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Poly-GAN: Regularizing Polygons with
Generative Adversarial Networks

Lasith Niroshan1[0000−0002−9868−8338] and
James D. Carswell2[0000−0002−4766−7297]

Technological University Dublin, Dublin, Ireland
1d19126805@mytudublin.ie,2james.carswell@TUDublin.ie

Abstract. Regularizing polygons involves simplifying irregular and
noisy shapes of built environment objects (e.g. buildings) to ensure that
they are accurately represented using a minimum number of vertices.
It is a vital processing step when creating/transmitting online digital
maps so that they occupy minimal storage space and bandwidth. This
paper presents a data-driven and Deep Learning (DL) based approach
for regularizing OpenStreetMap building polygon edges. The study
introduces a building footprint regularization technique (Poly-GAN)
that utilises a Generative Adversarial Network model trained on
irregular building footprints and OSM vector data. The proposed
method is particularly relevant for map features predicted by Machine
Learning (ML) algorithms in the GIScience domain, where information
overload remains a significant problem in many cartographic/LBS
applications. It addresses the limitations of traditional cartographic
regularization/generalization algorithms, which can struggle with
producing both accurate and minimal representations of multisided built
environment objects. Furthermore, future work proposes a way to test the
method on even more complex object shapes to address this limitation.

Keywords: Geographic Information System · Polygon Regularization ·
Generative Adversarial Networks · OpenStreetMap

1 Introduction

Polygon regularization, also known as simplification/generalization, is a
vital image processing step when digitising object shapes predicted from
aerial/satellite imagery using Machine Learning (ML)/Deep Learning (DL)
change detection algorithms. Overcoming the formation of built environment
objects (e.g. buildings) with stair-like edges or otherwise irregular shapes (Fig.
1.a) remains a challenging topic much discussed in the computer vision and
GIScience/Digital Earth domain [9].

Many related studies propose statistical or ML/DL based solutions for
polygon detection/regularization. For example, in our previous work, an
ML-based spatial change detection mechanism (called OSM-GAN ) was proposed
using satellite images and OpenStreetMap (OSM) vector data [12,13]. The
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output of this approach is an outline of any changed building object(s) in
raster format, which then needs to be vectorised prior to uploading into online
mapping platforms like OSM [14]. However, the outlined object first needs to
be simplified (regularized) to represent the same map feature using a minimum
number of vertices before the vectorisation process begins (Fig. 1.b). This new
research extends previous work by appending to the DeepMapper [10] automated
map update workflow an additional ML-based regularization process (called
Poly-GAN) designed to produce fully vectorized map features having a minimum
number of nodes.

Fig. 1. Non-regularized (a) and regularized (b) building footprints.

In other words, this investigation mimics the ML-based OSM-GAN change
detection mechanism already used by DeepMapper to now include Poly-GAN,
another Generative Adversarial Network (GAN) model – this time specifically
trained to the purpose of polygon regularization.

This paper is structured into five sections, including this Introduction.
Section 2 follows by providing more background on the topic of polygon
regularization and the challenges it presents for image analysis. Section
3 provides a detailed explanation of the Poly-GAN modelling mechanism,
highlighting its advantages and innovations. It describes the complete
polygon regularization methodology including data preparation, pre- and
post-processing, and refining polygon edges with GANs. Section 4 presents some
experimental results and a discussion of their implications. Finally, Section 5
concludes the paper and discusses potential future research directions.
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2 Background

Traditional cartographic regularization approaches have issues with producing
both accurate and minimal representations of complex built environment
structures. These algorithms depend on pre-defined threshold values that need
to be discovered empirically or consist of deterministic rules (IF-THEN-ELSE)
instead of rules derived from the data – as in Machine Learning approaches.
Consequently, traditional methods to address these issues can adversely affect
polygon regularization accuracy, while ML/DL-based methods can produce more
consistently reliable results.

Briefly, traditional regularization algorithms commonly include the Lang
simplification algorithm [6], the Ramer-Douglas-Peucker (RDP) algorithm [16],
the Zhao-Saalfed algorithm [27], Opheim simplification algorithm [15] and the
Reumann-Witkam algorithm [17]. Figure 2 illustrates the behaviour of each
algorithm applied to a sample non-regularized building footprint. In addition to
these algorithms, perpendicular distance simplification1 was also implemented
and tested in this study.

Fig. 2. A comparison of traditional regularization algorithms on a noisy polygon in
terms of node reduction, shape simplification, and edge smoothness. The total number
of nodes (vertices) produced in each case is also given.

In 2012, Sohn et al. proposed a regularization method for building rooftop
models using LiDAR data [20]. The proposed method is based on Minimum

1 https://psimpl.sourceforge.net/perpendicular-distance.html

https://psimpl.sourceforge.net/perpendicular-distance.html
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Description Length (MDL) theory and comprises two stages: 1) Hypothesis
generation and 2) Global Optimisation. Lu et al. (2018) used a richer
convolutional feature (RCF) network to create an edge probability map (i.e.
a map of building footprints) and an edge refinement process according to
morphological analysis of the topographic surface [8]. These approaches primarily
tried to improve the edge refinement process by addressing issues such as
stair-like noise, isolated points, and outliers using a non-maximal suppression
(NMS) algorithm. Their methods outperform the NMS algorithm in terms of
accuracy.

A study by Zhao et al. investigated a data-driven approach for boundary
regularization along with a machine-learning approach to building extraction
from satellite images [26]. This approach includes three steps: 1) Initial
modelling, 2) Hypothesis generation, and 3) Minimum Description Length
(MDL) optimisation. At the initial modelling, the Ramer-Douglas-Peucker
algorithm was applied to simplify the initial polygon. In the next phase, local
hypothetical models were generated using a set of temporal points and lines.
Finally, MDL optimisation was performed to assert the optimal hypothesis
among local hypotheses.

Zorzi and Fraundorfer (2019) proposed an approach inspired by style transfer
techniques that utilise adversarial losses to generate accurate building boundaries
[28]. The proposed regularization model is trained using satellite images of
Jacksonville, Florida and OpenStreetMap building footprints. Three types of
loss functions were used to achieve regularized and visually pleasing building
footprints. However, some inconsistent occurrences presented in the visual
outputs, such as rotation, skew, and false detections, which were inherited from
the initial feature mask predictions.

In 2020, Wei et al. proposed a polygon simplification algorithm for complex
conditions such as different building shapes, image resolutions, and low-quality
image segmentation since image segmentation quality significantly impacts
regularization results [23]. The suggested algorithm consists of two components.
First, coarse adjustment, contains empirical rules to remove any segmentation
errors. Second, fine adjustment, intends to refine the polygon using Awrangjeb’s
approach [1] for extracting building polygons from point clouds. A relationship
between polygon regularization and morphological filtering was demonstrated in
a study conducted by Xie et al. (2020) [24]. The proposed methodology explored
the possibility of using morphological building features to generate more realistic
boundaries. The concept of using morphological features in this task is also
explored in our proposed Poly-GAN method.

Each of the related approaches discussed above have their own advantages
and disadvantages. When working with geospatial data, it has been shown
that the method used must be specifically adapted to the characteristics of
the area being mapped. In other words, classification performance depends
on the morphological features and other local spatial data attributes. Such
uncertainty encouraged this study to utilise state-of-the-art Deep Learning
techniques and crowdsourced geo-data to propose a more reliable regularization
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mechanism. As such, this paper introduces Poly-GAN, a novel solution inspired
by image-to-image translation for addressing the polygon regularization problem
that uses large volumes of crowdsourced geo-data to train data-hungry real-world
ML models.

3 Methodology

The following Sections describe in more detail the proposed GAN-based polygon
regularization algorithm (Poly-GAN), including pre- and post-processing
procedures.

3.1 Data Preparation

Data preparation is a necessary part of ML-based research, particularly for Deep
Learning models [7]. To develop an effective DL model for polygon simplification,
both noisy and corresponding ground truth data are essential for training. This
study uses OSM-GAN predicted building polygons for noisy data, while OSM
building footprints were used as the ground truth component for training polygon
simplification models.

After the OSM-GAN model generates the feature-map for a given satellite
image, the noisy predicted building polygons are separated using an instance
segmentation process. Following the creation of these predicted footprint
segments, a lookup process is launched to retrieve the corresponding OSM
building footprint in a local vector map database. A filtering mechanism removes
anomalous data (i.e. incorrect OSM-GAN polygons) from the dataset when both
components are present. Finally, the filtered data is combined into a 600x300
pixel image for input into the DL model training process. The building footprints
were not zoomed to the size of the input images to maintain consistency of
prediction results. Fig. 3 (left half) illustrates some of the different building
objects predicted by the OSM-GAN model together with their “ground truth"
counterparts.

3.2 Poly-GAN Modelling

The Generative Adversarial Network (GAN) modelling architecture consists
of two main components (each a Neural Network): the Generator and the
Discriminator. The Generator component of the GAN is responsible for
producing new (but fake), regularized polygons by learning from a dataset
of previously regularized polygons (ground truth data). The Discriminator
component then attempts to determine whether the generated polygons are real
or fake to improve the Generator’s ability to produce realistic polygons. The
two components work together in a competition, with the Generator trying to
produce more realistic polygons and the Discriminator trying to become better
at identifying fake polygons.
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Fig. 3. Different forms of data samples used in this study. All left side objects
were predicted by OSM-GAN model; right side objects are "ground truth" building
footprints taken from OSM. First two samples (a and b) were not accepted and filtered
out of the Poly-GAN training dataset.

The main idea behind image-to-image translation in a ML context is that
a given input image (e.g. sketch/outline of an object) translates or transforms
into another higher-level representation (e.g. photo-realistic image) of the set
of input information. Isola et al. [4] presented several generalized uses of
Conditional GAN based image-to-image translation, such as labels-to-street
scenes, black&white images-to-colour images, sketches-to-photos, and especially
aerial images-to-maps, which is important for this study. Pix2Pix is their
implementation of image-to-image translation, which is freely available for use
on GitHub2.

This study uses an updated version of Pix2Pix in its polygon regularization
modelling experiments. Once data samples were prepared and split into train
and validation categories, they were then uploaded to Kay3, Ireland’s national
supercomputer, to train the proposed Poly-GAN regularization model. Kay cuts
model training times from a few days on a typical “gamer-spec" laptop to a few
hours – allowing to train and test multiple models relatively quickly with different
hyperparameters and datasets [11]. The following hyperparameters (Table 1)
were applied to train the Poly-GAN model.

2 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
3 https://www.ichec.ie/about/infrastructure/kay

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://www.ichec.ie/about/infrastructure/kay
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Table 1. Values for key hyperparameters used in the Poly-GAN model training process.

Name Value Description
batch_size 1 Number of images in a batch.
gan_mode vanilla The type of GAN objective. (i.e. vanilla, lsgan, wgangp)
init_gain 0.02 Scaling factor for the network.
init_type normal Network initialisation method.
input_nc 1 Number of input image channels.
output_nc 1 Number of output image channels.
lr 0.0002 Initial learning rate for adam optimisation.
lr_policy linear Learning rate policy.
n_epochs 100 Number of epochs with the initial learning rate.
ndf 64 Number of discriminative filters in the first conv layer.
ngf 64 Number of generative filters in the first conv layer.
netD basic The type of the discriminator architecture.
netG unet_256 The type of the generator architecture.
pre-process resize_and_crop Scaling and cropping of images at load time

3.3 A Combined Regularization Method

Poly-GAN aims to improve the accuracy and efficiency of polygon regularization
by combining data-driven and DL-based regularization methods into a single
solution. Using a Generative Adversarial Network in this approach allows
for a supervised learning technique, where the network can learn from a
dataset of previously regularized polygons. Once an irregular building footprint
is obtained (predicted) from the OSM-GAN change detection process, a
pre-processing step stores its geo-referenced coordinates. Simultaneously, the
Ramer-Douglas-Peucker (RDP) algorithm processes the building’s shape to
reduce the number of redundant polygon nodes and simplify it for input to
the GAN-based regularization modelling procedure.

The refined/simplified polygon is then further processed to generate an input
data sample for training the Poly-GAN model. An overview of the process
is shown in Figure 4 and consists of two phases: the training phase and the
prediction phase. The training phase involves the use of a dataset of ground-truth
building footprints to train the Poly-GAN model. The prediction phase involves
the use of the now trained Poly-GAN model to regularize the predicted building
footprints obtained from the OSM-GAN change detection process.
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Fig. 4. Schematic diagram of the polygon regularization process linking the Poly-GAN
model training phase to the (predicted) building regularization phase.

Pre-Processing As mentioned, the pre-processing step for the proposed
building regularization procedure begins by storing the geo-referenced
coordinates of the predicted building footprint generated by the OSM-GAN
change detection algorithm. However, analysis of the OSM-GAN results show
that the generated footprints can contain a considerable number of redundant
nodes, which can affect the accuracy of polygon regularization. In this case, the
RDP algorithm is applied to perform node reduction while preserving the overall
shape of the predicted building footprint.

The RDP algorithm is a popular algorithm for polygon simplification that
aims to reduce the number of vertices in a polygon while preserving the shape of
the polygon as much as possible. The simplification is performed by identifying
and removing redundant vertices that are not essential to the overall shape of the
polygon. The algorithm works by iteratively removing vertices that are within
a specified distance tolerance, called epsilon, from a straight line connecting the
start and end vertices of the polygon. The RDP algorithm is simple, fast, and
efficient, making it a popular choice for polygon regularization in GIScience,
cartography, and computer vision domains [21]. Additionally, this algorithm is
easy to implement and does not require complex parameter tuning, making
it useful for various dataset types. In Figure 5, the footprints generated by
the OSM-GAN change detection algorithm are compared with the simplified
footprints produced by RDP.
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Fig. 5. Comparison of original input footprints returned from OSM-GAN algorithm
(top row) and RDP-simplified footprints (bottom row). The captions show the number
of nodes in each.

After applying the RDP algorithm, the pre-processed footprint is saved into
a 300x300 pixel black&white image; this is used as the inference data sample in
the next step. This pre-processing procedure ensures that the input data to the
GAN-based regularization algorithm is a cleaned, pre-processed version of the
initially predicted (noisy) footprint. This helps to produce a more accurate and
reliable regularization of the building’s footprint in the next step.

Refining Polygon Edges with Generative Adversarial Networks The
above pre-processed building footprint is then combined with an empty mask,
resulting in an image that is 300x600 pixels in size. The empty mask, which
is 300x300 pixels, serves as a placeholder for the generator to fill in with the
regularized polygon. By providing the generator with a clear distinction between
the building footprint and the area to be regularized, the GAN can focus on
making changes to the specific area of the image that needs to be regularized.
This process continues until the Generator produces polygons (i.e. buildings)
that are indistinguishable from real ones. The final Poly-GAN regularization
model developed in this work also reshapes irregular building footprints in order
to make them more “regular". The result of this combined approach is dependent
on the quality of the dataset used for training the GAN, as well as the specific
architecture and hyperparameters chosen for the GAN. Finally, the predicted
footprint is passed through a post-processing procedure to assess its quality and
create an OSM-acceptable changeset. Figure 6 illustrates the prediction results
from the GAN-based regularization model.

Post-Processing Once Poly-GAN regularization simplifies the building
footprint, the result is passed through a post-processing procedure to refine
the footprint further. Overall, the post-processing steps aim to ensure that
the building footprint is accurate, minimal, reliable, and meets the mapping
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Fig. 6. Regularized building footprints after applying the GAN-based regularization
method to map objects shown in bottom row of Fig.5. The Poly-GAN architecture
learns to reshape the irregular building footprints while preserving the overall shape of
the building and other important features such as corners.

conventions of OSM. The output of this step is a high-quality regularized building
footprint that can be uploaded to the online OSM dataset.

The first step in the post-processing phase is to extract the GAN-regularized
footprint from the 300x600 pixel image and re-apply the coordinates that were
recorded in the pre-processing phase. Then a perpendicular distance algorithm
(PD) is applied to the extracted footprint since experiments show this to be
a reliable and accurate method for producing building footprints with minimal
nodes while preserving the overall shape of the building (See Figure 2).

This algorithm works by measuring the perpendicular distance between a
point and a line and removing the point if it falls within a specified threshold
distance from the line (Figure 7). The algorithm does not require complex
parameter tuning, which makes it useful for various dataset types, and it
is relatively fast and efficient, which makes it suitable for use in real-time
applications.

After the PD algorithm is applied, the Poly-GAN generated footprints
are re-georeferenced using the geo-data stored during the pre-processing step.
Re-georeferencing the footprints using the pre-processing stored geo-data
assumes that the original geo-data is accurate and that the GAN-generated
footprints are aligned with the original raster image.

Finally, an OSM-acceptable changeset is built, containing any modifications
made to the Poly-GAN simplified footprint that passed the post-processing
procedure. The post-processing procedure aims to ensure that the resulting
footprint is of high quality and meets the requirements of OSM mapping
conventions. This may include editing the positions of building vertices, merging
or splitting polygons, and adding/removing attributes for polygons. The output
from this step is a reliable, accurate, and regularized building footprint which
can be uploaded to the online OSM dataset.

4 Results and Discussion

In the ML domain of generative models, such as GANs, it is suggested that
qualitative analysis is often more informative and effective than quantitative
analysis, as it provides a more comprehensive understanding of the generated
samples [5,22]. Quantitative analysis metrics, for instance, Fréchet Inception
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Fig. 7. The perpendicular distance algorithm for polygon simplification. Initially, the
first and third nodes are used to define a line segment, and the perpendicular distance
to the second node is calculated and compared against a given threshold. After that,
the algorithm is moved to the next node pairs which are the second and fourth. If
the calculated distance is lower than the threshold the node gets removed from the
polygon, and so on.
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Distance [3] or Inception Score [18], can provide a good indication of the quality
of the generated data samples, but these metrics only provide a limited view of
generated samples.

When working with GANs, qualitative analysis can help to understand the
biases that the model has learned from the training data, which can be important
for avoiding unwanted consequences. In relation to Poly-GAN, qualitative
analysis was used in the experiments, which has several advantages. For example,
a human expert could check at a glance if a building footprint is complete,
covers the correct area, has the correct shape, or adheres to OSM mapping
conventions. Figure 8 depicts both the original footprint and the Poly-GAN
regularized result. For possible use in future research and applications, both
non-regularized (containing all OSM-GAN predicted vertices) and regularized
(containing only Poly-GAN regularized vertices) building footprints are saved
in GeoJson format. This format ensures that the footprints can be easily accessed
and integrated into a wide range of GIS software and LBS applications.

Fig. 8. Comparison of original (OSM-GAN predicted) irregular building footprints (top
row) with their corresponding Poly-GAN regularized and simplified polygons (bottom
row) obtained using a combined approach of data-driven and GAN-based regularization
methods. The number of nodes in the final polygons is also shown, indicating object
complexity reduction while preserving the building’s overall shape.

Polygon regularization is important in the context of digital maps,
such as OpenStreetMap, because it helps to improve the accuracy and
uniformity/consistency of online map data [2,19]. The regularization process can
correct errors and inconsistencies in the map data and make it more consistent
with the real world. In the case of OSM, map data is often contributed by many
volunteers, which can lead to inconsistencies in the data. For example, building
footprints can be irregular and inconsistent in shape, size, and orientation.
Regularization can correct these inconsistencies and make the building footprints
more uniform with surrounding real-world buildings. Polygon regularization can
also improve the quality of map data used for further analysis in other mapping
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applications - like 3D modelling, solar exposure/energy consumption analysis,
and emergency planning. Additionally, regularization can reduce the overall
complexity of map data, which can make it easier to work with and improve
the performance of LBS applications by helping to reduce information overload
[25].

It is important to note that the quality of the reshaping produced by
Poly-GAN is dependent on several factors. The dataset used for training the
GAN should be of high quality, containing a diverse set of building footprints
that are representative of the real-world buildings that the GAN will be used
to regularize. Additionally, the architecture and hyperparameters of the GAN
should be carefully chosen to ensure that it can effectively reshape the footprints
while preserving the overall shape of the building and important building features
such as corners.

One limitation of the method presented is that it has not yet been tested
on circular objects or other complex building shapes, such as buildings with
empty areas (holes) inside. These types of shapes can present unique challenges
for regularization and simplification, as they may require different threshold
values or algorithms compared to more uniform, orthogonal building shapes.
This limitation highlights the need for further research and experimentation to
develop methods to effectively handle these types of shapes. In this regard, the
effectiveness of the approach should be trained and tested on larger geographic
datasets to optimise the architecture and hyperparameters of the GAN model
and further improve the reshaping performance to suit the built environment
where it is used.

5 Conclusions

The experiments carried out in this study show promising results in terms of
extracting the key building vertices needed to preserve the overall shape of a
building, and the final regularized polygon being acceptable for updating online
mapping platforms such as OSM.

This combined polygon regularization approach integrates data-driven and
Deep Learning-based methods. It was applied to irregular building footprints
obtained from OSM-GAN change detection, where a pre-processing step involved
storing geo-referenced coordinate data and applying the RDP algorithm (epsilon
= 0.9) to reduce redundant polygon nodes. The reduced polygon was then used as
input for the Poly-GAN algorithm, which aimed to regularize building footprints
while preserving their overall shape. As a post-processing step, the regularized
polygons were further refined using the Perpendicular Distance algorithm to
extract key building vertices (e.g. corners) while continuing to maintain the
overall shape of the building.

The work presented in this paper is a part of a comprehensive online map
updating solution (called DeepMapper) that endeavours to provide an end-to-end
automated workflow for populating OSM [10]. The complete solution is in final
stages of development and includes several important components: geo-data
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(raster/vector) crawling and indexing, GAN-based change detection, GAN-based
regularization, quality analysis, and OSM changeset creation and map updating.
This fully integrated prototype aims to improve the accuracy, consistency, and
efficiency of the online map-updating process by automating many of the manual
tasks that VGI mappers typically carry out. This research is a step forward in
improving the consistency and quality of crowdsourced maps and is expected to
lead to further developments (e.g. regularizing complex objects and other map
feature types) in the future.
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