through the data. Using a

Wavelet transform on a single channel to find directional information can be done in

a single pass and achieve accurate results, however, it still has to be performed on

every block.

A good balance between efficiency and accuracy for classification would be to find

attributes of the different types of data that are in a block that can be gathered

without intensive processing. One attribute that stands out is the count of unique

pixel values per block. Data in a compound image that is computer generated data is

typically text, structural information, such as elements of the graphical user interface

and smooth regions such as the background of text editors or back drops to appli-

cations. For an end user to be able to get the information from computer generated

data, the information has to be clear and free from obfuscation. The hypothesis that

there is a correlation between blocks containing computer generated data and hav-

ing a low pixel count will be explored in this thesis, to see if it is a good metric for

classification. Counting the unique pixels in a block is radically less computationally

complex, compared to performing mathematically intensive discrete transforms, so if

unique pixel counting can be shown to be an accurate metric for classification, the

algorithm should receive a significant enhancement in speed performance, resulting

in a more efficient classification algorithm.

26

3 HUMAN VISUAL SYSTEM AND COLOUR

3 Human Visual System and Colour

3.1 The Human Visual System

This sections aims to give a brief overview of the structure and attributes of the

human visual system and how it plays a central role in the implementation of image

processing techniques.

The cornea is a transparent and durable tissue at the front of the eye which covers

the pupil, iris and anterior chamber. As well as providing protection, it is responsible

for refracting light in through the pupil onto the retina.

The lens is responsible for absorbing close to 8% of the visible light spectrum and

has higher absorption functionality with shorter wavelengths. It focuses light on the

retina and by manipulating its shape, it controls the focal distance of the eye so that

it can focus on a given object at a specific distance. This allows for a clear image of

a given object to be formed on the retina.

Figure 11 shows a cross sectional view of the human eye. It is comprised of many

sections:

Figure 11: Cross-Sectional view of the human eye structure [42]

The retina lines the rear wall of the eye. When in focus, light reflected from an object

outside of the eye is imaged on to it. The ability to discern patterns from the reflected

light is due to fields of discrete light receptors which cover the surface of the retina.

There are two unique types of light receptors known as retinal rods and cones.

The cones of the human eye are clustered around the centre of the retina in an area

known as the fovea. Cones are highly sensitive to colour and because each cone

is attached to its own individual nerve ending, the human visual system is able to

discern a wide palette of colours. There are three defined types of retinal cones:

Long, Medium and Short. Each type of cone is sensitive to a particular wavelength

band: 650nm[long], 510nm[Medium] and 475nm[short] and the human visual system

27

3.1 The Human Visual System 3 HUMAN VISUAL SYSTEM AND COLOUR

interprets these bands as red, green and blue (trichromatic colour vision) respectively

[30]. The type of vision produced by cones is known as phototopic vision[3].

There are up to 7 million cones in the retina which is comparatively smaller than

the 75 - 150 million rods [14]. Rods differ to cones in multiple ways: they take up

more surface area than cones and multiple rods are connected to the same nerve

ending. Rods are not used in discerning colour information but are very sensitive to

slight variation in luminance levels. Rods produce a general overview of the scene

imaged to the retina and can be stimulated in low luminance levels when cones are not

stimulated. An example of rod stimulation would be an objects outline being visible

by moonlight without colour information, while in day light, colour information is

clearly visible. This type of vision is known as scoptic vision [14].

The human visual system’s higher sensitivity to light allows it to extract structural

information from an image. This is an important attribute that should be taken into

consideration when applying compression to image data. By separating an image into

light data (luminance) and colour data (chrominance), an image can be processed by

preserving structural information about the image in the luminance channel, while

discarding some information in the chrominance channel in favour of smaller image file

size. Distortion is a penalty incurred by discarding some of the original data, however

as the human visual system is less sensitive to colour information, the reduction in

data may not have as great an impact on the end viewer. This is done to reduce the

file size of the image to meet transport and storage requirements. This technique is

exploited by most modern lossy compression codecs, such as the JPEG standard [18],

H.264 [47] and HEVC [39]

The human visual systems ability to extract structural information from an image also

has to be considered when applying compression algorithms to non camera captured

images. Any distortion to structural information, which is inherent in computer

generated images, can impact negatively on the end user experience. However, there

are compression algorithms that can efficiently compress structural information, free

from distortion, such as PNG [13].

The design of a compound compression algorithm should take into account the at-

tributes of the human visual system and exploit them whenever necessary, to provide

a processed image that is free from user discernible distortion, while the size of the

compressed file fits storage and network requirements.

To gauge success of a compression algorithm, metrics are needed. Common metrics

used in image processing are root mean square error (RMSE) and peak signal to noise

ratio (PSNR). Both metrics are a measure of the error in a signal from original image

to processed image and do not take into account the human visual system. However,

a metric known as structural similarity index (SSIM) [50] which is based upon the

attributes of the human visual system can be used as a good image quality assessment

metric and will be used as a metric for the work presented in this thesis.

28

3.2 Colour Space 3 HUMAN VISUAL SYSTEM AND COLOUR

3.2 Colour Space

The perception of light depends on three main properties:

1. Intensity, which can be defined as the total energy within the light.

2. Colour, which can be defined as the fundamental frequency of the light.

3. Saturation, which can be described as how close a light source appears to be a

pure spectral colour.

The term luminance is used to refer to the intensity of light within digital images,

while the term chrominance is used to collectively refer to the colour and saturation

within an image.

To represent an image digitally, there needs to be an agreed upon method to interpret

the chrominance and luminance information using discrete values. There are many

models that can be used to represent this information and the model that is chosen

will be defined as the colour space of the medium.

There are many models that can be used for the colour space. A popular model used

in computing is the RGB model.

RGB Colour Model

The RGB model is an additive model which decomposes a given colour into three

primary components: Red, Green and Blue. By varying the level of intensity of each

component, the full colour spectrum can be represented, which can be compared to a

spatial vector which can be defined about three axis x,y,z. By normalising the Red,

Green and Blue components to the unit vector, all definable colours are constrained

in a unit cube, in which any given discrete colour can be directly translated into three

positive integer values. The unit vector RGB colour cube can be seen in figure 12.

29

3.2 Colour Space 3 HUMAN VISUAL SYSTEM AND COLOUR

Figure 12: The unit vector RGB colour cube

Using the colour cube defined in figure 12, a colour C can be defined as:

C =

RG
B


Where

0 ≤ R,G,B ≤ 1

The contribution of intensity for each colour is denoted with r,g,b and so the colour

C can be defined as

C = (rR + gG+ bB) (1)

The process of adding colours together, which is known as blending has to satisfy cer-

tain constraints. Just as adding two points in space is prohibited, a linear combination

of two discrete colours is only true if the sum of coefficients is equal to one.

C3 = α1C1 + α2C2 (2)

where

0 ≤ α1, α2 and α1 + α2 = 1

Equation 2 ensure that the combination of colours will lie with the unit colour cube.

30

3.2 Colour Space 3 HUMAN VISUAL SYSTEM AND COLOUR

YUV Colour Model

The RGB model is suited for colour image display on devices such as computer mon-

itors, as each colour component is mutually exclusive with a discrete value given to

each component. However, it is not an efficient model for image processing for natural

image and video compression. It is a mathematical model that does not take into ac-

count that the human visual system is more sensitive to luminance than chrominance.

A more effective approach would be to separate the brightness information from the

colour information. By separating luminance and chrominance, a higher resolution

can be assigned to the luminance component while a lower resolution can be assigned

to the chrominance components in favour of improved compression performance while

reducing the impact of distortion for the end user.

The YUV model which has been traditionally used for colour television broadcasting

is derived from the RGB colour model, It is described by the luminance component

Y, and two colour difference components, UV.

The luminance component is a calculated weighted sum of the red, green and blue

component, while the chrominance components are calculated by subtracting the blue

and red components from the the luminance component.

The equations for the transform from RGB space to YUV space are described by the

ITU-R recommendation BT.601-7[41]:YU
V

 =

 0.299 0.587 0.114

−0.148 −0.289 0.437

0.615 −0.515 −0.11

RG
B

 (3)

When using 8-bit values for each sample in a channel, the range of values for the

luminance channel are uni polar and lie in the range from [0,255], whereas the values

for the colour difference component are bipolar where:

−144 ≤ U ≤ 111 and − 98 ≤ V ≤ 157 (4)

YCbCr Colour Model

The YCbCr Model is related to the YUV model and is used in the JPEG and MPEG

standards. The chrominance values, Cb, Cr, are scaled and shifted to ensure they are

a positive value unlike the YUV model.

31

3.2 Colour Space 3 HUMAN VISUAL SYSTEM AND COLOUR

Computing the YCbCr transform values from RGB components can be done with

Y = krR + kgG+ kbB

Cb =
B − Y

2(1− kb)
+ 0.5

Cr =
R− Y

2(1− kr)
+ 0.5

(5)

where:

kr + kb + kg = 1

(a) Image in 24 bit RGB colour space. (b) Image in 24 bit YCbCr colour space

Figure 13: Standard test image ’lena’ converted from RGB colour Space to YCbCr

colour space

Figure 13a shows the standard test image ’Lena’ represented in 24 bit true colour

RGB, while figure 13b shows the same image transformed into YCbCr colour space.

One of the main purposes of transforming an image from RGB colour space to YCbCr

colour space is to process the luminance and chrominance data independently. Figure

14a and figure 14b represent a a 4x4 pixel sub image extracted from the top left corner

of figure 13a and 13b respectively.

32

3.2 Colour Space 3 HUMAN VISUAL SYSTEM AND COLOUR

(a) 4x4 sub image sampled from 13a

space.

(b) 4x4 sub image sampled from 13b

space

Figure 14: A 4x4 pixel matrix sub-sampled from the top left corner of the images in

13a and 13b

Each square in figure 14a and 14b represent a 3 byte pixel. In 14a the values from

top to bottom represent the blue, green and red contribution, while in 14b the values

represent, the Y, Cr (difference between red and Y value) and Cb (difference between

blue and Y value) contribution. It can be observed that the red channel contribution

is the predominant value in 14a, with all values greater than 220 and lower values for

the blue and green channels. Comparing the red contribution, with respect to the Cr

contribution of 14b, It can be seen that the Cr values are lower, however, because of

the colour space transform, some of the information about the red channel is captured

in the Y channel, as is information from both the blue and green channel. To show

the information compaction of the colour space transform, the standard deviation

can be calculated on all channels of both figure 14a and figure 14b. The standard

deviation can be defined as a measure of the amount of variation of a set of values

and can be computed with: √∑N
i=1(xi − x̄)2

N − 1
(6)

where {x1, x2, . . . , xN} are the channel values, x̄ is the mean value of the channel

and N is the number of values in the channel.

33

3.2 Colour Space 3 HUMAN VISUAL SYSTEM AND COLOUR

Colour Channel Mean Standard

Space Deviation

RGB Red 180.22 49.05

Green 99.05 52.87

Blue 105.41 34.057

YCbCr Y 124.05 47.86

Cb 117.49 13.63

Cr 168.06 12.80

Table 1: Results of mean and standard deviation calculations on each colour channel

of figure 13a and 13b

Table 1 shows the results of calculating the mean and standard deviation of each

channel of 13a and 13b. It can be observed that the standard deviation of both

the Cb and Cr channels are significantly lower than any of the channels in the RGB

colour space, while the Y channel, sits mid way between the highest and lowest of

the channels of the RGB colour space. A low standard deviation indicates that the

pixel values tend to be close to the mean of the values of a given channel, while a

high standard deviation indicates that the values are spread out over a wider range.

The low standard deviation of the Cb and Cr channels is a significant result, if one

was to replace some of the pixels with common a value, to reduce the amount of

unique values being stored, the error in the processed signal would be less than that,

if the same process was performed on a channel with high standard deviation. The

process of replacing groups of pixels within the colour channels with a common value

is known as chroma subsampling and its use in lossy compression algorithms is wide

spread.

34

3.3 Chroma Sub Sampling 3 HUMAN VISUAL SYSTEM AND COLOUR

3.3 Chroma Sub Sampling

Chroma subsampling can be defined as a type of compression that discards colour

information in an image in favour of reducing the file size for storage and to meet

network bandwidth requirements. Subsampling is performed on the colour or chromi-

nance information, rather than the brightness or luminance information because of

the human visual systems ability to discern more brightness information than colour

information. A chroma subsampling scheme is defined by its sample rate, typically

for digital images, the three most popular are YCC 4:4:4, YCC 4:2:2 and YCC 4:2:0,

where YCC is an abreviation of YCbCr colour space.

Figure 15: Full colour sampling pattern

Figure 15 Shows the full resolution sampling of YCC 4:4:4. The Cb and Cr colour

channel values are sampled in a 1:1 ratio with the Y channel values. This is the

highest sample rate, which is lossless. Because of the full resolution, the file size is

very large, as an example a single 16x16 block of 3 byte pixels contains 768 bytes.

Codecs such as JPEG and MPEG-2 both support YCC 4:4:4 sample rate, however it

would not be suitable for real time transmission or storage.

Figure 16 Shows the YCC 4:2:2 subsampling pattern. Both the Cb and Cr channels

are sampled at half the horizontal resolution of the Y channel. This method still

produces high resolution images after processing with the resultant processed image

being 2
3

The size of the image. YCC 4:2:2 is supported in JPEG, H.264 [47] and

HEVC [39].

35

3.3 Chroma Sub Sampling 3 HUMAN VISUAL SYSTEM AND COLOUR

Figure 16: YCC 4:2:2 Chroma subsampling pattern

Figure 17: YCC 4:2:0 Chroma subsampling pattern

Figure 17 Shows the YCC 4:2:0 chroma subsampling pattern. This ratio is one of

the most commonly used subsampling ratios , as used in most codec’s which employ

lossy compression, such as JPEG. The chrominance channels are sampled in half

the resolution in both horizontal and vertical directions, compared to the luminance

channel. After subsampling with 4:2:0, the file size is effectively halved, while still

being able to produce an image of good subjective quality. There are many ways to

implement the sampling process, in figure 17, the top left value in every 2x2 block of

pixels is sampled for both the Cb and Cr channels. another method is to calculate

the mean value of the 2x2 block of a given channel. As previously shown in table 1,

the standard deviation in both colour difference channels is low, which would indicate

that the values in each respective 2x2 block, or neighbourhood of pixels are highly

correlated.

Figure 18 Shows a high level over view of the process of performing a colour space

transform and YCC 4:2:0 chroma subsampling on a 16x16 block of 3 byte pixels in

RGB colour space. The output of the subsampling process is four 8x8 Y channel

blocks and two 8x8 colour space blocks. The purpose of decomposing the original size

block into 8x8 blocks is for further processing, usually performing a discrete cosine

36

3.3 Chroma Sub Sampling 3 HUMAN VISUAL SYSTEM AND COLOUR

transform to further decorrelate the information in the pixels. The discrete cosine

transform will be discussed further on in this thesis.

Figure 18: A 16x16 RGB Block Chroma sub sampled into 4 8x8 Y Blocks, 1 Cb block

and 1 Cr Block

Figure 19a shows the original test image in full colour 24 bit RGB, while figure

19b shows the test image after processing with YCC 4:2:0 chroma subsampling and

transformed back to RGB colour space. It can be observed from figure 19b that there

is little observable difference in subject image quality, even though in compressed

form, figure 19b is half the size of figure 19a. This is a significant result, as it

demonstrates that it is possible to discard some information in an image in favour

of compression performance, without having dramatic effects on subjective image

quality.

37

3.3 Chroma Sub Sampling 3 HUMAN VISUAL SYSTEM AND COLOUR

(a) Image in 24 bit RGB colour space. (b) Image Processed with YCC 4:2:0

chroma subsampling space

Figure 19: Comparing the original 24 bit RGB test image vs processed with YCC

4:2:0 chroma subsampling

Chroma sub sampling is a lossy type of compression. Once the original data has

been discarded, it is lost forever, which means the output after the process is only

an approximation of the original image. Because of this, there will be some error in

the reconstructed image. By calculating the absolute difference between the processed

image and the original image, an image residual can be generated. The residual image

calculated from figure 19a and 19b can be seen in figure 20a. As the difference is quite

small, all the values are close to zero, which is interpreted as near black. The residual

image is a powerful tool that is used in video compression standards such as H.264

and HEVC to compress successive frames in a sequence. A single frame is compressed

fully and then successive frames are compared to it. As there is not much change

between sequential frames in a sequence, the dynamic range in pixel information is

greatly reduced. Compression techniques are then performed on the residual, which

contains significantly less information and is more efficient to compress. Then on the

decoder side, the compression information from the residual frames is then summed

with the first frame of the sequence for reconstruction.

38

3.3 Chroma Sub Sampling 3 HUMAN VISUAL SYSTEM AND COLOUR

(a) Image residual (b) grey scale conversion (c) Bi-level image: threshold

=1

Figure 20: Comparing the absolute difference between original image and chroma

subsampled image

Figure 20b is the residual image transformed to a grey scale image, with a uniform

scalar value of 100 added to every pixel in each channel, the error is slightly more

visible. Figure 20 shows the residual image transformed to a bi-level image with two

levels, 0 and 255. Hard thresholding is performed on the residual, where any non

zero value in each channel is interpreted as 255. It is clear to see where the error is

in the signal using this method. Viewing the error with the bi-level image, brings to

light an important point, even though there are many pixel values that are not the

same as the original, the distortion to the image caused by the process is not that

visible to the human visual system. Two standard metrics for gauging the quality of

a compression algorithm are Root Mean Squared Error (RMSE) and Peak Signal to

Noise Error (PSNE). Both metrics are measures of the error in a signal, but do not

take into account the human visual systems ability to perceive the error or not. The

error that is exposed in the bi-level image is not perceivable when comparing figure

19a and 19b. Image quality metrics will be discussed further in this thesis.

3.3.1 Conclusion on Chroma Subsampling

Chroma subsampling is an efficient way to compress natural and camera captured

image as the distortion, as shown, can be masked in the processed image, so it has

little effect on the human visual system. However, chroma subsampling may not be

suitable for all types of images, such as computer generated image and text.

39

4 COMPOUND IMAGE

4 Compound Image

A compound image is defined in this thesis as a digital image containing two or more

distinct types of data class, such as computer generated text and continuous tone

natural image. In this section, the types of data class and their attributes that make

up a compound image will be analysed.

There has been extensive research in the field, [36] [9] [23] [48], on image classification,

which decompose a compound image into blocks and classify each block based on

unique attributes. The purpose of this is two fold:

• Different compression algorithms can be applied to blocks classified as a specific

type based on their attributes for optimal compression performance.

• Certain compression algorithms are less computationally expensive compared to

others. By choosing a sufficient compression algorithm for a given class of data,

the overall resources required will be reduced. As an example, compressing

a block of single colour pixels by simple counting algorithm will require less

resources than compressing a block of pixels containing continuous tone image

by means of a discrete transform function. This improves computing efficiency

and will reduce latency.

Figure 21 shows a segment of a typical compound image that may be displayed on

a computer screen. It can be observed that the image contains a combinations of

continuous tone image, graphical elements like the elements of the browser, text data,

areas of the screen that are single colour and also computer generated image, such as

icons and logos.

Figure 21: Section of a typical computer desktop displaying a compound image

40

4.1 Image Data Classes 4 COMPOUND IMAGE

4.1 Image Data Classes

The research presented in [36] chose to segregate the data in a compound image

using two data classes which are Text and Picture. The research presented in [9]

expanded upon this by choosing four data classes which are Smooth, Text, Picture

and Hybrid. Image data that is classified as Smooth contains a single colour and

image data classified as Hybrid contains a mixture of computer generated graphics

and continuous tone image. The research presented in [48] further classifies the image

data that contains continuous tone image by introducing another data class called

Fuzzy. Image data classified as Fuzzy contains a high unique pixel count, however

without any discernible pattern and all with a similar intensity.

The research presented in [48] chooses 5 image data classes which are Smooth, Sparse,

Text, Fuzzy and Picture, which are the same image data classes used in this thesis.

The remainder of this section will describe each class of data.

Figure 22 Shows sample 16x16 pixel blocks extracted from a compound image and

expanded to show the individual pixels. The first three types of block are image

data that has been computer generated and generally contain fewer unique colours,

have definitive structure and are free of noise. The remaining two types of blocks

are generally image data that has been camera captured containing continuous tone

image. They have a higher distribution of unique pixel values, contain less uniform

structure and have a more textured appearance.

SPARSESMOOTH TEXT FUZZY PICTURE

Block Type Classification

Figure 22: Five Classifications of Blocks Associated with Compound Images

41

4.1 Image Data Classes 4 COMPOUND IMAGE

4.1.1 Smooth Class

Figure 23: Luminance Channel intensity Graph of 16x16 Pixel Block That is Classified

as a Smooth Block

Figure 23 represents the luminance channel of the smooth block in figure 22 in 3

dimensions. The block has been transformed from RGB colour space to YCbCr

colour space and the height of each column represents the luminance intensity for a

given pixel in the block. The name smooth is derived from the texture of the block,

which can be seen as completely uniform and flat. Smooth blocks can be found in a

compound image displayed on a computer when a user may be using applications such

as word processing applications or pdf viewers, generally, many smooth blocks will

be be located in large areas of the screen and are in close proximity to one another.

42

4.1 Image Data Classes 4 COMPOUND IMAGE

Figure 24: Luminance Channel Histogram of 16x16 Pixel Block Classified as Smooth

Figure 24 shows the histogram of the luminance channel of the smooth block. It can

be observed that the smooth block is dominated by a single value. The data contained

in a smooth block is completely computer generated data, as there is no variance in

values of the pixels.

Smooth blocks have ideal properties for compression.When a given 16x16 block of pix-

els can be fully represented by a single value which would give a theoretical compres-

sion ratio of 256:1, which is very good compression performance. As smooth blocks

are generally found to be located in succession, many smooth blocks will contain the

same value, which would allow for further processing to achieve further compression

performance. Smooth block compression will be developed further on in this thesis.

43

4.1 Image Data Classes 4 COMPOUND IMAGE

4.1.2 Sparse Class

Figure 25: Luminance Channel intensity Graph of 16x16 Pixel Block That is Classified

as a Sparse Block

Figure 25 represents the luminance bar graph of the sparse block from figure 22. It

can be observed from the bar graph that the texture of the block is largely smooth,

but with a definitive partition running through it. This type of image data does not

regularly occur in natural image and is most likely computer generated. Sparse blocks

contain structural information and typically can be found on perimeter boarders of

applications running on a desktop.

There can be multiple sparse blocks in succession typically beside each other in a

vertical or horizontal direction.

44

4.1 Image Data Classes 4 COMPOUND IMAGE

Luminance Channel Histogram of 16x16 Pixel Sparse Block

0 50 100 150 200 250

Luminance Channel Value Intensity

0

20

40

60

80

100

120

140
P

ix
e

l
C

o
u

n
t

Figure 26: Luminance Channel Histogram of 16x16 Pixel Block Classified as Sparse

Figure 26 shows the luminance channel histogram of the sparse block. It can be

observed that there are few dominant colours. The histogram shows that the domi-

nant colour values are within proximity to each other, but sparse blocks may contain

colours that are spread out from each other also. Sparse blocks will contain fewer dom-

inant colours than natural image and have defined structures in the data. The defined

structure typically consists of repetitive patterns which allow for efficient compression

using lossless compression algorithms. However, because the structural information

in the data is generally linear, transform techniques such as the discrete cosine trans-

form which is used in lossy compression techniques may induce compression artifacts

and poor compression performance.

To ensure efficient compression performance and objective image quality, compression

techniques that can exploit spatial correlation and pattern matching should be used

for blocks that have been classified as sparse.

45

4.1 Image Data Classes 4 COMPOUND IMAGE

4.1.3 Text Class

Figure 27: Luminance Channel intensity Graph of 16x16 Pixel Block That is Classified

as a Text Block

Figure 27 Shows the luminance channel bar graph of a text block from figure 22. It

can be observed that the texture of the block is different to both smooth and sparse

blocks. Text blocks can contain complex structural information that make up the

characteristics of text, which are sharp strokes in vertical horizontal and diagonal

directions. Text blocks may contain multiple unique pixel values but are usually

lower in unique pixel values than blocks containing natural image.

To ensure that the information contained in the text can be retrieved by the human

visual system, the intensity values of the pixels of a text object should have a high

contrast to the pixel values in the background. As the Human visual visual system

is tuned to extract structural information from an image, it is essential that textual

data in images is coded with high spatial resolution. Any artifacts introduced in the

compression and decompression of textual information will be more noticeable to the

end user leading to a degraded user experience.

46

4.1 Image Data Classes 4 COMPOUND IMAGE

Luminance Channel Histogram of 16x16 Pixel Text Block

0 50 100 150 200 250

Luminance Channel Value Intensity

0

20

40

60

80

100

120

140

160

180

200
P

ix
e
l
C

o
u
n
t

Figure 28: Luminance Channel Histogram of 16x16 Pixel Block Classified as Text

Figure 28 shows the luminance channel histogram for the text block. The dominant

value that can be observed is the background colour, while the smaller spikes which

are sparsely distributed are what make up the text. It is essential to not lose any of

this information in the coding process, which is why lossless compression techniques

such as dictionary style compression are best for image data containing text.

4.1.4 Fuzzy Class

Figure 29 shows the luminance channel bar graph of a fuzzy block. The name fuzzy is

derived from the texture of the block. It can be observed from figure 29 that there is

low variation in intensity levels among the pixels with no discernible pattern. Further,

the degree of intensity is similar for the whole block.

Fuzzy blocks are usually located in areas of the screen which show natural camera

captured image data, such as desktop background images or photos. An example of

an image that would contain many fuzzy blocks would be a picture of a field of grass

or a picture of a sky. Fuzzy blocks are ideal for compressing with lossy compression

algorithms, such as using the discrete cosine transform, followed by quantization,

such as in JPEG. This is due to the lack of structure that is needed to be replicated,

coupled with the discrete cosine transform’s ability to compact most of the energy in

a signal into just a few coefficients, which can then be transmitted and decoded to

give a close approximation of the original image.

47

4.1 Image Data Classes 4 COMPOUND IMAGE

Figure 29: Luminance Channel intensity Graph of 16x16 Pixel Block That is Classified

as a Fuzzy Block

Figure 30 shows the luminance channel histogram of the fuzzy block. It can be

observed that the distribution of the intensity values are quite close to the normal

distribution curve, which indicates the lack of structure within the block. Fuzzy

blocks may contain fewer unique pixel values than blocks classified as picture. As the

human visual system is less sensitive to colour information compared to luminance

information, the colour channels of the fuzzy block can allow for heavier quantiza-

tion in the compression stage, to improve compression performance without much

discernible loss of information to the end user.

48

4.1 Image Data Classes 4 COMPOUND IMAGE

Luminance Channel Histogram of 16x16 Pixel Fuzzy Block

0 50 100 150 200 250

Luminance Channel Value Intensity

0

10

20

30

40

50

60

70
P

ix
e

l
C

o
u

n
t

Figure 30: Luminance Channel Histogram of 16x16 Pixel Block Classified as Fuzzy

4.1.5 Picture Class

Figure 31 shows the luminance channel bar graph of the picture block. The texture

of the block is more course than that of the fuzzy block. It can be observed that

there is structure in the block, although it is not linear like the structure of the text

and sparse block. However, the transition in intensity between neighbouring pixels

develop slower than the transients in both text and structure blocks.

It can be observed from figure 31 that there is correlation between neighbouring pixel

values in a picture block. The discrete cosine transform leverage’s this correlation

among neighbouring pixels and the slowly varying transitions within the block itself,

by comparing each sample to a harmonic of a cosine series: if the value is similar,

the difference will be close to zero, such that the value is not needed in the decoder

stage to generate a good approximation of the original image. The discrete cosine

transform and its ability to compact a two-dimensional signal’s energy into relatively

small amount of coefficients will be analysed further in this thesis.

49

4.1 Image Data Classes 4 COMPOUND IMAGE

Figure 31: Luminance Channel intensity Graph of 16x16 Pixel Block That is Classified

as a Picture Block

Figure 32 shows the luminance histogram of of the picture block. it can be seen that

it has that widest distribution of unique pixel values with significant pixel count.

As previously stated, there is correlation among neighbouring pixel so performing a

discrete cosine has the ability to compact the signal energy into a smaller amount of

coefficients, however a lighter quantization should be used compared to the quanti-

zation used on fuzzy blocks as to preserve as much of the structural information in

the data as possible. There are many types of quantization matrices that have been

researched and will be discussed further on in the thesis in section 6.2.3.

50

4.2 Conclusion On Compound Image 4 COMPOUND IMAGE

Luminance Channel Histogram of 16x16 Pixel Picture Block

0 50 100 150 200 250

Luminance Channel Value Intensity

0

10

20

30

40

50

60
P

ix
e

l
C

o
u

n
t

Figure 32: Luminance Channel Histogram of 16x16 Pixel Block Classified as Picture

4.2 Conclusion On Compound Image

In this section, five classification types of data that each have specific attributes that

are inherent in compound images have been presented and analysed. Suggestions

have been proposed on the types of compression algorithms to use for each type. The

following example is aimed to illustrate some of the compression artifacts incurred by

using sub optimal compression techniques for a given block type.

Figure 33 shows a 16x16 block of pixels which contains data that is classified as text

before processing and after processing using a combination of discrete cosine transform

and quantization. It can be observed that there are significant compression artefacts

around the structure of the text. This illustrates the negative impact that occurs

when using an inappropriate type of compression algortihm for a given type of data.

However, figure 34 shows a 16x16 block of pixels which contains data that could be

classified as picture or fuzzy. It shows that, using the same processing that was used

in figure 33, there is little discernible subjective difference between the non processed

and processed blocks. An efficient compound compression algorithm should then be

able to choose a compression algorithm that is suited for a block containing a given

type of data.

51

4.2 Conclusion On Compound Image 4 COMPOUND IMAGE

The next section in this thesis presents ways in which to classify the data in a given

compound image.

Before DCT and Quantization

0 3 7 11 15

Pixels

0

3

7

11

15

P
ix

e
ls

After DCT and Quantization

0 3 7 11 15

Pixels

0

3

7

11

15

P
ix

e
ls

Figure 33: Compression Artifacts of The Discrete Cosine Transform and Quantization

on a 16x16 Pixel Block Containing Text

Before DCT and Quantization

0 3 7 11 15

Pixels

0

3

7

11

15

P
ix

e
ls

After DCT and Quantization

0 3 7 11

Pixels

0

3

7

11

15

P
ix

e
ls

Figure 34: Compression Artifacts of The Discrete Cosine Transform and Quantization

on a 16x16 Pixel Block Containing Natural Image

52

5 CLASSIFICATION

5 Classification

The purpose of classification in a compound compression algorithm is to separate the

different types of image data within a compound image, so each class of data can

be encoded with an algorithm that is suited to its attributes. The goal is to be able

to choose the type of compression algorithm in a ’first pass’ over the data. This is

especially important for coding systems that should run in real time, such as a virtual

desktop infrastructure or cloud computing applications, where added latency can be

detrimental to an end user’s experience of the system.

There are different architectures that can be used in classification, one such architec-

ture is the layer based classification used in djVU [2]. However, this type of approach

processes the whole image at a time and uses computationally expensive algorithms

in the segmentation process, which is noted in [36], [9].

Another approach is to use a block based architecture. This approach lends itself

to efficiency in terms of being able to process an image one block at a time, which

reduces the amount of memory needed and also allows for parallel processing. Also,

block based classification is a natural fit for block based compression algorithms such

as JPEG [18], H.264 [47] and HEVC [39].

The classification presented in this thesis is inspired by the research done by Juliet

[22] and Wu [48]. Both of these use a discrete Haar wavelet transform to decompose

a block of pixel values into sub bands, which can then be analysed by their statistical

properties to determine whether a given block contains computer generated data

such as text or graphics, or natural image. The purpose of this is to choose a lossless

compression algorithm for blocks that will contain computer generated data and a

lossy compression algorithm for blocks that contain natural image.

The discrete Haar wavelet transform is introduced in this section, with emphasis on

how it can be used for classification. It will also be introduced in the compression

section on how it is implemented for compression. The classification algorithm using

the discrete Haar wavelet transform will be developed in the testing section of this

thesis and the implementation in code can be seen in the code section of this thesis

in listing 22 .

5.1 The Discrete Wavelet Transform

In image processing, the discrete wavelet transform is an extremely powerful tool

that can be used in multiple ways such as image de-noising, edge extraction, filtering,

compression and classification. In this research the discrete wavelet transform will be

analysed for both image classification and compression.

Like the discrete Fourier transform (DFT) and discrete cosine transform (DCT), the

discrete wavelet transform (DWT) converts a discrete signal from the time domain

53

5.1 The Discrete Wavelet Transform 5 CLASSIFICATION

to the frequency domain. However, unlike the DFT and DCT transforms which can

only decompose into frequency domain with no information of the locality of the

frequency content (both transforms can describe what frequencies are in the signal,

but not where the frequency content is located in time), the discrete wavelet transform

decomposes the signal using a set of wavelets which are localised in the time-frequency

scale.

There are many forms of discrete wavelet transform which vary in degrees of com-

putational complexity, such as the Daubechies wavelet transform series , IW44 and

Mexican hat. Research done by Juliet [22] and Wu [48] have shown that using a dis-

crete Haar wavelet transform shows good performance with respect to computational

complexity and accuracy.

The discrete wavelet transform decomposes an image into four sub bands by applying

a combination of low pass and high pass filtering. Essentially, each band is a filter

bank. The sub bands are are described by the type of filtering applied along the rows

and columns. The four sub bands are LL, HL, LH and HH, where L stands for Low

pass and H stands for High pass.

The discrete Haar wavelet transform is both separable and reversible, which means

that the two dimensional transform that is needed for an image in two dimensions can

be separated into two one dimensional transforms, which improves the performance

of the transform with respect to computation time. Being reversible means that it is

suitable for compression and decompression.

The forward discrete Haar transform can be described as a pair-wise average and

difference function. The average values for a pair of samples is computed, where the

computed value can be considered low pass filtered, while the difference calculation

between a pair of neighbouring values can be considered as high pass filtered.

If X is an array of pixel values, with length N , the average function of the forward

discrete wavelet transform can be described as

sk =
X2k +X2k+1

2
k = 0, ..., N/2 (7)

where Sk is the pairwise average between two samples.

The difference function can be described by:

dk =
X2k+1 −X2k

2
k = 0, ..., N/2 (8)

To show how the discrete wavelet transform works, let X equal a row of pixel intensity

values:

X = 80 80 80 80 80 40 40 40 60 80 80 60 60 80 80 80

It an be observed from the values of X that there is a strong correlation among

neighbouring pixels in the row. The type of pixel data in X is typical of computer

54

5.1 The Discrete Wavelet Transform 5 CLASSIFICATION

generated data such as text or graphics. Figure 35 Shows the array of pixel intensity

values, XN plotted in the pixel domain. It can be observed from figure 35 that there

are uniform areas and sharp gradients.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

20

40

60

80

100

120

XN

p
ix

el
in

te
n
si

ty
va

lu
e

Figure 35: Pixel intensity values vs Location in array

Performing the forward discrete Haar wavelet transform along the columns of X would

output an array with the average values computed with equation(7) (Low Pass) on

the left and the difference values computed with equation(8) (High Pass) on the right:

XT = s0 s1 s2 s3 s4 s5 s6 s7 d0 d1 d2 d3 d4 d5 d6 d7

The computed values for the discrete Haar wavelet transform, XT , are :

XT = 80 80 60 40 70 70 70 80 0 0 -20 0 10 -10 10 0

The pairwise averaged coefficient values, sn are plotted in figure 36. It can be observed

that figure 36 is an approximation of figure 35 with only half the amount of sample

values. The strong correlation between neighbouring pixels can be observed from

figure 36 because of the close similarity to figure 35. However, the high frequency

changes towards the right hand side of figure 35 has been filtered out in figure 36.

55

5.1 The Discrete Wavelet Transform 5 CLASSIFICATION

0 1 2 3 4 5 6 7

20

40

60

80

100

120

SN

H
aa

r
w

av
el

et
av

er
ag

e
co

effi
ci

en
ts

Figure 36: Discrete Haar Wavelet average coefficients

The pairwise difference coefficients, dN , after performing the discrete Haar transform

on figure 35 can be observed in figure 37. The transient information that has been

lost in figure 36 can now be observed. One of the fundamental differences between

the discrete wavelet transform is that it can distinguish frequency information about

a signal, but also the locality of the frequency content, this is shown in figure 37 and

is fundamental to the algorithm’s success in image classification.

56

5.1 The Discrete Wavelet Transform 5 CLASSIFICATION

0 1 2 3 4 5 6 7
−30

−25

−20

−15

−10

−5

0

5

10

15

20

dN

H
aa

r
w

av
el

et
d
iff

er
en

ce
co

effi
ci

en
ts

Figure 37: Discrete Haar Wavelet average coefficients

Figure 38 is an example of processing an input image with a one level, two-dimensional

discrete wavelet transform, performed as two one-dimensional transforms.

Before Wavelet Decomposition

0 159 319

 Horizontal Pixel Position

0

159

319

 V
e

rt
ic

a
l
P

ix
e

l
P

o
s
it
io

n

(a) Before DWT Decomposition

After Wavelet Decomposition

0 159 319

 Horizontal Pixel Position

0

159

319

 V
e

rt
ic

a
l
P

ix
e

l
P

o
s
it
io

n

(b) After DWT Decomposition

Figure 38: Discrete Haar transform Decomposing a Single Channel 320x320 Pixel

Image Containing Text

The processed image in in figure 38(b) has the same dimensions as the figure 38(b),

57

5.1 The Discrete Wavelet Transform 5 CLASSIFICATION

however is split into 4 distinct regions, which represent the four subbands: LL, HL,

LH and HH. The top left corner of 38(b) represents the LL sub band. It contains an

approximation of the original image that has been low pass filtered in both horizontal

and vertical directions and scaled to 1
4

size of the original image.

The top right hand corner represents the HL sub band and has been high pass filtered

in the horizontal direction and low pass filtered in the vertical direction. It can be

observed that there is information about vertical strokes.

The bottom left hand corner represents the LH sub band and has been low pass

filtered in the horizontal direction and high pass filtered in the vertical direction. It

shows information about horizontal strokes.

The bottom right hand corner represents the HH sub band and has been high pass

filtered in both directions. Only very fine details are shown in this sub band, such as

diagonal strokes.

The discrete Haar wavelet transform’s ability to localise high frequency transient

information can be used in image classification to distinguish computer generated

data such as text and graphics from natural image. Using the discrete haar wavelet

transform in this approach is similar to applying an edge detection filter such as the

Canny or Sobel filter. Howver, the time complexity for the Canny and Sobel filter is

O(N log N) while the discrete Haar wavelet transform is O(N), which is more efficient.

Juliet [22] and Wu [48] incorporated the discrete wavelet transform into a block based

classification algorithm that decomposes an input image into 8x8 [22] or 16x16 [48]

non overlapping blocks of pixels. The discrete wavelet transform is then applied to

a single channel of each block. Statistical analysis is then performed on each of the

sub bands after the forward discrete wavelet transform, by computing the standard

deviation of each sub band.

The standard deviation, σ is the square root of the variance in a signal. The standard

deviation for a two-dimensional signal such as a block of discrete wavelet coefficients

is defined by:

σθ =

√√√√ 1

W ×H

W−1∑
i=0

H−1∑
j=0

[Fθ(i, j)− µθ]2 (9)

Where θ is a block of discrete wavelet transform coefficients and σθ is the standard

deviation of a given 16x16 block of discrete wavelet transform coefficients. W is the

width and H is the height of Fθ, where Fθ is the input block of coefficients. µθ is the

statistical mean calculation of Fθ and is defined by:

µθ =

√√√√ 1

W ×H

W−1∑
i=0

H−1∑
j=0

[Fθ(i, j)]2 (10)

58

5.1 The Discrete Wavelet Transform 5 CLASSIFICATION

The root squared mean is used used in equation (10) because the values of discrete

wavelet transform coefficients can be both positive and negative.

The hypothesis is that computer generated data contains more uniform regions and

sharp transient information than natural camera captured image, thus there should

be a higher degree of variance within the sub bands of block that contains text

or graphics, compared to blocks that contain natural camera captured data. By

performing the discrete Haar wavelet transform on a single channel of a 16x16 block

of pixels and then computing the standard deviation of each sub band, there should

be a threshold value that can be found that will aid in classifying the type of data

within a given block. The Hypothesis is tested and discussed further on in this thesis

in section 9.1.

59

6 COMPRESSION

6 Compression

Data compression, in terms of digital processing is the process of reducing the amount

of bits that is needed to represent a given quantity of information. There is a distinc-

tion to be made between data and information. With respect to digital images, the

information is the content of the image, for example, a picture of the sky, a person,

or some text, that a viewer of the image can read and get the information from. The

data of the same image is the underlying array of numeric values that a computer

processes to generate the image.

With the above distinction made, it can be shown that the same information can be

described using different sets of data. Information that contains repeated patterns

can be said to contain redundant data. As an example, consider an array of pixel

intensity values that have been extracted from a 16x16 block of pixel values:

80 80 80 80 20 20 80 80 80 80 20 20 80 80 80 80

The same information can be represented as a series of run length pairs, where the

run is equal to the value and the length is the amount of repetitions of the run:

80 4 20 2 80 4 20 2 80 4

The unit of information, named after the seminal author in the field of information

theory, C.E Shannon [38] is also known as the bit. If the top array is denoted as b

and the bottom array is denoted as b’ the redundancy, R can be calculated with:

R = 1− 1

Cr
(11)

where Cr describes the compression ratio and is defined as:

Cr =
b

b′
(12)

In this particular example the compression ratio is equal to 1.6:1 and the data redun-

dancy = 0.375, which means that 37.5% of the data is redundant.

In image and video compression there are four distinct types of redundancy that can

be exploited:

• Coding Redundancy

• Spatial Redundancy

• Temporal Redundancy

• Spectral Redundancy

60

6 COMPRESSION

Coding Redundancy

The symbols used to describe a body of information, such as characters, integers, bits

etc, can be described as the code book for a medium. The information is described by

sequences of symbols which are known as code words. With respect to digital images,

an 8 bit value is used to describe the pixel intensity of a given channel in an image.

It is highly unlikely that all 255 unique values associated with a code word with code

length of 8 bits would be used within a single image.

As an example, consider a single channel from a 3 channel image, with intensity values

from 0 to 255. a given intensity value can be treated as a discrete random variable

and can be represented with rk which lies in the interval [0, L - 1] where L represents

the range of intensity values available in a MxN Image, where M represents the rows

and N represents the columns. The probability of each rk occurring is represented

with Pr(rk) and can be described by:

Pr(rk) =
nk

MxN
k = 0, 1, 2,, L− 1 (13)

Where nk is the count of instances of value rk and L is the amount of unique intensity

values for an 8 bit code length. The number of bits (with respect to information

carrying units) can be denoted with l(rk) and the average number of bits needed to

represent each intensity value can be defined with:

Lavg =
L−1∑
k=0

l(rk)Pr(rk) (14)

Figure 39 is a 16x16 pixel image with 3 colour channels. Each pixel intensity for

each colour channel is described with an 8 bit value, code length = 8. Table 2 Shows

the count of intensity values, rk, for a single channel of the image along with the

associated probability Pr(rk) and the 8 bit code word

Figure 39: 16x16 block of sample values

61

6 COMPRESSION

rk value count Pr(rk) l(rk) code word

0 89 192 0.75 8 0101 1001

1 104 16 0.063 8 0110 1000

2 230 4 0.017 8 1110 0110

3 211 10 0.039 8 1101 0011

4 114 3 0.012 8 0111 0010

5 168 6 0.023 8 1010 1000

6 205 10 0.039 8 1100 1101

7 103 15 0.059 8 0110 0111

Table 2: frequency table of intensities, associated probabilities, code lengths and code

words

Using equation (14), the average code length is equal to 8 bits, as expected as a fixed

code length is used for each intensity and using the equation (12), the compression

ratio, Cr = 1:1 which shows that there is no compression.

If the image in figure 39 was to be compressed in isolation, As there is only 8 unique

intensities in the table, each rk could be assigned a fixed code length l(rk) of 3 bits.

using 12, the compression ratio Cr = 2.67:1 and Lavg = 3.

Instead of using a fixed length code book, a variable length prefix-free coding scheme,

such as Huffman coding [16] could be used, which is presented in table 3

rk value count Pr(rk) l(rk) code word

0 89 192 0.75 1 1

1 104 16 0.063 3 010

7 103 15 0.059 3 001

6 205 10 0.039 4 0111

3 211 10 0.039 4 0110

5 168 6 0.023 4 0000

2 230 4 0.017 5 00011

4 114 3 0.012 5 00010

Table 3: Using variable length prefix free coding

using equation (14) to calculate the average bits, Lavg:

Lavg = 0.75(1) + 0.063(3) + 0.059(3) + 0.039(4)+

0.039(4) + 0.023(4) + 0.017(5) + 0.012(5)

Lavg = 1.665bits

Using the value calculated for Lavg , the number of bits needed to represent figure 39

can be found by MxNxLavg where M = N = 16

62

6 COMPRESSION

b′ = 16× 16× 1.665 = 320

Where b’ is the size of the data needed to represent the information in figure 39 after

using variable length coding. using equation (12) to calculate Cr:

Cr =
2048

320
= 6.4 : 1

It can be observed from the above example, that using variable length coding can

increase compression performance and reduce the amount of data needed to represent

a body of information. Shannon [38] provides the mathematical framework that

describes the lowest amount of data required to represent a body of information

without loss. In his work, Shannon describes Entropy, H as the average information

per source output and can be modelled, with respect to the previous example as:

H = −
L−1∑
k=0

Pr(rk)log2(Pr(rk)) (15)

Spatial Redundancy

Images that contain structure and objects typically have high correlation in neigh-

bouring pixel values. The gradient change in natural image tends to be slow, which

suggests that the variance between neighbouring pixels may small. Images containing

computer generated data are highly structured, with repeated patterns forming the

structure, which means there is unnecessary replication within the data.

Temporal Redundancy

In successive frames in a sequence of images, the rate of change is slow, which means

that there is high correlation between each successive frame, leading to unnecessary

repetition in the data.

Spectral Redundancy

Spectral redundancy, or irrelevancy of information is a phenomena of the Human

visual system. As the human visual system may not be able to acutely discern

variance within colour information, the inclusion of data that the human visual system

is unaware of can be considered as irrelevant data.

63

6.1 Lossless Compression 6 COMPRESSION

6.1 Lossless Compression

Lossless compression algorithms allow for the original data to be reconstructed exactly

from the encoded data. In relation to compression of a computer screen, they are

generally employed when it is important that the decompressed data must not contain

compression artifacts such as ”ringing” which is associated with Gibbs phenomenon.

Areas containing such data would typically be classified as text and graphic areas.

Lossless compression algorithms can also be incorporated into lossy compression al-

gorithms. An example of this is using Huffman coding[16] in the JPEG Standard, for

losslessly compressing quantized discrete cosine transform coefficients.

Lossless compression algorithms exploit repeated patterns in the data to be encoded.

Such repeated patterns can be found in large smooth areas of a computer screen

where pixel values do not change, or for computer generated text or graphics using

single colours and containing sharp contrasts, often in a linear fashion (text charac-

ters, window borders, etc). Because of these attributes, transform based compression

algorithms, which generally tend to be lossy, are inefficient at compressing this type of

data. As noted in [24], certain transform based encoding algorithms cannot compact

the energy in the pixel values to low frequency components, but may spread it to high

frequency bands.

Some of the repercussions of using lossless compression algorithms include lower com-

pression ratios, typically between 1 and 5, as no quantization of data occurs, i.e, no

information is discarded. As well as lower compression ratios, using lossless compres-

sion algorithms on unsuitable data can lead to data expansion, rather than compres-

sion. As such, it is very important to ensure that lossless compression algorithms

are only used on suitable data. Lossless compression algorithms, such as Arithmetic

Coding, can be computationally complex, and are bounded by the amount of floating

point precision a computer handles.

This section introduces several lossless compression algorithms, the theory of opera-

tion and their implementation in code.

6.1.1 Run Length Encoding

Run Length Encoding is a lossless encoding algorithm, documented for application in

television broadcasting in [35]. It has been subsequently standardised by the ITUT

recommendation T. 45,[20].

Run Length Coding is optimal on long repeated runs of the same number or character,

as such it is suitable for areas of the screen that contain the same colour or that has

some repeated pattern, an example of which can be seen in Figure40

64

6.1 Lossless Compression 6 COMPRESSION

Figure 40: 19x20 3 channel 24 bit 3 computer generated image

Figure 40 shows a 3 channel 24-bit bitmap image. The 3 channels hold the red, green

and blue pixel information. This type of of image data is computer generated and is

free from noise that may have resulted from electronically capturing continuous tone

image (such as natural picture). As such, a classification algorithm may classify this

type of data as either sparse or text (depending on the classification algorithm). The

decomposition of figure 40 into its single channel components can be seen in figure 41

Figure 41: 3 Separate 8 bit channels representing Blue, Green and Red pixel intensity

channels

Figure 41 shows the image in figure 40 separated into 3, 8-bit channels, each channel

represents the contribution of Blue, Green and Red to the final image. Each pixel

value in the channel can have a value between 0 and 255, 0 having no contribution and

255 having highest contribution, (when a pixel’s three channels are 0, the resulting

colour is black, when 255, the resulting pixel is white and if they are all the same

value, they are a shade of grey). The higher the value means the more contribution

that colour channel has to the overall image. It can be observed from Figure 41 that

the red channel, (the block on the far right), has the highest contributing factor to

the image, where the blue and green channel have a low contribution.

To illustrate how the Run length encoding algorithm works, Listing 1 shows a run of

the first row of the red channel in figure 41 taken in isolation

Listing 1: Run Length Encoding Psuedo Code

65

6.1 Lossless Compression 6 COMPRESSION

1 //data to be encoded

2 Row_0[19] = {241, 241, 241, 241, 241, 241,

3 241, 241, 241, 241, 241, 241, 241, 241,

4 241, 241, 241, 241, 241}

5

6 // run_Length stores the length of the run,

7 // increments when the next byte in the data is the same as the previous byte

8 run_Length =1;

9 //index is used to iterate through the data

10 index;

11 // next_byte used to fetch the next number from the data

12 next_byte

13 // previous_byte is used to hold the value of the run

14 previous_byte

15 while(get another byte from row_0)

16 {

17 previous_byte = next_byte;

18

19 next_byte=row_0[++index];

20 if(next_byte ==previous_byte)

21 {

22 run_Length++;

23 }

24 write run_length;

25 write previous_byte;

26 }

27 Encoded_File[] = {19 241}

The above listing shows the Pseudo-code of an implementation of a Run Length

encoder. The encoded output would be just two numbers. giving a compression of

close to 10. The above example demonstrates that run length encoding is suitable for

computer generated data that has a limited amount of colours and repetitive patterns.

When implementing a run length encoder, it is important to consider what type of

variable that is used to store the run length. For instance, if an unsigned char is used

to store the run length, the maximum length of the recorded run would be 255, in

which case it would restart and increment again. On the other hand, if an integer is

used, the run length could be over 4 billion, which has a low probability of occurrence.

An integer requires 4 bytes to store the value, while an unsigned char requires a single

byte, so it makes sense to use shorter variables for data that contains runs that may

not be that long, to reduce redundancy on the encoded data.

66

6.1 Lossless Compression 6 COMPRESSION

6.1.2 LZ 77 Algorithm

LZ77[51], is a lossless and dictionary based compression algorithm that is from the

Lempel-Ziv family of compression algorithms. Along with LZ78[52], it is the basis of

many variants of compression algorithms used in modern compressors. For example,

LZ77 is used in the DEFLATE[7] algorithm in GZIP and it is also Incorporated with

a Markov chain algorithm to form the basis of LZMA which is used in 7ZIP which

is a modern compression algorithm. It is one of the first compression algorithms to

implement the concept of a ’sliding window’

Taking a data stream ’X’

X = TO BE OR NOT TO BE?

The algorithm works by splitting the data stream into two segments: The Search

Buffer and the Lookahead Buffer. Typically, the search buffer will contain thousands

of symbols, while the lookahead buffer will contain significantly less symbols that have

not been seen yet.

Figure 42: Search and Lookahead Buffer

The encoder reads a symbol from the lookahead buffer and will attempt to find a

match for it in the search buffer (Figure 42). If the symbol is found, the encoder will

go to read more symbols from the lookahead buffer and continue searching backwards

in the search buffer until a match is found (Figure44). When a match is settled on,

the encoder will output a token.

Figure 43: Found match for symbol from the lookahead buffer

67

6.1 Lossless Compression 6 COMPRESSION

Figure 44: Longest matching string

The Token comes in three parts:

[Offset, Length,NT]

Offset is the distance to the match from the window, length is the length of the

match in symbols and NT is the next token, which is the next symbol in the lookahead

buffer. The token for the example above would be:

[9, 2, B]

As soon as the encoder is finished outputting the token, the window gets shifted to

the right, hence the term ’Sliding Window’

6.1.3 Lempel Ziv Welch Encoding

First published in 1984 by Welch [46], the Lempel-Ziv-Welch (LZW) is a lossless

data compression algorithm, which was designed to be an improvement on Abraham

Lempel and Jacob Ziv’s LZ78, [52], compression algorithm. It is a mature compression

algorithm and has been proven to be a successful method of compressing graphical

content as it is implemented in the GIF image format which has been widely used to

compress content with smooth regions, sharp transitions and few colours, optimally.

The LZW algorithm can be classified as a dictionary coder. Dictionary coders take

advantage of data that has low entropy, containing many repeated patterns, such as

smooth areas of a screen or large text documents. It associates sequences of data with

indexes, (which occupy less space), in a table. The compressor works by substituting

repeated sequences with the corresponding index and outputting the index to the

stream. The table grows as the data comes in. the longer the sequences replaced and

the higher the frequency of occurrence, the better the compression will be.

The LZW coder works by building up a table of code words which are a combination

of symbols read in from an input and incrementally outputs the index of these code

words to the output stream. In [46], Welch refers to each code word as a STRING

which are stored in a dictionary or table and the symbols that are input from the

data set are stored in a CHAR. It reads the input stream a byte at a time. Char’s

68

6.1 Lossless Compression 6 COMPRESSION

are 8 bit Bytes, while strings are variable length arrays of char and with a maximum

amount of strings equal to the size of the dictionary-1. As an example, using a 16

bit table can store 65535 code words. Each string has an index which is fixed length,

which is the amount of bits used for the table. A larger table can store more store

strings with the possibility of better compression, but tables that are too large will

have diminishing returns as the width of the indexes get wider as more bits get used

for the table. For instance, each index output to the encoded stream for a 64 bit table

would be 64 bits wide, and the table itself would keep growing using up too much

memory resources.

Another feature of the LZW coder is that it resets to an initial condition, once the

table has been filled with strings. the initial condition is to populate the table with

every one byte entry. The LZW coder can then be said to be adaptive as it does

not need any prior knowledge of the data to be compressed to build its table of code

words. the decoder is also adaptive, all it needs to know is the size of the Encoder

table to rebuild it and to fully decode the message.

The Pseudo code for the Lempel Ziv Welch encoder can be seen in Listing 2.

Listing 2: Lempel Ziv Welch Encoding Psuedo Code

1 TABLE : Table of Codes with unique indexes

2 STR : empty string

3 CHAR : byte

4 IS : Input Stream

5 EF : the encoded file

6

7 TABLE = all single byte entries with unique INDEX; //Initialise 0-255

8

9 while (read byte from IS into CHAR)

10 {

11 STR = STR + CHAR // append The Byte to STR

12 if (STR + CHAR is not in TABLE)

13 {

14 Table[STR] = ++INDEX; // increment the size of the table.

15 STR = STR - LB; // remove the last byte from STR.

16 WRITE TABLE[STR] to EF; // TABLE[STR] returns the unique

17 // INDEX for each code in the table.

18 STR = CHAR; // STR is set equen to CHAR

19 // and is only a Byte in Length.

20 }

21 }

22 if (STR is not empty)

23 {

24 WRITE TABLE[STR] to EF;

25 }

69

6.1 Lossless Compression 6 COMPRESSION

To illustrate the Lempel-Ziv Welch encoding process an example will be demonstrated

on the sentence, ”the rain in Spain falls mainly on the plain ”, . The sentence con-

tains 44 characters, uncompressed this would be 44 indexes written to the output

stream. A full run of the LZW coder can be seen in Table 6. The input characters

and associated ASCII values can be seen in Table 4 and the output stream can be

seen in Table 7.

t h e

116 104 101 95

r a i n

114 97 105 110 95

i n

105 110 95

S p a i n

83 112 97 105 110 95

f a l l s

102 97 108 108 115 95

m a i n l y

109 97 105 110 108 121 95

o n t h e

111 110 95 116 104 101 95

p l a i n

112 109 97 105 110 95

Table 4: Input Stream in characters and ASCII decimal value

ITR ITERATION:

each read of the input stream

CHAR next byte to be read from input stream

STR + CHAR operation appending the most recent byte

read in from the input stream

STR STRING: Character array with an index

NEW STRING Operation set STRING to current Byte

read from the input stream

Table 5: Legend

ITR CHAR STR IN OUTPUT ADD To INDEX NEW

+ CHAR TABLE? TABLE STRING

70

6.1 Lossless Compression 6 COMPRESSION

1 t t yes NOP no t

2 h th no t yes 256 h

3 e he no h yes 257 e

4 e no e yes 258

5 r r no yes 259 r

6 a ra n r yes 260 a

7 i ai no a yes 261 i

8 n in no i yes 262 n

9 n no n yes 263

10 i i no yes 264 i

11 n in 262 NOP in

12 in no 262 yes 265

13 S S no yes 266 S

14 p Sp no S yes 267 p

15 a pa no p yes 268 a

16 i ai 261 NOP ai

17 n ain no 261 yes 269 n

18 n 263 NOP n

19 f n f no 263 yes 270 f

20 a fa no f yes 271 a

21 l al no a yes 272 l

22 l ll no l yes 273 l

23 s ls no l yes 274 s

24 s no s yes 275

25 m m no yes 276 m

26 a ma no m yes 277 a

27 i ai 261 NOP ai

28 n ain 269 NOP ain

29 l ainl no 269 yes 278 l

30 y ly no l yes 279 y

31 y no y yes 280

32 o o no yes 281 o

33 n on no o yes 282 n

34 n 263 NOP n

35 t n t no 263 yes 283 t

36 h th 256 NOP th

37 e the no 256 yes 284 e

38 e 258 NOP e

39 p e p no 258 yes 285 p

40 l pl no p yes 286 l

71

6.1 Lossless Compression 6 COMPRESSION

41 a la no l yes 287 a

42 i ai 261 NOP ai

43 n ain 269 NOP ain

44 ain no 269 yes 288

45 EOF

Table 6: LZW Encoder Run

116 104 101 196 114 97 105 110 196 262

196 83 112 261 263 102 97 108

108 114 196 109 269 108 121 196 111

263 256 258 112 108 269 196

Table 7: Output Stream

Table 5 explains the abbreviations used in the LZW encoder run.

Following the psuedo code for the LZW encoder and reading Table 6 from left to

right:

1. ’t’ is stored in char. char is added to string (which is empty). table is searched

and entry found at table[t] = 104 ’t’ is not added to table. no output to encoded

file. string is set to ’t’.

2. ’h’ is stored in char. char is appended to string ’̄th’. table is searched and no

entry is found. ’th’ is added to table with index 2̄56. truncate the last byte

from ’th’ and output table[t]1̄16. string is set to ’h’.

3. ’e’ is stored in char. char is appended to string ’̄he’. table is searched and no

entry is found. ’he’ is added to table with index 2̄57. truncate the last byte

from ’he’ and output table[h]1̄04. string is set to ’e’

4. ...

5. ...

6. ...

7. ...

8. ...

9. ...

72

6.1 Lossless Compression 6 COMPRESSION

10. ”i” is stored in char. char is appended to string = i. table is searched and no

entry is found. ’ i ’ is added to table with index value 264. Truncate the last

byte from ’ i ’ and output table[] = 196. string is set to ’ i ’

11. ’ n ’ is stored in char. char is appended to string = ’in’. table is searched and

entry is found at at table[in] = 262. in is not added to table. no output to

encoded file. string is set to ’in’

The run through the LZW coder above illustrates how the encoder stores new code

words in the table and how it outputs the unique index for every new code word. The

final output stream is shown in Table 7. the numbers is bold are the new indexes

created by the LZW coder. The size of the array is 34 vs 44 for the uncompressed

input, which shows a compression ratio of 1.29 if the data set is larger, and contains

more repeated patterns, as an example a 16x16 block of pixels, the compression ratio

would increase.

The pseudo code for the decoder can be seen in Listing 3.

Listing 3: Decoder Pseudo code

1 TABLE : Table of Codes with unique indexes

2 STR : empty string

3 K : Holds an INDEX read in from the encoded file

4 EF : the encoded file

5 DS : Decoded Stream

6

7

8 TABLE = all single byte entries with unique INDEX; // 256 entries to begin

9

10 while (could read a new INDEX from EF into k)

11 {

12 if (k > TABLE size)

13 {

14 cannot decode

15 }

16 else

17 if (k = TABLE size)

18 {

19 TABLE[INDEX+1] = STR +First Byte of STR;

20 }

21

22 WRITE TABLE[k] to the output stream;

23

24 }

The decoder works inversely to the encoder. It takes in an index, builds the exact

same table that the encoder uses and outputs the original message. As stated, the

73

6.1 Lossless Compression 6 COMPRESSION

decoder just needs to know the the maximum size of the original table to correctly

decode the message.

There are some conditions for the decoder to work which can be seen in the Pseudo

code above. The first condition is that the decoder cannot decode an index that is

larger than the table in its present state. This is the main reason why the encoder

encodes the message incrementally, where the next code to be indexed will never

exceed the size of the table. A full run of the decoder can be seen in Table 8.

74

6.1 Lossless Compression 6 COMPRESSION

READ TABLE STR + OUTPUT NEW

ITR STR [K] [k] K[First Byte] INDEX TABLE [K] STR

1 empty 116 t t 116 t t

2 t 104 h th 256 h h

3 h 101 e he 257 e e

4 e 196 e 258

5 114 r r 259 r r

6 r 97 a ra 260 a a

7 a 105 i ai 261 i i

8 i 110 n in 262 n n

9 n 196 n 263

10 262 in i 264 in in

11 in 196 in 265

12 83 S S 266 S S

13 S 112 p Sp 267 p p

14 p 261 ai pa 268 ai ai

15 ai 263 n ain 269 n n

16 n 102 f n f 270 f f

17 f 97 a fa 271 a a

18 a 108 l al 272 l l

19 l 108 l ll 273 l l

20 l 114 s ls 274 s s

21 s 196 s 275

22 109 m m 276 m m

23 m 269 ain ma 277 ain ain

24 ain 108 l ainl 278 l l

25 l 121 y ly 279 y y

26 y 196 y 280

27 111 o o 281 o o

28 o 263 n on 282 n n

29 n 256 th n t 283 th th

30 th 258 e the 284 e e

31 e 112 p e p 285 p p

32 p 108 l pl 286 l l

33 l 269 ain plai 287 ain ain

34 ain 196 ain 288

Table 8: LZW Decoder Run

75

6.1 Lossless Compression 6 COMPRESSION

6.1.4 Huffman Encoding

Huffman coding is a form of lossless compression that uses variable length codes

to represent the numbers or symbols of a data set. The process is to replace the

most frequently seen symbols with smaller codes than the symbols that are not seen

frequently.

To implement Huffman coding, the data first needs to be pre-processed. The fre-

quency of all symbols is recorded and the probability of each symbol is calculated

and assigned to create a code dictionary table. The table is organised such that the

symbol with the highest frequency is assigned the greatest probability and is stored

at the top of the table with symbols with lower frequency stored beneath. To ensure

that the decoder is able to correctly decode the new code words generated by the

Huffman encoding process, each new code word for a symbol must be prefix free.

This means that a given symbol with a higher frequency cannot be a prefix for a

symbol with a lower frequency.

Figure 45: 8x8 block of pixel values

Figure 45 represents an 8x8 block of pixel intensity values that will be processed with

76

6.1 Lossless Compression 6 COMPRESSION

the Huffman encoding algorithm. Each pixel intensity value is stored using 8 bits

giving a dynamic range of 0-255.

rk value frequency Pr(rk) l(rk) code word

0 148 46 46
64

8 1001 0100

1 132 9 11
64

8 1000 0100

2 116 3 3
64

8 0111 0100

3 124 2 5
64

8 0111 1100

4 108 2 11
64

8 0110 1100

5 156 2 1
64

8 1001 1100

Table 9: Counting the frequency of pixel intensity values from figure 45

Table 9, shows the amount of unique symbols (where symbols is used to describe pixel

intensity values) in figure 45. It can be observed that there are 6 unique symbols in

the table. If figure 9 was to be compressed in isolation, then the code redundancy

could be reduced by representing each symbol in table 9 with 3 bits instead of 8 bits.

Information about a mapping of the code words to the intensity values could then be

provided in meta data that would be sent to the decoder.

using equation (12) to calculate the compression ratio when the average code length

for each symbol is 3 bits would give Cr = 2.67 : 1.

To encode the pixel intensity values of figure 45 using variable length Huffman encod-

ing, the first step is to create a Huffman table which sorts the symbols by frequency

in descending order. The Huffman table for figure 45 can be seen in table 10.

Symbol frequency

148 46

132 9

116 3

124 2

108 2

156 2

Table 10: Huffman table for figure 45

The Huffman algorithm process is to combine the two lowest frequencies among in

the table to form a new node that has two children. Of the children, the symbol

that has the higher frequency gets assigned a ”0”, and the symbol with the lower

frequency gets assigned a ”1”. If both symbols have the same frequency, the symbol

that is higher in the table gets assigned a ”0”. The new nodes frequency gets inserted

into the table, again in descending order. If the new nodes frequency is equal to

current frequencies in the table, it gets inserted to the top of the symbols with the

77

6.1 Lossless Compression 6 COMPRESSION

same frequency. This process is repeated until there is only a single node, which is

known as the ”root” of the Huffman tree. When the root of the tree has been found,

the variable length codes for each symbol in the dictionary are created by tracing the

path back from the root to the symbols original frequency. The Huffman tree process

is shown in figure 46

46

9

3

2

2

2

2

3

4 5

1

0
1

0 4

9 9

9

9

1

0

18

1

0

4646 46 46148

132

116

124

108

156

0

1

1011

1010

1001

1000

11

0

Huffman Encoding Tree

Root

Code words are created from
reading from the root back to
original frequency of a given

symbol

Symbol Frequency
Sum of two smaller

frequencies

Figure 46: Huffman tree encoding process for figure 45

The new code book for figure 45 can be generated from the Huffman tree in figure

46. The new code book can be seen in table 11

Symbol Frequency Code

148 46 0

132 9 11

116 3 1000

124 2 1001

108 2 1010

156 2 1011

Table 11: Variable length Huffman code book for figure 45, generated from figure 46

It can be observed from table 11 That the symbol with the highest frequency is

assigned a single bit for encoding and that no code is a prefix of a subsequent code

78

6.1 Lossless Compression 6 COMPRESSION

in the table.

Using equation (14) to calculate the average bits per symbol, Lavg the average bits

needed is :

Lavg =
46

64
(1) +

9

64
(2) +

3

64
(4) +

2

64
(4) +

2

64
(4) +

2

64
(4)

Lavg = 1.565bits/symbol

And using equation (15) to calculate the entropy, H :

H = −
[(

46

64

)
log2

(
46

64

)
+

(
9

64

)
log2

(
9

64

)
+

(
3

64

)
log2

(
3

64

)
+

(
2

64

)
log2

(
2

64

)
+

(
2

64

)
log2

(
2

64

)
+

(
2

64

)
log2

(2

64

)]
H = 1.421bits/symbol

It can be observed that the variable length codes that have been generated from the

Huffman tree in figure 46 are close to the bounds of entropy. However to correctly

decode the code book, the meta data that must be sent with the coded data can

be quite large for data that has larger code books. Compression algorithms such

as JPEG [18] and PNG [13], use a form of Huffman encoding known as canonical

Huffman coding that reduces the amount of meta data that must be sent with the

encoded data.

To perform Canonical Huffman coding, some further steps must be taken. The first

step is to reorganise the Huffman table in figure 10 to be organised first by the number

of bits that is needed for each symbol’s Huffman code and then in lexicographical

order. This means that symbols with code words that have the lowest number of bits

go to the top. Symbols with codewords that have the same amount of bits are then

ordered by value, in ascending order, that is lowest to highest. This is represented in

table 12

Symbol No of bits.

148 1

132 2

116 4

108 4

124 4

156 4

Table 12: Huffman table for figure 45 in lexicographical order

Once the Huffman table is organised in lexicographical order, new code words for each

symbol is generated. To generate new codes, a binary increment and zero padding

79

6.1 Lossless Compression 6 COMPRESSION

is used. The first symbol in table 12 needs one bit for encoding. it is assigned ”0”.

the second symbol in table 12 needs two bits for encoding. It binary increments the

value assigned to code symbol one and appends a zero to the end because two bits are

needed to encode symbol two. Table 13 shows the canonical Huffman codes generated

for figure 45

Symbol bits Canonical comment

Code

148 1 0 one bit needed to encode, assigned 0

132 2 10 binary increment symbol one code, pad with one ”0”

116 4 1100 binary increment symbol two code, pad with 2 ”0”

108 4 1101 binary increment symbol three code, no pad

124 4 1110 binary increment symbol four code, no pad

156 4 1111 binary increment symbol five code, no pad

Table 13: Canonical Huffman code table for figure 45

It can be observed from the new canonical Huffman codes in table 13 that the new

code words are still prefix free. One of the main advantages of applying canonical

codes is in the decoding process. Because the symbols are known, the amount of

bits needed to encode each symbol is known and that the symbols are ordered in a

lexicographical order, the actual code words do not need be transmitted as meta dat

to the decoder as it can generate the code words itself. This reduces the amount of

meta data that needs to be transmitted, improving the coding performance of the

algorithm.

Listing 4: Canonical Huffman Decoder Pseudo Code

1 decode(symbolList[], symbolBitsCount[], encodedDataChunk, streamPosition){

2 int codeLength=0;

3 int code = 0;

4 int first = 0;

5 int index = 0;

6 bool bit;

7 int count;

8 uint16_t bitsToShift = 32768 // 1000 0000 0000 0000

9

10 for(codeLength =1; codeLength <15; codeLength++)

11 {

12 bit = (bitsToShift & encodedDataChunk) // extract a bit from the bitstream

13 code |= bit; // logically or it to code;

14 bitsToShift >>= 1; // move to the next bit of the bitstream

15 streamPosition++; // keep track of bit in the bitstream

16 count = symbolBitsCount[length];

17 if(code -count <first)

18 return symbolList[indexs +(code -first)];

80

6.1 Lossless Compression 6 COMPRESSION

19 index += count;

20 first += count;

21 first <<= 1;

22 code << =1;

23 }

24 return outOfBits; // not enough bits to process the next symbol

25 }

Listing 4 shows the pseudo code of implementing the decoder for canonical Huffman

encoding. The decode function takes the list of symbols, the amount of bits each

symbol needs to be encoded, a chunk of encoded data to decode and locator to keep

track of where in the encoded stream the program is. To show how the decoder works,

the first row of figure 45 will be encoded and decoded. let X equal a row of 45:

X = 132 148 108 148 148 148 132 148

Using the canonical codes that have been generated in table 13, the code words used

for X are:

Code Words = 10 0 1101 0 0 0 110 0

and the bitstream is 10011010001100

The meta data that is sent to the decoder first is the list of symbols and the amount

of bits that each symbol needs:

symbolList[]= 148 132 116 108 124 156

The array that holds the count of the amount of bits is:

symbolBitsCount[]= 0 1 1 0 4

This describes the amount of bits for a symbol based on its location in the array.

Reading the array from left to right, location[0] is not used. There is one symbol that

uses one bit for encoding. There is one symbol that uses two bits for encoding. There

are no symbols that use three bits for encoding and there are four symbols that use

four bits for encoding.

The following steps are taken when decoding a canonical Huffman encoding bitstream:

1 first iteration through for loop

• bitsToShift = 1000 0000 0000 000

81

6.1 Lossless Compression 6 COMPRESSION

• encodedDataChunk = 1001 1010 0011 00: streamPosition = 1

• code = 0000: first = 0000: index =0: codeLength =1

• (bitsToShift & encodedDataChunk) = 1000 0000 0000 000: bit = true = 1.

• code =(code | = bit) = 0001

• bitsToShift >>1 = 0100 0000 0000 000: streamPosition is incremented to keep

track of what state the decoder is in.

• count = symbolBitsCount[1] = 1.

• (code - count) = 0: first = 0: (code - count) is not less than first.

• (index + count) = 1: (first + count) =0001: first << 1 =0010: code << 1

=0010

2 Second iteration through for loop

• code = 0010: first = 0010: index =1: codeLength =2

• (bitsToShift & encodedDataChunk) = 1000 0000 0000 000: bit = false = 0.

• code =(code | = bit) = 0010

• bitsToShift >>1 = 0010 0000 0000 000: streamPosition is incremented to keep

track of what state the decoder is in.

• count = symbolBitsCount[2] = 1.

• (code - count) = 1: first = 2: (code - count) is less than first.

• return symbolList[1+(2-2)] = symbolList[1] = 132: correctly decoded symbol

3 decoded first symbol, return from function and start process again

• returned values: decoded symbol = 132: streamPosition=3

The above process is carried out until the end of the bitstream, each time a symbol

from the symbol list is found, the function returns that value along with correctly

incrementing the marker that correctly identifies where in the bitstream the decode

function finished. This value will be passed to the decode function again on the next

iteration.

both PNG [13] and JPEG[18] limit the amount of bits for the length of code words

to 15. Which is the limit that has been applied in this research too.

82

6.1 Lossless Compression 6 COMPRESSION

6.1.5 Arithmetic Encoding

Arithmetic coding is a lossless compression algorithm. It is typically implemented as

an entropy encoding technique after pre processing with other compression algorithms.

Like Huffman coding, the concept is to represent frequently seen symbols using fewer

bits, compared to less frequently seen symbols.

One of the benefits of Arithmetic coding over Huffman encoding is it uses an adaptive

model which can be tailored to the input stream to achieve a higher compression ratio

than Huffman coding. A downside to implementing Arithmetic coding is that the

computational requirement may be higher then that of Huffman coding.

Arithmetic coding is a precursor to binary arithmetic coding used in JPEG2000 and

also to the Context Adaptive Binary Coding (CABAC) that is implemented in the

video coding standards H.264 and HEVC.

First, a source alphabet, X, is defined as:

X = {0, 1, 2}

X is an alphabet of numerals, but X can be any finite set, such as characters or bytes

etc.

The next step is to get the probability mass function. In this ideal example, the

probabilities of each number are known and defined from the start, but in a practical

implementation, a model is used to compute the probability of each symbol of the

set. A good model should represent the input stream efficiently to achieve good

compression ratios. The separation of the model from the coding implementation

also allows for the method to be made adaptive to different types of content that

makes up the input stream.

The probability mass function, P, is defined as:

P = (P0, P1, P2) = (.2, .4, .4)

The example will code a three number sequence, X3 as:

X3 = 210

The algorithm can be broken up into two conceptual parts. The first part takes the

sequence to be coded and will associate to it a sub interval of the interval between

zero and one.

83

6.1 Lossless Compression 6 COMPRESSION

Figure 47: The message as a sub-interval of the interval 0-1

Figure 48: Finding the Sub-interval on the line zero to one

In Figure 48, The Interval between 0 and 1 is sub divided according to the probability

mass function P. The first number in the sequence is 2, so the blue shaded region rep-

resenting the sub division associated with P2 gets further sub divided, again according

to the probability mass function. The new height of each section is the product of P2

times the respective probability of each section, which gives P2P2, P2P1 and P2P0.

adding the next number of the sequence yields 21, so the same step as before is applied

to the pink region (which is of height P2P1).

84

6.1 Lossless Compression 6 COMPRESSION

Finally, the last number in the sequence is added and the previous step is applied

again. this time the whole message is contained in the green shaded area (of height

P2P1P0). The sub-interval of interest is then seen on the the interval between 0-1

from a up to (but not including b).

To solve for a and b:

a = 0.6 + P2P0 = 0.68

b = a+ P2P1P0 = 0.712

So, the sequence will be contained in the interval [a, b), which goes from 0.68 to 0.712

on the interval between 0 and 1.

The next part of the encoding process uses binary splits to divide up the interval until

a segment is found that lies completely between [a, b).

Figure 49: Using binary splits to encode the sub interval [a,b)

This part makes use of binary expansions, such as:

.11012 =
1

21
+

1

22
+

0

23
+

1

24

85

6.1 Lossless Compression 6 COMPRESSION

which will give a real number between zero and one. The binary spilt can be seen

in Figure 49. To ensure that the sequence is uniquely encoded, the line must be sub

divided until a sub interval is found that lies completely inside the interval [a, b) which

previously has been solved for.

Decoding

Two methods can be used to ensure the message can be decoded successfully. the

first method is to encode the message with the length included in it. This ensures

that the inverse process can take place easily but has the problem of creating extra

overhead. The Second method involves using End of File Symbols in the message.

An End of File symbol should be a unique symbol that is only used to signify the end

of a sequence.

in the example above, if 0 was chosen to be an end of file symbol, the decoder could

recover the original message quite easily. Examples of valid sequences using zero as

an End of File symbol can be seen in the table.

Valid Not Valid

120 12041

213120 1221

Table 14: Valid and Not Valid messages using End of File Symbol, 0

Arithmetic coding takes an input file (can be made up of any type of symbols) and

converts it to a floating point number which is between the interval of zero up to

1. Essentially, the whole file to be encoded is a single floating point number, which

introduces problems. end of file symbols or message lengths will need to be incorpo-

rated.

The second issue is that normal data structures will no longer be able to represent

the data, so a new way of representing this data will be needed.

The third issue is that arithmetic coding relies on a model to describe the input

message. The role of the model is to relay to the encoder, the probability of each

symbol in a message which means that arithmetic coding is only as good as its model.

When the model relays an accurate probability of the symbols in a message, it will

be encoded very close to full entropy. On the other hand, if the model misjudges the

probabilities of a symbol, the encoder can expand the message rather then compress.

86

6.2 Lossy Compression 6 COMPRESSION

6.2 Lossy Compression

Lossy compression is a method of encoding that discards some of the data that is

used to describe a body of information in favour of reducing the size of the file for

storage and transmission. A decoded message after being compressed using a lossy

encoder is an approximation of the original message, once the original data has been

discarded, there is no way to retrieve it.

Lossy compression algorithms aim at reducing the spectral redundancy, or irrelevant

information contained in a body of information. With respect to image compression,

lossy compression algorithms will aim to reduce the amount of unique pixel values

contained in an image, based on how the human visual system can perceive colour, or

can process objects in the foreground of an image with higher fidelity than objects in

the background, based on how the human visual system processes information within

an image.

6.2.1 Image Quality Assessment

An effect of discarding data from an image in the processing stage is the resulting

distortion in the decoded image. Some distortion may not have an impact on the

end user, such as reduced amounts of individual shades in a picture of the sky, or

the ordering of pixels in a picture of a sand. However, some distortion, in particular

around structured information in an image, such as text, will have a negative impact

on the end user. In order to gauge the quality of a compression algorithm, metrics are

needed. Subjective methods such as screening tests can be very expensive and time

consuming, involving many subjects and analyst’s to review the data, so objective

methods to assess the quality of an image are necessary for testing.

Standard objective image quality assessment metrics that are common include Root

Mean Square Error (RMSE) and Peak Signal to Noise Ratio (PSNR). Both of these

metrics are classed as full reference metrics, which compare the error in the signal

in a processed image against a reference image, where the reference image can be

quantitatively said to be error free.

Root Mean Square Error

Given a sample from a reference image f(x, y) and a sample from the same image

after processing, f (̂x, y) the error e(x, y) can be described with

e(x, y) = f (̂x, y)− f(x, y) (16)

87

6.2 Lossy Compression 6 COMPRESSION

To measure the strength of the error between an image and a processed image with

a resultant positive value, the Root Mean Square Error can be described with:

RMSE =

[
1

MN

M−1∑
x=0

N−1∑
y=0

[f (̂x, y)− f(x, y)]2
] 1

2

(17)

Where M is the total amount of rows and N is the total amount of columns of a given

image.

Peak Signal to Noise Ratio

The processed sample value f (̂x, y) can be described as the sum of the reference

f(x, y) and the error e(x, y) which can be considered noise. The mean square signal

to noise ratio for a processed image can be described by:

SNRrms =

∑M−1
x=0

∑N−1
y=0 f (̂x, y)2∑M−1

x=0

∑N−1
y=0 [f (̂x, y)− f(x, y)]2

(18)

And the Peak Signal to Noise Ratio can be described with:

PSNR = 20× log10
(
MAXI

RMSE

)
(19)

Where RMSE is described in equation (17) and MAXI is the maximum value of a

pixel sample can have. Using 8 bits to represent a single channel pixel value, MAXI

= 255.

The PSNR is a measure of the error in a signal and is commonly used to evaluate the

quality of lossy compression algorithms. However, PSNR does not take into account

the quality as perceived by the Human Visual System. Figure 50 shows a reference

image that has been processed to produce 3 approximations of the original image. The

three images have a low psnr value. However, it can be observed that subjectively,

figure 50(d) is clearly more legible than the other two distorted images. This shows

that PSNR may not be the most optimum image quality assessment metric to use for

images that contain computer generated data.

88

6.2 Lossy Compression 6 COMPRESSION

(a) Reference image (b) Gaussian blur psnr = 21.964dB

(c) Gaussian blur psnr = 19.401dB (d) Injected noise psnr = 17.467dB

Figure 50: A Reference image distorted with Gaussian blurring with 3x3 kernel,

Gaussian Blurring with 5x5 kernel and injected noise

Structural Similarity Index (SSIM)

Structural Similarity Index (SSIM) [50] is an image quality assessment metric that

takes into account the attributes of the Human Visual System. It is a perception based

model that takes into account luminance masking, contrast masking and structure.

Luminance masking is the effect of distortion in an image that is less visible in

bright areas (such as a white background). Contrast masking is the effect of dis-

89

6.2 Lossy Compression 6 COMPRESSION

tortion in an image being less visible in areas that are highly textured (such as in

image containing natural image such as grass or the sky).

The structural information that is taken into account is based on pixel values in close

proximity are highly correlated and the correlation contains information about the

structure of objects in an image.

SSIM is a full reference image that compares a reference image, quantitatively con-

sidered error free and compares it to a processed image to generate a value between

0 and 1. It is described by:

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(20)

where x is the reference image and y is the processed image.

µx the average of x

µy the average of y

σ2
x the variance of x

σ2
y the variance of y

σxy the covariance of x and y

c1 = (k1L)2 used to keep the equation from dividing by values very close to 0

c2 = (k2L)2 used to keep the equation from dividing by values very close to 0

c3 = c2/2 used to keep the equation from dividing by values very close to 0

L the dynamic range of pixel values, typically 255

k1 0.01

k2 0.03

Figure 51 shows the flow of the algorithm. It is based on three functions for luminance

measurement, contrast measurement and structural comparison.

Figure 51: Diagram showing the structural similarity measurement process [50]

90

6.2 Lossy Compression 6 COMPRESSION

The luminance measurement function is described by :

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
(21)

The contrast measurment function is described by

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
(22)

The structural function is described by

s(x, y) =
σxy + c3
σxσy + c3

(23)

To highlight the difference between SSIM and PSNR as a metric for image quality

assessment on image containing computer generated data, the SSIM values are cal-

culated for the distorted images in figure 50 and compared to the calculated PSNR

value. This can be seen in table 15. A subjective quality metric is also included in

the table for each image.

It can be observed from table 15 that figure 50 (d) has the worst PSNR value, yet

has the highest SSIM value. Also subjectively, it is the most legible of the distorted

images. This is a significant observation, as it shows that, for image data containing

computer generated data the SSIM index is alligned with subjective viewing quality.

Figure Distortion PSNR SSIM Subjective

50 Type (dB) Value Quality

(b) Gaussian Blur 3x3 21.96 0.83 Poor

(c) Gaussian Blur 5x5 19.4 0.76 Non-Usable

(d) Injected Noise 17.47 0.97 Acceptable

Table 15: Comparing PSNR Vs SSIM values of distorted images from figure 50

A combination of PSNR and SSIM will be used in this thesis as metrics to compare the

performance of the compound compression algorithm presented in this research. The

authors of the algorithm published the implementation of the algorithm in matlab

and transcribed into c++ [43]

91

6.2 Lossy Compression 6 COMPRESSION

6.2.2 Block Transform Encoding

This section will develop the process of using a discrete cosine transform and discrete

wavelet transform to decorrelate the information contained in blocks of pixels and

discard the information that may not have a negative impact on the human visual

system in favour of better compression performance. Aside from rounding errors that

occur from using finite precision to calculate the forward and reverse DCT and DWT

transforms, both algorithms can be performed with little to no loss of information of

the original image. The process of discarding data in a lossy compression algorithm

comes from the quantization process.

In block transform coding, a reversible transform is performed on each sub-block of an

image decomposed into N×N blocks. The transform maps the pixels of the sub block

to a set of transform coefficients, which are then quantized to remove information

irrelevancy (in favour of better compression performance) and finally processed by an

entropy encoder to remove coding redundancy to generate the compressed output.

Transforms such as the Karhunen Loeve transform, The two-dimensional discrete

Fourier transform and the two-dimensional discrete cosine transform will transform

the blocks from the pixel domain to the frequency domain, while the discrete wavelet

transform will transform from the pixel domain to the time-frequency domain.

Block transform coding has been shown to be efficient in terms of compression perfor-

mance and computational complexity and is implemented in codec’s used for image

compression such as JPEG [18] and video encoding such as H.264 [47] and HEVC

[39].

6.2.3 The Discrete Cosine Transform

The discrete cosine transform is at the heart of compression algorithms that are opti-

mised for natural image compression such as JPEG [18] and video coding standards

such as H.264 and HEVC.

In image compression, the discrete cosine transform takes an NxN block of real valued

pixels as an input signal and produces an NxN block of transformed coefficients in the

frequency domain as an output. The purpose of the transform is to compact most

of the energy of the input signal into just a few of the output coefficients, usually

located in the top left corner of the NxN block, such that the remaining values can

be coarsely quantized or even discarded, reducing the amount of data required for

storage or transmission. The transform is reversible, such that if infinite precision

is used in the computation, the inverse transform will yield an exact replica of the

original signal, however it is infeasible to use large scale precision for calculations

for time sensitive applications so either fixed precision or scaled integer versions of

the transform are used, which introduce rounding errors. The process of performing

92

6.2 Lossy Compression 6 COMPRESSION

the discrete cosine transform for compression is generally called the forward DCT,

or simply, DCT, while the process in recovering the original data from the transform

coefficients is known as the inverse DCT or IDCT.

The discrete cosine transform is used in image compression due to its close approx-

imation to another transform known as the Karhunen-Loeve transform (KLT). The

KLT transform minimises the mean square error [32] when choosing the minimum

amount of transform coefficients to reproduce the original signal. However, the basis

functions of the KLT transform are of the auto-correlation of the image, which means

that they are dependant on the input signal and must be computed for each image,

unlike the discrete cosine transform, who’s basis functions are set regardless of the

input signal. The constant computation required to generate the basis functions to

perform the KLT reduces its effectiveness for time critical applications.

The discrete cosine transform works on the principle that the distribution of pixels

that make up natural image can be said to be Markovian, which means that a given

pixel depends on the pixel before it. As an image is in two dimensions, there is

correlation in both the horizontal and vertical neighbourhood of a given pixel. This

is true for natural image, for example images of the sky, grass or skin tone, there

may be many different values but the gradient between values is slowly varying. This

assumption does not hold for computer generated image data such as graphics and

text, where sharp transitions in a smooth background happen frequently.

The cosine function has been chosen for its periodicity. Its a symmetrical even 2n-

point function (input to the transform is generally taken as a 2n multiple) who’s

boundaries do not cause discontinuity. Figure 52 shows the periodicity of a 1 di-

mensional discrete Fourier transform (DFT) versus a 1 dimensional discrete cosine

transform. It can be observed that the periodicity of the DFT leads to disconti-

nuity at boundaries, which gives rise to substantial high frequency content. As the

Fourier transform fails to converge uniformly at discontinuities (known as Gibbs phe-

nomenon), the coefficients at boundary points take on erroneous values, which may

lead to blocking artifacts in the decompressed image [14]. As the DCT is taken as a

2n point function, the values at the boundary points are closer together, which helps

reduce the high frequency content and alleviate some of the blocking artifacts.

The two-dimensional discrete cosine transform (2-D DCT) calculates the transform

F(U,V) of a two-dimensional input signal f(i,j) of size NxN samples, where the size

8x8 is typically used. The equation for the 2D DCT cane be defined as:

Fxy = αα
N−1∑
u=0

N−1∑
v=0

fijcos

(
(2j + 1)uπ

2xN

)
cos

(
(2i+ 1)vπ

2xN

)
(24)

Where Fxy is the transformed value at location fij of the original block to be trans-

formed. α is a normalisation factor for the DCT coefficients and is defined as: α =√
1
N

N = 0 and α =
√

2
N

N !=0 :

93

6.2 Lossy Compression 6 COMPRESSION

Figure 52: Comparing the periodicity of a 1-D DFT function (top) with a 1-D DCT

function (bottom)[14]

The 2-D DCT is also a reversible function, where the inverse 2D-DCT can be described

by:

f̂ij = αα
N−1∑
u=0

N−1∑
v=0

Fxycos

(
(2y + 1)uπ

2xN

)
cos

(
(2x+ 1)vπ

2xN

)
(25)

where f̂ij is the recovered value after inverse transform, after incurring any rounding

error, due to finite precision calculation.

94

6.2 Lossy Compression 6 COMPRESSION

Figure 53: The 64 Basis Functions of the 2-D DCT plotted using MATLAB

Figure 53 shows the 64 2D-DCT basis functions when N=8, computed and plotted

using MATLAB software. Each block is an 8x8 matrix function, where each output

transform coefficient is a weighted value corresponding to each function, the sum of

which will return the original image.

The pseudo code in listing 5 shows the implementation of the 2D DCT. To show the

energy compaction of the 2D-DCT transform, an 8x8 block of Y channel values is

extracted from an image, which can be seen in figure 54.

Correlation in intensity values in the horizontal, vertical and diagonal directions can

be observed in figure 54, where the intensity values vary slowly from one pixel to the

next. This type of distribution is indicative of natural image.

Listing 5: 2-D Direct DCT transform

95

6.2 Lossy Compression 6 COMPRESSION

1 /*DIRECT 2-D Discrete Cosine Transform:*/

2

3 input_values[8][8]; // 8x8 block of 8 bit values

4 output_coefs[8][8]; // 8x8 block of transformed DCT coefficients

5

6 alpha[8]; // normalizing factor:

7 // alpha[0] = $1/\sqrt{8}$

8 // alpha[1-7] = $2/\sqrt{8}$

9

10 for (U = 0; U < 8; ++U) //U = coefficient matrix rows

11 {

12 for (V = 0; V < 8; ++V) //V=coefficient columns

13 {

14 sum = 0.0;// sum =64 computations per input value

15 for (i = 0; i < 8; ++i)

16 {

17 for (j = 0; j < 8; ++j)

18 {

19 coef = cos((2 * i + 1) * U * PI / 16)

20 * cos((2 * j + 1) * V * PI / 16);

21

22 sum += input_values[i][j] * coef; //f[i][j] * coef

23 } //for j

24 } //for i

25 output_coefs[u][v] = alpha[u] * alpha[v] * sum;

26 } //for U

27 } //for V

96

6.2 Lossy Compression 6 COMPRESSION

Figure 54: 8x8 block of Y channel pixel values

Transform coefficient values

1260 -1 -12 -5 2 -2 -3 1

-23 -17 -6 -3 -3 0 0 1

-11 -9 -2 2 0 -1 -1 0

-7 -2 0 1 1 0 0 0

-1 -1 1 2 0 -1 1 1

2 0 2 0 -1 1 1 -1

-1 0 0 -1 0 2 1 -1

-3 2 -4 -2 2 1 -1 0

Table 16: The transform coefficient values of Figure 54

Table 16 shows the resultant transform coefficient values, (rounded up to the nearest

integer) after performing the 2-D DCT on figure 54. It can be observed that the

value in top left corner is significantly larger than the rest of the values. This value

is known as the dc coefficient and can be calculated by:

1

N

N−1∑
u=0

N−1∑
v=0

fi,j (26)

Where N=8. This value is thought of as the mean value of the block and holds most

97

6.2 Lossy Compression 6 COMPRESSION

of the energy of the input signal. The remaining coefficients are known as the ac

coefficients and hold the frequency content of the transform.

It can be observed that the energy of the ac coefficients reduces significantly as it

approaches the bottom right hand corner of the output transform coefficient matrix,

compared to the top left corner. As there are no high sharp transients in the original

data, the low frequency basis functions have greater weighting for this type of data

than the high frequency coefficients. The higher valued coefficients of the output

matrix represent how much of the corresponding basis function is used to represent

the original image. When the value of the output coefficient is low, the corresponding

basis function’s contribution to the original image is lower and thus can be quantized

or discarded.

The act of using quantization to discard data that is not needed to reconstruct a

suitable approximation of the original data is what makes the compression technique

lossy. Quantization will be discussed further in section 6.2.5.

It can be observed from the pseudo code in listing 5 that there are four nested loops,

which will give a total of 64 multiplications and 49 additions per coefficient, totalling

4096 multiplications per 8x8 block of samples. This gives a computing complexity

of O(N4). This implementation is computationally complex, which would increase

latency in a time sensitive application. Fortunately, a property of the 2D-DCT func-

tion is that it is a separable function, which means the functions can be implemented

by using two 1-D DCT transforms, first along the rows, then along the columns. A

transform is said to be separable if it satisfies the following conditions:

y = AxAT (27)

Where y is an NxN block of output coefficients, A is an Orthonormal transform of

size NxN (the DCT basis functions), x is the input NxN block of values and AT

is the transposition of the transform matrix. Performing the operation as two 1-D

transforms requires two matrix multiplications of size NxN, instead of vector of size

1xN2 with a N2xN2 matrix, which reduces the complexity from O(N4) to O(N3). The

1-D Dct function can be expressed by:

G(m) =

√
2

N

N−1∑
m=0

g(u)cmcos

(
(2j + 1)mπ

2xN

)
(28)

where G(m) is the transform output coefficient, g(u) is the current input value. This

reduces the amount of multiplications to 1024 multiplication operations per 8x8 block,

However the time complexity of O(N3) would be still too great for real time applica-

tions.

The seminal research done in [1] provides a method to greatly reduce the amount

of multiplications needed to perform a one-dimensional discrete cosine transform.

98

6.2 Lossy Compression 6 COMPRESSION

Figure 55 shows the butterfly diagram of the AAN [1] discrete cosine transform and

figure 56 shows the operations that are carried out. From the legend in figure 56,

It can be observed that there are 13 multiplication operations performed per row of

8 values, some of which can be implemented as bit shifts instead of multiplications.

This reduces the amount of multiplication operations to 208 per block of 8x8 pixel

sample values. The implementation for the fast AAN DCT coded in C++ can be

seen in Listing 25 in the code section of this thesis.

Figure 55: A signal flow diagram of the forward AAN fast DCT transform

Figure 56: Legend for figure 55

99

6.2 Lossy Compression 6 COMPRESSION

6.2.4 Comparing speed performance of 3 discrete cosine transform meth-

ods

A test is configured to compare the computational time to perform the discrete cosine

transform on 2400 blocks of 8x8 pixel intensity values. The first method performs

the discrete cosine transform as a two-dimensional transform, as shown in Listing 5.

The second method performs the discrete cosine as two one-dimensional transforms,

first along the columns, then along the rows. The third method performs the discrete

cosine transform using the fast AAN method, shown in figure 55.

In the experiment, each method is used 20 times, in random order. The same 2400

blocks of 8x8 pixel intensity values are used each time, by all three methods. The

experiment is carried out in two blocks. The average time will then be calculated for

each method. The discrete cosine transform methods are coded using c++ language

and can be seen in the code section of this thesis in listings 23 - 25 .

137805

27414.8
1079.7

Compression method

Ti
m

e
in

 m
ic

ro
 s

ec
on

ds

0

50000

100000

150000

Direct DCT Seperable DCT AAN Fast DCT

Discrete Cosine Transform method Vs Computation time

Figure 57: Comparing three methods of discrete cosine transform, with respect to

computational time

Figure 57 Shows the results of test. It can be clearly seen that the fast AAN discrete

cosine transform is the most efficient in terms of computational time. This is the

basis of the discrete cosine transform that will be used in this thesis.

100

6.2 Lossy Compression 6 COMPRESSION

6.2.5 Quantization

After the discrete cosine transform has processed a block of pixel values, the next step

is to quantize the coefficient’s. The process of quantization will reduce the dynamic

range of the coefficient values and discard some of the information, in favour of better

compression performance.

The process of quantizing involves dividing a transform coefficient by an integer value

and rounding the resultant value to the nearest integer on the encoder side. on the

decoder side, the value is de-quantized by multiplying the same coefficient by the

same integer value, to get an approximation of the original value. Using a small

quantization coefficient reduces the amount of error in the decoded image, but does

not reduce the size of the dct coefficient as much as using a larger quantization coeffi-

cient. Better compression performance is achieved by using large quantization values

at the expensive of distortion in the decoded image. The discrete cosine transform

function’s role is to compact as much of the energy in the image into just a small

number of coefficients. The low frequency dct coefficients are located around the top

left of a block of samples. The quantization coefficients used for low frequency dct co-

efficients is smaller compared to the quantization coefficients used for high frequency

dct coefficents

It is important to note that performing the discrete cosine transform does not com-

press the image data and that apart from minor rounding error, is not responsible for

the loss in information when used in a lossy compression algorithm. Information is

discarded when the discrete cosine transform coefficients are quantized.

the JPEG standard gives two examples of quantization matrices that can be used.

One is for the luminance channel and one is for both chrominance channels. The

luminance quantization matrix can be seen in table 17

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Table 17: Luminance quantization matrix described in JPEG [18]

it can be observed from the quantization matrix in table 17 that the quantization

coefficient values are lower toward the top left of the matrix and increase in value

towards the bottom right. This is reflected in the low to high frequency coefficients

101

6.2 Lossy Compression 6 COMPRESSION

of the discrete cosine transform. To illustrate the function of quantization, the pixel

sample values from figure 54 are processed with the quantization matrix in table 17.

The resultant quantized values can be seen in table 18

79 0 -1 0 0 0 0 0

-2 -1 0 0 0 0 0 0

-1 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Table 18: Quantized discrete cosine transform values from figure 54

It can be seen that most of the values have been reduced to zero. The quantized

coefficients can be further processed by a form of run length encoding, where the

coefficients are first reorganised in a zig-zag pattern to optimise the run length of

zero’s. The zig-zag pattern is shown in figure 58

columns 0-7

Rows 0-7

Zig-Zag re-ordering pattern

Figure 58: Zig-Zag re-order pattern for quantized DCT coefficients

After reordering the dct coefficient values using the zig-zag pattern in figure 58 the

102

6.2 Lossy Compression 6 COMPRESSION

discrete cosine transform coefficents can be described using a run length encoding

pattern, where the zero’s are used as the run: [0, 79], [1,−2], [0,−1][0,−1][0−1], [2,−1]

[Rest are zeros]. This can be interpreted as no 0’s before 79, one 0 before -2, no 0’s

before -1, etc. In compression algorithms such as JPEG [18], a special character is

used to denote the end of sequence, when all the remaining characters are zero. It

is generally coded in the bit stream as 0,0. The DC coefficient [79] is generally not

included in the run length scanning of a block as the value is much larger than the

ac coefficients.

The decoding of data that has been processed with the outlined process, is simply

the inverse of the steps carried out, but in reverse order. The encoding and decoding

process can be seen in figure 59

Forward
Discrete
Cosine

Transform
Quantization Zig-Zag

Reording
Run Length
Encoding

Entropy
Encoding

Inverse
Discrete
Cosine

Transform

Inverse
Quantization

Inverse
Zig-Zag

Reording

Inverse
Run Length
Encoding

Inverse
Entropy

Encoding

Encoding

Decoding

Encoding and Decoding Process Flow using Discrete Cosine Transform

Figure 59: The encoding and decoding process using DCT, quantization and Entropy

encoding

6.2.6 The Discrete Wavelet Transform

The discrete Haar wavelet transform was introduced in this thesis in the section on

classification. In this section, the discrete wavelet transform will be discussed with

respect to compression.

The properties of the discrete wavelet transform so far that have been discussed

are its ability to localise frequency content in the time domain and that the two-

dimensional wavelet transform needed for image compression is separable into two

one-dimensional functions, which reduces time complexity. Another property of the

discrete wavelet transform is that it can be applied in a multi-resolution application.

This means that the process can be applied recursively. As previously discussed, a one

level two-dimensional discrete wavelet transform decomposes an input image into four

103

6.2 Lossy Compression 6 COMPRESSION

sub bands: LL, HL, LH and HH, where L stands for low-pass filtering and H stands

for high-pass filtering. The LL sub band is an approximation of the original image

at 1
4

of the resolution. This process compacts a significant amount of information

of the original image into a much smaller space, thus decorrelating the information

among neighbouring pixels. If the same two-dimensional discrete wavelet transform

is performed on the the values of the LL sub band, the result is a two level, two-

dimensional discrete wavelet transform which has compacted most of the information

of the signal into a space that is 1
8

the original resolution of the original image.

Multi Resolution Discrete Wavelet Transform

LLLL LLHL

LLLH LLHH
HL

LH HH

Two Level, two-dimensional
DWT

LL HL

LH HH

One Level, two-dimensional
DWT

Original
16

16

8

8

4

4

Figure 60: Multi resolution discrete wavelet transform analysis

The location of the sub bands with respect to the original image is shown in figure

60, which shows the decomposition of a 16x16 block of pixel values decomposed with

a one level and two-level two-dimensional discrete wavelet transform.

By compacting as much of the information of the original image into a smaller amount

of pixels, data irrelevancy can be exploited, by discarding some of the information

in the sub bands that do not contribute much to the image, in favour of a better

compression performance. This is done by thresholding the discrete wavelet transform

coefficients: values below a given threshold are set to zero, while values above the

threshold are left as is.

104

6.2 Lossy Compression 6 COMPRESSION

Figure 61: 16x16 block of pixels with graphical information

148 154 153 139 128 128 128 128 128 128 128 128 128 128 128 128

128 128 143 157 144 128 128 128 128 128 128 128 128 128 128 128

128 128 128 142 158 134 128 128 128 128 128 128 128 128 128 128

128 128 128 129 157 146 128 128 128 128 128 128 128 128 128 128

128 128 128 128 151 152 128 128 128 128 128 128 128 128 128 128

128 128 128 128 152 152 128 128 128 128 128 128 128 128 128 128

128 128 128 129 158 146 128 128 128 128 128 128 128 128 128 128

128 128 128 144 155 134 128 128 128 128 128 128 128 128 128 128

128 129 141 154 154 142 128 128 128 128 128 128 128 128 128 128

145 157 164 164 164 154 139 128 128 128 128 128 128 128 128 128

158 149 134 147 167 164 154 141 128 128 128 128 128 128 128 128

128 128 128 128 147 167 165 163 128 128 128 128 128 128 128 128

128 128 128 128 128 146 168 150 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128

142 137 132 128 128 128 128 128 128 128 128 128 128 128 128 128

Table 19: Pixel intensity values for figure 61

Figure 61 represents a single channel of a 16x16 block that contains computer gen-

erated text. The type of data contained in figure 61 would not be suitable to be

compressed using a discrete cosine transform, as the structured values that make up

the character against a uniform background, which can be seen in the values in ta-

ble 19, do not follow a low frequency distribution. This would lead to poor energy

compaction and ringing artefact’s after decompression. However, the Haar wavelet

transform is suited to compress such data, because of its ability to use short wavelet

105

6.2 Lossy Compression 6 COMPRESSION

basis to extract the high frequency content, while compacting the low frequency in-

formation into fewer coefficients.

The first step in compressing data using a a forward discrete wavelet transform is to

apply a level shift to each pixel intensity, so each value is centred about zero. This is

achieved by subtracting a scalar value of 128 from each intensity value in the encoding

side and in the decoding side, adding 128 to each retrieved value. The purpose of this

is to lower the dynamic range in the transform coefficients. The pixel intensity values

of an image are non negative values, however the discrete wavelet transform produces

both positive and negative values. Centering the pixel intensity values about zero

helps reduce the size of the magnitude of the transform coefficients.

Listing 6: forward discrete Haar wavelet transform, C++

1 //s0,s1,d0 are the weighting values

2 // =0.5 to represent dividing by 2

3 //d1 = -0.5 to represent the difference equation

4 forward_column_transform(data[16][16],length)

5 {

6 for (row = 0; row < 16; row++) {

7 temp_values[16] = { 0 };

8 h = length >> 1;

9 for (i = 0 ; i < h; i++) {

10 int k = (i << 1);

11 /* averaging calculation */

12 temp[i] = data[row][k] * s0 + data[row][k + 1] * s1;

13

14 /* difference calculation */

15 temp[i + h] = data[row][k] * d0 + data[row][k + 1] * d1;

16 }

17 /* store the basis calculations 'In place' in the original 2D array */

18 for (int i = 0; i < length; i++)

19 data[row][i] = temp[i];

20 }

21 }

22 forward_row_transform(data[16][16],length)

23 {

24 for (int col = 0; col < 16; col++) {

25 /* temp hold the values while calculating the average and difference */

26 temp[16] = { 0 };

27 int h = length >> 1;

28 for (i = 0; i < h; i++)

29 {

30 k = (i << 1);

31 temp[i] = data[k][col] * s0 + data[k + 1][col] * s1;

32 temp[i + h] = data[k][col] * d0 + data[k + 1][col] * d1;

33 }

34 for (i = 0; i < length; i++)

35 data[i][col] = temp[i];

106

6.2 Lossy Compression 6 COMPRESSION

36 }

37 }

To illustrate the transformation and compression process using a discrete wavelet

transform, the pseudo code in listing 6 for the two-dimensional forward Haar discrete

wavelet transform split into two one-dimensional Haar transforms (along the columns

and the rows), will be used to process the values in table 19.

Table 20 shows the transform coefficients after performing the transform as one level.

Looking at the values in table 20, it is clear to see that a significant amount of

coefficients are zero. It can be also observed that the dynamic range of the coefficient

values have been greatly reduced, which could be a potential benefit in compression

performance.

11 20 4 0 0 0 0 0 -1 0 4 0 0 0 0 0

0 3 20 0 0 0 0 0 0 -3 8 0 0 0 0 0

0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0

0 4 20 0 0 0 0 0 0 -4 8 0 0 0 0 0

11 27 25 2 0 0 0 0 -3 -3 5 2 0 0 0 0

12 6 33 27 0 0 0 0 2 -3 -4 3 0 0 0 0

0 0 4 15 0 0 0 0 0 0 -4 4 0 0 0 0

5 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

11 -2 -4 0 0 0 0 0 -1 7 -4 0 0 0 0 0

0 3 -2 0 0 0 0 0 0 -3 3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -3 3 0 0 0 0 0 0 3 -2 0 0 0 0 0

-11 -8 -5 -2 0 0 0 0 2 -3 0 -2 0 0 0 0

12 6 4 -8 0 0 0 0 2 -3 5 2 0 0 0 0

0 0 4 15 0 0 0 0 0 0 -4 4 0 0 0 0

-5 -1 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0

Table 20: One level two-dimensional forward Haar discrete wavelet coefficients top

left = LL sub- band, top right = HL sub-band, bottem left = LH sub=band, bottom

right = HH sub-band: 79 non-zero coefficients

Table 21 shows the output coefficients after performing the second level forward Haar

discrete wavelet transform on the sub band LL of table 20 (top right 8x8 block). In

this instance, it can be observed that there is a slight increase in the number of non

zero coefficients, however the dynamic range of coefficient values has been reduced

further.

107

6.2 Lossy Compression 6 COMPRESSION

8 6 0 0 -3 6 0 0 -1 0 4 0 0 0 0 0

1 11 0 0 -1 11 0 0 0 -3 8 0 0 0 0 0

14 22 0 0 -2 7 0 0 0 0 0 0 0 0 0 0

1 5 0 0 0 -2 0 0 0 -4 8 0 0 0 0 0

6 -4 0 0 -1 -4 0 0 -3 -3 5 2 0 0 0 0

-1 0 0 0 1 0 0 0 2 -3 -4 3 0 0 0 0

5 -8 0 0 -5 4 0 0 0 0 -4 4 0 0 0 0

-1 5 0 0 -1 -2 0 0 1 1 0 0 0 0 0 0

11 -2 -4 0 0 0 0 0 -1 7 -4 0 0 0 0 0

0 3 -2 0 0 0 0 0 0 -3 3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -3 3 0 0 0 0 0 0 3 -2 0 0 0 0 0

-11 -8 -5 -2 0 0 0 0 2 -3 0 -2 0 0 0 0

12 6 4 -8 0 0 0 0 2 -3 5 2 0 0 0 0

0 0 4 15 0 0 0 0 0 0 -4 4 0 0 0 0

-5 -1 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0

Table 21: Two level two dimensional forward Haar discrete wavelet coefficients: 81

non-zero coefficients, values have a lower dynamic range

The next step in encoding is to use a thresholding process to reduce code irrele-

vancy in the data. Aside from some small rounding error from converting floating

point to integer, the thresholding process is what introduces distortion and makes the

algorithm a lossy compression algorithm.

Thresholding involves comparing a coefficient value to a specified value. If a given

coefficient value is under the specified threshold value, it is set to zero. As previously

discussed, transient information is captured in the sub bands HL, LH and HH, while

an approximation of the original block is stored in the sub-band LL. If there is low

transient information in a block, the dynamic range of values in the sub-bands HL,

LH and HH will be low and likewise, if there is transient information in a block, the

dynamic range of the coefficient values in these sub bands will be high. The purpose of

using a discrete wavelet transform for lossy compression is to retain as much transient

information as possible about a block, while discarding information that does not.

A novel approach to thresholding has been implemented in this thesis. It is a recur-

sive thresholding process, which occurs after each level of discrete wavelet transform

decomposition. The Threshold value decreases after each level and only the newly

computed values of each level are processed. The psuedo code for rounding coeffi-

cients to integer values and then applying thresholding can be seen in listing 7. The

function is passed an integer value of 10 for threshold after the first level of transfor-

mation and is passed an integer value of 2 for the threshold after the second level of

transformation.

Listing 7: Discrete Wavelet Transform round and threshold function

108

6.2 Lossy Compression 6 COMPRESSION

1 round_and_threshold(data[16][16],threshold,level)

2 {

3 /* this is for rounding and thresholding */

4 for (int Row = 0; Row < level; Row++)

5 {

6 for (int Col = 0; Col < level; Col++)

7 {

8 /* rounding the floating point number to now decimal places */

9 data[Row][Col] = round(data[Row][Col]);

10 /* if the absolute value is less than threshold it is set to 0 */

11 if (abs(data[Row][Col]) <threshold)

12 {

13 data[Row][Col] = 0;

14 }

15 }

16 }

17 }

Table 22 shows the resultant values after thresholding the values of table 21

8 5 0 0 -2 5 0 0 0 0 0 0 0 0 0 0

0 11 0 0 0 11 0 0 0 0 0 0 0 0 0 0

13 22 0 0 0 8 0 0 0 0 0 0 0 0 0 0

0 4 0 0 0 -4 0 0 0 0 0 0 0 0 0 0

8 -5 0 0 -2 -5 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 -9 0 0 -7 5 0 0 0 0 0 0 0 0 0 0

0 4 0 0 0 -4 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 22: After two level forward discrete Haar wavelet transform. thresholding value

6: 25 non zero coefficients

It can be observed from table 22 that the majority of values are now zero, with only

25 non zero coefficients, that have a greatly reduced dynamic range than the original

pixel intensity values.

Using the discrete wavelet transform in the above example has compacted the infor-

109

6.2 Lossy Compression 6 COMPRESSION

mation about the image in figure 61 into just a few coefficients, which is suitable for

further processing. However, unlike processing with a discrete cosine transform, the

location of the non zero coefficients are spread out in the sub bands and is highly

dependent on the transient information in the block itself. As such, a zig-zag run

length scan pattern as used in JPEG [18], may not be suitable to process the data

prior to entropy encoding. A novel method to process the non zero coefficients prior

to entropy encoding will be presented further on in this thesis in section 9.3.14.

The process flow for encoding and decoding using a discrete wavelet transform can

be seen in figure 62

Subtract scalar
value of 128

from each pixel
intensity.

One Level
Forward

Discrete Haar
Transform

Two Level
Forward

Discrete Haar
Transform

Round and Threshold
Values of Sub-Bands

LLLL,
LLHL,LLLH,LLHH

Round and
Threshold values
of sub band LL,

HL,LH,HH

Pre Process Data
for Entropy
Encoding

Encoding

Add scalar
value of 128 to

each pixel
intensity.

One Level
Forward

Discrete Haar
Transform

Two Level
Inverse Discrete
Haar Transform

Organise the wavelet
coefficients in correct

location
Inverse Entropy

Encoding

Decoding

Encoding and Decoding Process Flow using Discrete Haar Wavelet Transform

Figure 62: Encoding and decoding using discrete Haar wavelet transform

Figure 63 Shows the decoded approximation of figure 61 after processing. It can be

observed that there are little to no human visible distortion artefacts in the recovered

image. This validates the use of a discrete wavelet transform for blocks containing

computer generated data.

Figure 63: decoded approximation of figure 61 after thresholding, PSNR = 37.12dB

110

7 COMPRESSION FILE FORMATS

7 Compression File Formats

7.1 JPEG

JPEG (Joint Photographic Experts Group) [18] is a popular method of compression

for continuous tone images in both colour and grey scale. It is optimised for image

data where neighbouring pixels have similar values. JPEG has both lossy and loss-

less modes of compression, for continuous tone image, the former typically yields a

compression ratio of 10:1 to 20:1 with little discernible impact to the end user, while

the latter typically yields a compression ratio from 2:1 to 5:1.

The core values of JPEG are:

• To achieve high compression performance for continuous tone image, such as

natural camera captured image.

• To have uniform compression performance, independent from the size of the

image.

• To be highly parameterized. Allowing the user to configure settings to optimise

the algorithm for particular cases. For example to optimise for compression

performance, for speed or for image quality.

• To describe a file format for transmission such that an image can still be decoded

if the encoding and decoding have been implemented separately.

JPEG has multiple operation modes. The most common mode is sequential mode

where each colour channel (known as a component) is compressed sequentially via a

single scan from left to right, top to bottom. Progressive mode is used to compress

an image in multiple scans and each scan contains information about the image from

coarse to fine detail. Hierarchical mode compresses an image at different resolutions

enabling viewing at a lower resolution without fully decoding the image.

The following steps are undertaken when compressing an image using JPEG:

Colour Space Transform

Raw image data or a bitmap file is transformed from RGB colour space to another

colour space that will separate the colour information from the intensity information.

Typically the colour space used is YCbCr colour space or a variant of it. YCbCr

colour space stores the brightness or luminance information in the Y channel, the

colour difference between Y and red in the Cr and colour difference between Y and

blue in the Cb channel. The reason the image is transformed from RGB colour space

is to process the luminance and chrominance information independently. The human

111

7.1 JPEG 7 COMPRESSION FILE FORMATS

visual system can perceive small changes in luminance information, but is less sensitive

in chrominance information, which means that the more data can be discarded in the

chrominance data in favour of better compression performance, with little discernible

impact to the end user after decompression. This process is not possible in RGB

colour space, as each channel is as significant as the other.

Chroma Sub Sampling

Chroma sampling is optional in JPEG compression. It is used to discard redundant

information in the chrominance information in favour of better compression perfor-

mance. This is a lossy step in the encoding process, as once the information is

discarded, it cannot be retrieved, however, the noticeable impact is low in terms of

subjective observation.

A common pattern that is used for chroma subsampling is YCbCr 4:2:0, which means

there is one Cb and Cr value for a neighbourhood of 4 Y channel values.

Decomposition into Data Units

Each colour channel (component) is segmented into 8x8 non overlapping blocks,

known as data units. A data unit holds 64 values, each is an eight bit value from

0-255. If the original images size in width and height is not a multiple of 8, the last

row and furthest right column are duplicated to make up the difference.

A JPEG encoder can process data units in two modes: non-interleaved and inter-

leaved. In non-interleaved mode, each component is processed fully before moving on

to the next component. In interleaved mode, the data units are processed in group

of three: first data unit from the Y component, first data unit from Cr component,

first data unit from Cb component. Then moving on to the next group of three in a

sequential order, from left to right, top to bottom.

The benefit of each data unit being processed individually is the reduction in memory

space needed to store intermediate values while compressing a data unit. Also be-

cause each data unit is mutually exclusive, the process can be paralleled to improve

speed performance. However, one of the main attributing factors to ringing artefacts

caused from Gibbs phenomena comes from the fact that each 8x8 block is processed

independently, leading to discontinuity around each blocks perimeter.

Discrete Cosine Transform

The forward discrete cosine transform is performed on each data unit, the output

is an output map of frequency coefficients, generally called dct coefficients. The dct

function is used to decorrelate the information in the input signal and store as much

112

7.1 JPEG 7 COMPRESSION FILE FORMATS

energy as possible into just a few output coefficients. The most energy, which is the

average value is stored in the first output coefficient, known as the DC coefficient,

while the remaining higher frequency coefficients, known as the AC coefficients contain

the detail of the block.

As the input signal is in two dimensions, the forward transform must be a 2 dimen-

sional transform. To reduce the complexity of the transform and improve on speed,

the two dimensional transform is split into two, one dimensional transforms, first

performed along the rows and then performed along the columns. This is possible

as the key attributes of the discrete cosine function are that it is both separable and

reversible. Further improvements can be made to reduce the amount of calculations

needed to perform the transform [1] which can reduce the amount of multiplications

from 64 per coefficient to 5 coefficient multiplications and 8 scaling multiplications,

totalling 13 multiplications.

Even though the discrete cosine transform is both separable and reversible, due to

the finite precision in arithmetic used by computers, there will be some error in the

transformed signal, due to rounding error, however in practical terms, the error can

be negligible.

Quantization

Each of the 64 dct coefficient values are quantized by dividing the value by another

value from whats generally known as a quantization matrix. The quantization matri-

ces used in JPEG can be user defined, however there are two suggested matrices in

[18] for luminance values and for chrominance values. The values of the quantization

matrix are typically called quantization coefficients. A dct coefficient is divided by

its quantization coefficient and then rounded to an integer value. The low frequency

dct coefficients gets divided by smaller quantization coefficients, while the high fre-

quency dct coefficients get divided by larger valued quantization coefficients. The

larger the quantization coefficient, the more error that is introduced, but the better

the compression performance achieved.

Entropy Encoding

After the dct coefficients have been quantized, the data unit is processed by run length

encoding, followed by one of two methods to reduce the entropy in the processed

data. The baseline version of JPEG uses a form of Huffman encoding called canonical

Huffman coding. The other method of entropy encoding is based on arithmetic coding

entropy encoder. Shabahrami et al [37] have performed a series of tests comparing

Huffman encoding and Arithmetic coding, Their results show that arithmetic coding

can achieve a higher compression ratio but at the cost of speed performance. Their

work shows that as the size of the data to be compressed increases, the compression

113

7.2 PNG 7 COMPRESSION FILE FORMATS

performance for arithmetic coding is greater, Where as Huffman encoding compression

performance is more uniform and independent of file size.

Decompression

The steps for decompression for JPEG encoding are the reverse of the compression

stages. This enables the compression and decompression time to be symmetric.

7.2 PNG

PNG (Portable Network Graphics) is a popular lossless compression file format for

images which is used extensively in web applications, mobile application and com-

puter game applications. It is a non patented technology which has allowed for its

integration on a large scale in most applications that need to transmit image data

from one source to another. It is a fully lossless compression format and processes im-

age data in two stages. The first stage is the filtering process and the second stage is

the compression process. Central to the compression stage is the Deflate [7] algorithm

which is a combination of LZ 77 [51] and Huffman encoding [16].

PNG compression is both efficient in terms of speed performance and achieves good

compression performance for images containing a mixture of computer generated data

and natural continuous tone image. However for images that fully contain natural

image, such as images for medical and security processing, compression performance

is degraded, with typical compression ratios of 1.1:1 to 2:1 [49] [15]

PNG compression processes the image in a raster scan order and processes the colour

channels of an image separately. PNG does not implement colour space transforma-

tion as its a lossless method where each pixel value of each colour channels contribution

is of equal importance.

Filtering

Before applying compression, a filtering process is performed on each row of a channel

of the image. Delta coding is used to implement filtering. The role of delta coding is

to take advantage of data that may be linearly correlated. In delta coding, a given

sample value can be represented as the difference between its numeric value and a

previous sample value. This type of of processing can result in groups of repeated

numbers, which will improve the performance of the compression algorithm in the

second stage.

Table 23 shows Xn which is an array of numbers that have a linear correlation that

would be suitable for delta encoding. using the formula

Yn = Xn −Xn−1 (29)

114

7.2 PNG 7 COMPRESSION FILE FORMATS

Xn = 128 129 130 131 131 131 131 131

Table 23: Xn is an array of values that have linear correlation

The output can be seen in Table 24.

Yn = 128 1 1 1 0 0 0 0

Table 24: Yn is an array of values after delta encoding

It can be observed from table 24 that the dynamic range of sample values have been

greatly reduced and the runs of repetitive patterns would be suitable for lossless

compression.

There are five filter types that are used in the filtering stage in PNG. The filter choice

can be chosen per scan line but the same filter must be used for each channel per

scan line. The first filter choice is to use no filtering.

The second filter choice Sub, is shown in equation 30, where X is a row of an image

and N is a a single channel pixel values at a given coordinate. The difference value

is calculated between a given channel pixel value and the value directly to the left in

the same row.

Y[N] = X[N] −X[N−1] (30)

The third filter, Up, is shown in equation 31. The difference calculation is calculated

between a given channel pixel value and the the sample directly above it, in the

previous row of the image.

Y[N] = X[N] − [X − 1][N] (31)

The fourth filter Average is shown in equation32. The difference value is calculated

by subtracting a given pixel value from the average value calculation of the value

directly to the left and directly above a given pixel.

Y[N] = X[N] −
X[N−1] + [X − 1][N]

2
(32)

The fifth filter PAETH [29] computes a linear function using the sample directly to

the left, the sample directly above and the sample to the top left of a given channel

pixel value, then chooses the neighbouring value as a predictor that is closest to the

computed value. The psuedo code to implement the paeth filter is described in [29]

and shown in listing 8

Listing 8: PAETH Filter Pseudo code

115

7.2 PNG 7 COMPRESSION FILE FORMATS

1 function PaethPredictor (a, b, c)

2 begin

3 // a = left, b = above, c = upper left

4 p := a + b - c // initial estimate

5 pa := abs(p - a) // distances to a, b, c

6 pb := abs(p - b)

7 pc := abs(p - c)

8 // return nearest of a,b,c,

9 // breaking ties in order a,b,c.

10 if pa <= pb AND pa <= pc then return a

11 else if pb <= pc then return b

12 else return c

13 end

Compression using Deflate

After filtering has been performed on each row of each channel of the input image, the

processed data is ready for compression using a compression algorithm called deflate

which is a combination of LZ 77 and Huffman encoding.

The LZ 77 algorithm which has been described in section 6.1.2 iterates the length of

the input data sequentially and will store any pattern matches into a buffer. This

approach is known as a sliding window, which is made up of a search buffer and a

look ahead buffer. Potential patterns in the look ahead buffer are searched for in the

search buffer and if found, the output is in the form of a triple, (o,l,c):

• o = offset: represents the number of positions that is needed to move backwards

in order to find the start of the pattern match

• l = length: represents the length of the match

• c = character: represents the character directly after the match.

The search algorithm is a linear search, which would give a time complexity of O(n2).

For a large image this would have a significant impact on speed performance and

because of this, the standard [19] limits the size of the sliding window to 32KB.

The LZ 77 data is then processed with Huffman encoding. There are two methods of

Huffman encoding available. The first method uses predefined Huffman tress which

are defined in [7]. This method can be used for an improvement in speed performance

as the data does not need to be parsed again to update the frequency of symbols.

another benefit is the Huffman trees are not needed to be sent with the compressed

data as the encoder already has knowledge of them. The second method is to define

the Huffman trees from the input data. This method incurs additional overhead in

processing time, however may achieve better compression.

116

7.2 PNG 7 COMPRESSION FILE FORMATS

Compressed file format ordering

A PNG file is split up into chunks. There are three mandatory chunks and many

optional chunks. Table shows an example of the mandatory chunks and one optional

and their ordering

PNG Chunk name and ordering

Chunk Mandatory description

IHDR Yes Header. Comes first in the stream

PLTE no Pallete. Comes second only if defined colour set is used

IDAT yes Data. Can be any multiple of data chunks in order

IEND yes End. Signalling end of stream

Table 25: Description of Chunks in a PNG file

117

8 VIDEO ENCODING

8 Video Encoding

8.1 H.264

H.264 [47] is a mature video coding technology first published in 2003 and is still in

use as an industry standard for video compression and in streaming video content

online.

The encoder process in H.264 is broken down into the following steps

1 Frame decomposition

2 Prediction

3 Transform

4 quantization

5 Entropy encoding the bit stream

Frame decomposition

Similar to JPEG [18], the frames to be encoded with H.264 are first transformed from

RGB colour space to YCbCr colour space. H.264 can incorporate chroma subsam-

pling, Using YCbCr 4:4:4, 4:2:2 and 4:2:0 ratios.

A frame is then decomposed into 16x16 pixel blocks which are called Macro Blocks.

Depending on which chroma subsampling rate is used, a Macro Block will contain

4 8x8 blocks of Y channel samples and between 1-4 blocks of 8x8 samples for each

colour channel.

Prediction

H.264 can use encoded data from previous frames (inter prediction) to encoded a given

Macro Block in a current frame. The values of a given Macro block are subtracted

from a Macro Block from a previous frame, with the result is known as a Residual.

It can also apply prediction from within the current frame (intra prediction). Intra

prediction can use variable block sizes from 16x16 to 4x4 to predict the Macro Block

from previously encoded blocks in the neighbourhood of directly left, top left and top.

Prediction is used to reduce redundant information in frames of a sequence that have

highly correlated data, such as data in the background that may only slightly change

from one frame to the next. The values of the Residual are sparse and have a low

dynamic range, which will improve the performance of the compression applied in

further steps.

118

8.1 H.264 8 VIDEO ENCODING

Motion estimation is a type of prediction that can be used in H.264. it is used to map

motion in objects in successive frames. Motion estimation is described and coded

using Motion Vectors.

Transform

The residual sample values from prediction are then processed with a variant of the

discrete cosine transform which is implemented using integer arithmetic. This step

is similar to JPEG but differs by using an integer implementation and that it can

choose to perform the transform on blocks of size 8x8 or 4x4. A Macro block can use

any combination of 8x8 and 4x4 transforms in any given order.

Quantization

The output coefficients of the integer transform are further processed by quantization,

where each integer output coefficient is divided by a weighted quantization coefficient.

H.264 allows the Quality of quantization to be determined, by adjusting the quantiza-

tion parameter (QP). High QP values result in more of the integer output coefficients

reduced to zero, in turn increasing compression performance at the expense of sub-

jective decoded image quality.

Entropy encoding the bit stream

H.264 uses a type of entropy encoding called Context Adaptive Binary Arithmetic

Coding (CABAC) [25]. CABAC implements the following steps:

1 Binarization: using binary arithmetic coding, the alphabet size is 2. a sym-

bol such as a transform coefficient is transformed into a binary string before

arithmetic coding.

2 Context model selection: A probability model is selected for each bit in the

binary string depending on the statistics of previously encoded binary strings.

3 Arithmetic coding: each bit in the binary string is encoded with an arithmetic

coder according to the probability model that is selected.

4 Probablilty Update: Once the bit in the binary string has been encoded, the

context model is updated.

119

9 COMPOUND COMPRESSION ALGORITHM

9 Compound Compression Algorithm

In this section, the image classification and compression techniques required to create

a compound compression algorithm will be developed and tested. The goal is to design

the framework of a compound compression algorithm that will be efficient in terms

of compression performance, computational complexity and can deliver acceptable

levels of both subjective and objective image quality.

A set of 40 high quality 24 bit bitmap compound images have been prepared and will

be used as the test set, for both classification and compression, with some additional

images used as a training set for the classification algorithm. The test set of images

can be seen in the appendix of this thesis in figures 134 - 137. The set of test

images were generated on a computer using Windows 10 operating system, using the

Windows 10 application programming interface to capture the screen image.

The classification algorithm will first be described and tested, followed by lossless and

lossy compression algorithm analysis and testing. A novel lossless compression algo-

rithm will be proposed, which has been developed from the findings of the analysis

on the amount of unique pixel values in a given block of pixels that contain computer

generated data. The novel compression algorithm will be compared to standard com-

pression algorithms in terms of both compression performance and computational

complexity.

120

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

9.1 Classification Algorithm Configuration

A series of tests are configured to develop a classification algorithm which builds upon

the research presented by Wu in [48]. The classification algorithm used for compound

image compression decomposes an input image into 16x16 non overlapping blocks and

classifies each block as one of five types, which are: smooth, sparse, text, picture and

fuzzy and have been described in section 4.1

Block classification is done by a combination of colour counting and a discrete wavelet

transform. The discrete wavelet transform is used to decompose a block into four sub

bands which contain transient information which can be used to discern if a given

block contains properties of text, computer generated data or natural image. The

sub bands are in essence four filter banks which are described in table 26 and their

location with respect to a 2 dimensional array is shown in table 26.

Sub Row Column Description

Band Filter Filter

LL Low Low averaged and scaled approximation of original image

HL Hi Low contains horizontal stroke data

LH Low Hi contains vertical stroke data

HH Hi Hi contains diagonal stroke data

Table 26: Description of the discrete wavelet transform sub bands

LL HL

LH HH

Table 27: Location of the four sub bands within a block

Statistical analysis is performed by computing the standard deviation on the sub

bands LH, HL and HH. The hypothesis is that blocks containing text and computer

generated data will contain sharp transitions in vertical, horizontal and diagonal

directions. Blocks containing sharp transitions in these sub bands should have a

higher standard deviation than blocks that do not contain text or computer generated

data. Blocks that contain natural image but are less structured, such as fuzzy blocks,

should have a lower standard deviation than blocks that contain natural image with

structure.

The purpose of the following test is to examine a set of specifically chosen images

that contain a majority of blocks that could be classified as sparse, text, fuzzy and

picture blocks. The test will process each image by decomposing it into 16x16 blocks,

colour space transform, discrete wavelet transform and statistical analysis to ascertain

whether it can distinguish a type of block by analysing the sub bands. Images that

121

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

only contain smooth blocks have been omitted from this test as smooth blocks contain

a single colour, thus will have no variance or deviation from the mean value. The

computed values will then be used in the classification algorithm and tested on a set

of forty compound images, which contain a mixture of all of the above types of blocks.

Experimental Design

Twelve images are selected for the test. All images are size 512x512 pixel 24-bit

bitmaps and are public domain images. Each image will contain a majority of one of

the classification types. This initial classification is performed subjectively by viewing

the images.

(a) fuzzy 1 (b) fuzzy 2 (c) fuzzy 3

Figure 64: Test images that contain data subjectively classified as fuzzy blocks

Figure 64 Shows the three images that have be chosen as fuzzy. Each image contains

natural continuous tone image with no apparent structure.

(a) picture 1 (b) picture 2 (c) picture 3

Figure 65: Test images that contain data subjectively classified as picture blocks

Figure 65 Shows the three images that have be chosen as picture. Each image contains

natural camera captured image data with defined objects such as landscape, animals

122

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

and fruit as well as depth of perception such as background and foreground. The

content in each image is more complex than that of images that have been classified

as predominately fuzzy.

(a) sparse 1 (b) sparse 2 (c) sparse 3

Figure 66: Test images that contain data subjectively classified as sparse blocks

Figure 66 Shows the three images that have be chosen as containing sparse data.

Each image is computer generated with sharp lines in vertical, horizontal and diagonal

directions in smooth regions, as well as areas of single colour.

(a) text 1 (b) text 2 (c) text 3

Figure 67: Test images that contain data subjectively classified as text blocks

Figure 67 shows the three images that have been chosen as containing text data.

The first image is plain text on white background, the second image is coloured text

with colour background and the third image contains multicoloured text with many

symbols and lines. The three text images have been chosen to be representative of

typical text editing applications that may be run on a computer.

123

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

NO

Experimental Design Flow Chart

calculate mean and st. dev:
t_mean: [LL, HL, LH, HH]
 t_st_dev: [LL, HL, LH, HH]

YES

last block?

store st_dev_LL in array_LL
 store st_dev_HL in array_HL
 store st_dev_LH in array_LH

 store st_dev_HH in array_HH

calculate st_dev: [LL, LH, HL, HH]

sub band: [LL, HL, LH, HH]

load 16x16 RGB block

transform RGB -> YCbCr

count unique YCbCr values

NO

count >1?

store count in uniqe_pixel_array

Yes

DWT on Y channel

decompose into 16x16 RGB blocks

initialise image

output t_mean_LL, t_st_dev_LL
output t_mean_HL, t_st_dev_HL
output t_mean_LH, t_st_dev_LH
output t_mean_HH, t_st_dev_HH

image = 512x512 RGB bitmap

Total = 1024 16x16x3 Byte blocks

count = integer variable that holds
the amount of unique 3x1 Byte
values

uniqe_pixel_array = array to
store unique pixel count of
each block

sub band: [LL, HL, LH, HH] = 4
x 64 float arrays, that hold the
sub band values per block

st_dev: [LL, LH, HL, HH] =
4x float values holding the
standard deviation value of each
sub band per block

Y channel = 16x16x1 Byte block

RGB -> YCbCr = colour space
transform

array_XX = array of standard
deviation values calculated for
each sub band of each block.

t_mean: [LL, HL, LH, HH] = 4x
float values holding the mean of
each of array_XX

t_st_dev: [LL, HL, LH, HH] = 4x
float values holding the standard
deviation of each array_XX

Figure 68: flow chart for experimental design to calculate threshold values for classi-

fication algorithm

124

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

Figure 68 is a flow chart of the experiment. It implements the following steps:

• A test image is loaded into the program.

• The image is decomposed into 16x16 non overlapping blocks.

• An iterative for loop is started that will process each block.

• A block is transformed from RGB colour space to YCbCr colour space (with no

chroma subsampling)

• Every 3 byte pixel in the block is counted. The total count of unique 3 byte

pixels in the block is stored in an array. If there is only 1 unique pixel value,

the block is discarded as a smooth block and the next block is loaded. This

experiment is concentrated on sparse, text, fuzzy and picture blocks.

• The forward discrete wavelet transform is performed on the Y channel of the

block. The Y channel is chosen as it contains information about all colour

channels. The 256 samples of the Y channel are decomposed into four 64 sample

array sub bands: LL, HL, LH and HH, by process of discrete Haar wavelet

transform.

• The standard deviation for each sub band is computed and the result for each

block is stored in a separate array.

• After all the blocks have been processed, there are four arrays that contain

the standard deviation value for each sub band per block and also an array

that holds the count of how many unique pixels there are per block. To get

base line values to use in the full classification algorithm that will be used to

classify compound images, The mean value along with the standard deviation

is calculated on the four arrays holding the per block standard deviation values.

The mean will set the baseline for the threshold, while the standard deviation

will inform whether or not a specific sub band can be used in the classification.

Experimental Results of total mean standard deviation and associated

standard deviation

Table 28 shows the results of calculating the total mean of array LL, array HL, ar-

ray LH and array HH from figure 68 and their associated standard deviation, for each

image in the fuzzy image set. It can be observed for fuzzy 2 and fuzzy 3, the mean

standard deviation value in sub bands HL, LH and HH is low, indicating that there

is low transient information in the image. This is confirmed by observing the images

in figure 64.

The LL sub band is a scaled and averaged approximation of the original block, at 1
4

of the size. As the standard deviation is calculated on the Y channel, which holds the

125

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

luminance information, it can be seen that the mean value in fuzzy 1 is greater than

both fuzzy 2 and fuzzy 3. This is due to figure 64a having finer detail in the blades

of grass in the centre of the image, compared to the foreground and background. The

luminance in both fuzzy 2 and fuzzy 3 is quite uniform, which is confirmed by the

low standard deviation in the LL sub band while the larger standard deviation for

fuzzy 1 is due to higher definition that can be observed in the grass in 64a.

Fuzzy Calculation Sub Band Sub Band Sub Band Sub Band

LL HL LH HH

fuzzy1 t mean 12.32 4.85 3.23 1.44

t st dev 7.05 4.94 3.00 1.93

fuzzy2 t mean 2.34 0.56 0.60 0.13

t st dev 1.91 0.75 0.79 0.36

fuzzy3 t mean 7.26 6.82 8.84 5.98

t st dev 1.54 2.46 3.04 2.81

Table 28: standard deviation analysis for fuzzy image set

Table 29 shows the resulting calculations for the picture image set. The first observa-

tion is both the total mean standard deviation and its associated standard deviation

in sub band LL for each image in the picture set is larger than that of the fuzzy set.

This is because the images in figure 65 contain defined objects, where the brightness

of the image is localised around a given object.

The total mean standard deviation value of The HL, LH and HH sub bands is also

greater than that of the fuzzy image set, This is due to more structural information

in the images, where there is transient information about the outline of each object

in the images, however the mean standard deviation value is still low as the outline of

the objects in the images are softer and less defined than that of computer generated

data. The gradient is slower between object boundaries as the brightness levels change

due to shadowing. This is an inherent attribute to natural camera captured image

data.

Picture Calculation Sub Band Sub Band Sub Band Sub Band

LL HL LH HH

picture1 t mean 14.38 7.04 9.32 5.25

t st dev 12.05 6.18 6.89 4.35

picture2 t mean 20.72 11.65 16.79 8.97

t st dev 9.58 5.87 9.87 4.56

picture3 t mean 13.21 7.23 8.39 3.86

t st dev 14.55 5.28 5.22 1.88

Table 29: standard deviation analysis for picture image set

126

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

Sparse Calculation Sub Band Sub Band Sub Band Sub Band

LL HL LH HH

sparse1 t mean 34.45 12.12 14.11 0.33

t st dev 31.52 11.50 21.92 1.39

sparse2 t mean 54.25 7.62 22.63 2.07

t st dev 34.28 12.18 19.59 4.07

sparse3 t mean 19.51 11.20 14.93 5.48

t st dev 20.11 15.32 15.11 8.20

Table 30: standard deviation analysis for sparse image set

Table 66 shows the resulting calculations from the sparse image set. The sparse images

contain highly structured objects with well defined object boarders. The luminance of

the object in the images is uniform and localised to each object. This is reflected in the

mean standard deviation in the LL sub band and its associated standard deviation.

The mean standard deviation value is high because the luminance value of each object

is different and the transition from one object to the next is sharp.

The mean standard deviation of the HL and LH sub bands is high because there is a

lot of well define horizontal and vertical strokes in the images. The HH sub band is

low, as it can be observed that there is a lower amount of diagonal stroke information,

which would be more prominent in text data.

The high associated standard deviation values in the LL sub band for sparse blocks

would limit its effectiveness for classification, as it shows that there is a high dynamic

range for that sub band.

Sparse Calculation Sub Band Sub Band Sub Band Sub Band

LL HL LH HH

text1 t mean 53.86 41.23 42.96 22.04

t st dev 10.98 14.55 12.72 6.15

text2 t mean 42.94 26.44 23.59 9.89

t st dev 9.73 10.46 11.21 3.98

text3 t mean 29.86 19.26 27.50 11.62

t st dev 8.65 8.38 12.77 4.99

Table 31: standard deviation analysis for text image set

It can be observed in table 31, that text information has the highest total mean

standard deviation values for the HL, LH and HH sub bands. This is due to the

attributes of text data. Text characters are highly structured and can contain strokes

in vertical, horizontal and diagonal directions, with the luminance level of the text

in high contrast to the smooth background. This is indicative that the hypothesis

127

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

is correct and that image data that contains computer generated text information

will have a higher standard deviation in the LH, HL and HH sub bands compared to

continuous tone image. This is a fundamental result, as it suggests that the data types

in an image can be classified by their inherent statistical properties when decomposed

using a discrete wavelet transform.

Type Calculation Sub Band Sub Band Sub Band Sub Band

LL HL LH HH

Fuzzy mean 7.31 4.08 4.22 2.52

standard dev 4.07 2.61 3.44 2.51

Picture mean 16.10 8.64 11.50 6.03

standard dev 3.3 2.13 3.76 2.16

Sparse mean 36.07 10.31 17.22 2.63

standard dev 14.23 1.94 3.84 2.14

Text mean 42.22 28.98 31.35 14.52

standard dev 9.81 9.15 8.36 5.37

Table 32: Final mean and standard deviation values to derive threshold values for

classification algorithm

Table 32 shows the final stage of calculations to generate threshold values for use in

the compound image classification algorithm. The insight gained by performing the

above test is as follows:

• The standard deviation in the LL sub band of blocks in the fuzzy image set is the

lowest of any of the image types. This is an expected outcome, as the luminance

values of a 16x16 block of pixels should be consistent, but with each individual

value slightly varying to the next. As the LL sub band is an approximation of

the original block, but scaled by a half in both horizontal and vertical directions,

it is a good indication of the overall texture of the block and so can be used in

classification.

• The amount of unique pixels per 16x16 block in the fuzzy image set is also

greater than the sparse and text image set. This is also an important observa-

tion, as it will help to distinguish fuzzy blocks from certain sparse blocks that

may have a similar standard deviation in the LL sub band.

• The unique pixels per 16x16 block in the sparse image set is the lowest of any

of the image types.

• Sparse blocks are generally computer generated data are associated with a com-

puters graphical user interface (GUI) and are found around the perimeter of

windows or tool bars, and may have very sharp transitions in luminance, as

128

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

such they usually have a dominant value in one of the sub bands HL, LH or

HH.

• However, some blocks from the sparse image set may have a similar standard

deviation in the LL sub band as blocks from the fuzzy image set. this is because

the majority of a given block from the sparse block set may be the same colour,

with the exception of a small amount of pixels. To be able to to classify sparse

blocks the two attributes needed is a low unique pixel count and a dominant

standard deviation in one of the sub bands LH, HL or HH.

• The amount of unique pixel values per 16x16 block in the picture block are the

largest of any of the image sets.

• The standard deviation in the sub bands LH, HL and HH are generally lower

than those in the text image set, however some of the block do contain sharp

transient information, such as the fine hair detail in the image of the baboon in

figure 65. To correctly identity blocks as picture blocks, the two attributes that

are needed are a high unique pixel count and a threshold value for the LH, HL

and HH sub bands that a picture block will not crossover.

• Blocks in the text image set have a higher unique pixel count than the sparse

image set, but a lower unique pixel count than the fuzzy and picture set.

• Blocks in the text image set have high transient information in the sub bands

HL, LH and HH, which can be used for classification.

From the above insights a classification algorithm has been created to be used for

classifying the data in compound images in preparation for compression. Figure 70

shows the flow chart of the classification algorithm that will be used to classify the

data types of a compound image. The conditional logic for the flow chart can be seen

in figure 69.

129

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

Conditional Logic for Classification Algorithm

condition 1 =
[count < 5] && [st_dev_LL < 9]

condition 2 =
[count > 5] && [st_dev_LL < 12]

condition 3 =
[count < 10]
&& [st_dev_HL > (st_dev_LH * factor
&& st_dev_HH * factor)]

condition 4 =
[count < 10]
&& [st_dev_LH > (st_dev_HL * factor
&& st_dev_HH * factor)]

condition 5 =
[count < 10]
&& [st_dev_HH > (st_dev_HL * factor
&& st_dev_LL * factor)]

condition 6 =
[st_dev_HH < 25]
&& [st_dev_HL < 25]
&& [st_dev_LL < 25]

condition 7 =
[st_dev_HH > 25]
|| [st_dev_HL > 25]
|| [st_dev_LL > 25]

st_dev_LL = standard deviation of LL sub band
st_dev_HL = standard deviation of HL sub band
st_dev_LH = standard deviation of LH sub band
st_dev_HH = standard deviation of HH sub band
count = amount of unique 3 byte pixels per block
factor = integer multiple = 4

Figure 69: Logic description and legend for figure 70

130

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

S1: Load 16x16 RGB Block

S2: transform RGB -> YCbCr

S3: count unique YCbCr values

count >1?
Block =
Smooth no

last block?
No

condition 1
Block =
Sparse Yes

last block?

End

Yes

No condition 2

Block =
FuzzyYes

End

Yes

S1:

No

condition 3
No

Yes

condition 4No

Yes

condition 5No

Yes

condition 6No

Block =
Pictureyes

condition 7
No

Block =
Text Yes

No

End

Yes

S1:

No

last block?

End

Yes

S1:

No

last block?

End

Yes

S1:

No

S4:Discrete Wavelet Transform

Yes

Block =
Not Classified

last block?

EndS1:

Figure 70: Flow Chart of Classification algorithm for compound images

131

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

(a) fuzzy blocks (b) picture blocks (c) sparse blocks (d) text blocks (e) smooth

(f) fuzzy blocks (g) picture blocks (h) sparse blocks (i) text blocks (j) smooth

(k) fuzzy blocks (l) picture blocks (m) sparse blocks (n) text blocks (o) smooth

Figure 71: Fuzzy image classification results

Figure 71 shows the fuzzy image set after classification and decomposed into each

block type. There were no blocks that were not classified in this test. There were also

no blocks misclassified as text and only a single block classified as sparse. It can be

observed that the classification based on the LL sub band is accurate in classifying

fuzzy blocks.

It can be seen in figure 71 that the majority of blocks in the image of the grass have

been classified as picture. This is because there is finer resolution in the detail of the

grass, which is an expected result.

The intended compression method to compress blocks classified as fuzzy and picture

is based on discrete cosine transform followed by quantization, albeit with stronger

quantization used for fuzzy, compared to picture.

132

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

(a) fuzzy blocks (b) picture blocks (c) sparse blocks (d) text blocks (e) smooth blocks

(f) fuzzy blocks (g) picture blocks (h) sparse blocks (i) text blocks (j) smooth

(k) fuzzy blocks (l) picture blocks (m) sparse blocks (n) text blocks (o) smooth

Figure 72: Picture image classification results

Figure 72 shows the results of classification on the picture image set shown in figure

65. The majority of the blocks in the first and third image of the set have been

classified correctly as either picture blocks or fuzzy blocks. In both the first and

third image, the blocks that are classified as picture blocks contain significantly more

detail than the blocks that are classified as fuzzy blocks, which have a more uniform

luminance level per block.

There are 24 blocks in the first image and 30 blocks in the third image that are

misclassified as text, which gives an accuracy of approximately 98%. However, there

are a significant amount of blocks that have been misclassified as text in the second

image. The second image of the picture image set depicts an image of a baboon, which

has very fine detail in in the fur, with many sharp horizontal and diagonal strokes.

When a discrete wavelet transform is performed on the blocks with fur, there would

be a large amount of transient information in the HL, LH and HH sub bands, which

would would be similar to text, which is why the blocks are misclassified. Another

condition is needed to catch these types of blocks.

133

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

Image number from figure 65 1 2 3

No. of blocks classified as picture 425 580 510

picture blocks with 32+ unique pixels 425 580 478

percentage (%) 100 100 93.7

No. of blocks classified as fuzzy 575 240 484

fuzzy blocks with 32+ unique pixels 575 229 478

percentage (%) 100 95.4 98.7

No. of blocks classified as text 24 204 30

text blocks with 32+ unique pixels 24 204 30

percentage (%) 100 100 100

Table 33: Breakdown of classification of picture image set, with colour counting

Table 33 shows a breakdown of the classification process for the picture image test

set. It shows the amount of blocks that are classified as picture, fuzzy and text, as

well as the number of each type that has 32 or more unique pixel values and what

the percentage is. It can be observed that the majority of blocks that are classified as

fuzzy and picture have a unique pixel count that is greater than or equal to 32 unique

pixel values. Also, every block that has been misclassified as text in each image has

a unique pixel count that is greater than 32. This is a very important result, because

it shows that using the amount of unique pixels per block can be used as another

condition to aid classification for picture blocks.

1 cond i t i on 6 = [count > 31

2 && st dev HL < 25

3 && st dev LH < 25

4 && st dev HL < 25]

By modifying the conditional logic for condition 6 in figure 69 to the condition above,

the classification algorithm is re-run on the picture test image set.

(a) fuzzy blocks (b) picture blocks (c) sparse blocks (d) text blocks (e) smooth

Figure 73: Picture image classification results with modified condition including

unique colour count

Figure 73 shows the results of the image 2 from the picture image set classified with

the modified condition. It shows that all blocks have been classified correctly.

134

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

(a) fuzzy blocks (b) picture blocks (c) sparse blocks (d) text blocks (e) smooth blocks

(f) fuzzy blocks (g) picture blocks (h) sparse blocks (i) text blocks (j) smooth

(k) fuzzy blocks (l) picture blocks (m) sparse blocks (n) text blocks (o) smooth

Figure 74: Text image classification results

Figure 74 shows the results of the text image set after classification. Most notably, it

can be observed that there are 9 blocks in 74b and 7 blocks in 74b that are misclas-

sified as picture blocks. Picture blocks are intended to be compressed with a lossy

compression, while text blocks are to be compressed with a lossless method. If blocks

containing text are compressed with a lossy compression method such as one based on

the discrete cosine transform which is intended for use with picture and fuzzy blocks,

there will be compression artefacts that will reduce the overall quality of the image.

Table 34 shows a count of the amount of blocks classified as text in the text image

set that have over 32 unique pixel values

Image 1 2 3

No. of blocks classified as text 937 965 652

of classified, blocks with 32+ unique pixels 2 6 0

percentage (%) .002 .006 0

Table 34: Table of blocks that have been classified as text from the text image set

containing more than 32 unique pixel values

135

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

(a) fuzzy blocks (b) picture blocks (c) sparse blocks (d) text blocks (e) smooth blocks

(f) fuzzy blocks (g) picture blocks (h) sparse blocks (i) text blocks (j) smooth

(k) fuzzy blocks (l) picture blocks (m) sparse blocks (n) text blocks (o) smooth

Figure 75: sparse image classification results

Figure 75 shows the results of the sparse image set after classification. Sparse classi-

fication has a high degree of accuarcy of 99.7%

It can be observed from 75(n) that the blocks that are classified as text represent

blocks that contain text when visually observing 66.

The insight gained by performing the above test is as follows:

• The classification algorithm, with base line threshold values is successful in

classifying the data type in each image of the test sets.

• sparse block classification is the most accurate as there is well defined informa-

tion in the LH, HL and HH sub bands.

• using the LL sub band is an effective method to classify fuzzy blocks in combi-

nation with a count of the unique pixel values of a block is a success method to

classify fuzzy blocks.

• There is a possibility to misclassify picture blocks as text blocks and vice versa

if the only attribute that is being analysed is the information in the HL, LH

and HH sub bands.

136

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

• There is much larger unique pixel count in picture and fuzzy blocks than sparse

and text blocks

Using the insight gained from the previous tests, the classification algorithm will be

tested on a full compound image from a set of 40 high resolution compound images.

Figure 76 shows a compound image containing a mixture of the five classes of data

found within a compound image. The image is representative of a typical computer

desktop image, with a file explorer application open and an image viewing application

which show attributes of the graphical user interface along with text data. The

background is smooth in texture and predominately made up of a single colour.

The image of the almonds is chosen as it contains highly structured objects with

varying degrees of brightness and colour. The image is from a public domain standard

test set of lossless images of size 768x512 pixels, originally released by Kodak retrieved

from [27].

Figure 76: A sample for a set of 40 high resolution compound images

137

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

(a) Sparse Blocks (b) Text Blocks

(c) Fuzzy Blocks (d) Picture Blocks

(e) Smooth Blocks (f) Full Image

Figure 77: Decomposition of compound image into Sparse, Text, Fuzzy and Picture

blocks using classification algorithm and the recombined image

The results of the classification algorithm performed on figure 76 can be observed in

figure 77. The five images in figure 77 show the compound image decomposed into

five categories, sparse, text, fuzzy, picture and smooth.

By visual observation, it can be seen that the classification algorithm can decompose

a compound image into the five data types with a high degree of accuracy. 100 percent

of blocks have been classified. All smooth blocks have been accurately classified, as

well as all text and fuzzy blocks. However, there are a number of sparse blocks that

have been misclassified as picture blocks that can be observed in figure 77d.

138

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

Figure 78: A sparse block that has been misclassified as a picture block from figure

77

Figure 78 shows one of the blocks that should be classified as sparse, but has been

classified as picture. Visual inspection of the block shows that there are two areas that

are uniform in colour, with distinct structure, with a definitive separation in colour.

Table 35 shows the Y channel values of the block after colour space transformation.

It confirms that there are only two unique values in the luminance channel for this

block.

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

89 89 89 89 89 89 89 89 89 88 255 255 255 255 255 255

Table 35: Y Channel Values of sparse block miss classified as picture block

139

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

An observation that is of fundamental importance is that there are an even num-

ber of columns containing the unique values. There are ten columns containing the

luminance value 89, while there are six columns containing the value 255.

89 89 89 89 88 255 255 255

89 89 89 89 88 255 255 255

89 89 89 89 88 255 255 255

89 89 89 89 88 255 255 255

89 89 89 89 88 255 255 255

89 89 89 89 88 255 255 255

89 89 89 89 88 255 255 255

89 89 89 89 88 255 255 255

(a) Sub Band LL

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(b) Sub Band HL

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(c) Sub Band LH

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(d) Sub Band HH

Table 36: Forward Discrete Haar Wavelet Transform decomposition into four sub-

bands LL, HL, LH, HH

Figure 36 shows the forward 2D Haar wavelet transform decomposition of figure 78

into the respective sub bands LL, HL, LH and HH. It can be observed that all values

in the HL, LH and HH sub bands are zero. The Haar transform calculates the mean

and difference of consecutive pairwise samples, if two consecutive values are the same,

the mean is equal to the value of each sample and the difference will always be zero.

If the Haar transform is performed on a block of samples that have an even uniform

structure, like that in figure 78, the resulting sub bands HL, LH and HH will not

contain any variance, as such the standard deviation of the particular sub bands will

also be zero. To cater for this type of block more logic has to be included in the

classification algorithm.

1 add i t i ona l cond i t i on spar s e = [count < 10

2 && st dev HL == 0

3 && st dev LH == 0

4 && st dev HL == 0]

140

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

The classification algorithm in figure 70 is modified to include the condition above.

The compound image in figure 76 is processed with the final iteration of the classi-

fication algorithm used in this thesis and the results are shown in figure 79. It can

be observed that the classification algorithm is now highly accurate at decomposing

a compound image into smooth, sparse, text and fuzzy blocks. The c++ code im-

plementation of the functions for the classification algorithm can be seen in the code

section of this thesis in listing 22.

(a) Sparse Blocks (b) Text Blocks

(c) Fuzzy Blocks (d) Picture Blocks

(e) Smooth Blocks (f) Full Image

Figure 79: Decomposition of compound image into Sparse, Text, Fuzzy and Picture

blocks using modified classification algorithm and the recombined image

Figure 79 shows the results of classification with modified logic. It can be observed

that the classification errors have now been greatly reduced.

141

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

9.1.1 Comparing Presented Classification Algorithm to the Work pre-

sented by Wu [48]

As stated, the classification algorithm presented in this thesis is inspired by the work

presented by Wu [48], with fundamental differences. the key differences in the classi-

fication algorithm presented so far in this thesis are as follows:

• The discrete wavelet transform is performed on the luminance channel in YCbCr

colour space instead of the green channel in RGB colour space. This is a funda-

mental change which greatly reduces the error in classification. As an example,

given a 16x16 block containing pure blue text on a black background, if a dis-

crete wavelet transform is performed on the green channel, each sub band will

contain no deviation as all the green channel values will be zero. This case is

shown in 133 in the appendix of this thesis.

• Because the discrete Haar wavelet transform is a pairwise average and difference

calculation, if it is performed on a block that has multiple distinct uniform colour

regions with an even amount of columns, there will be no difference in the sub

bands so the standard deviation calculation will return zero. This case has been

found in blocks that should be classified as sparse. if a block has more than one

unique colour and a standard deviation of zero in the sub bands HL, LH and

HH, it will be a sparse block.

• The LL sub band contains an approximation of the original block. If the stan-

dard deviation is low, in the LL sub band, it is a strong indication that the

colour distribution is uniform, thus coupled with colour counting, can be used

to discern between fuzzy and sparse block, which may contain similar attributes

in the HL, LH and HH sub bands.

• To improve speed performance in classification, the work presented by Wu [48]

used sub sampling of a block in RGB colour space, to reduce the size of a

16x16 block to an 8x8 block before performing a discrete Haar wavelet trans-

form. The classification algorithm presented here does not use sub sampling,

but implements the discrete Haar wavelet transform using integer arithmetic,

multiplication and division to improve on performance.

A test is set to compare the classification algorithm described so far in this thesis

to the work presented by Wu. Five compound images are selected to compare the

two algorithms classification accuracy and performance in speed. Four of the images

are from a set of forty high resolution compound images captured for this this thesis

and one image is from the work presented by Wang et al [44] on their work for

consideration of screen content image for testing the HEVC algorithm.

142

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

A sample of two of the images used in this test which have been decomposed into

smooth, sparse, fuzzy, text and picture blocks can be seen in the appendix of this

thesis in figures 123 - 133.

The algorithm presented in this thesis is labelled algorithm A, while the work pre-

sented by Wu is labelled algorithm B. It can be observed that the classification Ac-

curacy of algorithm A is greater than the classification by Algorithm B based on the

amount of blocks that have been subjectively classified in error. Of significant inter-

est, the error in classification caused by performing the discrete wavelet transform in

RGB colour space is prominent in figure 133. It shows a significant number of blocks

classified in error as smooth blocks, when they contain text and other computer gen-

erated data. This type of error would be detrimental to the overall subject quality

of the image after decompression and decoding, as truly smooth blocks contain a

single pixel colour, as such only one pixel is chosen to represent a 16x16 block in

compression.

The time taken for classification is recorded and can be seen in table 37. It can be

seen that classification algorithm A out performs Algorithm B in each case. However,

there is a larger variance in time taken by classification A, while classification B is

more uniform.

Algorithm A Algorithm B

(ms) (ms)

23.9 42.6

18.8 43.5

24.8 43.3

16.1 45.6

17.7 46.1

Table 37: Classification time comparison of the classification algorithm presented in

this thesis (Algorithm A vs the algorithm presented by Wu in [48] Algorithm B

The insight gained by performing the above tests are as follows:

• The classification algorithm presented in this thesis is highly accurate at classi-

fication

• Even though there is an improvement in speed, the time taken for classification

would be still too long for real time applications, where latency can have a

negative impact for the end user’s experience.

• The variance in classification time presented in 37 for algorithm A is due to the

colour counting process. To ensure a uniform classification time, a threshold

must be formulated to limit the time spent on colour counting.

143

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

9.1.2 Colour Counting Analysis

A test will be performed on a set of forty compound images prepared for this thesis, to

count the amount of unique pixel values that are in each type of block. The purpose

of this test is to understand if there is a correlation between the unique pixel count

per block and which data type the block will be classified as. Further, to decide upon

a threshold value of unique pixels that can be used to distinguish between computer

generated data, such as text and natural camera captured data.

Classification Breakdown

Text
20.2%

Sparse
16.9%

Picture
10.1%

Smooth
40.2%

Fuzzy
12.5%

Contribution of each data type after classification algorithm on
a set of 40 compound images

Figure 80: Breakdown of classification Results

Figure 80 Shows the results of running the classification algorithm presented in this

thesis on a set of 40 compound images. The average value of each classification type is

calculated and the value is shown in the graph. It can be observed that the dominant

classification type is smooth, with approximately 40 percent of the distribution. The

combination of blocks classified as sparse and text which should be compressed using

a lossless compression algorithm is approximately 37 percent, while the combination

of blocks that would be potentially compressed using a lossy compression type image,

fuzzy and picture blocks, is approximately 23 percent.

144

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

Analysis of Pixel Counting on Blocks Classified as Fuzzy

Figure 81: Breakdown of unique pixel count on blocks classified as fuzzy from a set

of 40 compound images

Figure 81 shows the distribution of unique pixel count for blocks that have been

classified as fuzzy. The four bins of the histogram are blocks containing 2-16, 17-32,

33-64 and 65 plus unique pixel values. The dominant bin is the 65 or more unique

pixel values per block, with approximately 37 percent of the total distribution. This

result agrees with the hypothesis that blocks classified as fuzzy are typically blocks

containing natural camera captured image, which contain many unique colours, but

have a uniform luminance values with slight variance.

A significant observation from figure 81 is that the bin representing 2-16 unique

pixel values per block is the second highest with approximately 34 percent of the

distribution. To further analysis this, an image from the test set is selected that has

a significant amount of blocks that have been classified as fuzzy containing from 2-16

unique pixel values. This image can be seen in figure 82.

145

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

Figure 82: Compound image with blocks classified as fuzzy, with approximately 50

percent having 2-16 unique values

Table 38 shows the distribution of unique pixel values in blocks that have been clas-

sified as fuzzy. It can be observed that over 32 percent of blocks classified as fuzzy in

figure 82 contain 2 -16 unique pixel values. The fuzzy blocks containing 2-16 pixels

from 38 are isolated and shown in figure 83.

Total amount of fuzzy Blocks 403

Fuzzy blocks with 2-16 unique pixel count 129 32.01%

Fuzzy Blocks with 17-32 unique pixel count 24 5.95%

Fuzzy blocks with 33-64 unique pixel count 96 23.82%

Fuzzy blocks with 65 plus unique pixel count 154 38.28%

Table 38: Distribution of unique pixel values in fuzzy blocks from figure 82

Figure 83: Only blocks classified as fuzzy that contain 2-16 unique pixel values from

figure 82

146

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

It can be observed from figure 83 that the blocks containing 2-16 unique pixels are

not in areas of the image that largely contain computer generated data. A sample of

one of the blocks classified as fuzzy containing 2-16 unique pixel values is shown in

figure 84.

Figure 84: A 16x16 block classified as fuzzy from figure 82 containing less than 16

unique pixel values

It can be observed from figure 84 that the block contains defined structure with

vertical lines to the right hand side, while the rest of the block seems smooth. This

type of data is not data from natural camera captured image an should potentially

be classified as either sparse or text.

The reason that this block has been classified as fuzzy is that the luminance value

of the block overall is fairly uniform, with the vertical lines structured elements lu-

minance values not varying too much from the background. This type of data is

typically caused by shadow type effects generated by the graphical user interface

around desktop items and boarders to help them stand out.

The potential consequence of the block in figure 84 being classified as fuzzy would be

that it will get compressed with a lossy type compression algorithm that could lead

to compression artifacts, which would reduce the quality for the end user.

147

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

Analysis of Pixel Counting on Blocks Classified as Picture

Amount of unique pixels per 16x16 block

pe
rc

en
ta

ge

0.00%

25.00%

50.00%

75.00%

100.00%

2-16 17-32 33-64 65+

Blocks classified as picture vs unique pixel count

Figure 85: Breakdown of unique pixel count on blocks classified as picture from a set

of 40 compound images

Figure 85 shows the distribution of unique pixel count for blocks that have been

classified as picture from a set of 40 compound images. It can be observed from the

histogram that the majority of blocks that have been classified as picture contain 65

or more unique pixel values. This agrees with the hypothesis that blocks containing

natural camera captured image contain a larger amount of unique pixel values.

The large number of unique pixel values in blocks classified as picture suggests that

neighbouring pixels in a block are highly correlated. Because there is high correlation,

there is is typically redundant information contained in the data. A lossy compres-

sion algorithm such as one based on a discrete cosine transform would be suited to

compressing the data found in blocks classified as picture efficiently

148

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

Analysis of Pixel Counting on Blocks Classified as Sparse

Amount of unique pixel per 16x16 block

pe
rc

en
ta

ge

0.00%

25.00%

50.00%

75.00%

100.00%

2-16 17-32 33-64 65+

Blocks classified as sparse vs unique pixel count

Figure 86: Breakdown of unique pixel count on blocks classified as sparse from a set

of 40 compound images

Figure 86 shows the distribution of unique pixel count for blocks that have been

classified as sparse from a set of 40 compound images. It can be observed that all

blocks that have been classified as sparse contain less then 32 unique pixel values.

This agrees with the hypothesis that blocks classified as sparse should be low in

complexity and have a limited amount of unique pixel values.

Due to the low unique pixel value count in sparse blocks, it suggests that there

are uniform and highly structured patterns in the data contained in each block. A

lossless type of compression algorithm can be tuned to compress blocks of this nature

efficiently and quickly.

149

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

Analysis of Pixel Counting on Blocks Classified as Text

Amount of unique pixels per 16x16 block

pe
rc

en
ta

ge

0.00%

20.00%

40.00%

60.00%

80.00%

2-16 17-32 33-64 65+

Blocks classified as text vs unique pixel count

Figure 87: Breakdown of unique pixel count on blocks classified as text from a set of

40 compound images

Figure 87 shows the distribution of unique pixel count for blocks that have been

classified as text from a set of 40 compound images.

It can be observed from the histogram that the dominant bin is blocks containing 2-

16 pixels, with approximately 73 percent of the total distribution. a blocks classified

as text containing 17-32 unique pixel values have approximately 11 percent of the

distribution.

An important observation from 85 is that the combination of blocks greater than

32 unique pixel values account for approximately 16 percent of the distribution. An

image is selected from the test set that contains a significant amount of blocks that

have been classified as text with unique pixel count greater than 32. The image can

be seen in figure 88

150

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

Figure 88: Sample from compound image set with over 50 percent of blocks classified

as text containing greater than 16 unique pixel values

Total amount of text Blocks 596

Text blocks with 2-16 unique pixel count 224 40.93%

Text Blocks with 17-32 unique pixel count 181 30.37%

Text blocks with 33-64 unique pixel count 13 2.2%

Text blocks with 65 plus unique pixel count 158 26.51%

Table 39: Distribution of unique pixel values in text blocks from figure 88

Table 39 shows the distribution of unique pixel values in blocks that have been classi-

fied as text from figure 88. It can be observed that the combination of blocks greater

than 32 unique pixel values make up approximately 29 percent of the total distribu-

tion. The text blocks containing greater than 32 unique pixels from 38 are isolated

and shown in figure 89.

It can be observed from figure 89 That the majority of blocks that have been classified

as text that contain greater than 32 unique pixel values are in areas of figure 88 that

do not contain text. From observation only 21 of the 171 blocks with greater than 32

unique pixel values actually contain text

151

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

Figure 89: blocks classified as text containing greater than 32 unique pixel values

from figure 88

A sample of two of the blocks from 88 that have been classified as text that have

greater than 32 unique pixel values have been extracted and can be seen in figure

(a) Block with text (b) Block without text

Figure 90: Sample Blocks from figure 88 that have been classified as text with greater

than 32 unique pixel values

It can be observed from figure 90a, That there is text data, while the background

contains natural image, While figure 90b does not contain text, but it does have the

characteristics of text, such as sharp transients in the diagonal direction.

Both blocks contain very defined structure which should be preserved during the

compression process, however due to both blocks containing a high unique pixel count,

compressing types of blocks similar to this using a lossless compression algorithm

would incur a significant penalty in compression performance. To achieve better

152

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

compression performance, a lossy transform based compression algorithm could be

used to de-correlate the information in the pixels relating to natural image. However,

by using a lossy compression algorithm based on the discrete cosine transform could

lead to visible compression artifacts and distortion to the structure contained in both

blocks. A lossy type compression that can successfully preserve the structure of the

data within the block, while removing redundancy in the colour information in the

block

Analysis of Unique Pixel Value Distribution on the Compound

Image Test Set

Figure 91: Showing the average value of the distribution of unique pixel values per

16x16 block of pixels in the compound image test set

Figure 91 shows the breakdown of unique pixel values per block on the set of com-

pound images used in testing for this thesis. It can be observed that the dominant

section is blocks containing one single pixel value with approximately 40 percent of

the distribution. while the combination of blocks with up to 32 unique pixel values

accounts for over 80 percent of the distribution. It can be observed that the amount of

blocks contain greater than 32 unique pixel values is significantly smaller, accounting

for approximately 20 percent of the distribution.

153

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

Insight Gained from Colour Count testing

By performing colour counting on the compound image test set, significant insight

has been gained about the relationship between the unique pixel count of a 16x16

block and what type of data that block contains. The key points found are:

• The majority of blocks classified as fuzzy have a pixel count greater than 16

unique pixels. However,a significant number of blocks that have been classified

as fuzzy contain a unique pixel count between the range 2-16 unique pixel values.

On visual inspection, the majority of these blocks do not contain data from

natural camera captured image, but contain computer generated data.

The problem presented with blocks that should be classified as sparse but get

classified as fuzzy is that, typically a lossy type compression would be used to

compress data from camera captured image, while a lossless type of compression

should be used for computer generated data.

• Blocks classified as picture contain the highest unique pixel count, with the

majority of blocks having greater than 64 unique pixel values

• Blocks that have been classified as sparse have a low pixel count

• The majority of blocks that have been classified as text have a pixel count less

than 32 unique pixels. However, there is a significant number of blocks that have

been classified as text that have a unique pixel count greater than 32 unique

pixel values. on visual inspection, the blocks that have been classified as text

that contain greater than 32 unique pixel values do not actually contain text

data, but have the characteristics of text, such as sharp transitions in horizontal,

vertical and diagonal directions. These type of blocks have been observed to be

a type of hybrid block that contain both computer generated data and natural

camera captured data. The problem presented with this type of block is that,

typically a lossless type of compression should be used on data containing text,

to preserve the structure in the block and to ensure that the decompressed

image is free from artifacts around the text. The high pixel count in these type

of blocks would significantly impact the performance of the compression.

• On average, approximately 80 percent of blocks contain less than 32 unique

pixel values from the compound image test set.

154

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

9.1.3 Conclusion on Compound Image Classification Using Discrete Wavelet

Transform and Colour Counting Analysis

The tests presented in this section have used a combination of discrete wavelet trans-

form, statistical analysis and colour counting to gain insight about the characteristics

of data that is found in a compound image. The classification algorithm that has

been developed so far is the first stage in creating a codec suitable for compound

image compression. The role of the classification algorithm is to decide what type of

compression to use on a given block, based on its classification.

Initially, working on the premise that there are five distinct classification types such

as smooth, sparse, fuzzy, picture and text, the objective is to compress computer

generated data with a lossless compression algorithm as to preserve the quality of

text and graphical content and to compress non computer generated data with a

lossy compression algorithm to reduce the redundancy in colour information that

may not have an impact for the end user.

From initial testing, it was found that the classification algorithm based on discrete

Haar wavelet transform with the aid of colour counting is extremely accurate at

classifying each classification data type on images that contained a majority of a

given data type, such as sparse, fuzzy, text and picture.

Important findings were uncovered when using the discrete Haar wavelet transform

for classification on compound images, such as the edge case where a block contain-

ing structural information has an even number of row or columns, leading it to be

misclassified and logic has been implemented to mitigate this phenomena.

Of significant importance, is the results of colour counting analysis, in particular on

blocks that have been classified as fuzzy and text. The observation was made that a

significant number of fuzzy blocks that have a low pixel count in fact contain computer

generated data. This presents a challenge when a compression algorithm is to be

selected for such a block. If the block is compressed with a lossy type compression

algorithm, there may be compression artefacts visible in the decompressed image.

At the other end, the observation was made about a significant number of blocks

classified as text have a unique pixel count greater than 32 unique pixel values. On

visual observation, the majority of these blocks did not actually contain text, but

have properties similar to text in the sub bands after discrete wavelet transform, such

as sharp transitions in the vertical, horizontal and diagonal directions. The challenge

when choosing a compression algorithm suitable for compressing these types of blocks

are, if a lossless compression algorithm is chosen, the high pixel count will have a

negative impact on the compression performance. If a lossy type of compression

algorithm is chosen, it could have a negative impact on the final image quality by

imparting compression artefacts around structural information.

One of the key findings from performing colour counting analysis is that, on aver-

155

9.1 Classification 9 COMPOUND COMPRESSION ALGORITHM

age, approximately 80 percent of blocks in a compound image from the test set have

a unique pixel less than 32 unique values. This information is fundamental to the

development of compression algorithms to be chosen for the compound compression

algorithm. From the findings, It can be seen that there is a high correlation between

blocks with low pixel count and computer generated data such as text and graphical

content. As the objective is to use a lossless type of compression for computer gen-

erated data, A majority of the focus should be on implementing efficient lossless, or

approximately lossless compression algorithms for the final compound compression

algorithm. Further, as there are a significant number of blocks that have similar

statistical properties as text, but do not contain text, compression algorithms that

support retaining structural information, while reducing redundancy in colour infor-

mation should be implemented.

So far, the development of the classification algorithm has not put a great deal of

emphasis on optimisation for computational complexity, except for implementing the

discrete Haar wavelet transform using integer arithmetic, instead of floating point

arithmetic. As the discrete wavelet transform is a mathematical transform, it is far

more computationally expensive than simply counting the amount of unique pixel

values per block. It can be seen from the above tests that a significant amount of

information can be found in the analysis of colour counting, with the value of 32

unique pixel values per block being a sufficient indicator on whether a block contains

computer generated data or natural camera captured data. These findings will be

exploited in the final iteration of the codec developed in this thesis.

The next section of this thesis will be on the implementation and testing of both

lossless and lossy compression algorithms for the specified classified data types.

156

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

9.2 Lossless Compression Testing

In this section, lossless compression algorithms will be tested on the three types of

block class that contain computer generated data, which are smooth, sparse and text.

Industry standard compression algorithms such as the LZW [46] and Deflate [7] will

be implemented and compared to a novel compression algorithm proposed for this

thesis, called Differential Index Map Coding. The goal is to find the most efficient

compression algorithm for each type of classified block to use in the framework for

the compound compression algorithm.

9.2.1 Smooth Block Compression

Compression of blocks that have been classified as smooth is the most straight forward

type of compression that will be implemented in the final compound compression

algorithm presented in this thesis. The defining attribute of a smooth block is a

single 3-byte pixel value per 16x16 block. From the analysis on the compound image

test set, smooth blocks are among the most dominant type of block found within

a compound image and luckily, can be compressed very efficiently with respect to

compression performance and computational complexity.

Smooth blocks have a theoretical compression ratio of 256:1, as one pixel can be used

to describe a 16x16 block, if all values are the same. Smooth blocks can be found

in large areas of the screen often surrounded by other smooth blocks. However, not

all smooth blocks are contiguous, as a compound image may have different regions of

the screen which contain smooth blocks. Because of this, the coordinates of smooth

blocks will have to be recorded to with the data, so that the smooth block data gets

repopulated in the decompressed image. By taking the x and y coordinates of where a

block is with respect to the compound image and a single 3 byte pixel, the compression

ratio for smooth block compression is 154:1. This is extremely efficient compression,

however further processing can be used to improve compression performance.

Smooth blocks tend to be grouped together, such as a single colour background of an

open text editor on a computer screen. A significant number of neighbouring smooth

blocks will have the same value. The redundancy in same valued neighbouring smooth

blocks can be exploited using a simple run length encoding, where the run value is

a 3 byte pixel value and the length is the amount of consecutive blocks that are the

same. As well as run length encoding, the coordinate data of the smooth blocks can

also be exploited. As the scanning order is from left to right, top to bottom, the

smooth blocks coordinates are in ascending formation. By recording the consecutive

difference between coordinate values, a simple delta encoding can be used to improve

compression performance.

Figure 92 shows the results of applying smooth block compression on blocks classified

as smooth in a set of 40 compound images. It can be observed that by applying run

157

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

length encoding and delta encoding the block coordinates, extremely high compression

can be achieved. As such, this is an optimal compression method for blocks classified

as smooth in a compound image

Figure 92: Compressing data classified as smooth from a test set of compound images

with multiple compression methods

To illustrate the effectiveness of smooth block compression on reducing the size of

smooth data in a compound image, table 40 shows the average uncompressed size

of smooth data from the test set of 40 compound images, along with the above

compression techniques. It can be observed that on average, approximately 1.54MB

has been reduced to little over 1.6KB, which is extremely efficient.

Data Compressed with Smooth Compression

Compression Method Average Size (bytes)

Uncompressed 1547268.05

Compressed no run length, no delta coding 10047.19

Compressed run length, no delta coding 4487.75

Compressed run length delta coding 1637.60

Table 40: Table comparing the file size of uncompressed data classified as smooth vs

compressed data file size from the compound image test set

158

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

9.2.2 Lempel-Ziv Welch Compression

An implementation of a Lempel-Ziv Welch compression algorithm will be used to

losslessly compress blocks that have been classified as Sparse and Text from a test

set of 40 compound images.

The Lempel-Ziv Welch compression algorithm is a dictionary based coding algorithm,

as such the blocks of pixels to be encoded must first be serialized. Two types of

serialization are used in testing: Packed and Channel. The packed method stores each

channel value of a 3 byte pixel in an interleaved mode, where each value of a given

pixel are ordered directly after each other. In the Channel method, all the channel

values of a block are stored sequentially, followed by the next channel. To illustrate

this, consider four 3-byte pixels: p1, p2, p3 and p4, where each pixel has a data

member for blue =b, green=g and red=r. Table 41 illustrates Packed serialization

and table 42 illustrates Channel serialization.

p1.b p1.g p1.r p2.b p2.g p2.r p3.b p3.g p3.r p4.b p4.g p4.r

Table 41: Packed pixel serialization format

p1.b p2.b p3.b p4.b p1.g p2.g p3.g p4.g p1.r p2.r p3.r p4.r

Table 42: Channel pixel serialization format

Listing 9: Serializing Interface Psuedo Code

1 SerializeBlocks(src_Image){

2 /*max_row = amount of 16x16 blocks in a row of src_Image*/

3 max_row = src_Image.rows /16;

4 /*max_col = amount of 16x16 blocks in a column of src_Image*/

5 max_col = src_Image.columns/16;

6 serializeType; //0=Packed, 1 = Channel

7 serialData[]; // array to hold serialized Sparse or Text data

8

9 blockChoice; //0 = Sparse, 1 = Text

10

11 for(i =0; i < max_row; i++) {

12 for(j=0; j< max_col; j++) {

13

14 blockType=classifyBlock(src_Image, i j); //block at coordinate i,j

15

16 if(blockType= blockChoice)

17 serializeBlock(src_Image,i,j,&serialData)

18 }

19 }

20 }

159

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

Listing 9 shows the psuedo code for iterating through an image and serializing each

block that has been classified as either sparse or text, using the classification algorithm

presented in this thesis. Once the data has been serialized, it can be processed with

A Lempel-Ziv Welch encoder.

Figure 93: Average compression ratio comparison of Lempel Ziv Welch compression

on blocks classified as sparse, with pixel ordering

Figure 93 illustrates the average compression ratio achieved using Lempel Ziv Welch

compression on blocks classified as sparse from a set of 40 compound images, using two

different types of serialization. It can be observed that Packed serialization performs

better by approximately 4 percent.

Lempel-Ziv Welch compression can be seen to perform efficiently on blocks classified

as sparse, which is shown in table 43 which describes the average compressed file size

with respect to the average uncompressed size of raw data.

160

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

Average Size of Sparse Blocks Compressed with LZW Compression

Compression Method Average Size (kB)

uncompressed 696.20

LZW ordered pixels Packed 35.86

LZW ordered pixels Channel 35.17

Table 43: Table comparing the average file size of uncompressed data classified as

sparse vs compressed data file size from the compound image test set

Figure 94 illustrates the average compression ratio achieved using Lempel Ziv Welch

compression on blocks classified as text from a set of 40 compound images, using two

different types of serialization. Again, it can be observed that Packed serialization

performs better than Channel serialization by approximately 10 percent.

Figure 94: Average compression ratio comparison of Lempel Ziv Welch compression

on blocks classified as text, with pixel ordering

It can observed from figure 94 and table 44 That compressing compound image data

classified as text with Lempel-Ziv Welch compression is not as efficient as compressing

data classified as sparse. This is due to the complex structural information in the

pixel data for text. However, Lempel- Ziv Welch compression for data classified as

text is still good compression considering that it is a lossless compression algorithm.

161

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

Average Size of Text Blocks Compressed with LZW Compression

Compression Method Average Size (kB)

uncompressed 827.47

LZW ordered pixels Packed 117.1

LZW ordered pixels Channel 123.08

Table 44: Table comparing the average file size of uncompressed data classified as

sparse vs compressed data file size from the compound image test set

Comments on Lempel-Ziv Welch compression on compound image data

classified as Sparse and Text

The Lempel-Ziv Welch compression algorithm can achieve good compression for data

in a compound image classified as sparse and adequate compression for data classified

as text. However, as the compression algorithm is a dictionary based algorithm, the

raw data to be compressed must be acquired first and fully serialized, before process-

ing, which means a second pass through the data. Passing through the image data

multiple times will incur the penalty of added latency. Further, Lempel-Ziv Welch

encoding is known as a ”greedy” algorithm, in that it constantly adds new codewords

into the code book until the maximum size of the code book has been reached, which

can also introduce latency. Table 45 shows the average time to compress the serialized

sparse and text data per image from the compound image test set. The compression

time using Lempel Ziv welch encoding may not be suitable for real time applications.

Data type Averaged Compression time (ms) per image

Sparse 39.47

Text 58.595

Table 45: Average Compression time per image on data classified as Sparse and Text

from a set of 40 compound images

162

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

9.2.3 Deflate Compression

The Deflate compression algorithm [7] is a lossless compression algorithm that is

a combination of LZ 77 [51] and Huffman encoding [16]. It is at the heart of the

lossless image compression file format PNG [13], and was first introduced to be an

unencumbered by licences, method for compression which is independent of operating

system, cpu and character set. It is also the basis algorithm for archival compression

format, GZIP.

The implementation of the Deflate algorithm used in this thesis is provided by the

permissive free software licenced library, zlib [8].

Similar to Lempel-Ziv Welch encoding, Deflate is a dictionary based coding method,

so the two-dimensional image data of each block must be serialized before it can be

compressed using Deflate. The same two serialization methods, Packed and Channel

are used in testing and the serialization interface which has been described in listing

9 is used to serialize the data.

The zlib library provides the functions to compress and decompress streams of data

to and from files so an interface is needed to use Deflate functionality with vectors of

data in running program memory. The interface implementation in c++ can be seen

in the code section of this thesis in Listing 26.

Zlib implements different modes to aid in optimisation for either compression or speed.

The three modes that effect compression performance are Z BEST COMPRESSION

, Z BEST SPEED and Z DEFAULT COMPRESSION.

Z BEST COMPRESSION utilizes a longer search buffer in the LZ 77 process and

generates dynamic huffman tables based on the frequency of symbols in the data to

be compressed.

Z BEST SPEED utilizes a shorter search buffer and uses static Huffman tables that

are predefined and that have been created from empirical testing.

Z DEFAULT COMPRESSION is a middle ground between the other methods.

it uses a shorter search buffer and can use a combination of static and dynamically

created Huffman tables.

163

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

65.67

78.53

36.56

13.40 14.43
9.88

Block Type and Mode

A
ve

ra
ge

 C
om

pr
es

si
on

 P
er

fo
rm

an
ce

0.00

20.00

40.00

60.00

80.00

Sparse
Default

Compression

Sparse Best
Compression

Sparse Best
Speed

Text Default
Compression

Text Best
Compression

Text Best
Speed

Average Compression Performance vs. Block Type and Mode:
Deflate Algorithm

Figure 95: Average compression ratio using Deflate to compress blocks classified as

Sparse and Text from a set of 40 compound images

Figure 95 shows the results of performing deflate based compression on blocks that

have been classified as Sparse and Text from a set of 40 compound images. Some

observation can be made:

• Deflate achieves excellent compression on blocks that have been classified as

sparse

• Deflate achieves good compression performance on blocks that have been clas-

sified as text

• There is a significant difference in compression performance between optimising

for speed or for compression

• Deflate performs better than Lempel-Ziv Welch compression in all three modes

Taking into consideration the performance of each of the modes of the deflate algo-

rithm, the next step is to analyse the performance with respect to speed of processing.

Figure 96 shows the average time taken to compress data that has been classified as

Sparse and Text from a set of 40 compound images. The results do not include the

time taken to classify the data using the classification algorithm and to serialize the

pixel block data so it can be processed using the deflate algorithm.

164

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

5206.90

15543.43

1936.05

18724.86

102560.00

5877.67

Time (micro seconds)

B
lo

ck
 T

yp
e

an
d

M
od

e

Sparse Default
Compression

Sparse Best
Compression

Sparse Best Speed

Text Default
Compression

Text Best
Compression

Text Best Speed

0.00 25000.00 50000.00 75000.00 100000.00

Time (micro seconds) vs. Block Type and Mode: Deflate
Algorithm Compression

Figure 96: Average time taken to compress using Deflate algorithm with different

modes on blocks classified as sparse and text from a set of 40 compound images

It can clearly be observed from figure 96 that using the deflate algorithm with the

best compression mode enabled is orders of magnitude slower than the other two

modes, In particular, the compression time for text blocks exceeds 100 ms, which

would greatly reduce the algorithms ability to be used in real time systems.

When optimized for best speed, the deflate algorithm is extremely efficient, particu-

larly for blocks that have been classified as sparse, however the compression perfor-

mance with respect to the other modes is significantly less favourable. The default

mode is efficient in both speed and in compression performance and the results of this

test suggest that It would be a suitable compression algorithm to use for time critical

applications, which need both good compression performance, and low through put.

As Deflate is a lossless compression algorithm, there will be no error in the recovered

data, thus increasing both the objective and subjective image quality of the decoded

image.

165

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

1332.38

1196.29

925.05

2713.38

2349.29

2488.57

Time (micro seconds)

B
lo

ck
 T

yp
e

an
d

M
od

e

Sparse Default
Decompression

Sparse Best
Decompression

Sparse Best Speed

Text Default
Decompression

Text Best
Decompression

Text Best Speed

0.00 1000.00 2000.00

Time (micro seconds) vs. Block Type and Mode: Deflate
Algorithm Decompression

Figure 97: Average time taken to decompress using Deflate algorithm with different

modes on blocks classified as sparse and text from a set of 40 compound images

For applications such as virtual desktop infrastructure or thin client systems, possibly

of greater importance then compression speed is decompression speed. In a thin client

system, the client machine will usually have less processing power than the server that

compresses the data. Figure 97 shows the average time it takes to decompress data

that has been classified as Sparse and Text from a set of 40 compound images. There

are two key points to be observed from the data presented in figure 97: the first point

to be made is that the time taken to decode a compressed stream is significantly less

than the encoding time. This suggests that Deflate encoding is an asymmetric coding

algorithm and may be suitable for both time critical applications and systems where

the decoder is running on a machine with low resources.

The second point is that the decoding time is comparatively similar, regardless of

which mode was used in encoding. Coincidently, it can be observed that decoding a

stream that has been compressed with the mode for best compression takes slightly

less time for the data that has been classified as text. This may be due to the longer

symbol matches found during the encoding process.

166

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

9.2.4 Conclusions on Deflate Compression on Compound Image Data

Classified as Sparse and Text

From the tests performed, it can be seen that the type of data that is compressed using

Deflate has a significant impact on the coding performance.The Deflate algorithm has

excellent performance in terms of both compression and processing time for data that

has been classified as Sparse. It also shows very good performance with respect to

compression and speed with data classified as text.

The compression performance has been shown to be lower for data classified as text,

compared to data classified as sparse. There are multiple reasons that attribute to

this. The complex structure inherent in blocks containing text, will reduce the size

of the matching strings generated from the LZ 77 process, which leads to reduced

compression performance. Another factor is that a small percentage of blocks that

have been classified as text do not contain text, but have some of the characteristics

of text, such as sharp transitions in continuous tone images. An example of this is

pictures containing buildings, or perhaps text laid over natural image. Although the

percentage of this ”hybrid” type of block is small, when compressed with a lossless

encoding process such as Deflate, it can actually cause bloat in the encoded data,

leading to reduced efficiency and larger compressed file size. If one was to incorporate

Deflate encoding in a compound compression algorithm, it is vital to ensure that only

suitable data for the algorithm is processed by it.

A final key point about integrating the Deflate algorithm into a compound compres-

sion algorithm is that all of the data that is to be compressed using it has to be

identified and serialized prior to processing. The algorithm relies on having a a large

buffer of data to search through to find matches. Luckily, Deflate encoding is efficient

in terms of speed, however it means that the compression must be done in a second

pass through the data which adds time on to the overall process.

9.2.5 Differential Index Map Coding

Differential Index Map Coding is a novel compression algorithm proposed in this

research. The algorithm is suitable for compressing highly structured blocks of pixels

with a low unique pixel count, which typically contain computer generated text or

graphics.

It is a block based coding technique that counts the number of unique 3 byte pixel

values in a block and assigns each unique pixel an integer value known as an index. It

then generates a map of the index values. The rows of the index map get compared to

each other in a unique scanning pattern, where only the difference and the coordinates

of the difference are recorded.

The concept of using an index map to represent highly structured data was first

167

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

presented by by Ding et al [23], for their Block Fast Compression algorithm. However,

their approach is to to use the index map in a lossy context, where the unique pixel

values of a block are quantized into 4 dominant colours from which the index map is

then constructed from.

The Differential Index Map Coding algorithm assigns an index value to each unique 3

byte pixel in a block of 16x16 pixels and generates an index map. The range of index

values are limited. The limit has been derived from the section on colour counting

analysis in 9.1.2, which shows that over 90% of all blocks that contain computer

generated data from the test set of compound images have a unique pixel count less

than 32. This low unique pixel count is fundamental to the structure of the Differential

Index Map Coding algorithm framework.

To illustrate the process of Differential Index Map Coding, a 16x16 block of 3 byte

pixels is extracted from an image and is shown in figure 98. The block of pixels con-

tains computer generated data, which is evident from the highly structured content,

containing sharp transitions and repetitive patterns.

The first stage is to count the unique 3 byte pixels in the block and store them in

an array. The location in the array that the unique pixel value is stored is its given

index value. A graphical representation of the index table can be seen in fig 99.

Figure 98: Highly structured block containing computer generated data, with 11

unique 3 byte pixel values

168

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

194
194
194

97
97
97

29
46
72

31
48
75

38
60
94

43
67
106

49
77
121

223
223
223

255
255
255

0
0
0

199
199
199

0 1 2 3 4 5 6 7 8 9 10

Index Table

Index

Colour

Pixel
Value

Figure 99: Index table of figure 98 showing pixel values

The next stage is to generate the index map from the values stored in the index table.

The process is to iterate through the block and map the current pixel with its given

index from the index table. The index map generated from figure 98 can be seen in

table 46.

row Index Map

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3

2 0 0 1 4 5 5 5 5 5 5 5 5 5 5 5 5

3 0 0 1 5 6 6 6 6 6 6 6 6 6 6 6 6

4 0 0 1 5 6 6 6 6 6 6 6 6 6 6 6 6

5 0 0 1 5 6 6 6 6 6 6 6 6 6 6 6 6

6 0 0 1 5 6 6 6 6 6 6 6 6 6 6 6 6

7 0 0 1 5 6 6 6 6 6 6 6 6 6 6 6 6

8 0 0 1 5 6 6 6 6 6 6 6 6 6 6 6 6

9 0 0 1 5 6 6 6 6 6 6 6 6 6 6 6 6

10 0 0 1 5 6 6 6 6 6 6 6 6 6 6 6 6

11 0 0 1 5 6 6 6 6 6 6 6 6 6 6 6 6

12 0 0 1 7 8 9 9 9 9 9 9 9 9 9 9 9

13 0 0 1 7 8 9 9 9 9 9 9 9 9 9 9 9

14 0 0 1 10 7 9 9 9 9 9 9 9 9 9 9 9

15 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 46: Index map for figure 98

It is very clear from table 46 that there is substantial repetition in the rows, which

can be exploited. It can be observed that rows 3-11 all follow the same pattern.

The next stage in the process involves comparing consecutive rows with each other

and recording the difference. The first part of this stage is to choose a base line row

for initial comparison. Row 8 from table 46 is chosen as the base-line row, where the

comparing takes place in two phases. For the top half of the index map, row 7 gets

compared to row 8 and the difference gets recorded. row 6 will get compared to row

169

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

7 and so on until row 0 is compared to row 1. Likewise, for the lower half of the index

map: row 9 gets compared to row 8, row 10 gets compared to row 9, etc..

The row-wise comparison can be seen in table 47. The white space in a row is used

to describe that there is no difference to the previous row. It can observed that there

are whole rows that have no difference and by exploiting this will greatly improve

compression performance.

Row Compare Difference Map

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

compare 0-1 1 1 1 1 1 1 1 1 1 1 1 1 1

compare 1-2 2 3 3 3 3 3 3 3 3 3 3 3 3

compare 2-3 4 5 5 5 5 5 5 5 5 5 5 5 5

compare 3-4

compare 4-5

compare 5-6

compare 6-7

compare 7-8

base line 8 0 0 1 5 6 6 6 6 6 6 6 6 6 6 6 6

compare 9-8

compare 10-9

compare 11-10

compare 12-11 7 8 9 9 9 9 9 9 9 9 9 9 9

compare 13-12

compare 14-13 10 7

compare 15-14 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 47: compare

It can be observed from table 47 that row 8 has not changed from the index map. It

is essential that the baseline row retains all of the original information, because the

difference values that will be encoded for the preceding rows depend on it entirely.

Without having the base line row, the rest of the block would not be able to be

decoded.

Rather than explicitly coding the values of row 8, a simple run length coding can be

used to reduce the coding redundancy. Using run length encoding, Row 8 could be

described by (2,0)(1,1)(1,5)(12,6), where the first of the pair is the length of the run

and the second is the run value. There are many rows that have the same value as

the baseline row. to illustrate how to encode these rows, a symbol, (nc) (no change),

can be used in place. To illustrate how a row with differences is to be encoded, the

comparison between rows 2-3 can be described as pair-wise values:

3,4 4,5 5,5 6,5 7,5 8,5 9,5 10,5 11,5 12,5 13,5 14,5 15,5

170

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

where the first value of the pair is the location in the row and the second value is the

change value, in this case, between row 2 and row 3 from table 46

Block Coordinates Index Table Base-Line Run
Length

Difference Value Top
Half of the Block

Difference Values
Bottom Half of the

Block

Differential Index Map Coding - Compressed Unit Structure

Figure 100: The Differential Index Map Coding compression unit structure

Figure 100 shows the structure of a block that would be compressed with Differential

Index Map Coding. The coordinates of where the block is located, with respect to the

original image are placed at the top. The next chunk is the index table, which contains

the count of unique pixels in the block, with the intensity value of the unique pixels.

The order that they are in, represent their index. The following chunk is the base-line

run length encoding values. The next two sections are the pair-wise difference values

recorded for the top half of the block, followed by the bottom half of the block.

171

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

2,0 1,1 1,5 12,6

Base-Line Run Length

Differential Index Map Coding Compressed Unit

Index Table
index
count

Block
Coords Pixel intensity Values: [0,indexCount -1]

3,2 4,3 5,3 6,3 7,3 8,3 9,3 10,3 11,3 12,3 13,3 14,3 15,3

3,4 4,5 5,5 6,5 7,5 8,5 9,5 10,5 11,5 12,5 13,5 14,5 15,5

nc nc nc nc nc Compare Rows: [(7-8),(6-7),(5-6),(4-5),(3-4)]

Compare Row: [(2-3)]

Compare Row: [(1-2)]

Compare Row: [(0-1)]

Compare Rows: [(9-8),(10-9),(11-10)]nc nc nc

3,7 4,8 5,9 6,9 7,9 8,9 9,9 10,9 11,9 12,9 13,9 14,9 15,9 Compare Row: [(12-11)]

nc Compare Row: [(13-12)]

3,10 4,7 Compare Row: [(14-13)]

3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1 11,1 12,1 13,1 14,1 15,1 Compare Row: [(15-14)]

Difference Values Top Half of the Block

Difference Values Block Half of the Block

194,
194,
194

97,
97,
97

29,
46,
72

31,
48,
75

38,
60,
94

43,
67,
106

49,
77,
121

223,
223,
223

255,
255,
255

0,
0,
0

0 1 2 3 4 5 6 7 8 9

X,Y 11
199,
199,
199
10

3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1 11,1 121 13,1 14,1 15,1

Figure 101: Illustrated Differential Index Map Coding Compression unit structure for

figure 98

Figure 101 Illustrates what the contents of a Differential Index Map Coding com-

pressed unit would contain if the the block in figure 98 was compressed using the

algorithm. As previously stated, the algorithm is designed specifically to compress

blocks that are highly structured with a low unique pixel count. Differential Index

172

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

Map Coding can be configured in two ways: The first method will process a 16x16

block and perform row wise comparisons on rows of length 16. This method can be

performed on blocks with up to a maximum of 15 unique pixel values. The second

method will process a 16x16 block and will decompose it into four 8x8 blocks, which

will do row-wise comparisons on rows of length 8. This method can be performed on

blocks that have between 16-31 unique pixel values. The choice of the limit on unique

pixel values was based upon the analysis of the amount of unique pixels contained in

blocks containing computer generated data presented in this thesis.

The choice of the limit of up to 15 unique pixel values for the first method is based

upon how the values can be encoded in the encoded stream in an efficient way. Only

four bits are needed to represent any one of the 16 columns in a row of a block of

16x16 values. When a comparison is made between two rows, the location of the

change in the row gets recorded, along with the difference value. To illustrate this,

consider the comparison between row 14 and row 13 from the index map presented

in table 46, shown again in table 48:

Rows Columns

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Row 13 0 0 1 7 8 9 9 9 9 9 9 9 9 9 9 9

Row 14 0 0 1 10 7 9 9 9 9 9 9 9 9 9 9 9

Table 48: Two row comparison

Comparing row 14 to row 13 it can be observed there are two changes: column location

3 with an index value of 10 and column location 4, with an index value of 7. Only

4 bits are needed to uniquely identify each column coordinate in a row. Further, if

the algorithm is limited to 15 unique pixel values per block, only 4 bits are needed to

represent each index. Therefore a single byte can then be used to describe the location

of the change and also the the difference index value. Using the top most significant

nibble of an 8 bit byte to represent the change location and the least significant to

represent the difference index value, the encoding for the two row comparison of table

48 is described in table 49

location value location value EOL

3 10 4 7 255

0011 1010 0100 0111 1111 1111

Table 49: Encoded bitstream of two row comparison

Where EOL represents the End of Line of a two row comparison and is given the

value of 255 (all ones in binary). It is a special symbol that is used in Differential

Index Map Coding, that is necessary in the decoding process. This is the reason that

173

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

15 unique pixel values are the limit instead of 16 for this method and 31 unique pixel

values instead of 32 for the second method.

Along with the EOL special symbol, another special symbol is used in Differential

Index Map Coding to represent the result of no change when comparing rows. The

nc (no change symbol) is a special symbol which is an 8 bit byte, with the least sig-

nificant nibble set to all ones in binary. The most significant nibble gets incremented

depending on the amount of rows that have not changed during the comparing stage.

Num of No Most Significant Least Significant Nibble

Change Rows Nibble Nibble

1 0000 1111

2 0001 1111

3 0010 1111

4 0011 1111

5 0100 1111

6 0101 1111

7 0110 1111

8 0111 1111

Table 50: Table of nc special symbols

Table 50 lists the binary values of the nc symbols. The process of comparing rows

is performed in two parts, The top half of the block, with respect to the base line

row and the bottom half of the block. If row 8 is chosen as the base line row for

comparison, there is a maximum of 8 no change symbols needed to represent up to 8

rows that have no difference to the base line row.

To illustrate using the nc special symbol, consider the scanning process of the bottom

half of the index map of table 46, which is shown again in table

Rows Columns

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8 0 0 1 5 6 6 6 6 6 6 6 6 6 6 6 6

9 0 0 1 5 6 6 6 6 6 6 6 6 6 6 6 6

10 0 0 1 5 6 6 6 6 6 6 6 6 6 6 6 6

11 0 0 1 5 6 6 6 6 6 6 6 6 6 6 6 6

12 0 0 1 7 8 9 9 9 9 9 9 9 9 9 9 9

13 0 0 1 7 8 9 9 9 9 9 9 9 9 9 9 9

14 0 0 1 10 7 9 9 9 9 9 9 9 9 9 9 9

15 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 51: Base line row and bottom half of index map from table 46

174

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

It can be observed that comparing row 9 to row 8, there is no difference, likewise

rows: 10-9 and 11-10. The no change symbol that would be used to represent the

results of the three comparisons would be:

Num of No Most Significant Least Significant Nibble

Change Rows Nibble Nibble

3 0010 1111

nc l=3,d=7 l=4,d=8 l=5,d=9 l=6,d=9 l=7,d=9 l=8,d=9

0010 1111 0011 0111 0100 1000 0101 1001 0110 1001 0111 1001 1000 1001

l=9, d=9 l=10,d=9 l=11,d=9 l=12,d=9 l=13,d=9 l=14,d=9 l=15,d=9

1001 1001 1010 1001 1011 1001 1100 1001 1101 1001 1110 1001 1111 1001

EOL nc l=3,d=10 l=4,d=7 EOL l=3,d=1 l=4,d=1

1111 1111 0000 1111 0011 1010 0101 0111 1111 1111 0011 0001 0100 0001

l=5, d=1 l=6,d=1 l=7,d=1 l=8,d=1 l=9,d=1 l=10,d=1 l=11,d=1

0101 0001 0110 0001 0111 0001 1000 1001 1001 0001 1010 0001 1011 1001

l=12, d=1 l=12,d=1 l=14,d=1 l=15,d=1

1100 0001 1101 0001 1110 0001 1111 0001

Table 52: Encoding process for bottom half of index map 46

Table 52 shows the full scan for the lower half of the index map for figure 98. Applying

Differential Index Map Coding to the full block results in a compressed size of 94

bytes, which yields a compression ratio of approximately 8.2:1, which is very efficient

for lossless compression, considering the size of the data set (768 bytes) and the highly

structured and complex nature of the information within the block.

The second method in Differential Index Map coding expands the amount of unique

3 byte pixel values per block up to a value of 31 unique pixel values. The principle of

operation is the same: the coordinates of the block are recorded and an index table

of between 16 to 31 unique pixel values is recorded, however the comparison process

differs. A given 16x16 block is split into 4 8x8 blocks and an index map is generated

for each sub block, where all sub blocks use a common index table, to reduce the

overhead.

To illustrate this, figure 102 is a 16x16 block that contains text and has 18 unique 3

byte pixels that has been extracted from an image. Table 53 Shows the four index

maps that describe figure 102 and highlight the rows that are used for base line run

length encoding.

175

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

Figure 102: Block with 18 unique pixel values

Rows Columns

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 2 3 0 0 0 0 4 5 3 0 4 5 3 6

3 0 0 7 2 3 0 0 0 4 5 3 0 4 5 3 6

4 0 0 8 9 10 0 0 0 4 5 3 0 4 5 3 6

5 0 0 8 11 12 0 0 0 4 5 3 0 4 5 3 6

6 0 0 7 13 14 4 15 12 4 15 12 0 16 2 3 6

7 1 1 2 3 0 4 15 12 0 16 1 1 17 5 3 6

Table 53: Using four 8x8 index maps for to describe figure 102

For the decoder to be able to decide which of the two modes used in encoding for a

176

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

given block, an extra byte is inserted into the header information for each block that

is compressed with Differential Index Map coding, which is shown in table 54

bit Description

0 0 = IndexMap16x16 : 1 = IndexMaps8x8

1 Not currently used

2 Not currently used

3-7 Amount of unique pixel values: 0-31

Table 54: Byte describing which Differential index Map Coding mode and count of

unique pixel values

Figure 103 illustrates the process flow of Differential Index map Coding, While figure

104 Illustrates the flow of the actual compression algorithm. For illustrative purposes,

classification of a given block has been omitted in figure 103, in favour of clarity.

Differential Index Map coding has been designed to compress in a ”first pass” through

the image data, As to improve on performance with respect to latency. As the al-

gorithm compresses a block, the output is serially stored in a vector, which can be

processed with an entropy coder, such as Huffman encoding when all blocks have

been processed. As Each block that is compressed with Differential Index Map Cod-

ing is processed in isolation, without any need of prior knowledge of other blocks, the

algorithm would be suitable for parallel processing.

The implementation of Differential Index Map Coding in c++ can be seen in the code

section of this thesis in Listing 27

177

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

Get 16x16 Block

Count Unique Pixels

Yes

PixelCount >1 && < 16?

Create Header

Differential Index Map Comparison
Process 16x16

Create Header

No

PixelCount >15 && < 32?

Yes

No
Choose Different

Compression
Algorithm

Select mode = 4 * 8x8 Index Maps
BaseLine Row =4.

create index table from pixel values, max=31

Select mode = 1* 16x16 Index Map.
BaseLine Row =8.

create index table from pixel values, max=15

Differential Index Map Comparison
Process 8x8: Top Left

Differential Index Map Comparison
Process 8x8: Top Right

Differential Index Map Comparison
Process 8x8: Bottom Left

Differential Index Map Comparison
Process 8x8: Bottom Right

Last Block ?
No

Get 16x16 Block

Finish

Yes

Differential Index Map Coding Process Flow

Figure 103: The process flow of Differential Index Map Coding Algorithm

178

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

No

No

Differential Index Map Row-wise Comparison Process

CurrentRow --

CurrentRow ++

Last row compared ?

Last row compared ?

Insert or update
no change symbol

BaseLine Run Length

Top Half Compare

CompareRow = CurrentRow - 1

Yes

IndexMapRow [CompareRow] =
IndexMapRow [CurrentRow] ?

No

Yes

Bottom Half Compare

CompareRow = CurrentRow + 1

Yes No

CurrentRow = BaseLine Row

IndexMapRow [CompareRow] =
IndexMapRow [CurrentRow] ?

Yes

End of Comparrison

CurrentRow = BaseLine Row

Insert or update
no change symbol Store Location and

Difference Data

Insert EOL Symbol

Store Location and
Difference Data

Insert EOL Symbol

Store run-length encoding
of BaseLine Row

Figure 104: The process of row wise comparison in the Differential Index Map Coding

Algorithm

179

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

A test is configured to compress blocks classified as sparse and text from a set of 40

compound Images. Sparse blocks will be encoded with Differential Index Map Coding

mode one (as all blocks classified as sparse will contain less than 15 unique pixels)

and Text blocks with up to 31 unique pixel values with a combination of Differential

Index Map Coding mode one and mode two. Text blocks that have greater than 31

unqiue pixel values are omitted from this test. The pseudo code for the interface for

this test can be seen in listing 10

Listing 10: Differential index Map Coding on Sparse and Text Blocks Pseudo Code

1 Compress(src_Image){

2 /*max_row = amount of 16x16 blocks in a row of src_Image*/

3 max_row = src_Image.rows /16;

4 /*max_col = amount of 16x16 blocks in a column of src_Image*/

5 max_col = src_Image.columns/16;

6 DIMCSparseData[]; // array to hold serialized encode Sparse data

7 DIMCTextData[]; // array to hold serialized encoded Text data

8 blockChoice; //Sparse, Text

9

10 huffCodedSparseData[]; // array to hold Huffman encoded DIMC Sparse Data

11 huffCodedTextData[]; // array to hold Huffman encoded DIMC Text Data

12

13 for(i =0; i < max_row; i++) {

14 for(j=0; j< max_col; j++) {

15

16 blockType=classifyBlock(src_Image, i j); //block at coordinate i,j

17

18 if(blockType=Sparse)

19 DIMC_Compress_Mode_1(src_Image,i,j,DIMCSparseData)

20 Sparse_Block_Count++

21

22 else if(blockType=Text){

23

24 if (pixelCount < 16)

25 DIMC_Compress_Mode_1(src_Image,i,j,DIMCTextData)

26 Text_Block_Count++;

27

28 else if (pixelCount < 32)

29 DIMC_Compress_Mode_2(src_Image,i,j,DIMCTextData)

30 Text_Block_Count++;

31 else:

32 Break;

33 }

34 else:

35 Break;

36 }

37 }

38 Perform_Huffman_Encoding(DIMCSparseData,huffCodedSparseData)

39 Perform_Huffman_Encoding(DIMCTextData,huffCodedTextData)

180

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

40 }

19.48

14.48

4.99

Block Type

Av
er

ge
 C

om
pr

es
si

on
 R

at
io

0.00

5.00

10.00

15.00

20.00

Sparse up to 15 Text up to 15. Text 16-31

Averge Compression Ratio vs. Block Type: Differential Index
Map Coding No Huffman

Figure 105: The average compression ratio achieved using Differential Index Map

Coding on blocks classified as Sparse or Text with up to 31 unique 3-byte pixel values

from a set of 40 compound images

Figure 105 Shows the results of compressing sparse and text blocks with Differential

Index Map Coding. It can observed that good compression performance is achieved

for both data types with up to 15 unique pixels and average compression for text

blocks with unique pixel counts between 16 and 31 unique pixels.

To reduce code redundancy and improve compression performance of the Differential

Index Map Coding algorithm further, the compressed data stream can be processed

using an entropy encoder such as Huffman encoding. The Huffman encoding algo-

rithm that has been implemented in this thesis is from the zlib library [8].

Figure 106 shows the results of the same test with the encoded Differential Index

Map Coding data further processed with Huffman encoding. It can be observed that

the combination of both algorithms produces very high compression performance,

especially for blocks classified as sparse.

181

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

96.76

29.13
7.23

Block Type

Av
er

ag
e

Co
m

pr
es

si
on

 R
at

io

0.00

25.00

50.00

75.00

100.00

Sparse up to 15 Text up to 15 Text 16-31

Average Compression Ratio vs. Block Type: Differential Index
Map Coding with Huffman

Figure 106: The average compression ratio achieved using a combination of Differen-

tial Index map Coding and Huffman coding on blocks classified as Sparse and Text

with up to 31 unique 3-byte pixel values from a set of 40 compound images

9.2.6 Conclusions on Compression Performance of Differential Index Map

Coding

The results from tests using Differential Index Map Coding algorithm to compress

data that has been classified as sparse and data that has been classified as text, with

up to 31 unique pixel values show that it has excellent compression performance. It is

a lossless compression algorithm and can achieve, extremely high compression ratios,

comparable and better to lossy type compression.

Key benefits of the algorithm over fully dictionary based methods such as Lempel-Ziv

Welch and the Deflate algorithm include the ability to perform compression in a ”first

pass” fashion, working in tangent with the classification algorithm. As soon as a block

has been identified to be suitable, the block can be processed. Also, each block can

be compressed in isolation, which could potentially improve the performance of the

algorithm if distributed or parallel processing is used when compressing on the host

side.

From research performed on unique pixel count analysis which has been shown, the

Differential Index Map Coding Algorithm has been specifically designed to encode

blocks of pixels with low pixel count. As such, it has not been designed to process

blocks that have greater than 31 unique pixel values. It would be possible to imple-

ment the algorithm to recursively divide down the block size and use a greater amount

of unique pixel values, but this would require extra meta data in the header for each

block which would significantly reduce the efficiency of the compression performance.

182

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

9.2.7 Compression and Speed Performance Comparsion: Lempel-Ziv Welch

Vs Differential Indel Map Coding Vs Deflate

In this section, three lossless compression algorithms will be compared with respect

to compression performance and compression speed. The algorithms that will be

compared are Lempel-Ziv Welch, Deflate and Differential Index Map Coding.

Compression Test Experimental Design

The algorithms will be used to compress blocks that have been classified as sparse

and blocks that have been classified as text from a set of 40 compound images. The

Differential Index Map Coding algorithm is designed to only compress blocks that

have a unique pixel count of up to 31, thus, only blocks with less than 32 unique

pixel values will be compressed by all three algorithms, to ensure the accuracy of the

comparison.

By design, all blocks that are classified as sparse have less than 15 unique pixel values,

and on average, approximately 16 percent of blocks classified as text have greater than

31 unique pixel values. Text blocks with greater than 31 unique pixel values will be

omitted from testing.

The first test is to compare the compression performance of blocks that have be

classified as sparse for all three algorithms. The configuration settings for the test are

as follows:

• The blocks that have been classified as sparse will be serialized as ”packed

pixels” for both Lempel-Ziv Welch and for Deflate as this method has been

shown to be the most optimal for pre processing with respect to compression

performance.

• Deflate is used in the mode for best compression performance.

• Huffman entropy encoding is used with Differential Index Map Coding.

183

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

Compression Performance Comparison: Sparse Blocks

Figure 107 shows the average compression performance of the three algorithms when

compressing data that has been classified as sparse. It can be observed that Differ-

ential Index Map Coding clearly has the best compression performance.

78.53

96.76

21.61

Compression Algorithm

A
ve

ra
ge

 C
om

pr
es

si
on

 R
at

io

0.00

25.00

50.00

75.00

100.00

Deflate Differential Index Map Coding Lempel-Ziv Welch

Average Compression Ratio vs. Compression Algorithm:
Sparse Blocks

Figure 107: Comparing Delfate, Differential Index Map Coding and Lempel-Ziv Welch

encoding on blocks that have been classified as Sparse

The standard deviation is calculated for the results for each algorithm to give an

indication on the uniformity of each compression algorithm. Having a low standard

deviation is important because it allows the right amount of resources to be provi-

sioned which is important when considering an algorithm that should be used on a

network with limited bandwidth.

Compression Standard

Algorithm Deviation

Deflate 35.61

Differential Index Map Coding 44.23

Lempel-Ziv Welch 4.89

Table 55: Comparing sample standard deviation on results for figure 107

Table 55 shows the results of calculating the sample standard deviation of the results

for the three compression algorithms on blocks that have been classified as sparse.

184

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

It can be observed that, with respect to the average compressed size, the standard

deviation for each algorithm is low.

Compression Performance Comparison: Text Blocks

The next test will compress blocks that have been classified as text using the three

algorithms. only text blocks with up to 31 unique pixel values will be chosen. packed

pixel serialization will be used for Lempel-Ziv Welch and Deflate. Huffman entropy

encoding will be used with Differential Index Map Coding.

The first set will be be text blocks with up to 15 unique pixel values and the second

set will be blocks that have 16-31 unique pixel values.

27.47
29.13

11.20

Compression Algorithm

A
ve

ra
ge

 C
om

pr
es

si
on

 R
at

io

0.00

10.00

20.00

30.00

Deflate Differential Index Map Coding Lempel-Ziv Welch

Average Compression Ratio vs. Compression Algorithm: Text
Block up to 15 Unique Pixels

Figure 108: Comparing Deflate, Differential Index Map Coding and Lempel-Ziv Welch

encoding on blocks that have been classified as Text with up to 15 unique pixel values

It can be observed from figure 108 that Differential Index Map Coding out performs

both Deflate and Lempel-Ziv Welch. This is a significant result, as it has been pre-

viously shown that on average, approximately 73 percent of blocks that are classified

as text contain up to 16 unique pixel values, which is the vast majority of blocks that

have been classified as text. Deflate is an industry standard compression algorithm,

it is so because of its efficiency and speed performance. In this research, it has been

further optimised to only compress image data that is suitable for the algorithm,

increasing its performance with respect to image data. The results show that Differ-

ential Index Map Coding has out performed Deflate encoding for the sample set of

images used in this research.

185

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

7.34 7.23

2.64

Compresson Algorithm

Av
er

ag
e

Co
m

pr
es

si
on

 R
at

io

0.00

2.00

4.00

6.00

8.00

Deflate Differential Index Map Codiding Lempel-Ziv Welch

Average Compression Ratio vs. Compresson Algorithm: Text
Blocks 16-31 Unique Pixel Values

Figure 109: Comparing Deflate, Differential Index Map Coding and Lempel-Ziv Welch

encoding on blocks that have been classified as Text with 16-31 unique pixel values

Figure 109 Shows the comparison of the three algorithms compression performanc on

text blocks with between 16-31 unique pixel values. Here It can be seen that Deflate

algorithm and Differential Index Map Coding are similar, with Deflate out performing

Differential index Map coding by approximately 1.4 percent

Compression Speed Test Experimental Design

The speed performance of Deflate, Differential Index Map Coding and Lempel-Ziv

Welch will now be compared. An Image has been selected from the set of 40 compound

images that has a significant number of blocks that are classified as text. From the

blocks that have been classified as text, the blocks with up to 31 unique pixels have

been identified. To compare the speed performance of the three algorithms, 1000

blocks that have been classified of text with up to 31 unique pixel values will be

compressed. The time incurred from using the classification algorithm is not included

in the test. The steps of the test are as follows:

• For Deflate and Lempel-Ziv Welch encoding, each block will be serialized as

packed pixels. The time taken to serialize the data is included in the overall

time, as it is part of the processing.

• The Deflate algorithm has three modes for optimisation: best speed perfor-

mance, best compression performance and default. All three modes will be

tested.

• Colour counting is a function of the Differential Index Map Coding algorithm.

Even though the blocks that have been chosen for the test have already been

186

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

identified as having up to 31 unique pixel values, colour counting is still per-

formed for each block as it is part of the processing.

• The test will be run 10 times, where the result will be the average value of the

set.

• The test is timed using the standard library steady clock class implemented in

C++ 11, which is a highly accurate timing class.

• The tests are run on a Lenovo Thinkpad 440p with intel i5-4300M CPU, with

2 cores and 4 threads.

5056.25

102450.76

5953.41

15742.89

56732.01

Compression time (micro seconds)

C
om

pr
es

si
on

 A
lg

or
ith

m

Differential Index
Map Coding with

Deflate Best
Compression

Deflate Best Speed

Deflate Default
Compreesion

Lempel-Ziv Welch

0 25000 50000 75000 100000

Compression time (micro seconds) vs. Compression Algorithm:
1000 Blocks Classified as Text.

Figure 110: Showing Compression time of 1000 blocks classified as text with up to 31

unique pixel values

Figure 110 shows the results of the comparison of Deflate, Differential Index Map

Coding and Lempel-Ziv Welch coding with respect to compression time. It can be

seen that Differential Index Map Coding out performs both Deflate and Lempel-Ziv

Welch.

This is significant result. It can be observed that Differential Index Map Coding has

lower computational time than the Deflate, even with Deflate optimised for best speed

performance and is orders of magnitude faster than Deflate when it is optimised for

best compression.

187

9.2 Lossless Compression 9 COMPOUND COMPRESSION ALGORITHM

9.2.8 Conclusion on Lossless Compression testing

Multiple compression algorithms have been presented and tested for losslessly com-

pressing the data that would be computer generated within a compound image. A

novel approach to compress blocks of pixels which contain a single colour has been

presented and shows extremely efficient compression with average compression ratios

of greater than 1000:1, when applied to the test set of images. This efficient compres-

sion method is both computationally simple and significantly reduces the size of the

amount of data needed for transmission.

A novel compression algorithm called Differential Index Map Coding which has been

designed to compress blocks that are highly structured with low pixel count has been

presented. It has been tested and compared against two industry standard com-

pression algorithms (Deflate and Lempel-Ziv Welch) and has been shown to achieve

higher compression performance with reduced computational overhead for the data

that it is designed to compress. It is fully capable to compress all blocks that have

been classified as sparse and the majority of blocks that have been classified as text

which can be tightly integrated in to the classification algorithm that has already

been presented in this thesis.

For the remaining blocks that cannot be compressed using Differential Index Map

Coding, The Deflate algorithm may be a possible candidate. The Deflate algorithm

can be used in different modes to optimise for best speed or best compression. Tests

have shown that Deflate is capable of compressing data classified as text with good

compression performance. However, using the mode for best compression introduces

a significant amount of added time, whereas optimising for best speed reduces the

compression performance. A good balance between compression performance and

speed is to use the default compression mode and to try find other means to improve

compression performance with the algorithm. Optimisations in the serialization of

the data using a packed pixel method have been shown to improve its performance

and thus it may be suitable to use in a compound compression algorithm for time

critical applications.

The Lempel-Ziv Welch algorithm that has been presented has shown moderate to

good compression, however both the processing time and compression performance

is inferior to both Deflate and Differential Index Map coding. As such it will not be

considered for the final compound compression algorithm.

188

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

9.3 Lossy Compression Testing

In this section, the compression algorithms to process blocks that have been classified

as fuzzy and as picture will be tested. The majority of blocks that have been classified

as fuzzy and picture using the classification algorithm developed for this thesis contain

natural continuous tone image.

Compression algorithms such as JPEG [18], video encoding algorithms such as H.264

[47] and HEVC [39] and research presented in [23], [9] and [36] have shown success

in compressing continuous tone image with a transform based compression strat-

egy, incorporating the discrete cosine transform, chroma subsampling and quantisa-

tion.Based on the published results in [23], [9] and [36] and the wide spread adoption

of JPEG [18], designing a compression algorithm based on the discrete cosine trans-

form seems like a good choice to use on blocks that have been classified as fuzzy and

picture and will be used in this thesis.

When using a block based coding algorithm for compound images, it is inevitable

that there will be some blocks that will contain a mixture of continuous tone image

and computer generated data, which results in a highly structured block which may

have a large unique pixel count. Such a block may contain text, however compressing

such a block with a lossless compression algorithm may not reduce the amount of data

sufficiently for transport or storage. To overcome this challenge, the work presented

in [9] also includes a transform based compression algorithm based on the discrete

wavelet transform. The discrete Haar wavelet transform, which has already been

described in this thesis for use in both classification and compression will be tested

with blocks that have been classified as text with a pixel count greater than 31 unique

pixel values.

When performing chroma sub sampling and quantisation, as used with the discrete

cosine transform, or thresholding as used with the discrete wavelet transform, when

used for compression, some of the original data will be discarded in favour of better

compression performance which makes the compression of a lossy type. This will

effect both the subjective and objective image quality after decoding as well as the

size of the encoded data. As a result of this, the image quality assessment metrics

which have been described in section 6.2.1 will be used to decide the effectiveness of

the compression algorithm, as well as compute time and compression ratio.

The parameters for the compression algorithm that incorporates the discrete cosine

to be tested are as follows:

• Chroma sub sample strategy.

• The quantisation matrices used.

In section 6.2.4 three implementations of the discrete cosine transform were tested

and the fastest implementation of the transform is the AAN [1] transform. This is

189

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

the method used in this research, for which the implementation in C++ can be seen

in the code section of this thesis in listing 25.

The parameters for the discrete wavelet transform based compression to be tested are

as follows:

• The base implementation in floating point and integer.

• The resolution of the transform.

• The threshold values.

• The non zero coefficient ordering.

9.3.1 Chroma Sub Sampling Testing

The first test is to compare two strategies for chroma sub sampling to be used when

encoding blocks that have been classified as fuzzy and blocks that have been classified

as picture. As previously discussed in this thesis in the section on the discrete cosine

transform, chroma subsampling is the process of using less sample values for the

chrominance channels with respect to the luminance channels. In this thesis the

sample rate of 4:2:0 will be used which means that there are four luminance samples

taken for every 1 of each colour channel, Cb and Cr. This effectively reduces the

amount of source data by half. As the sampling is done in the YCbCr colour space,

some of the colour information is stored in the Y channel, so the effects of chroma

sub sampling are not as severe as if performed on an image in the RGB colour space,

where each channel is mutually exclusive.

Listing 11: Chroma Sub Sampling Top Left, C++

1 sub_sample_first_val(Block16x16)

2 {

3 for(row =0; row < 16; row++)

4 {

5 for(column =0; column <16;column++)

6 {

7 // get the 3 byte pixel value at (row,column)

8 pixel_pointer = Block16x16[row,column]

9

10 // statement evaluates true for every two pixels:row and column

11 // ex: (row,col) (0,0), (0,2), (2,0) (2,2)

12 if(!(row & 1) && !(column & 1) {

13 store pixel_pointer[row,column].Y_val

14 store pixel_pointer[row,column].Cb_val

15 store pixel_pointer[row,column].Cr_val

16 } else

17 store pixel_pointer[row,column].Y_val

190

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

18 }

19 }

20 }

Listing 11 shows the first method of chroma subsampling. The top left pixel in a

neighbourhood of a 2x2 block of pixels is select and its Cb and Cr value is used

to represent the remaining three pixel’s Cb and Cr value. The benefit of choosing a

single sample to represent the other 3 pixels is that no calculation has to be performed

to compute the average value, which may improve computational time. The adverse

effect may be that it might accumulate more error in the data that will be further

processed by the discrete cosine transform and quantization.

Listing 12: Chroma Sub Sampling Average Value, C++

1 sub_sample_avg_val(Block16x16)

2 {

3 for(row =0; row < 16; row++)

4 {

5 for(column =0; column <16;column++)

6 {

7 // get the 3 byte pixel value at (row,column)

8 pixel_pointer = Block16x16(row,column)

9

10 // statement evaluates true for every two pixels:row and column

11 // ex: (row,col) (0,0), (0,2), (2,0) (2,2)

12 if(!(row & 1) && !(column & 1)

13 {

14 store pixel_pointer[row,column].Y_val

15

16 avg_Cb = (pixel_pointer[row,column].Cb

17 + pixel_pointer[row,column+1].Cb

18 + pixel_pointer[row+1,column].Cb

19 + pixel_pointer[row+1,column+1].Cb) / 4

20

21 avg_Cr = (pixel_pointer[row,column].Cr

22 + pixel_pointer[row,column+1].Cr

23 + pixel_pointer[row+1,column].Cr

24 + pixel_pointer[row+1,column+1].Cr) / 4

25

26 store avg_Cb

27 store avg_Cr

28

29 }

30 else

31 store pixel_pointer.Y_val

32 }

33 }

191

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

34 }

The second chroma sub sampling method calculates the average value of 4 pixel

sample values and uses that to represent each pixel in the neighbourhood’s Cb and

Cr value. The pseudo code for this method can be seen in listing 12. The possible

benefit of taking the average value for a group of 4 samples is that it may reduce

some of the error in the data to be further processed. The possible negative effect

of method two is that it introduces more arithmetic which could impact the speed

performance of the algorithm.

A test is configured to measure the error that the two described methods for chroma

sub sampling introduce into the image data to be processed. The steps of the test

are outlined in the following experimental design:

Experimental Design: Peak Signal to Noise Ratio test on Chroma Sub

Sampling methods

• An image is processed using the classification algorithm.

• If a given block is classified as picture or fuzzy, it is chroma subsampled by each

method.

• Inverse subsampling is performed on the chroma subsampled data and a 16x16

block is reconstructed for both methods.

• The peak signal to noise ratio is calculated for the reconstructed block, which

takes the original unprocessed block as a reference.

• The PSNR value is recorded for each block that has been processed and the

mean value is calculated for both methods.

• All steps repeated for each image of the test set of compound images for this

thesis.

The results of the above test can be seen in table 56. It can be observed that Method

2, which takes the average value of a neighbourhood of 4 pixels performs significantly

better, with close to 3dB in the difference.

Chroma Sub Sample Method Average PSNR Value (dB)

Method 1 (top left) 42.186

Method 2 (avg value) 44.984

Table 56: Results of Peak Signal to Noise testing using two Chroma Sub Sampling

methods

192

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

The next step is to compare the difference in processing time between both modes

of Chroma Sub Sampling. The steps for the test are outline in the following Experi-

mental Design

Experimental Design: Comparing computation time between two Chroma

Sub Sampling methods

• 1000 blocks are selected from an image.

• Each mode processes the blocks and the time is recorded.

• The process is run 10 times for each mode.

• The results are recorded each time and the average value is calculated for each

mode.

• The tests are run on a Lenovo Thinkpad 440p with intel i5-4300M CPU, with

2 cores and 4 threads.

The results of the test outline above can be seen in table 57. It can be seen that mode

1 (top left) out performs mode 2 (average value). It completes the same processing

in approximately 82 percent of the time.

Chroma Sub Sample Method Average time to process 1000 Blocks (µS)

Method 1 (top left) 573.34

Method 2 (avg value) 694.09

Table 57: Results of Peak Signal to Noise testing using two Chroma Sub Sampling

methods

9.3.2 Comments on Chroma Sub Sampling Methods

The tests performed shows that taking an average value of four pixel samples to

represent the Cr and Cb value in a neighbourhood of 4 pixels, reduces the amount of

error in the signal significantly compared to taking a single value of the neighbourhood

of pixels. However, it comes at a price of reduced speed performance. This presents

a choice that can be used to optimise the final compound compression algorithm, one

can choose to fully optimise for compression performance or for speed.

Even though mode two is slower, it can be argued that both methods are efficient with

respect to processing time and that the reduction in error that incurs from using mode

one may have greater significance to the over all performance of the final compound

compression algorithm.

193

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

9.3.3 Performing the Two-Dimensional Discrete Cosine Transform as Two

One-Dimensional Transforms

In the section describing the discrete cosine transform in this thesis, it has been shown

that performing the two-dimensional discrete cosine transform can be performed as

two one-dimensional transforms, to reduce the amount of computations. It has also

been shown that the method known as the AAN transform [1] further reduces the

amount of computations needed to perform the transform significantly.

The one-dimensional discrete transform must first be computed along the columns of

a block of 8x8 one byte pixel samples. The discrete cosine function which can be seen

in the code section of this thesis in listing 25, takes a reference to an array of 8 values

as an argument and performs the computations. The call to the function can be seen

in the pseudo code in listing 13. [H]

Listing 13: Calling the one-dimensional discrete cosine function pseudo code

1 one_d_transform_8x8(block[8][8])

2 {

3 for(row =0; row<8;row++)

4 {

5 FastDct8::transform(block[row][0])

6 }

7 }

The 8x8 block must then be transposed and then the one-dimensional discrete cosine

is computed, this time it will be computed along the row values of an 8x8 block of

one byte pixel samples. The code for the transpose function can be seen in listing 14

Listing 14: Transpose a block of 8x8 one byte pixel values pseudo code

1 transpose(block[8][8])

2 {

3 for(row =0; row <8; row ++)

4 {

5 //set col = row, so it does not overwrite previous swaps

6 for(col =row; col <8; col ++)

7 {

8 // temp variable to hold intermediate swap value

9 temp = dest[col][row]

10 //perform a swap

11 block[col][row] = block[row][col]

12 block[row][col] = temp

13 }

14 }

15 }

194

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

The next stage after performing the discrete cosine transform in transform encoding,

is to perform quantization on the discrete cosine transform coefficients

9.3.4 Quantization of Discrete Cosine Transform Coefficients

The second stage of discarding information in favour of better compression perfor-

mance using a discrete cosine transform is quantisation. A quantization matrix is a

term given to a block of quantization values that are used to quantize transform coef-

ficients, with a specific quantization coefficient used for each discrete cosine transform

coefficient.

As previously stated, blocks that are classified as picture and fuzzy, generally contain

continuous tone image, primarily from natural camera captured image. The pur-

pose for the the distinction is that blocks that are classified as fuzzy are generally

structureless and exhibit no discernible pattern, so the hypothesis is that blocks that

have been classified as fuzzy can be quantized harder in favour of better compression

performance, without having as much of an impact on subjective image quality.

For this thesis, five quantization matrices have been selected:

• The reference luminance and chrominance quantization matrices from the JPEG

standard [18].

• The intra mode quantization matrix used in H.264 presented in the book by

Iain Richardson, ”H.264 and MPEG-4 Video Compression : video coding for

next-generation multimedia” [33].

• The reference intra mode quantization matrix from the HEVC standard, which

is presented in the research done by Prangnell in his work ”Minimizing Com-

pression Artifacts for High Resolutions with Adaptive Quantization Matrices

for HEVC” [31] and also the AQM matrix presented by the same author in [31]

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

(a) JPEG Luminance Quantization Matrix [18]

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

(b) JPEG Chrominance Quantization Ma-

trix [18]

Table 58: Reference quantization matrices from the JPEG standard [18]

195

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

6 10 13 16 18 23 25 27

10 11 16 18 23 25 27 29

13 16 18 23 25 27 29 31

16 18 23 25 27 29 31 33

18 23 25 27 29 31 33 36

23 25 27 29 31 33 36 38

25 27 29 31 33 36 38 40

27 29 31 33 36 38 40 4

(a) H.264 Intra Mode Quantization

Matrix[33]

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

(b) HEVC Intra Mode Quantization

Matrix[31]

16 16 16 16 16 17 18 18

16 16 16 16 17 17 18 18

16 16 16 17 18 18 18 19

16 16 17 18 19 19 20 20

16 17 18 19 20 21 21 21

17 17 18 19 21 22 22 22

18 18 18 20 21 22 22 23

18 18 19 20 21 22 23 23

(c) Adaptive Quantization Matrix [31]

Table 59: Reference quantization matrices from the video coding standards H.264

and HEVC and matrix presented in [31]

The quantization matrices used in this thesis can be seen in tables 58 and 59. The

process of quantization involves dividing a given dct coefficient by the quantization

coefficient at the same coordinate. The resultant value is then rounded up to the

nearest integer value. The pseudo code for quantization can be seen in Listing

Listing 15: Quantize a block of DCT coefficients pseudo code

1 quantize(dct_coefs[8][8],quantize_matrix)

2 {

3 for (row =0; row <8;row++)

4 {

5 for(col =0; col <8; col++)

6 {

7 // round the result up to nearest int and store in place

8 dct_coefs[row][col] = round(dct_coefs[row][col]

9 / quantize_matrix[row][col])

10 }

11 }

12 }

196

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

The resultant block of quantized discrete coefficient values will generally be signifi-

cantly smaller than the original values, where the majority of values will be reduced

to zero. After quantization, the first compression stage happens, which is a type of

run-length encoding that records the amount of zeros between the quantized coeffi-

cients that are non zero. To improve the length of the run of zeros (which improves

compression) The quantized discrete coefficients will be re-ordered before processing.

it is important to note that the very first coefficient of a block of discrete coefficients,

known as the the DC coefficient is not included in the zero run length scanning pro-

cess. The DC coefficient is the lowest frequency component of a block of 8x8 dct

coefficients, It is a weighted summation of all 64 coefficients and thus, generally has

a larger amplitude than the remaining coefficients, known as the ac coefficients. The

DC Coefficient is removed from each block and processed by a type of delta encoding,

where each subsequent DC value is stored as the difference between itself and the

preceding DC coefficient.

9.3.5 Reordering Discrete Cosine Transform Coefficients

The zig zag coefficient reordering pattern that has been described in the section 6.2.3

of this thesis is taken from the JPEG standard [18]. The reordering pattern can be

seen in table 60.

0 1 8 16 9 2 3 10

17 24 32 25 18 11 4 5

12 19 26 33 40 48 41 34

27 20 13 6 7 14 21 28

35 42 49 56 57 50 43 36

29 22 15 23 30 37 44 51

58 59 52 45 38 31 39 46

53 60 61 54 47 55 62 63

Table 60: Zig zag discrete cosine transform coefficient reordering pattern [18]

To reorder the values of a block of quantized discrete coefficients, the block must first

be serialized from a two-dimensional structure, to a single array of 64 values, then

the values are reordered according to the coordinate of the zig zag scan. The pseudo

code for this process can be seen in Listing 16.

197

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

Listing 16: serialize and reorder a block of quantized dct coefficients pseudo code

1 reorder_coefs(block[8][8],reordered_vals[64]

2 {

3 // a temp array to hold the flatt

4 flattened_8x8[64] = {0}

5

6 // variable that increments each time a value from the block

7 // dct coeffs has been added to flattend_8x8

8 locator =0

9 for (row =0; row <8;row++)

10 {

11 for(col =0; col <8; col++)

12 {

13 flattened_8x8[locator] = block[row][col]

14 }

15 }

16

17 //Block has now been serialized, time to reorder:

18 for(i =0; i < 64; i ++)

19 {

20 // return the value of zig zag order at location i

21 // and populate reordered with its value from the

22 // serialized block of quantized coefficients

23 reordered[i] = flattened_8x8[Zig_zag[i]]

24 }

25 }

9.3.6 Performing Zero Run Length Encoding on Reordered Quantized

Discrete Cosine Transform Coefficients

Once the block of quantized discrete cosine transform coefficients has been serialized

and reordered, the zero run length processing can be performed. The algorithm stores

a pair of values: the amount of zeros preceding a non zero coefficient and the value

of the non zero coefficient. The scan starts from the second element in the array, as

the first element is the DC coefficient and is stored separately. A special sequence is

needed to indicate the end of a scan of blocks, so after the last non zero coefficient

has been found, two zeros are stored, which indicates the end of the scanning process.

The pseudo code for zero run length encoding can be seen in listing 17

198

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

Listing 17: Zero run length encoding on reordered quantized discrete cosine transform

ac coefficients

1 zero_run_length(reordered_vals[64], encoded_data[], dc_vals[])

2 {

3 // variable to keep count of the amount of zeros

4 // preceding a non zero coefficient

5 zero_run_length =0;

6

7 // store the dc coefficient in a seperate stream

8 // to be processed seperately

9 store reordered[0] in dc_vals[]

10

11 // iterate through the serialized

12 // reordered quantized dct coefs

13 for(i =1; i < 64; i ++)

14 {

15 // if the coef at location i is zero

16 if(reordered[i] ==0)

17 {

18 //increment non zero count

19 zero_count++;

20 }

21 else

22 {

23 // a non zero coef has been found

24 // store the non zero count and the non zero value

25 // in the encoded data array

26 store zero_count in encoded_data[];

27 store reordered[i] in encoded_data[];

28 // reset the zero count

29 zero_count =0;

30 }

31 }

32 if(zero_count >0)

33 {

34 // the last non zero coefficient has been found

35 // store the special sequence of two zeros in the encoded data array

36 store 00 in encoded_data[]

37 }

38 }

After zero run length encoding has been performed on each block 8x8 block of sample

values, the resultant bit stream is generated. Using chroma sub-sampling, one block

of 16x16 3-byte pixels results in four 8x8 blocks of Y channel values, one 8x8 block of

Cb channel values and one 8x8 block of Cr channel values. Each block has to follow

199

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

all of the above steps that make up the discrete cosine transform encoding method.

The compressed data is segregated based on channels. All of the Y blocks are com-

pressed and the data is stored in one bit stream and both Cb and Cr channels are

stored together, in a different bit stream. The purpose of segregation is so that an

entropy encoder such as Huffman encoding can take advantage of the statistical prop-

erties of the values of each channel to generate optimum code lengths, reducing the

size of the compressed data.

9.3.7 Testing Discrete Cosine Transform Based Compression on Blocks

that have been Classified as Fuzzy and Picture

A test is configured to process blocks that have been classified as fuzzy and picture

using discrete cosine transform based compression using different quantization matri-

ces. The compression performance will be tested as will the objective image quality

using the image quality assessment metric SSIM [50].

This test will be run first on blocks that have been classified as fuzzy, then run again

for blocks that have been classified as picture.

Experimental Design

• An image from the test set of compound images is processed using the classifi-

cation algorithm.

• Blocks that have been classified as the chosen classification type will be pro-

cessed using discrete cosine based transform encoding.

• the blocks that are classified as the chosen classification type will be compressed

fully, four times using a different quantization matrix for each run.

• The runs are (1) Reference quantization matrices for luminance and chromi-

nance. (2) H.264 reference quantization matrix for both luminance channel

and chrominance channels. (3) HEVC reference quantization matrix for lumi-

nance channel and chrominance channels. (4) Adaptive quantization matrix for

luminance channel and chrominance channels.

• The compressed blocks will be decoded and inserted into the original image,

such that the rest of the original image is unprocessed. The Structural Sim-

ilarity index will be computed for each image, with each quantization matrix

combination used.

• The test will run for every image from the test set of 40 compound images.

200

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

Quantization Matrix

A
ve

ra
ge

 C
om

pr
es

si
on

 R
at

io

0.00

5.00

10.00

15.00

20.00

JPEG Reference H.264 Reference HEVC Reference Adaptive
Quantization Matrix

Average Compression Ratio vs. Quantization Matrix: Fuzzy
Blocks

Figure 111: Results of using different quantization matrices to compress blocks clas-

sified as fuzzy

Figure 111 shows the average compression performance of each matrix when com-

pressing blocks that have been classified as fuzzy from the test set of 40 compound

images. It can be observed that each matrix produces similar results with respect to

compression performance.

Quantization Matrix Average PSNR Value of Block

JPEG Reference 42.90

H.264 Reference 42.93

HEVC Reference 42.88

Adaptive Quantization Matrix 42.89

Table 61: Results of PSNR calculated per block for each type of quantization matrix

Table 61 shows the average PSNR value computed on each 16x16 block after process-

ing with discrete cosine transform encoding.

201

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

Quantization Matrix Average SSIM Index Value

JPEG Reference 0.9904

H.264 Reference 0.9930

HEVC Reference 0.9926

Adaptive Quantization Matrix 0.9935

Table 62: Results of Structural Similarity Index calculation for each type of quanti-

zation matrix

Table 62 shows the Average SSIM Index value for the the images of the test set

reconstructed with the processed fuzzy blocks. Values above 0.99 are considered very

good. while values below 0.9 are considered acceptable, while values below 0.8 are

considered poor.

JPEG ReferenceOriginal H.264 Reference Adaptive
Quantization MatrixHEVC Reference

Distortion Profile of Quantization Matrices on Blocks Classified as Fuzzy

Figure 112: Comparing distortion artifacts incurred from multiple quantization ma-

trices, fuzzy blocks

Figure 112 shows the distortion profile of the quantization matrices used. The block

in figure 112 is the same 16x16 block of pixel values before and after processing, which

has been expanded to give visual feedback. It can be observed that there are some

slight blocking artifacts resulting from processing. The blocking artifacts are most

visible when processed with the JPEG reference matrices and least visible with the

HEVC Reference and Adaptive Quantization Matrix.

9.3.8 Conclusions on Fuzzy Block Quantization

It can be seen from the results shown, that each matrix performs equally well when

compressing blocks that have been classified as fuzzy. The compression ratios achieved

are good with respect to compression performance, which is generally greater than

15:1. The structural similarity index computation suggests that the decoded fuzzy

blocks do not impede on the objective image quality of the overall image, which is a

significant result, considering that chroma subsampling has been implemented.

202

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

By subjective observation, using the Adaptive Quantization Matrix [31] incurs the

least amount of distortion on blocks that have been classified as fuzzy, followed by

the HEVC reference quantization matrix. This agrees with the results of the SSIM

computations, seen in table 62 and which an example can be seen in figure 112.

However, this disagrees with the results of computing the average peak signal to noise

ratio for each processed fuzzy block, shown in table 61. This shows the relevance of

using an objective image quality assement metric such as Structural Similarity, when

optimising for image quality. The compression performance using the HEVC reference

quantization matrix is slightly better, aprox 3 percent on average, while the SSIM

index value for the Adaptive Quantization matrix is better.

Quantization Matrix

A
ve

ra
ge

 C
om

pr
es

si
on

 R
at

io

0.00

2.00

4.00

6.00

8.00

JPEG Reference H.264 Reference HEVC Reference Adaptive
Quantization Matrix

Average Compression Ratio vs. Quantization Matrix: Picture
Blocks

Figure 113: Results of using different quantization matrices to compress blocks clas-

sified as picture

Figure 113 shows the average compression performance of each matrix when com-

pressing blocks that have been classified as picture from the test set of 40 compound

images. It can be observed that each matrix produces similar results with respect to

compression performance and that the compression performance is significantly lower

than blocks that have been classified as fuzzy. This is as expected, as blocks that

are classified as picture may contain more structure and a higher gradient of change

within a given block.

203

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

Quantization Matrix Average SSIM Index Value

JPEG Reference 0.9791

H.264 Reference 0.9870

HEVC Reference 0.9878

Adaptive Quantization Matrix 0.9904

Table 63: Results of Structural Similarity Index calculation for each type of quanti-

zation matrix

Table 62 shows the Average SSIM Index value for the the images of the test set

reconstructed with the processed picture blocks. Values above 0.99 are considered

very good. while values below 0.9 are considered acceptable, while values below 0.8

are considered poor.

JPEG ReferenceOriginal H.264 Reference Adaptive
Quantization MatrixHEVC Reference

Distortion Profile of Quantization Matrices on Blocks Classified as Picture

Figure 114: Comparing distortion artifacts incurred from multiple quantization ma-

trices, picture blocks

Figure 114 shows the distortion profile of the quantization matrices used. The block

in figure 112. It can be observed that there are severe compression artifacts visible

in all cases. The Adaptive Quantization matrix, subjectively has the lowest amount

of distortion, however it also has the lowest compression performance.

The block from 114 was specifically chosen to highlight distortion artifacts as a result

of compressing using a discrete cosine transform and quantization. It contains com-

puter generated image data, which is complex in structure and has a high unique pixel

count. In this case, it is important to choose the quantization matrix that introduces

the least amount of compression artifacts.

9.3.9 Conclusions on Picture Block Quantization

It is clear from the compression performance results that blocks that are classified

as picture are harder to compress. Further, the choice of quantization used can

negatively impact the subjective quality of the decoded image when the image data is

204

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

highly structured, an example of which has been shown in figure 114. However, The

average SSIM index value computed for the test set of images show that as a whole,

the objective image quality of the decoded images after processing is still good. A

subjective view of the processed images shows the distortion introduced from discrete

cosine transform and quantization is highly masked for blocks that actually contain

natural continuous tone image, while some compression artifacts can be seen on blocks

that contain some computer generated image data.

When using lossy style compression, there will always be a trade-off between com-

pression performance and processed image quality. In the case of blocks that have

been classified as picture, it may be of greater benefit to optimise for image quality

by using the quantization matrix that introduces the least amount of distortion.

9.3.10 Entropy Encoding Discrete Cosine Transform Based Compressed

Data

To reduce the coding redundancy in the discrete cosine transform based compressed

bit stream, the Huffman encoding algorithm from the zlib library [8] is used. To

optimise compression, the compressed fuzzy block data is processed independantly to

the compressed picture block data. Further, The dc component data is independently

processed from the ac component data. This is the same approach as JPEG [18]

Before Huffman encoding on the dc component bit stream, the data is processed

with delta encoding which stores consecutive values as a difference value from the

preceding values, this reduces the dynamic range of values, improving compression

performance. The pseudo code for delta encoding can be seen in listing

Listing 18: Delta encoding pseudo code

1 delta_encode(dc_components[])

2 {

3 // variable to keep track of the comparison

4 last = 0;

5 // iterate to the end of the array

6 for (i = 0; i < dc_components.length; i++)

7 {

8 current = dc_components[i];

9 // subtract the current value from the last value, store the difference

10 dc_components[i] = current - last;

11 // increment the comparing location

12 last = current;

13 }

14 }

205

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

Quantization Matrix

A
ve

ra
ge

 C
om

pr
es

si
on

 R
at

io

0.00

20.00

40.00

60.00

80.00

JPEG Reference H.264 Reference HEVC Reference Adaptive
Quantization Matrix

Average Compression Ratio vs. Quantization Matrix: Huffman
Encoded Fuzzy Blocks

Figure 115: Compression performance of Huffman encoded compressed fuzzy block

data

Quantization Matrix

A
ve

ra
ge

 C
om

pr
es

si
on

 R
at

io

0.00

5.00

10.00

15.00

20.00

JPEG Reference H.264 Reference HEVC Reference Adaptive
Quantization Matrix

Average Compression Ratio vs. Quantization Matrix: Huffman
encoded Picture Blocks

Figure 116: Compression performance of Huffman encoded compressed picture block

data

206

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

Figure 115 and figure 116 show the compression performance of encoding fuzzy and

picture data using Huffman encoding. It can be seen that entropy encoding signifi-

cantly improves overall compression performance for discrete cosine transform based

compression, particularly for fuzzy compressed data.

9.3.11 Discrete Wavelet Transform based Compression: Blocks Classified

as Text with High Unique Pixel Count

This section presents the discrete Haar wavelet transform with the use of thresholding

for compression of blocks that have been classified as text that have a high unique pixel

count. This type of block may not be suitably compressed using a lossless compression

algorithm, with respect to compression performance. Further, the highly structured

information in this type of block can not be easily compacted into a small number

of low frequency discrete cosine transform coefficients. Thus, using a compression

strategy based on a discrete cosine transform is inefficient in terms of compression

performance and also will result in distortion artifacts in the decoded processed image.

Discrete Haar wavelet transform based compression will be compared to discrete

cosine transform based compression and Deflate compression for blocks classified as

text with pixel count greater than 31 unique pixel values.

The comparison is made by:

• Compression performance.

• Speed performance.

• Subjective and objective image quality.

The discrete Haar wavelet transform functions with respect to compression have been

described in section 6.2.6 in listings 6. The resultant transform coefficients can be

positive and negative floating point values.

The first test will compare two implementations of the discrete Haar wavelet trans-

form. The first method uses floating point computation, while the second method

uses integer computation. To use integer computation, the weighted values of s0,

s1,d0,d1 shown in listing 6 are shifted right 10 bits from their original values of 0.5,

0.5, 0.5, -0.5, so that the calculations can be performed with integer values. After

computing the discrete wavelet coefficients, each value is then left shifted by 10 bits

to negate the right shift.

Experimental Design

• 400 16x16 3-byte pixel blocks from a compound image are selected.

207

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

• The forward discrete Haar wavelet transform using floating point computation

is applied to each channel of the block. No thresholding is applied.

• The inverse discrete Haar wavelet transform using floating point computation

is applied to each channel of the block. resulting values are rounded to nearest

integer values.

• The PSNR is computed on the process block, using the unprocessed block as a

reference.

• The amount of blocks recovered with no error is recorded.

• The PSNR value is calculated for the set.

• The above steps are repeated for the Integer implementation of the forward and

inverse discrete Haar wavelet transform, using Integer computation.

Table 64 shows the result of the experiment. It can be observed that using floating

point arithmetic has greater accuracy when computing the discrete Haar wavelet

transform. However, with an average PSNR value above 90dB, both implementations

are approximately lossless and any error would not be visible to the human visual

system. This is confirmed by subjective analysis of the processed blocks.

Computation Recovered Blocks Average

Type No Error PSNR (dB)

Floating 67 98dB

Integer 0 92dB

Table 64: Comparing accuracy of floating point and integer implementation of the

discrete Haar Wavelet Transform

To compare the performance of computation time between both methods of for-

ward Haar wavelet transform, the experiment is run 10 times, with the average time

recorded for both method. The results can be seen in table. 65

Computation time

Type (µS)

Floating 9085

Integer 2004

Table 65: Comparing the time taken to perform the forward discrete Haar wavelet

transform on 400 Blocks of 16x16 3-byte pixels using floating point and integer cal-

culation

208

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

It can be observed from the results in table 65 that using integer calculation is sig-

nificantly faster than using floating point calculation to compute the discrete Haar

wavelet transform. This is a significant result, by reducing the time taken to per-

form the transform, will reduce the overall processing time for the final compound

compression algorithm.

9.3.12 Comments on Accuracy and Speed of Discrete Haar Wavelet Trans-

form

Implementing the discrete Haar wavelet transform using integer computation signif-

icantly improves the performance of the algorithm with respect to speed, with the

side effect of reducing the overall accuracy of the transform. However by subjectively

viewing the blocks before and after processing, the distortion is imperceptible to the

human eye. As always, there is a trade off when trying to optimise for speed, per-

formance or quality, in this case, however, the improvements in speed performance

outweigh the reduced amount of objective quality.

9.3.13 Threshold Value Selection for Discrete Haar Wavelet Transform

Compression

To discard some of the irrelevant data in favour of better compression, using a form

of quantization called thresholding is used on the discrete Haar wavelet coefficients.

The act of thresholding is to use a set value and compare a discrete wavelet coefficient

to it: if the coefficient is below the threshold value, the coefficient is set to zero. The

algorithm for thresholding is shown in listing 7

A staggered thresholding approach is used in this thesis. As a two level discrete

Haar transform is used, a different threshold value is used for each level. The wavelet

coefficients of the second level of the transform have a higher weighting than the

coefficients from the first level of the transform, thus using a smaller threshold value

for the second stage should reduce the amount of error in the processed data.

Chowdhury, et al in their work presented on ”compression using discrete wavelet

transform” [26] suggests the threshold value of 30 as a good trade off between com-

pression performance and decoded image quality. This suggested value is used as a

base value for testing.

In section 6.2.6 of this thesis describing the discrete wavelet transform for compres-

sion, it was posited that, unlike discrete cosine transformation, the discrete wavelet

coefficients can not be reordered in a suitable ordering as to optimise zero run-length

encoding. This is because the location of the discrete wavelet transform coefficients

is highly dependent on the input. This is primarily the reason for using the discrete

wavelet transform for processing blocks containing high transient information, the

209

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

transient information is localised in the sub bands,which can be preserved once the

transient magnitude is greater than the threshold values. It has been shown that

after performing the discrete wavelet transform and thresholding, there are many co-

efficients that are set to zero. Two methods are proposed in this thesis to encode

the non zero coefficients. The first method is to use a zero run length encoding, the

same as used in discrete cosine transform encoding, which records the number of zeros

before the next non zero coefficient. The second method is a novel method which is

presented in this thesis.

9.3.14 Encoding Non Zero Discrete Wavelet Transform Coefficients After

Thresholding

The second method involves creating an index map of the non zero coefficients after

thresholding and stores that first, followed by the payload of the non zero coefficient

values. The index map starts with a two byte header, where each bit of the header

represents a row of the 16x16 block of values after thresholding. If a row contains

all zeros, the corresponding bit of the two byte header is set to zero. After the two

byte header, there is a following two byte pair for every row that contains a non

zero value. The column in a row that contains a non zero value is indicated by a

bit of the corresponding two byte pair and is set to 1. To Illustrate the process of

generating an index map to encode the non-zero DWT coefficients, consider the block

of transformed and thresholded coefficients in table 66

Table 22 shows the resultant values after thresholding the values of table 21

8 15 0 0 -12 15 0 0 0 0 0 9 0 0 0 0

0 11 0 0 0 11 0 0 0 0 0 0 0 0 0 0

13 22 0 0 0 8 0 0 0 0 0 0 0 0 0 0

0 4 0 0 0 -4 0 0 0 0 0 0 0 0 0 0

8 -8 0 0 -12 -10 0 0 -12 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 -9 0 0 -7 10 0 0 0 0 0 0 0 0 0 0

0 8 0 0 0 -8 8 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-11 0 0 0 0 0 0 0 0 0 0 10 0 0 20 0

13 0 0 0 0 0 0 0 0 0 0 10 0 0 20 0

0 0 0 16 16 0 0 0 0 0 0 10 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 66: After two level forward discrete Haar wavelet transform with thresholding

210

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

The two byte header to describe the rows with non-zero coefficients for table 66 would

be: 1111 1011 1000 1110

The two bytes to describe where the non zero coefficients in the first row would be:

1100 1100 0001 0000

There is no need store two bytes for rows that do not contain any non zero coefficients,

as the decoder will know how many rows contain non zero coefficients from the two

byte header and subsequently from the following index map that is stored. The

implementation in C++ can be seen in the code section of this thesis in listing 28.

A series of tests to find efficient threshold values to use in discrete wavelet transform

encoding have been implemented. A threshold value is selected for each level of the

two levels of the discrete wavelet transform. Also, different combinations of threshold

values for the luminance channel and the chrominance channels are tested. A sample

of the combination of threshold values used in testing can be seen in table 67

Channel Level one Level Two Channel Level One Level Two

DWT T Val DWT T Val DWT T Val DWT T Val

Y 10 05 Cb Cr 10 05

Y 10 05 Cb Cr 20 10

Y 15 10 Cb Cr 20 10

Y 20 10 Cb Cr 30 20

Y 30 15 Cb Cr 40 20

Table 67: A Set of Threshold value combinations used in testing the discrete wavelet

transform

After thresholding, the discrete wavelet transform coefficients are compressed using

two different methods: method one is the zero run length encoding similar to the

implementation used for discrete cosine transform, without reordering the coefficients.

the second method is the novel approach presented in this thesis which is called non

zero index map encoding.

Figure 117 shows the average compression ratio achieved using a selection of threshold

value combinations The threshold values in figure 117 are described in table 67

211

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

DIscrete Wavelet Transform Threhold values

A
ve

ra
ge

 C
om

pr
es

si
on

 R
at

io

0.00

2.00

4.00

6.00

10 05 10 05 10 05 20 10 15 10 20 10 20 10 30 20 30 15 40 20

Average Compression Ratio vs. Discrete Wavelet Transform
Threshold values: Zero Run Length Encoding

Figure 117: Average Compression Ratio Using Different Threshold Value Combina-

tions with Zero Run Length Encoding

DIscrete Wavelet Transform Threhold values

A
ve

ra
ge

 C
om

pr
es

si
on

 R
at

io

0.00

2.00

4.00

6.00

8.00

10.00

10 05 10 05 10 05 20 10 15 10 20 10 20 10 30 20 30 15 40 20

Average Compression Ratio vs. DIscrete Wavelet Transform
Threhold values: Non Zero Coefficient Index Map Coding

Figure 118: Average Compression Ratio Using Different Threshold Value Combina-

tions with Non Zero Index Map Encoding

Figure 118 shows the average compression ratio achieved using a selection of threshold

value combinations with non zero index map coding. It is clear from the comparing

212

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

the results from figure 117 and 118 that using the novel non zero coefficient index

map coding performs better.

Figure 119 shows the average peak signal to noise ratio computed for each block that

has been processed with the discrete wavelet transform and combinations of threshold

values. It can be seen that as the threshold value increases, so does the error in the

signal.

DIscrete Wavelet Transform Threhold values

A
ve

ra
ge

 P
S

N
R

 B
lo

ck
 V

al
ue

 (d
B

)

0.00

10.00

20.00

30.00

40.00

10 05 10 05 10 05 20 10 15 10 20 10 20 10 30 20 30 15 40 20

Average PSNR Block Value vs. DIscrete Wavelet Transform
Threhold values

Figure 119: Average PSNR Value calculated per Block for combinations of threshold

values

Compression Compression PSNR

Algorithm Ratio (dB)

DIscrete Wavelet Transform 7.04 34.68

Discrete Cosine Transform 3.9 31.72

Deflate 2.37 Lossless

Table 68: Comparing Discrete Wavelet Transform Compression to Discrete Cosine

Transform Compression and Deflate Compression

Table 68 compares the average compression performance of the discrete wavelet trans-

form encoding against discrete cosine transform encoding and deflate encoding. The

non zero index map method is used along with threshold values 15 10 20 10 for the

discrete wavelet encoding, The HEVC reference quantization method is used for the

213

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

discrete cosine transform and the default compression method is used for deflate. It

can be observed that the discrete wavelet transform encoding method performs bet-

ter, with respect to compression ratio than both discrete cosine transform and deflate.

The average psnr values is similar for both discrete wavelet transform and discrete

cosine transform encoding, however it can be seen in figure 120 that the distortion

incurred from both methods of processing is very different and, subjectively, the dis-

tortion caused be the discrete wavelet transform and thresholding is less severe than

that caused by the discrete cosine transform and quantisation.

Original Discrete Wavelet
Transform: Threshold
Values 10, 10, 10, 10

psnr 36 dB

Discrete Cosine
Transform

HEVC Ref Q
psnr 31 dB

Discrete Wavelet
Transform: Threshold
Values 15, 10, 20, 10

psnr 33 dB

Distortion Profiles Discrete Wavelet Transform with Thresholding Vs Discrete Cosine Transform with Quantization

Figure 120: Distortion profile of Discrete Wavelet Transform with thresholding com-

pared to Discrete Cosine Transform on a block classified as text

To reduce the code redundancy after encoding with discrete wavelet transform en-

coding and thresholding, Huffman encoding is used as the entropy encoder. Figure

121 shows the average compression performance of implementing Huffman entropy

encoding with the discrete wavelet transform encoding previously described. The

results show that the combination of discrete wavelet transform, thresholding, non

zero index map coding and Huffman entropy encoding produce very efficient results

in terms of both compression performance and subjective image quality

214

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

DIscrete Wavelet Transform Threhold values

A
ve

ra
ge

 C
om

pr
es

si
on

 R
at

io

0.00

5.00

10.00

15.00

10 05 10 05 10 05 20 10 15 10 20 10 20 10 30 20 30 15 40 20

Average Compression Ratio vs. DIscrete Wavelet Transform
Threshold values: With Huffman Entropy Encoding

Figure 121: Compression performance of the discrete wavelet transform using combi-

nations of threshold values, non zero index map coding and Huffman entropy encoding

9.3.15 Conclusions on Lossy Compression Testing

In this section of the thesis, lossy transform based encoding has been described and

tested on blocks that contain continuous tone image and also blocks that contain

computer generated data with a high unique pixel count.

It has been shown that blocks that have been classified as fuzzy are easily compressed

using the discrete cosine based transform with any of the quantization matrices dis-

cussed. Both the subjective and objective image quality of decoded fuzzy blocks is

of acceptable to good quality, with most of the compression artifacts being masked.

This suggests optimising the compression of fuzzy blocks for the best compression

performance.

However, blocks that have been classified as picture may contain structural elements

and are susceptible to compression artifacts which may be noticed by the end user.

In this case, it would be best to optimise for objective image quality over compres-

sion performance. Moreover, the gains in compression performance using different

quantization matrices are not large enough to sacrifice the overall image quality.

The discrete wavelet transform has been presented in this section for compressing

blocks that have been classified as text but have a high unique pixel count. It has

been shown that compressing these types of blocks with a lossless compression algo-

rithm yields poor compression performance. Using a discrete cosine transform based

215

9.3 Lossy Compression 9 COMPOUND COMPRESSION ALGORITHM

compression yields acceptable compression performance but reduces both the subjec-

tive and objective image quality of the decoded image. Using the discrete wavelet

transform with a combination of the novel approach of compacting the non zero co-

efficients using an index map has been demonstrated to be efficient, both in terms of

compression performance, objective and subjective image quality.

Using combinations of threshold values, the discrete wavelet transform can be opti-

mised for compression performance or for objective image quality. It is very important

to reduce the amount of compression artifacts in the decoded image, especially for text

data. Many combinations of threshold values were tested and a sample of threshold

value and their compression performance has been demonstrated. Striking a bal-

ance between compression performance and image quality, a suitable combination of

threshold values used in this thesis can be seen in table 69

Channel Level one Level Two Channel Level One Level Two

DWT T Val DWT T Val DWT T Val DWT T Val

Y 15 10 Cb Cr 20 10

Table 69: A suggested set of threshold values for Discrete Wavelet Transform based

compression

The discrete wavelet function that is used in this thesis is the Haar wavelet function.

It was chosen because of its ability to extract structural information from a block

of pixels by using an average and difference function. The preservation of structural

information within blocks of pixels by thresholding relies on a given block having

structural information such as lines and sharp transitions in pixel intensity values.

Performing the discrete Haar wavelet transform on blocks without structural infor-

mation, such as continuous tone image will introduce blocking artifacts, which is why

the discrete Haar wavelet transform has not been chosen to process picture and fuzzy

blocks in this thesis.

216

9.4 Algorithm Configuration 9 COMPOUND COMPRESSION ALGORITHM

9.4 Full Compound Compression Algorithm Configuration

Previously in this section, lossless and lossy compression algorithms have been de-

scribed and tested on the different types of classified data within a compound image.

This section presents the results of combining the compression algorithms that are

optimal for the specific type of classified data into a single compound compression

algorithm which chooses a compression algorithm that is best suited to the attribute

within a given block of pixels.

Blocks that have been classified as smooth will be compressed with the novel smooth

compression algorithm presented in this thesis which shows exceptional compression

performance.

The novel lossless compression algorithm, Differential Index Map Coding has been

shown to achieve the best compression and speed performance on blocks classified as

sparse and blocks classified as text that have less than 32 unique pixel values. For

the remaining blocks that have been classified as text, The discrete wavelet transform

coding has been shown to have the best compression performance and subjective and

objective quality, compared to the discrete cosine transform encoding. However, It is

a lossy compression algorithm, which presents a choice to optimise for compression

performance or optimise for quality. If the algorithm is optimised for image quality,

the Deflate compression algorithm can be used to compress blocks that are classified

as text with a pixel count greater than 31. This comes at a reduction on compression

performance but an increase in decoded image quality.

Discrete cosine transform coding is implemented for blocks that have been classified

as fuzzy and picture. Blocks that have been classified as fuzzy will be quantized

stronger than those that have been classified as picture.

When all blocks have been compressed with the chosen compression algorithm, the

encoded data from each compression algorithm will be entropy encoded using Huffman

encoding provided by the zlib library [8]. This results in the compressed data payload.

The process flow for the compound compression algorithm (CCA) can be seen in figure

122

217

9.4 Algorithm Configuration 9 COMPOUND COMPRESSION ALGORITHM

Smooth Block
Compression

Differential Index
Map and Base
Colour Coding

Colour Counting
16x16 Block

Get Next 16x16
Block of Pixels

Classification Using a
One Level 2-D Haar
Wavelet Transform

 Discrete
Wavelet

Transform
Coding

Colour Count = 1?

Smooth
Encoded Data

Differential Index
Map Coding Data

Last Block?

No

 Block Classified
As Computer
Generated?

Yes

Colour Count
< 32 ?

Yes

Discrete Wavelet
Transform Coding

Data

 Discrete Cosine
Transform

Coding - High
Quantization

No

Discrete Cosine
Transform Fuzzy

Data

Discrete Cosine
Transform Picture

Data

Block Classified
As Fuzzy?

Yes

 Discrete Cosine
Transform

Coding - Medium
Quantization

Last Block?

Last Block?

Last Block? Last Block?

Get Next
Block

Get Next
Block

No No

No No

No

Yes

Huffman
Coding

Huffman
Coding

Huffman
Coding

Huffman
Coding

Yes Yes

Yes
Yes

Encoded Bit Stream

Optimised for
Image Quality?

No

Deflate
Encoding

Yes

Last Block?

Get Next
Block

No

Deflate Encoded
Data

Yes

Figure 122: Compound compression algorithm

218

9.4 Algorithm Configuration 9 COMPOUND COMPRESSION ALGORITHM

A series of tests are undertaken to compare the final compound compression algorithm

presented so far in this thesis against three compression standards: JPEG [18], H.264

[47] and HEVC [39]. JPEG is an image compression standard, while H.264 and HEVC

are video coding standards. To test H.264 and HEVC a given image will be encoded

as a single frame of a video which means it will be encoded as an Intra mode - or ”I”

frame.

40 compound images will be compressed by each algorithm and the results will be

presented. The compound images used for testing can be seen in the appendix of this

thesis in figures 134 - 137.

JPEG compression allows for a parameter known as QF (Quality Factor) to be mod-

ified, which can increase compression performance at the expense of image quality

and vice versa.

JPEG compression is implemented using ”OpenCV” open source computer vision

software library [28]. To test the compression and speed performance of JPEG com-

pression, different values of QF are used. The QF variable can be a value from 0-100.

Values below 50 incur severe distortion and compression artifacts, so they are ommit-

ted from this test. QF values from 50 - 90 inclusive, incremented by 10 are tested.

The implementation in c++ can be seen in the code section of this thesis in listing

29

To encode an image as a single frame using H.264 and HEVC, an open source video

encoding framework called FFMPEG [12] is used. FFMPEG implements the official

open source distributions of x264 (H.264) and x265(HEVC) under GPL licence.

Similar to JPEG, a parameter called ”CRF” (constant rate frame) can be used to

control the quality vs compression performance for both H.264 and HEVC. CRF can

be a value between 0-50, where 0 is the highest quality and 50 is the worst. A value

of 10 is good to excellent and a value of 20 is acceptable. Values below 20 incur severe

distortion and compression artefacts, so are omitted from testing.

The compound compression algorithm,”CCA” presented in this thesis is configured in

two modes during this test. When optimised for compression performance, Differential

Index Map Coding is used for all blocks that are classified as sparse. Blocks that

are classified as text with up to 31 unique pixel values are also compressed using

Differential Index Map Coding. Blocks that are classified as text with a pixel count

greater than 32 are compressed with discrete wavelet transform coding. Blocks that

are classified as fuzzy are compressed using discrete cosine transform encoding using

JPEG reference quantization matrix. Blocks classified as picture are compressed with

discrete cosine transform coding using HEVC reference quantization matrix. The

resultant encoded data from each compression algorithm is compressed independantly

using Huffman encoding implemented using the zlib [8] library.

When ”CCA” is optimised for image quality, blocks that are classified as text with a

219

9.5 Results 9 COMPOUND COMPRESSION ALGORITHM

unique pixel count greater than 31 are compressed with the Deflate algorithm. Blocks

that are classified as fuzzy use the HEVC quantization matrix and blocks that are

classified as picture use the AQM [31] matrix.

9.5 Compound Compression Algorithm Results

Table 71 tabulates the average results per image of the test. The test compares com-

pression performance, objective and subjective image quality and speed performance

on a set of 40 compound images. The compression algorithms tested are: ”CCA”

(compound compression algorithm), JPEG, H.264 and HEVC.

To accurately measure the speed performance, the suite of tests were run 10 times in

blocks and randomised. The value for time was then averaged over each set.

By viewing samples of the test images after processing, a scale has been developed

to associate the subjective image quality of processed compound images with SSIM

index value. The scale is described in table: 70

SSIM Label Description

Index

1 Lossless Full replication of original image,

free from error

0.990 - 0.999 A.Lossless Approximately lossess,

distortion imperceptible to human visual system

0.980 - 0.989 Excellent Excellent visual quality, text legible

distortion artifacts only noticeable

if one knows what to look for

0.970 - 0.979 Acceptable visible signs of blurring of text

and visible distortion artifacts

0.960 - 0.969 Passable Blurred text and signs of

blocking artifacts

0.900 - 0.959 Poor Text not legible, blocking artifacts.

0 - 0.899 NA Not suitable for compound image

compression

Table 70: SSIM Index value scale vs subjective image quality

220

9.6 Discussion 9 COMPOUND COMPRESSION ALGORITHM

Comp Decomp

Codec Comp PSNR SSIM Time Time Subjective

Ratio (dB) Index (µS) (µS) Quality

CCA Optimise 42.27 40.88 0.983 42,285 16,465 Excellent

Compression

CCA Optimse 34.39 42.63 0.991 39,423 15,511 A.Lossless

Quality

JPEG QF = 50 32.17 31.38 0.943 37,108 18,402 Poor

JPEG QF = 60 28.99 32.32 0.949 38,871 18,561 Poor

JPEG QF = 70 25.31 33.73 0.952 36,424 18,351 Poor

JPEG QF = 80 21.17 35.53 0.968 39,387 22,207 Acceptable

JPEG QF = 90 15.71 38.12 0.980 41,357 26,651 Excellent

H.264 CRF = 20 49.58 33.71 0.971 374,236 32,045 Acceptable

H.264 CRF = 15 36.15 34.71 0.9791 371,898 40,613 Acceptable

H.264 CRF = 10 27.13 35.71 0.981 480,674 31,020 Excellent

HEVC CRF = 20 46.78 34.51 0.978 386,871 31,045 Acceptable

HEVC CRF = 15 34.63 35.33 0.981 396,011 32,987 Excellent

HEVC CRF = 10 25.85 35.79 0.988 464,674 39,574 Excellent

Table 71: Compound Compression Algorithm vs JPEG vs H.264 vs HEVC

9.6 Discussion

The results shown in table 71 are significant. With respect to compression perfor-

mance, the compound compression algorithm, ”CCA”, presented in this thesis sig-

nificantly out performs JPEG at all quality levels that have been tested. Moreover,

it significantly out performs both H.264 and HEVC when both are optimised for

excellent quality.

Of possible greater significance, is that the compound compression algorithm pre-

sented has the highest objective image quality scores of all iterations of the test

compression frameworks. In particular, when the compound compression algorithm is

optimised for image quality, both the objective results of SSIM Index value and PSNR

are extremely high, with respect to the compressed file size. When subjectively view-

ing the decompressed images, there is very little to no compression artifacts around

areas of the screen containing text. When optimised for compression performance,

there are some mild blocking artifacts that are noticeable when there are areas of nat-

ural continuous tone image on the boundary of computer generated data. Blocking

artifacts are an inherent problem when using a block based compression algorithm

and can be even more exaggerated when using a combination of both lossless and

lossy compression algorithms in the same image. However, when subjectively viewing

221

9.6 Discussion 9 COMPOUND COMPRESSION ALGORITHM

the image, the blocking artifacts are only noticeable when one knows what to look

for. In other words, its a trained bias that brings the artifacts to the fore.

With respect to speed performance, the compound compression algorithm is very

close to JPEG. However, it can be considered that the decompression time holds

greater significance in a thin client system or virtual desktop infrastructure, when the

client side has less processing power than the server. To this end, It can be seen that

the decompression times for both modes of the compound compression algorithm out

perform JPEG and greatly out perform both H.264 and HEVC.

A significant contributing factor to the loss of compression performance when using

discrete cosine transform coding in the compound compression algorithm presented

in this thesis is that a generic Huffman entropy coder is used. The Huffman entropy

encoder used is not as optimised for the encoded discrete cosine transform data as the

canonical Huffman coding or arithmetic coding that is used in JPEG. Both H.264 and

HEVC use a patented entropy encoder called Context Adaptive Binary Arithmetic

Coding (CABAC) which is highly optimised for discrete cosine transform data.

The choice to use a standard generic Huffman encoder implemented using the zlib [8]

library for entropy encoding was made for multiple reasons, three of the main reason

are:

• There are multiple types of compression algorithms used in the compound com-

pression algorithm. The compressed data resulting from each compression al-

gorithm have very different attributes. Optimising an entropy encoder for one

specific compressed data type may not be optimal for another.

• The Huffman entropy encoder from the zlib library is free from license restric-

tions, allowing it to be used freely without penalty.

• The Huffman entropy encoder from zlib library is both efficient, lightweight and

very fast, which means it would be suitable for devices with low computational

power

For future work, optimising the entropy encoder for the compound compression al-

gorithm could enhance the compression performance of the compound compression

algorithm presented in this thesis.

222

10 RESULTS SUMMARY

10 Results Summary

Compound Image Classification

In section 9.1.1 (page 142), the compound image classification algorithm presented

in this thesis is compared to the algorithm presented in the work by Wu [48]. Table

37 (page 143), from section 9.1.1 shows that the classification time presented in this

thesis is at least twice as fast as the algorithm presented by Wu [48], which is a

significant improvement.

There is also a significant improvement in classification accuracy by the algorithm

presented in this thesis compared to Wu [48], which can be subjectively viewed in

figures 123 - 133, in the appendix of this thesis (page 256 - 266).

Lossless Compression

The novel compression algorithm ”Differential Index Map Coding” (DIMC) devel-

oped in this thesis in section 9.2.5 (page 167), is compared to the industry standard

compression algorithm Deflate [7] in section 9.2.7 (page 184 - 187). With respect to

compression performance, it is shown that DIMC significantly out performs Deflate’s

best compression setting for compound image data that contains low pixel count such

as sparse blocks and text blocks. This is shown in figures 107 and 108 (page 184 -

185).

With respect to speed performance, DIMC significantly out performs Deflate, even

when Deflate is configured for best speed performance. Of particular significance is

DIMC out performs Deflate when configured for best compression. It processes the

data approximately 20 times faster. This can be seen in figure 110 (page 187)

Full Compound Compression Algorithm

The full compound compression algorithm (CCA) described in section 9.4 (page 218),

is compared to industry standard compression algorithms JPEG [18] and H.264 [47],

as well as the state of the art HEVC [39]. The results, which are tabulated in table

71 (page 221), show that CCA achieves the highest objective and subjective image

quality score, which is a significant result.

With respect to compression performance, the CCA algorithm achieves significantly

higher compression ratios compared to the other compression algorithms tested, when

the objective and subjective image quality is similar. Using the subjective quality

metrics described in table 70 (page 220), The results in table 71 (page 221), show

that CCA with a subjective quality of ”Excellent” achieves on average, compression

ratios of over [42:1]. This is compared to JPEG which achieves over [15:1], H.264

which achieves over [27:1] and HEVC which achieves over [34:1].

223

10 RESULTS SUMMARY

With respect to speed performance, CCA significantly out performs H.264 and HEVC

in compression time. The results in table 71 (page 221), show that CCA is on average,

up to 10 times faster at compressing compared to H.264 and HEVC.

With respect to decompression time, the results in table 71 (page 221), show that

CCA has the fastest decompression time of all algorithms tested. Compared to H.264

and HEVC, the decompression time is over twice as fast.

224

11 CONCLUSION

11 Conclusion

The goal of the work presented in this thesis is to research and implement a strategy

to compress the highly complex attributes of a compound image. To do this, one must

have a deep understanding of the characteristics of a compound image and the nature

of digital imagery and the human visual system. By analysing the different attributes

of a compound image and separating them into defined classes of data type, one can

start to design a system that is capable of compressing each data type optimally.

Some of the most immediate attributes of the classes of data include:

• Elements of a graphical user interface that are smooth.

• Sharp transients in text data.

• Highly structured information for computer generated data such as sparse blocks.

• Non discernible slowly varying pixel value variations for blocks of continuous

tone image that can be considered fuzzy.

These attributes have been well researched in the area of compound image compres-

sion, but to the authors knowledge, little has been done on an overlooked attribute of

a compound image and that is the unique pixel count of blocks of pixels that contain

computer generated data.

From analysis on the amount of unique pixel values in a each block of a compound

image, it has been shown that there is a very strong correlation between unique pixel

count and computer generated data. This simple and overlooked attribute has lead

to the development of a very efficient novel lossless compression algorithm called

Differential Index Map Coding which has been presented in this thesis and tested

against industry standard compression algorithms.

The compound compression algorithm presented in this thesis is highly capable at

classifying the data types within a compound image. Moreover, it is a block based

strategy, which lends itself well to work with many ”off the shelf” compression algo-

rithm, which leaves rooms for continuous improvement. Being a block based com-

pression algorithm, it is modular by nature. This is a desirable attribute as the

different compression algorithms may be implemented in parallel, which may improve

on compression and decompression time.

Image quality is inherently subjective. However, it is important to be able to quantify

objectively the image quality of a decoded image to help in development and to control

data rate. Legacy metrics such as Root Mean Square Error (RMSE) and Peak Signal

to Noise Ratio (PSNR) are a good indication of quality, but do not give the whole

story. Modern image quality metrics such as Structural Similarity Index (SSIM) help

give confidence in the design of the compound compression algorithm presented in

225

11.1 Future Work 11 CONCLUSION

this thesis, as the results of compression have both a high PSNR value and SSIM

index value.

The compound compression algorithm has been tested on a set of high quality test

images and has out performed state of the art video codecs in terms of compression

performance and objective image quality. A significant amount of research in the area

of compound compression involves implementing new modes for industry standard,

state of the art video codecs such as H.264 and HEVC. This can be seen in the

research presented in [23] [9] [10] [4] [31]. However, implementing these video codecs

in a product that would be used commercially involves restrictive licensing criteria,

which reduces the scope of any potential project.

11.1 Future Work

The compound compression algorithm presented in this thesis could be considered as

the basis for real time video encoding strategy for video containing high amounts of

compound image, such as virtual desktop infrastructure, cloud computing and thin

client infrastructure. As video is temporal by nature, the next stage would be how to

compress successive frames of images efficiently. There is typically quite an amount

of temporal redundancy at a frame rate of 25- 30 frames per second. Much of the

screen may stay the same from frame to frame. A good step might be to leverage

the inter frame redundancy by implementing residual coding similar to the approach

used in other coding standards such as H.264 and HEVC.

With respect to the algorithms that make up the compound compression algorithm,

The first stage in future work would be to research on improving the entropy encoding

technique. As stated previously, H.264 and HEVC use a patented entropy encoder

known as ”Context Adaptive Binary Arithmetic Coding”, which is an Arithmetic

coder. Research presented by Duda [11] describes a new form of entropy coding

known as Asymmetrical Numeric Systems which leverage’s the speed of Huffman

coding with the performance of Arithmetic coding. This would be very beneficial for

a real time codec which must operate in a low bandwidth environment.

226

12 CODE

12 Code

12.1 Data Structures

This sections will describe the data structures and defined variables that are used

in the code. As the code has has been implemented using object orientated pro-

gramming, the data structures used have been defined mainly using classes instead

of structs.

Listing 19: PIXEL Class, C++

1 class PIXEL

2 {

3 public:

4 uint8_t channel0; //Blue in RGB colour space, Y in YCbCr colour space

5 uint8_t channel1; //Green in RGB colour space, Cr in YCbCr colour space

6 uint8_t channel2; //GRed in RGB colour space, Cb in YCbCr colour space

7 bool friend operator==(const PIXEL &p1, const PIXEL &p2)

8 {

9 if((p1.channel0 == p2.channel0)

10 && (p1.channel1 == p2.channel1)

11 && (p1.channel2 == p2.channel2))

12 return true;

13 else

14 return false;

15 };

16 };

The PIXEL class contains three data members of type 8 bit unsigned integer that

will hold the a value for each colour channel of a 24 bit pixel. the range of each data

member is 0-255. The PIXEL class implements operator overloading of the equality

’==’ operator. The purpose of this is to compare two PIXEL objects together.

Listing 20: PIXEL Q Class, C++

1 class PIXEL_Q

2 {

3 public:

4 uint8_t channel0; //Blue in RGB colour space, Y in YCbCr colour space

5 uint8_t channel1; //Green in RGB colour space, Cr in YCbCr colour space

6 uint8_t channel2; //GRed in RGB colour space, Cb in YCbCr colour space

7 bool friend operator ==(const PIXEL &p1, const PIXEL &p2)

8 {

9 if((abs(p1.channel0 -p2.channel0) < 2)

10 && (abs(p1.channel1 - p2.channel1) < 2)

11 && (abs(p1.channel2 - p2.channel2) < 2))

12 return true;

227

12.1 Data Structures 12 CODE

13 else

14 return false;

15 };

16 };

The PIXEL Q class is similar to the PIXEL class but has a different overloading of

the equality operator. The equality operator is overloaded with a function that will

perform light quantization on a per pixel pair basis. The absolute value of each data

member of the first pixel minus the second pixel is computed, if the value is below a

given threshold, then the pixels are said to be equal.

Listing 21: Block Classes, C++

1 class YCbCr_420_Block {

2 public:

3 unsigned char Y[256]; //16x16

4 unsigned char Cb[64]; //8x8

5 unsigned char Cr[64];

6 };

7

8 class YCbCr_444_Block {

9 public:

10 unsigned char Y[256];

11 unsigned char Cb[256];

12 unsigned char Cr[256];

13 };

14

15 class DCT_Coeffs_420 {

16 public:

17 short DCT_Y[256];

18 short DCT_Cb[64];

19 short DCT_Cr[64];

20 };

21

22 class DCT_Coeffs_444 {

23 public:

24 short DCT_Y[256];

25 short DCT_Cb[256];

26 short DCT_Cr[256];

27 };

The Block classes contain arrays for data members that are used to hold transformed

values for one 16x16 pixel block. A YCbCr 420 Block object stores the values of a

16x16 RGB block transformed and chroma sub-sampled into YCbCr colour space.

There is one Y sample for every four Cb and Cr sample. A YCbCr 444 Block object

holds values for a 16x16 rgb block that has been transformed into YCbCr colour

228

12.2 Classification Algorithm 12 CODE

space, without any chroma sub-sampling.

A DCT Coeffs 420 object holds the values of a YCbCr 420 Block which has been

transformed using a DCT function. The data type of each data member is 16 bit

signed integer as the values after dct transform are both positive and negative

12.2 Classification Algorithm

Listing 22: Classification Algorithm Function Definitions, C++

1 /* member functions from Differential Index Map Coding compression

2 algorithm used for classification of 16x16 blocks into one of

3 four catagories: Sparse, Text, Picture or Fuzzy

4 parameters: input argument is a count of unique

5 pixel values in a block.

6 Return value is val - an indicator of which catagory the

7 block under test is in

8 1 = fuzzy, 2 = picture, 3 = sparse, 4 = text*/

9

10 /********* Start of Classification Function ************************/

11

12 int DIMC_COMPRESS::new_classify(int colourCount)

13 {

14 // Y values of the original Block

15 int y_channel_values[256] = { 0 };

16

17 // calls a function to populate y_channel value array

18 get_y_values(y_channel_values);

19

20 // hold the values of the sub bands after DWT processing

21 int sub_band_low_low[64] = { 0 };

22 int sub_band_low_high[64] = { 0 };

23 int sub_band_high_low[64] = { 0 };

24 int sub_band_high_high[64] = { 0 };

25

26 /* perform the DWT on the columns along the rows */

27 forward_col_transform_16x16(y_channel_values);

28

29 /* perform the DWT on the rows along the columns */

30 forward_row_transform_16x16(y_channel_values);

31

32 /* populate the sub_band arrays */

33 populate_sub_bands(y_channel_values, sub_band_low_low, 0);

34 populate_sub_bands(y_channel_values, sub_band_high_low, 8);

35 populate_sub_bands(y_channel_values, sub_band_low_high, 128);

36 populate_sub_bands(y_channel_values, sub_band_high_high, 136);

37 int locator = 0;

38

39 // calculate the rootmean of each sub band

229

12.2 Classification Algorithm 12 CODE

40 // the root mean or quadratic mean is used

41 // as the values in the sub bands can be positive

42 // or negative

43 int meanVal_lo_lo = rootmean(sub_band_low_low, 64);

44 int meanVal_hi_lo = rootmean(sub_band_high_low, 64);

45 int meanVal_lo_hi = rootmean(sub_band_low_high, 64);

46 int meanVal_hi_hi = rootmean(sub_band_high_high, 64);

47

48 // calculate the variance of each sub band

49 int variance_hi_lo = variance(sub_band_high_low, 64, meanVal_hi_lo);

50 int variance_lo_lo = variance(sub_band_low_low, 64, meanVal_lo_lo);

51 int variance_lo_hi = variance(sub_band_low_high, 64, meanVal_lo_hi);

52 int variance_hi_hi = variance(sub_band_high_high, 64, meanVal_hi_hi);

53 int val = 0;

54 // calculate the standard deviation of each sub band

55 int standard_dev_lo_lo = sqrt(variance_lo_lo);

56 int standard_dev_hi_lo = sqrt(variance_hi_lo);

57 int standard_dev_lo_hi = sqrt(variance_lo_hi);

58 int standard_dev_hi_hi = sqrt(variance_hi_hi);

59

60 /*********** Logic for classification**************/

61

62 // colourCount is a variable holding the count

63 // of unique 3 byte pixels in a 16x16 block

64

65 // if this condition is true, block = sparse block

66 if (colourCount < 5 && standard_dev_lo_lo < 12)

67 {

68 val = 3;

69 }

70

71 // if this condition is true, block = fuzzy block

72 else if (colourCount > 5 && standard_dev_lo_lo < 12)

73 {

74 val = 1;

75 }

76

77 // if this condition is true, block = sparse block

78 else if (((standard_dev_hi_lo == 0)

79 && (standard_dev_lo_hi == 0)

80 && (standard_dev_hi_hi == 0)))

81 {

82

83 val = 3;

84 }

85 // if this condition is true, block = sparse block

86 else if (colourCount<10

87 && standard_dev_lo_hi>4 * standard_dev_hi_lo

88 && standard_dev_lo_hi> 4 * standard_dev_hi_hi)

89 {

230

12.2 Classification Algorithm 12 CODE

90 val = 3;

91 }

92 else if (colourCount<10

93 && standard_dev_hi_lo>4 * standard_dev_lo_hi

94 && standard_dev_hi_lo> 4 * standard_dev_hi_hi)

95 {

96 val = 3;

97 }

98 else if (colourCount<10

99 && standard_dev_hi_hi>4 * standard_dev_lo_hi

100 && standard_dev_hi_hi> 4 * standard_dev_hi_lo)

101 {

102 val = 3;

103 }

104

105 // if this condition is true, block is a text block

106 else if (colourCount<31 ||

107 (standard_dev_hi_lo >25

108 || standard_dev_lo_hi >25

109 || standard_dev_hi_hi> 25))

110 {

111 //4=text

112 val = 4;

113 }

114

115 // if this condition is true, block = picture block

116 else if (colourCount>31 || ((standard_dev_hi_lo < 10)

117 && (standard_dev_lo_hi < 12)

118 && (standard_dev_hi_hi < 8)))

119 {

120 //2 = picture

121 val = 2;

122 }

123

124 // if this condition is true, block is a text block

125 else if (colourCount<31 ||

126 (standard_dev_hi_lo >25

127 || standard_dev_lo_hi >25

128 || standard_dev_hi_hi> 25))

129 {

130 //4=text

131 val = 4;

132 }

133 else

134 { //picture

135 val = 2;

136 }

137

138 return val;

139 }

231

12.2 Classification Algorithm 12 CODE

140

141 /********* End of Classification Function ************************/

142

143 /********* Classification Helper functions ***********************/

144

145 /* function to populate an array with 256 Y channel values

146 Block16x16 is a data member of DIMC_COMPRESS class

147 it is a openCV Mat object, which is a smart pointer

148 to a sub matrix of an image.

149 y_channel_pointer is pointer of type unsigned

150 char that points to the data held in Block16x16 */

151

152 void DIMC_COMPRESS::get_y_values(int y_vals[])

153 {

154 uint8_t* y_channel_pointer;

155 int y = 0;

156 for (int row = 0; row < 16; row++)

157 {

158 y_channel_pointer = Block16x16.ptr(row);

159 /*

160 a mat object stores channel values like:

161 Block[row][0] = Y

162 Block[row][1] = Cr

163 Block[row][2] = Cb

164 so thats why you iterate to 48:

165 */

166 for (int col = 0; col < 48; col++, y++)

167 {

168 /* get the Y value */

169 y_vals[y] = y_channel_pointer[col];

170 /* skip the other values and increment the locator */

171 col += 2;

172 }

173 }

174 }

175

176 /* populate_sub_bands is a member function from

177 differential Index Map compression algoritm. arguments:

178 transformed_vals is a pointer to an array of integer

179 values of discrete wavelet transform values of length 256.

180 sub_band is a pointer to one of four integer array's

181 that will hold the value of each sub band. locator is a

182 value that is used to navigate the transformed_vals */

183

184 void DIMC_COMPRESS::populate_sub_bands(int transformed_vals[],

185 int sub_band[],

186 int locator)

187 {

188 /* point to the beginning of each sub_band

189 in the 1D array of coefs */

232

12.2 Classification Algorithm 12 CODE

190 int *coef_pointer = transformed_vals+ locator;

191 /* each row has 8 columns*/

192 int offset = 16;

193 /* where to put the coef in the subband */

194 int next_coef = 0;

195

196 for (int i = 0; i < 8; i++)

197 {

198 coef_pointer = transformed_vals + locator+(i*offset);

199 for (int col = 0;col<8; col++,next_coef++)

200 {

201 sub_band[next_coef] = coef_pointer[col];

202 }

203 }

204

205 }

206

207

208 /* Forward 2D Discrete Wavelet Transform

209 Split into two 1D DWT Transforms */

210 void DIMC_COMPRESS::forward_col_transform_16x16(int sub_band[])

211 {

212 /* the weights s0,s1,w0,w1 are 0.5,0.5,0.5,-0.5 respectively

213 they have been shifted up 10 bits so the can be

214 performed with integer calculations */

215 int offset = 16;

216 for (int row = 0; row < 16; row++)

217 {

218 double temp[16] = { 0 };

219 /* forward transform level one*/

220 int length = 16;

221 /* if length is 16, h is 8 */

222 int h = length >> 1;

223 for (int i = 0; i < h; i++)

224 {

225 /*if i =0, k=1, if i =2, k =4, etc */

226 int k = (i << 1);

227 /*averaging calculation*/

228 temp[i] = sub_band[row*offset+k] * s0

229 + sub_band[row*offset+(k + 1)] * s1;

230

231 /* differencing calculation */

232 temp[i + h] = sub_band[row*offset + k] * w0

233 + sub_band[row*offset +(k + 1)] * w1;

234 }

235

236 /* store the basis calculations 'In place'

237 in the original 2D array */

238 for (int i = 0; i < length; i++)

239 {

233

12.2 Classification Algorithm 12 CODE

240 // pushback is the resultant value after dividing by 1024

241 // equivelent of a right shift by 10 bits

242 double pushBack = ((temp[i]) / 1024);

243 sub_band[row*offset + i] = pushBack;

244

245 }

246

247 }

248 }

249

250 void DIMC_COMPRESS::forward_row_transform_16x16(int sub_band[])

251 {

252 int offset = 16;

253 for (int current_col = 0; current_col < 16; current_col++)

254 {

255 double temp[16] = { 0 };

256

257 /* forward transform level one*/

258 int length = 16;

259 /*

260 if length is 16, h is 8,

261 temp[0]->[7] contain the averages,

262 temp[8]->[15] contain the differences

263 */

264 int h = length >> 1;

265

266 for (int i = 0; i < h; i++)

267 {

268 /*if i =0, k=1, if i =2, k =4, etc */

269 int k = (i << 1);

270 /*averaging calculation*/

271 temp[i] = sub_band[current_col+(offset * k)] * s0

272 + sub_band[current_col+ offset*(k + 1)] * s1;

273

274 /* differencing calculation */

275 temp[i + h] = sub_band[current_col + (offset * k)] * w0

276 + sub_band[current_col + offset * (k + 1)] * w1;

277 }

278

279 for (int i = 0; i < length; i++)

280 {

281 //double roundedVal = (temp[i] / 1024);

282 //if(roundedVal)

283 sub_band[(i*offset)+current_col] = (temp[i]/1024);

284 }

285 }

286 }

287

288 /* root mean calculates the quadratic mean of an array of values

289 that contain one of the four sub bands after Discrete

234

12.2 Classification Algorithm 12 CODE

290 Wavelet Tranform arguments: sub_band = an integer pointer

291 to an array of sub band values, size = the size of the sub band.

292 return the rootmean */

293 int DIMC_COMPRESS::rootmean(int sub_band[], int size)

294 {

295 /* holds the total some of all values of

296 the block that is passed */

297 int sum_of_channel_values = 0;

298

299 for (int i = 0; i < size; i++)

300 {

301 sum_of_channel_values += sub_band[i] * sub_band[i];

302 }

303 /* performing the calculation as floating point,

304 then rounding up to an integer. */

305 int mean = sqrt(ceil(static_cast<float>(sum_of_channel_values) /

306 static_cast<float>(size)));

307 return mean;

308 }

309

310 int DIMC_COMPRESS::variance(int sub_band[], int size, int mean)

311 {

312 int sum = 0;

313

314 /* declaring an array to hold the variance

315 calculations for an 8x8 block of DWT coefs */

316 int squared_values[64] = { 0 };

317

318 /* pointing to the index value of the

319 64 byte array of DWT coefs */

320 int *value_ptr = sub_band;

321

322 for (int i = 0; i < size; i++)

323 {

324 /* subtracting the mean from each value in the

325 sub band and storing it in squared_values*/

326 squared_values[i] = value_ptr[i] -= mean;

327

328 /* squaring each values */

329 squared_values[i] = squared_values[i] * squared_values[i];

330

331 /*taking the sum */

332 sum += squared_values[i];

333

334 }

335 /* returning the variance as an integer

336 - will incur rounding error */

337 int variance = round(static_cast<float>(sum)

338 / static_cast<float>(size));

339

235

12.3 Discrete Cosine Transform Code 12 CODE

340 return variance;

341 }

12.3 Discrete Cosine Transform Code

Listing 23: Direct 2-Dimensional DCT, C++

1 void DCT_Function::dct_direct_2D(double *f, double *F)

2 {

3 // a = Normalization (alpha) values,

4 // coef = value of dct coef at M[i][j], M = dct coefficient Matrix

5 // sum = total of weighted dct coef's times input sample times alpha values

6 double a[8], sum, coef;

7 //N = 8 for 8x8 block of pixels

8 uint8_t N=8;

9

10 // calculate the alpha values

11 a[0] = sqrt (1.0 / N);

12 for (uint8_t b = 1; i < N; ++i)

13 {

14 a[b] = sqrt (2.0 / N);

15 }

16 for (uint8_t u = 0; u < N; ++u)

17 {

18 for (uint8_t v = 0; v < N; ++v)

19 {

20 sum = 0.0;

21 for (uint8_t i = 0; i < N; ++i)

22 {

23 for (uint8_t j = 0; j < N; ++j)

24 {

25 coef = std::cos ((2*i+1) * u * PI / (2 * N))

26 * std::cos ((2 * j+1) * v * PI/(2 * N));

27 sum += *(f+i * N+j) * coef; //f[i][j] * coef

28 } //for j

29 *(F+u * N+v) = a[u] * a[v] * sum;

30 } //for i

31 } //for u

32 } //for v

33 }

The DCT function in listing 23 computes the 2-Dimensional Discrete Cosine Trans-

form of an 8x8 block of samples. It takes two pointers to arrays as arguments: f is

the input array, and F is the output array. This transform is implementation is fully

reversible. If the input array are YCbCr values, the output array are DCT Coeffi-

236

12.3 Discrete Cosine Transform Code 12 CODE

cients and vice versa. This implmentation has a time complexity of O(N4), which is

too slow for real-time application

237

12.3 Discrete Cosine Transform Code 12 CODE

Listing 24: 1-D DCT Transform, C++

1 #define PI 3.141592653589

2 double factor = PI / 8;

3

4 void DCT_Function::forward_1D_Dct(double input[8], double output[8])

5 {

6 // N = length of input array

7 uint8_t N = 8;

8 for (uint8_t i = 0; i < N; i++)

9 {

10 double sum = 0;

11 double coef = 0;

12 for (uint8_t j = 0; j < N; j++)

13 {

14 coef = std::cos((j + 0.5) * i * factor);

15 sum += input[j] * coef;

16 }

17 output[i] =sum;

18 }

19 }

20

21 void DCT_Function::inverse_1D_Dct(double input[8], double output[8])

22 {

23 uint8_t N = 8;

24 for (size_t i = 0; i < N; i++) {

25 double sum = input[0] / 2;

26 double coef =0;

27 for (size_t j = 1; j < N; j++)

28 {

29 coef = std::cos(j * (i + 0.5) * factor)

30 sum += input[j] * coef ;

31 }

32 output[i] =(sum/4);

33 }

34 }

Listing 24 shows the implementation of the forward and inverse 1 dimensional Discrete

cosine transform. The functions take two arguments, a reference to an input array

and output array. performing the 2-D discrete as two 1-D transforms, first along the

columns, then the rows, reduces the time complexity to O(N3

238

12.3 Discrete Cosine Transform Code 12 CODE

Listing 25: Fast Arai,Agui,Nakajima (AAN) 1D DCT Transform, C++

1 void FastDct8::transform(double vector[8]) {

2 const double v0 = vector[0] + vector[7];

3 const double v1 = vector[1] + vector[6];

4 const double v2 = vector[2] + vector[5];

5 const double v3 = vector[3] + vector[4];

6 const double v4 = vector[3] - vector[4];

7 const double v5 = vector[2] - vector[5];

8 const double v6 = vector[1] - vector[6];

9 const double v7 = vector[0] - vector[7];

10

11 const double v8 = v0 + v3;

12 const double v9 = v1 + v2;

13 const double v10 = v1 - v2;

14 const double v11 = v0 - v3;

15 const double v12 = -v4 - v5;

16 const double v13 = (v5 + v6) * A[3];

17 const double v14 = v6 + v7;

18

19 const double v15 = v8 + v9;

20 const double v16 = v8 - v9;

21 const double v17 = (v10 + v11) * A[1];

22 const double v18 = (v12 + v14) * A[5];

23

24 const double v19 = -v12 * A[2] - v18;

25 const double v20 = v14 * A[4] - v18;

26

27 const double v21 = v17 + v11;

28 const double v22 = v11 - v17;

29 const double v23 = v13 + v7;

30 const double v24 = v7 - v13;

31

32 const double v25 = v19 + v24;

33 const double v26 = v23 + v20;

34 const double v27 = v23 - v20;

35 const double v28 = v24 - v19;

36

37 vector[0] = S[0] * v15;

38 vector[1] = S[1] * v26;

39 vector[2] = S[2] * v21;

40 vector[3] = S[3] * v28;

41 vector[4] = S[4] * v16;

42 vector[5] = S[5] * v25;

43 vector[6] = S[6] * v22;

44 vector[7] = S[7] * v27;

45 }

The fast implementation is from [1]

239

12.4 Deflate Interface 12 CODE

12.4 Deflate Interface

These are the functions to interface with the zlib dynamically linked library

Listing 26: Interface for zlib dll, Deflate compression Functions, C++

1 int Z_LIB::compress(vector<uint8_t> &src, vector<uint_8t> &dest)

2 {

3 int level = 9; // for best compression

4

5 constexpr int CHUNK = 256000;

6

7 int ret, flush;

8 unsigned have;

9 z_stream strm;

10 unsigned char out[CHUNK];

11

12 /* allocate deflate state */

13 strm.zalloc = Z_NULL;

14 strm.zfree = Z_NULL;

15 strm.opaque = Z_NULL;

16 ret = deflateInit(&strm, level);

17

18 /* input data specified in one big chunk */

19 strm.avail_in = src.size();

20 flush = Z_FINISH; // instead of Z_NO_FLUSH, as this is the entire data

21 strm.next_in = src.data();

22

23 /* run deflate() on input until output buffer not full, finish

24 compression if all of source has been read in */

25 do {

26 strm.avail_out = CHUNK;

27 strm.next_out = out;

28 ret = deflate(&strm, flush); /* no bad return value */

29 assert(ret != Z_STREAM_ERROR); /* state not clobbered */

30 have = CHUNK - strm.avail_out;

31 dest.insert(dest.end(), out, out+have);

32 } while (strm.avail_out == 0);

33 assert(strm.avail_in == 0); /* all input will be used */

34

35 assert(ret == Z_STREAM_END); /* stream will be complete */

36

37 /* clean up and return */

38 (void)deflateEnd(&strm);

39

40 return 0;

41 }

42 int Z_LIB::decompress(vector<uint8_t> &src, vector<uint_8t> &dest)

43 {

44

240

12.4 Deflate Interface 12 CODE

45 constexpr int CHUNK = 256000;

46

47 int ret;

48 unsigned have;

49 z_stream strm;

50 unsigned char out[CHUNK];

51

52 /* allocate inflate state */

53 strm.zalloc = Z_NULL;

54 strm.zfree = Z_NULL;

55 strm.opaque = Z_NULL;

56 strm.avail_in = 0;

57 strm.next_in = Z_NULL;

58 ret = inflateInit(&strm);

59 if (ret != Z_OK)

60 throw exc:: error_from_inflateInit_t{ret};

61

62 strm.avail_in = src.size();

63 strm.next_in = src.data();

64

65 /* run inflate() on input until output buffer not full */

66 do {

67 strm.avail_out = CHUNK;

68 strm.next_out = out;

69 ret = inflate(&strm, Z_NO_FLUSH);

70 assert(ret != Z_STREAM_ERROR); /* state not clobbered */

71 switch (ret) {

72 case Z_NEED_DICT:

73 ret = Z_DATA_ERROR; /* and fall through */

74 case Z_DATA_ERROR:

75 case Z_MEM_ERROR:

76 (void)inflateEnd(&strm);

77 throw exc:: error_from_inflateInit_t{ret};

78 }

79 have = CHUNK - strm.avail_out;

80 dest.insert(dest.end(), out, out+have);

81 } while (strm.avail_out == 0);

82

83 // deflated one big chunk of input, so ret

84 // will be Z_STREAM_END now

85 assert(ret == Z_STREAM_END);

86

87 /* clean up and return */

88 (void)inflateEnd(&strm);

89 }

241

12.5 Differential Index Map Coding Functions 12 CODE

12.5 Differential Index Map Coding Functions

Listing 27: Differential Index Map Coding compression Functions, C++

1 /*

2 colour_count is a class member function that counts the unique 3-byte pixels

3 in a 16x16 block and stores them in an array, which is the index table for

4 the index map(s).

5 Takes no arguments, populates class data member array indexTable[]

6 */

7 int DIMC_COMPRESS::colour_count()

8 {

9 /* pixel_pointer used to point to the beginning of

10 a 3 byte pixel in a 16x16 block of pixels */

11 uchar* pixel_pointer;

12

13 /* recovers the RGB values of the pixel pointed to */

14 PIXEL pixel;

15

16 for (int row = 0; row < 16; row++)

17 {

18 pixel_pointer = Block16x16.ptr<uchar>(row);

19

20 /* col goes to 48 as the pixels are in a "packed" format, not planar */

21 for (int col = 0; col < 48; col++)

22 {

23 pixel.channel0 = pixel_pointer[col];

24 ++col;

25 pixel.channel1 = pixel_pointer[col];

26 ++col;

27 pixel.channel2 = pixel_pointer[col];

28

29 /*the '==' operator is overloaded and will return true if a pixel

30 and its neighbor are equal

31 after being shifted over by a specified range*/

32

33 /*searches the vector of unique pixels, if not found, puts it in*/

34

35 if (std::find(indexTable.begin(), indexTable.end(), pixel)

36 == indexTable.end())

37 {

38 indexTable.emplace_back(pixel);

39 }

40 /* Break out of the function to use DCT on block*/

41 if (indexTable.size() > 30)

42 {

43 return -1;

44 }

45 }

46 }

242

12.5 Differential Index Map Coding Functions 12 CODE

47 return indexTable.size();

48 }

49

50 /*Calling function to generate four 8x8 index maps*/

51 void DIMC_COMPRESS::make_index_map()

52 {

53 index_map8x8(0, 0, i_Map_Top_L);

54 index_map8x8(0, 24, i_Map_Top_R);

55 index_map8x8(8, 0, i_Map_Bottom_L);

56 index_map8x8(8, 24, i_Map_Bottom_R);

57 }

58

59 /*Function to create an 8x8 index map, which is a sub block from

60 a 16x16 block. the indexMap values will be stored in a linear array instead

61 of a 2-d array to speed up processing */

62 void DIMC_COMPRESS::index_map8x8(int row_offset, int col_offset, uint8_t i_Map[])

63 {

64 /* iterator is used to put the index value into the index map */

65 int iterator = 0;

66 int column_offset = col_offset+24;

67 for (int row = 0; row < 8; row++)

68 {

69 /* pixel_pointer points to the beginning of a 3 byte pixel in Block16x16 */

70 uint8_t* pixel_pointer = Block16x16.ptr<uchar>((row + row_offset));

71 for (int col = col_offset; col <column_offset; col++)

72 {

73

74 /* used to put a matched index value in the index map */

75 vector<PIXEL>::iterator it;

76 PIXEL pixel;

77 pixel.channel0 = pixel_pointer[col];

78 ++col;

79 pixel.channel1 = pixel_pointer[col];

80 ++col;

81 pixel.channel2 = pixel_pointer[col];

82

83 /* iterate through the pixel value array to find a match */

84 for (it = indexTable.begin(); it != indexTable.end(); it++)

85 {

86 if (*it == pixel)

87 {

88 /* loc = location in vector of pixel value*/

89 uint8_t loc = it - indexTable.begin();

90 /* sets the value in the index map equal to the index in

91 the pixel_value vector */

92

93 i_Map[iterator] = loc;

94 iterator++;

95 break;

96 }

243

12.5 Differential Index Map Coding Functions 12 CODE

97 }

98 }

99 }

100 uint8_t last = 0;

101 int pause = 0;

102 }

103

104 void DIMC_COMPRESS::index_map16x16(uint8_t i_Map[])

105 {

106 int iterator = 0;

107 PIXEL pixel;

108 uint8_t *pixel_pointer = NULL;

109

110 for (int row = 0; row < 16; row++)

111 {

112

113 pixel_pointer = Block16x16.ptr<uchar>(row);

114 for (int col = 0; col < 48; col++)

115 {

116 vector<PIXEL>::iterator it;

117 pixel.channel0 = pixel_pointer[col];

118 ++col;

119 pixel.channel1 = pixel_pointer[col];

120 ++col;

121 pixel.channel2 = pixel_pointer[col];

122

123 /* iterate through the pixel array to find a match */

124 for (it = indexTable.begin(); it != indexTable.end(); it++)

125 {

126 if (*it == pixel)

127 {

128 /*loc = location in vector of pixel value*/

129 uint8_t loc = it - indexTable.begin();

130 /* sets the value in the index map equal to the index

131 in the pixel_value vector*/

132 i_Map[iterator] = loc;

133 iterator++;

134 break;

135 }

136 }

137 }

138 }

139 }

140

141

142 void DIMC_COMPRESS::create_header(vector<uint8_t> &coded)

143 {

144 /*

145 header byte:

146 bit[0] 0 = 16x16 block comparison, 1 = 8x8 block comparrsion

244

12.5 Differential Index Map Coding Functions 12 CODE

147 bit[1] 0 = horizontal comparison, 1 = vertical comparison

148 bit[2]-[7] amount of different pixels 0-31

149 */

150

151 bool block8x8Flag = 0;

152 bool block16x16Flag = 0;

153

154 /*header: comparison size and and amount of colours

155 example 0010 0000 = block uses 16x16 compare, 8 unique colours */

156 uint8_t header = 0;

157

158 // insert the amount of colours of the block into the header

159 header = (header | indexTable.size());

160

161 // shift the pixel count up by 2 bits

162 header = header << 2;

163 /* bit[0] =0 if block is 16x16 */

164 if (indexTable.size() < 16)

165 {

166 header = (header | 0);

167 block16x16Flag = 1;

168 }

169 else

170 {

171 //bit[0] =1 if 8x8 blocks

172

173 header = (header | 1);

174 block8x8Flag = 1;

175 }

176

177 coded.emplace_back(header); // store header byte in data vector

178

179 /*X Y Coordinates With respect to the 16x16 block in the

180 Original Image*/

181

182 uint8_t block_row = 0;

183

184 block_row = (block_row | block_Row);

185

186 uint8_t block_col = 0;

187

188 block_col = (block_col | block_Column);

189

190 coded.emplace_back(block_row);

191 coded.emplace_back(block_col);

192

193 /* Write The colours to the output file */

194

195 for (int i = 0; i < indexTable.size(); i++)

196 {

245

12.5 Differential Index Map Coding Functions 12 CODE

197 // pushing the unique pixel values into the coded stream

198 coded.emplace_back(indexTable[i].channel0); // channel0 value

199 coded.emplace_back(indexTable[i].channel1); // channel1 Value

200 coded.emplace_back(indexTable[i].channel2); // channel2 Value

201

202 }

203 /* Base Line Run Length */

204 if (block8x8Flag)

205 {

206 base_line_run_length(i_Map_Top_L, coded);

207 base_line_run_length(i_Map_Top_R, coded);

208 base_line_run_length(i_Map_Bottom_L, coded);

209 base_line_run_length(i_Map_Bottom_R, coded);

210

211 compare_rows(coded, i_Map_Top_L);

212 //coded.emplace_back(0);

213 compare_rows(coded, i_Map_Top_R);

214 //coded.emplace_back(0);

215 compare_rows(coded, i_Map_Bottom_L);

216 //coded.emplace_back(0);

217 compare_rows(coded, i_Map_Bottom_R);

218 //coded.emplace_back(0);

219 }

220

221 if (block16x16Flag)

222 {

223 base_line_run_length_16(i_Map_16x16, coded);

224 compare_rows_16(coded, i_Map_16x16);

225 }

226 /*End Of Base Line Run Length*/

227 }

228

229

230

231 void DIMC_COMPRESS::base_line_run_length(uint8_t i_Map[], vector<uint8_t> &coded)

232 {

233 /*

234 extractor is a byte that will contain

235 the run value in ms nibble and length in ls nibble

236 */

237 uint8_t extractor = 0;

238

239 /* set pointer to row 4 of an 8x8 block */

240 uint8_t *centre_Row_Ptr = i_Map + 32;

241

242 /* declare a variable to hold run length */

243 uint8_t run_length = 0;

244

245 for (int i = 0; i < 8; i++)

246 {

246

12.5 Differential Index Map Coding Functions 12 CODE

247 run_length = 0;

248

249 /* if the next val + 1 is less than the

250 No of columns and index i+ 1 = index i */

251 while (i + 1 < 8 && centre_Row_Ptr[i] == centre_Row_Ptr[i + 1])

252 {

253 run_length++; // increase the run

254 i++; // move the iterator

255 }

256 /* extractor will contain the run data and length for

257 a specific run ex: 0010 1111 = index 1 from 0-15 */

258

259 uint8_t extractor = 0;

260

261 // The run value index

262 extractor = (extractor | centre_Row_Ptr[i]);

263 //push it up to the top 3 bits

264 extractor = extractor << 3;

265 // the length of the run

266 extractor = (extractor | run_length);

267 coded.emplace_back(extractor);

268 }

269 }

270

271 void DIMC_COMPRESS::base_line_run_length_16(uint8_t i_Map[], vector<uint8_t> &coded)

272 {

273 /*

274 extractor is a byte that will contain

275 the run value in ms nibble and length in ls nibble

276 */

277 uint8_t extractor = 0;

278

279 /* set pointer to row 4 of an 8x8 block */

280 uint8_t *centre_Row_Ptr = i_Map + 128;

281

282 /* declare a variable to hold run length */

283 uint8_t run_length = 0;

284

285 for (int i = 0; i < 16; i++)

286 {

287 run_length = 0;

288

289 /* if the next val + 1 is less than the

290 No of columns and index i+ 1 = index i */

291 while (i + 1 < 16 && centre_Row_Ptr[i] == centre_Row_Ptr[i + 1]) //

292 {

293 run_length++;

294 i++;

295 }

296

247

12.5 Differential Index Map Coding Functions 12 CODE

297 uint8_t extractor = 0; /

298 extractor = (extractor | centre_Row_Ptr[i]);

299 extractor = extractor << 4;

300 extractor = (extractor | run_length);

301 coded.emplace_back(extractor);

302 }

303 }

304

305 void DIMC_COMPRESS::compare_rows(vector<uint8_t> &coded, uint8_t i_Map[])

306 {

307 uint8_t increment_no_change = 32; // 0010 0000

308 uint8_t nc_symbol = 31; // 0001 1111

309

310 /* the return value of the two row comparison

311 if no change, it returns a 1 */

312 int no_change_flag = 0;

313

314 /* holds the amount of non changed rows*/

315 int no_change_count = 0;

316 for (int row = 4; row > 0; row--)

317 {

318 /* offset is a variable that is used to set

319 the correct row of the index map */

320 int offset = row * 8;

321 // no_change_flag = 1: no change

322 // no_change_flag = 0: there is a change

323

324 no_change_flag = two_row_compare(coded, i_Map, offset, -8);

325

326 /* no change count gets incremented on successive no change rows */

327 no_change_count += no_change_flag;

328

329 /* check the flag */

330 if (no_change_flag == 1)

331 {

332 if (no_change_count > 1)

333 { /* increment the no change symbol alread in code stream */

334 coded.back() += increment_no_change;

335 }

336 else

337 {

338 /* insert a no change symbol */

339 coded.emplace_back(nc_symbol);

340 }

341 }

342 else

343 /* this condition is true when there has been a change on a row */

344 no_change_count = 0;

345 }

346 no_change_count = 0;

248

12.5 Differential Index Map Coding Functions 12 CODE

347 for (int row = 4; row < 7; row++)

348 {

349 /* offset is a variable that is used to

350 set the correct row of the index map */

351 int offset = row * 8;

352

353 // no_change_flag = 1: no change

354 // no_change_flag = 0: there is a change

355

356 no_change_flag = two_row_compare(coded, i_Map, offset, +8);

357 /* no change count gets incremented on successive no change rows */

358 no_change_count += no_change_flag;

359 /* check the flag */

360 if (no_change_flag == 1)

361 {

362 if (no_change_count > 1)

363 { /* increment the no change symbol alread in code stream */

364 coded.back() += increment_no_change;

365 }

366 else

367 {

368 /* insert a no change symbol */

369 coded.emplace_back(nc_symbol);

370 }

371 }

372 else

373 /* this condition is true when there has been a change on a row */

374 no_change_count = 0;

375 }

376

377 }

378

379 void DIMC_COMPRESS::compare_rows_16(vector<uint8_t> &coded, uint8_t i_Map[])

380 {

381 uint8_t increment_no_change = 16; // 0001 0000

382 uint8_t nc_symbol = 15; // 0000 1111

383

384 /* the return value of the two

385 row comparison if no change, it returns a 1 */

386

387 int no_change_flag = 0;

388 /* holds the amount of non changed rows*/

389 int no_change_count = 0;

390 for (int row = 8; row > 0; row--)

391 {

392 // offset is a variable that is used to set

393 //the correct row of the index map

394

395 int offset = row * 16;

396 // no_change_flag = 1: no change

249

12.5 Differential Index Map Coding Functions 12 CODE

397 // no_change_flag = 0: there is a change

398

399 no_change_flag = two_row_compare_16(coded, i_Map, offset, -16);

400 /* no change count gets incremented on successive no change rows */

401 no_change_count += no_change_flag;

402 /* check the flag */

403 if (no_change_flag == 1)

404 {

405 if (no_change_count > 1)

406 { /* increment the no change symbol alread in code stream */

407 coded.back() += increment_no_change;

408 }

409 else

410 {

411 /* insert a no change symbol */

412 coded.emplace_back(nc_symbol);

413 }

414 }

415 else

416 /* this condition is true when there

417 has been a change on a row */

418

419 no_change_count = 0;

420 }

421 no_change_count = 0;

422 for (int row = 8; row < 15; row++)

423 {

424 int offset = row * 16;

425 // no_change_flag = 1: no change

426 // no_change_flag = 0: there is a change

427

428 no_change_flag = two_row_compare_16(coded, i_Map, offset, +16);

429 /* no change count gets incremented on successive no change rows */

430 no_change_count += no_change_flag;

431 /* check the flag */

432 if (no_change_flag == 1)

433 {

434 if (no_change_count > 1)

435 { /* increment the no change symbol alread in code stream */

436 coded.back() += increment_no_change;

437 }

438 else

439 {

440 /* insert a no change symbol */

441 coded.emplace_back(nc_symbol);

442 }

443 }

444 else

445 /* this condition is true when there has been a change on a row */

446 no_change_count = 0;

250

12.5 Differential Index Map Coding Functions 12 CODE

447 }

448 }

449

450

451

452 uint8_t DIMC_COMPRESS::two_row_compare(vector<uint8_t> &coded,

453 uint8_t i_Map[], int offset, int of)

454 {

455 uint8_t no_change_flag = 1;

456 uint8_t compare_row_offset = offset;

457 uint8_t current_row_offset = compare_row_offset + of;

458 uint8_t extractor = 0;

459

460 /* points to the row that the current row will be compared to */

461 uint8_t* compare_ptr = i_Map + compare_row_offset;

462 uint8_t* current_ptr = i_Map + current_row_offset;

463

464 for (int col = 0; col < 8; col++)

465 {

466 /* comparrison of two rows column by column */

467 if (col < 8 && current_ptr[col] != compare_ptr[col])

468 {

469 // 0000 0000 used to logically or with

470 // position (upper nibble) and colour (lower nibble)

471 uint8_t extractor = 0;

472 // extracting the location in the row.

473 extractor = (col | extractor);

474

475 // shifting the location in the row up five bits

476 extractor = extractor << 5;

477

478 // extracting the value of the index map.

479 extractor = (extractor | current_ptr[col]);

480 coded.emplace_back(extractor);

481 no_change_flag = 0;

482 }

483

484 }

485 /* insert end of row symbol */

486 if (no_change_flag == 0)

487 {

488 coded.emplace_back(255);

489 }

490

491 return no_change_flag;

492 }

493

494 uint8_t DIMC_COMPRESS::two_row_compare_16(vector<uint8_t> &coded,

495 uint8_t i_Map[], int offset, int of)

496 {

251

12.5 Differential Index Map Coding Functions 12 CODE

497 uint8_t no_change_flag = 1;

498 uint8_t compare_row_offset = offset;

499 uint8_t current_row_offset = compare_row_offset + of;

500 uint8_t extractor = 0;

501

502 /* points to the row that the current row will be compared to */

503 uint8_t* compare_ptr = i_Map + compare_row_offset;

504 uint8_t* current_ptr = i_Map + current_row_offset;

505

506 for (int col = 0; col < 16; col++)

507 {

508 /* comparrison of two rows column by column */

509 if (col < 16 && current_ptr[col] != compare_ptr[col])

510 {

511

512 // 0000 0000 used to logically or with

513 // position (upper nibble) and colour (lower nibble)

514

515 uint8_t extractor = 0;

516 extractor = (col | extractor);

517 extractor = extractor << 4;

518 extractor = (extractor | current_ptr[col]);

519 coded.emplace_back(extractor);

520 no_change_flag = 0;

521 }

522

523 }

524 /* insert end of row symbol */

525 if (no_change_flag == 0)

526 {

527 coded.emplace_back(255);

528 }

529

530 return no_change_flag;

531 }

12.5.1 Discrete Wavelet Transform Functions

Listing 28: Non Zero Index Map Function to encod Thresholded Discrete Wavelet

Transform Coefficients, C++

1 void DWT_INT_Compression::make_Index_map(int data[16][16],

2 uint8_t indexMap[16][16],

3 vector<uint8_t>&coded)

4 {

5

6 uint16_t zero_row = 1 << 15;

252

12.5 Differential Index Map Coding Functions 12 CODE

7 uint16_t header = 0;

8 int non_zero_count = 0;

9

10 int header_byte_1 = coded.size();

11 coded.emplace_back(0);

12 int header_byte_2 = coded.size();

13 coded.emplace_back(0);

14

15 vector<uint8_t> temp;

16 for (int i = 0; i < 16; i++)

17 {

18 uint16_t nz_locator = 1 << 15;

19 uint16_t nz_val = 0;

20 for (int j = 0; j < 16; j++)

21 {

22 if (data[i][j] != 0)

23 {

24 indexMap[i][j] = 1;

25 temp.emplace_back(data[i][j]);

26 non_zero_count++;

27 nz_val |= nz_locator;

28 }

29 nz_locator >>= 1;

30 }

31 if (nz_val>0)

32 {

33 // get the row 0->15

34 header |= zero_row;

35 //

36

37 uint8_t LSB = nz_val & 255;

38 nz_val >>= 8;

39 uint8_t MSB = nz_val & 255;

40

41 coded.emplace_back(MSB);

42 coded.emplace_back(LSB);

43 }

44 zero_row >>= 1;

45 }

46 //get the 2 byte header

47 uint8_t LSB = header & 255;

48 header >>= 8;

49 uint8_t MSB = header & 255;

50

51

52 coded.insert(coded.end(), temp.begin(), temp.end());

53 coded[header_byte_1] = MSB;

54 coded[header_byte_2] = LSB;

55 }

253

12.6 OpenCV and FFMPEG Code 12 CODE

12.6 OpenCV and FFMPEG Code

Listing 29: Interface for JPEG compression, C++

1 void JPEG_Compression()

2 {

3 Utilities utils;

4 int JPEG_QUALITY = utils.convert_Arg_int(argv[2]);

5 //int JPEG_QUALITY = 50, 60, 70, 80, 90;

6

7 // start the time

8 auto start = chrono::steady_clock::now();

9

10 // compress and write image to file with quality factor

11 cv::imwrite("test.jpg", OriginalImage,

12 vector<int>({ CV_IMWRITE_JPEG_QUALITY, JPEG_QUALITY }));

13

14 // stop timer

15 auto end = chrono::steady_clock::now();

16

17 // calculate time take

18 auto elapsed_time =

19 chrono::duration_cast<chrono::microseconds>(end - start).count();

20

21 // read size of compressed file

22 std::ifstream in("test.jpg", std::ifstream::ate | std::ifstream::binary);

23 int c_size = in.tellg();

24

25 // load compressed image into a mat object

26 cv::Mat RecoveredJpeg = cv::imread("test.jpg");

27

28 // call ssim function calculate ssim index

29 double ssim_val = SSIM(OriginalImage, RecoveredJpeg);

30 // calculate peak signal to noise ratio

31 double psnr_val = PSNR(OriginalImage, RecoveredJpeg);

32

33 double bit_rate = static_cast<double>(c_size) /

34 (static_cast<double>(imgHeight * imgWidth));

35

36 double compression_ratio =

37 static_cast<double>(imgHeight*imgWidth * 3)

38 / static_cast<double>(c_size);

39

40 cout << compression_ratio << " , " << bit_rate

41 << " , "<< psnr_val << " , " << ssim_val

42 <<" , "<<elapsed_time<<endl;

43 }

254

13 APPENDIX

13 Appendix

Results of test that compares the accuracy of two classification algorithms. Classifi-

cation algorithm A is the work presented in this thesis, while classification algorithm

B is the classification algorithm presented in the research done by Wu [48].

Figure 123 shows a sample of two of the images that have been used in the test.

Figure 123(a) is from a set of 40 high definition compound image bitmaps, while

123(b) is from a series of screen content images presented By Lin et al [44] to the

Joint Collaboritve Team on Video Coding (JCT-VC) for testing HEVC coding with

screen content image.

255

13 APPENDIX

(a) Image 1

(b) Image 2

Figure 123: Two compound images used in test comparing accuracy of classification

algorithm

Figure 124 shows the results of sparse block classification of image (a) presented in

figure 123 for both classification algorithms. It can be observed that Algorithm B has

classified in error blocks that should be classified as picture, as sparse.

256

13 APPENDIX

(a) Algorithm A Sparse

(b) Algorithm B Sparse

Figure 124: Comparing sparse classification results image one

Figure 125 shows the results of text block classification of image (a) presented in

figure 123 for both classification algorithms. It can be observed that Algorithm A

has successfully classified all blocks containing text with approximately 2 percent of

blocks classified in error. Classification algorithm B has misclassified a significant

number of blocks as text that should be classified as picture blocks.

257

13 APPENDIX

(a) Algorithm A Text

(b) Algorithm B Text

Figure 125: Comparing text classification results image one

Figure 126 shows the results of fuzzy block classification of image (a) presented in

figure 123 for both classification algorithms. It can be observed that classification

algorithm B has a substantial amount of blocks misclassified as fuzzy that should be

classified as sparse. Classification algorithm A has less than 1 percent classification

error.

258

13 APPENDIX

(a) Algorithm A Fuzzy

(b) Algorithm B Fuzzy

Figure 126: Comparing fuzzy classification results image one

Figure 127 shows the results of picture block classification of image (a) presented in

figure 123 for both classification algorithms. It can be observed that classification

algorithm A successfully classifies blocks containing natural camera capture image as

picture blocks. Classification algorithm B has classified a significant amount of blocks

that contain computer generated data as picture blocks.

259

13 APPENDIX

(a) Algorithm A Picture

(b) Algorithm B Picture

Figure 127: Comparing picture classification results image one

260

13 APPENDIX

(a) Algorithm A Smooth

(b) Algorithm B Smooth

Figure 128: Comparing smooth classification results image one

261

13 APPENDIX

(a) Algorithm A Sparse

(b) Algorithm B Sparse

Figure 129: Comparing sparse classification results image one

262

13 APPENDIX

(a) Algorithm A Text

(b) Algorithm B Text

Figure 130: Comparing text classification results image one

263

13 APPENDIX

(a) Algorithm A Fuzzy

(b) Algorithm B Fuzzy

Figure 131: Comparing fuzzy classification results image one

264

13 APPENDIX

(a) Algorithm A Picture

(b) Algorithm B Picture

Figure 132: Comparing picture classification results image one

265

13 APPENDIX

(a) Algorithm A Smooth

(b) Algorithm B Smooth

Figure 133: Comparing smooth classification results image one

266

13 APPENDIX

Figure 134: Compound images 1-12

267

13 APPENDIX

Figure 135: Compound images 13-24

268

13 APPENDIX

Figure 136: Compound images 25-36

Figure 137: Compound images 37-40

269

REFERENCES REFERENCES

References

[1] Yukihiro Arai, Takeshi Agui, and Masayuki Nakajima. A fast dct-sq scheme for

images. 1988.

[2] Léon Bottou, Patrick Haffner, Paul G. Howard, Patrice Simard, Y Bengio, and

Yann Lecun. High quality document image compression with ”djvu”. J. Elec-

tronic Imaging, 7:410–425, 07 1998.

[3] Dingcai Cao. Chapter 10 - color vision and night vision. In Stephen J. Ryan,

SriniVas R. Sadda, David R. Hinton, Andrew P. Schachat, SriniVas R. Sadda,

C.P. Wilkinson, Peter Wiedemann, and Andrew P. Schachat, editors, Retina

(Fifth Edition), pages 285 – 299. W.B. Saunders, London, fifth edition edition,

2013.

[4] C. Chen, J. Han, Y. Xu, and J. Bankoski. A staircase transform coding scheme

for screen content video coding. In 2016 IEEE International Conference on Image

Processing (ICIP), pages 2365–2369, Sep. 2016.

[5] CISCO. Global Networking Trends Report 2020, 2020 (accessed De-

cember 5, 2020). https://www.cisco.com/c/m/en_us/solutions/

enterprise-networks/networking-report.html.

[6] R. L. de Queiroz. Compression of compound documents. In Proceedings 1999 In-

ternational Conference on Image Processing (Cat. 99CH36348), volume 1, pages

209–213 vol.1, Oct 1999.

[7] P Deutsch. Deflate Compressed Data Format Specification version 1.3. RFC

1951, RFC Editor, May 1996.

[8] P. Deutsch and J.-L. Gailly. Rfc1950: Zlib compressed data format specification

version 3.3. 1996.

[9] W. Ding, D. Liu, Y. He, and F. Wu. Block-based fast compression for compound

images. In 2006 IEEE International Conference on Multimedia and Expo, pages

809–812, July 2006.

[10] W. Ding, Y. Lu, and F. Wu. Enable efficient compound image compression

in h.264/avc intra coding. In 2007 IEEE International Conference on Image

Processing, volume 2, pages II – 337–II – 340, Sep. 2007.

[11] Jarek Duda. Asymmetric numeral systems: entropy coding combining speed of

huffman coding with compression rate of arithmetic coding. 2013.

[12] FFMPEG. A complete, cross-platform solution to record, convert and stream

audio and video., 2020(accessed February 3, 2020). https://ffmpeg.org.

270

https://www.cisco.com/c/m/en_us/solutions/enterprise-networks/networking-report.html
https://www.cisco.com/c/m/en_us/solutions/enterprise-networks/networking-report.html
https://ffmpeg.org

REFERENCES REFERENCES

[13] Borko Furht, editor. Portable Network Graphics (Png), pages 729–729. Springer

US, Boston, MA, 2008.

[14] Rafael C. Gonzalez and Richard E. Woods. Digital image processing. Prentice

Hall, Upper Saddle River, N.J., 2008.

[15] J. Hu, S. Song, and Y. Gong. Comparative performance analysis of web image

compression. In 2017 10th International Congress on Image and Signal Process-

ing, BioMedical Engineering and Informatics (CISP-BMEI), pages 1–5, 2017.

[16] D. A. Huffman. A method for the construction of minimum-redundancy codes.

Proceedings of the IRE, 40(9):1098–1101, Sept 1952.

[17] IDG. International Data Group Cloud Computing Survey 2020, 2020(ac-

cessed July 19, 2020). https://www.idg.com/tools-for-marketers/

2020-cloud-computing-study/.

[18] ISO. ISO/IEC 10918-1:1994: Information technology — Digital compression

and coding of continuous-tone still images: Requirements and guidelines. 1992.

[19] ISO/IEC. Information technology — Computer graphics and image process-

ing — Portable Network Graphics (PNG): Functional specification. Standard,

International Organization for Standardization, Geneva, CH, November 2003.

[20] ”ITU-T”. ”itu-t rec 45”.

[21] ITU-T. Information technology - lossy/lossless coding of bi-level images. Rec-

ommendation T.88, International Telecommunication Union, November 2000.

[22] S. E. Juliet and D. J. Florinabel. Efficient block prediction-based coding of

computer screen images with precise block classification. IET Image Processing,

5(4):306–314, June 2011.

[23] C. Lan, F. Wu, and G. Shi. Compress compound images in h.264/mpeg-4 avc

by fully exploiting spatial correlation. In 2009 IEEE International Symposium

on Circuits and Systems, pages 2818–2821, May 2009.

[24] C. Lan, J. Xu, Wenjun Zeng, and F. Wu. Compound image compression us-

ing lossless and lossy lzma in hevc. In 2015 IEEE International Conference on

Multimedia and Expo (ICME), pages 1–6, June 2015.

[25] D. Marpe, G. Blattermann, G. Heising, and T. Wiegand. Video compression

using context-based adaptive arithmetic coding. In Proceedings 2001 Interna-

tional Conference on Image Processing (Cat. No.01CH37205), volume 3, pages

558–561 vol.3, 2001.

271

https://www.idg.com/tools-for-marketers/2020-cloud-computing-study/
https://www.idg.com/tools-for-marketers/2020-cloud-computing-study/

REFERENCES REFERENCES

[26] M Mozammel, Hoque Chowdhury, and Amina Khatun. Image compression using

discrete wavelet transform. International Journal of Computer Science Issues,

9, 07 2012.

[27] USC University of Southern California. The USC-SIPI Image Database, 2020(ac-

cessed September 10, 2019). http://sipi.usc.edu/database/.

[28] OpenCV. Open Source Computer vision Library, 2020(accessed February 3,

2020). http://opencv.org.

[29] Alan W. Paeth. Ii.9 - image file compression made easy. In JAMES ARVO,

editor, Graphics Gems II, pages 93 – 100. Morgan Kaufmann, San Diego, 1991.

[30] Lee Prangnell. Visible light-based human visual system conceptual model. CoRR,

abs/1609.04830, 2016.

[31] Lee Prangnell and Victor Sanchez. Minimizing compression artifacts for high

resolutions with adaptive quantization matrices for hevc. 2016.

[32] A. S. Ragab, A. S. A. Mohamed, and M. S. Hamid. Efficiency of analytical

transforms for image compression. In Proceedings of the Fifteenth National Radio

Science Conference. NRSC ’98 (Cat. No.98EX109), pages B16/1–B1610, Feb

1998.

[33] Iain Richardson. H.264 and mpeg-4 video compression : video coding for next-

generation multimedia / iain e. g. richardson. SERBIULA (sistema Librum 2.0),

01 2004.

[34] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual network

computing. IEEE Internet Computing, 2(1):33–38, Jan 1998.

[35] A. H. Robinson and C. Cherry. Results of a prototype television bandwidth

compression scheme. Proceedings of the IEEE, 55(3):356–364, March 1967.

[36] A. Said and A. Drukarev. Simplified segmentation for compound image compres-

sion. In Proceedings 1999 International Conference on Image Processing (Cat.

99CH36348), volume 1, pages 229–233 vol.1, Oct 1999.

[37] Asadollah Shahbahrami, Ramin Bahrampour, Mobin Sabbaghi Rostami, and

Mostafa Ayoubi Mobarhan. Evaluation of huffman and arithmetic algorithms

for multimedia compression standards. ArXiv, abs/1109.0216, 2011.

[38] C. E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27(3):379–423, 1948.

[39] Vivienne Sze, Madhukar Budagavi, and Gary J. Sullivan. High Efficiency Video

Coding (HEVC): Algorithms and Architectures. Springer Publishing Company,

Incorporated, 2014.

272

http://sipi.usc.edu/database/
http://opencv.org

REFERENCES REFERENCES

[40] International Telecommunication Union. Series G: Transmission systems and

media, digital systems and networks. One-way transmission time (G.114). Re-

comendation, JUNE 2003.

[41] International Telecommunication Union. Studio encoding parameters of digi-

tal television standard 4:3 and wide-screen 16:9 aspect ratios (ITU-R BT.601).

Recommendation, MARCH 2011.

[42] Georgia State University. Perspective view of lens structure, 2016.

[43] Bovik Wang. Structural Similarity Index Immplentation scripts., 2008(accessed

Marc 21, 2020). https://www.cns.nyu.edu/~lcv/ssim/.

[44] S. Wang and T. Lin. Update on full-chroma (yuv444) screen content test se-

quences of jctvc-h0294. In AHG:7 JCTVC-K0207, Shanghai, Oct 2012.

[45] S. Wang and T. Lin. Compound image compression based on unified lz and

hybrid coding. IET Image Processing, 7(5):484–499, July 2013.

[46] T. A. Welch. A technique for high-performance data compression. Computer,

17(6):8–19, June 1984.

[47] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the

h.264/avc video coding standard. IEEE Trans. Cir. and Sys. for Video Technol.,

13(7):560–576, July 2003.

[48] K. Wu, R. Gahan, and P. O’Friel. Block-based classification method for computer

screen image compression. In 2018 29th Irish Signals and Systems Conference

(ISSC), pages 1–6, June 2018.

[49] Song Zhao, Yan Xu, Hengjian Li, and Heng Yang. A comparison of lossless

compression methods for palmprint images. Journal of Software, 7, 03 2012.

[50] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality

assessment: from error visibility to structural similarity. IEEE Transactions on

Image Processing, 13(4):600–612, April 2004.

[51] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.

IEEE Transactions on Information Theory, 23(3):337–343, May 1977.

[52] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate

coding. IEEE Transactions on Information Theory, 24(5):530–536, September

1978.

273

https://www.cns.nyu.edu/~lcv/ssim/

	Optimum Implementation of Compound Compression of a Computer Screen for Real-Time Transmission in Low Network Bandwidth Environments
	Recommended Citation

	Introduction
	Background
	Motivation
	Research Question

	Literature Review
	Human Visual System and Colour
	The Human Visual System
	Colour Space
	Chroma Sub Sampling
	Conclusion on Chroma Subsampling

	Compound Image
	Image Data Classes
	Smooth Class
	Sparse Class
	Text Class
	Fuzzy Class
	Picture Class

	Conclusion On Compound Image

	Classification
	The Discrete Wavelet Transform

	Compression
	Lossless Compression
	Run Length Encoding
	LZ 77 Algorithm
	Lempel Ziv Welch Encoding
	Huffman Encoding
	Arithmetic Encoding

	Lossy Compression
	Image Quality Assessment
	Block Transform Encoding
	The Discrete Cosine Transform
	Comparing speed performance of 3 discrete cosine transform methods
	Quantization
	The Discrete Wavelet Transform

	Compression File Formats
	JPEG
	PNG

	Video Encoding
	H.264

	Compound Compression Algorithm
	Classification
	Comparing Presented Classification Algorithm to the Work presented by Wu Kai
	Colour Counting Analysis
	Conclusion on Compound Image Classification Using Discrete Wavelet Transform and Colour Counting Analysis

	Lossless Compression
	Smooth Block Compression
	Lempel-Ziv Welch Compression
	Deflate Compression
	Conclusions on Deflate Compression on Compound Image Data Classified as Sparse and Text
	Differential Index Map Coding
	Conclusions on Compression Performance of Differential Index Map Coding
	Compression and Speed Performance Comparsion: Lempel-Ziv Welch Vs Differential Indel Map Coding Vs Deflate
	Conclusion on Lossless Compression testing

	Lossy Compression
	Chroma Sub Sampling Testing
	Comments on Chroma Sub Sampling Methods
	Performing the Two-Dimensional Discrete Cosine Transform as Two One-Dimensional Transforms
	Quantization of Discrete Cosine Transform Coefficients
	Reordering Discrete Cosine Transform Coefficients
	Performing Zero Run Length Encoding on Reordered Quantized Discrete Cosine Transform Coefficients
	Testing Discrete Cosine Transform Based Compression on Blocks that have been Classified as Fuzzy and Picture
	Conclusions on Fuzzy Block Quantization
	Conclusions on Picture Block Quantization
	Entropy Encoding Discrete Cosine Transform Based Compressed Data
	Discrete Wavelet Transform based Compression: Blocks Classified as Text with High Unique Pixel Count
	Comments on Accuracy and Speed of Discrete Haar Wavelet Transform
	Threshold Value Selection for Discrete Haar Wavelet Transform Compression
	Encoding Non Zero Discrete Wavelet Transform Coefficients After Thresholding
	Conclusions on Lossy Compression Testing

	Algorithm Configuration
	Results
	Discussion

	Results Summary
	Conclusion
	Future Work

	Code
	Data Structures
	Classification Algorithm
	Discrete Cosine Transform Code
	Deflate Interface
	Differential Index Map Coding Functions
	Discrete Wavelet Transform Functions

	OpenCV and FFMPEG Code

	Appendix

