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Abstract 
 
Barium titanate (BaTiO3, BT), which has a high dielectric constant was used as the filler in silicone 
rubber (SR) based DE composites. The BT was added in order to achieve higher voltage-induced 
strains and decrease the magnitude of the applied electric fields. The morphology of SR/BT 
composites was observed using a scanning electron microscope (SEM). The mechanical property of 
the SR/BT composites, which was characterized by an equi-biaxial static test, was obtained using a 
bubble inflation test system. Significantly, an optimum equi-biaxial pre-stretch ratio was determined 
using this method in order to enhance the actuated strain achieved under an applied electric field. 
Concurrently, the measurements of dielectric constant and loss tangent were carried out using 
dielectric spectroscopy. Using the pre-stretch ratio obtained from equi-biaxial testing, the influence 
of BT content on the electromechanical properties of SR based DEs was investigated. The results 
showed that the BT exhibited excellent dispersibility in SR matrices, but agglomerates appeared in 
the composites with higher filler content. An increase of dielectric constant was obtained by 
increasing the BT content in SR with low dielectric loss tangents below 0.035 at 0.1 Hz for all films. 
Also, the composite of SR/BT exhibited hyperelasticity with the minimum secant modulus at the 
optimised stretch ratio of 1.6. Under this specified pre-stretch ratio, a maximum actuated area strain 
of approximately 57 % was achieved for the film having a filler loading of 20 wt% BT. This strain 
corresponded to a relatively low dielectric strength of around 46 V/µm. For all the DE composites 
tested, a maximum electromechanical energy density (e) of 0.042 MJ/m3 and an electromechanical 
coupling efficiency (K2) of 0.59 were obtained for DEs with 30 wt% and 20 wt% BT respectively.  

Keywords: Dielectric elastomers, Equi-biaxial mechanical test, Area strain, Dielectric strength, 
Energy density. 
 
1. Introduction 
 
DEs are a group of smart materials that respond to electrical stimulus by changing their shapes. DEs 
possess some major advantages over other smart materials such as light weight, low cost, the absence 
of noise pollution, large actuated strains (> 30 %), high energy densities and fast response times [1]. 
The large strain capabilities suggest that they can be used for artificial muscle in bionic applications, 
valves and actuators [2-4]. To date, the most widely used DE material is polyacrylate because of its 
ability to deliver large voltage-induced strain (> 100%) [5]. However, the intrinsic drawbacks of this 
material have inevitably impeded its applications. These drawbacks include: 
i) low thermal stability; modulus varies greatly with temperature change 
ii) sensitivity to environmental degradation [6] and 
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iii) viscoelasticity; the deformation is time-dependent (strain rate-dependent) which results in a 
relatively slow response to an electrical signal and limits coupling efficiency [7,8].  
SR cannot only overcome these shortcomings, but also has greater biocompatibility than most carbon 
based polymers [6]. Therefore, greater attention has been given to research into SR based DEs [9-11]. 
Generally, they work with compliant electrodes such as carbon grease or graphite spray coated onto 
their top and bottom surfaces [12,13]. When a high voltage is applied to the electrodes, an 
electrostatic pressure (σv) compresses the DE which, due to the isochoric behaviour of the material, 
results in large equi-biaxial area strains occurring in the two planes mutually perpendicular to the 
direction of compression (refer to Fig. 1). 

 
Fig. 1. The working principle of a DE. 

 
A compressive force is created by applying a high voltage between the top and bottom surfaces of the 
DE in accordance with Eqn. (1) [5]. 

2 2
V 0 0( z)σ ε ε φ ε ε ϕ′ ′= =                                        (1) 

where ε' is the relative permittivity of the DE material, ε0 is the permittivity of the free space 
(8.85×10-12 F/m), φ is the electric field which equals the applied high voltage (Φ) divided by the 
thickness of the DE (z). Thickness strain (sz) under a high electric field can be approximated by the 
expression [14-16] 

2
0 /zs Eε ε ϕ′=                                                                    (2) 

where E is the elastic modulus of the DE material. As the material is assumed to be isochoric, the 
volume of a DE remains constant irrespective of whether a high voltage is applied. The strains in area 
have an interrelationship with thickness strain as expressed by Eqn. (3).  

( )1 1 1a zs s= − −
                                                             

(3) 
It is evident from Eqn. (2) that a material of high dielectric constant combined with a low elastic 
modulus can achieve a large strain when subjected to a low electric field [14,17]. Therefore, particles 
such as titanium dioxide TiO2 [18,17], copper-phthalocyanine oligomer (CPO) [19] and BT [20] that 
all possess high dielectric constants are widely used as fillers, to enhance the dielectric constants of 
DE materials. This allowed actuated area strains of 15 % - 35 % to be achieved. Moreover, 
pre-stretching has been shown to be the key to developing large strains in these materials [21-23]. In 
an elastomer, the mobility of molecular chains can be restrained by intermolecular interactions [24]. 
However, intermolecular interactions can be diminished by stretching. This reduction is characterized 
by a drop in elastic modulus, hence the elastic modulus is highly dependent on stretch [25]. It has 
been reported that a low elastic modulus is of benefit in allowing DE materials to achieve large 
voltage-induced deformations [26]. Though pre-stretch can increase dielectric strength [27], the 
strain-stiffening effect prevents large deformation from occurring in an applied electric field. Based 
on these considerations, it is difficult to determine a pre-stretch which allows DEs to achieve large 
deformations. However, it is reasonable for a DE to obtain a larger deformation at a pre-stretch ratio 
where the composite exhibits a minimum elastic modulus for the introduction of a constant electric 
field.  
It has been shown that a higher voltage-induced strain can be achieved by imposing an equi-biaxial 
pre-stretch on a film instead of applying a uniaxial pre-stretch [28,21]. However, most research into 
the mechanical properties of DEs was carried out using the conventional uniaxial tensile test [29,11]. 
In this work, initially a static mechanical equi-biaxial test was applied using a bubble inflation test 



 

system [30,31]. DEs with SR and BT were fabricated and subjected to equi-biaxial pre-stretch in 
order to obtain a large voltage-induced deformation under a relatively low electric field. The critical 
pre-stretch ratio was determined by investigating the mechanical equi-biaxial behaviour of material. 

2. Experimentation 

2.1 Materials 

A commercial polymer, dimethylsiloxane (LSR4305 DEV, Bluestar Ltd., U.S.A), consisting of two 
parts (part A and part B) was used for fabricating the DE samples; NYOGEL 756G (Nye Lubricants, 
Inc., USA) was the conductive carbon grease used as the compliant electrode. The particle size of 
barium titanate was about 1 µm and the density was 6.08 g/ml at 25 °C. The BT was supplied by 
Sigma-Aldrich Co. LLC and was added to the silicone to improve the dielectric constant of the 
composites. 
 
2.2 Sample preparation 

The two part polymer was initially mixed at a ratio of 1:1. Then, BT was subsequently added to the 
silicone matrix with filler contents of 0 wt%, 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt%, 
respectively. The DE composites were mechanically stirred to provide a high level of dispersibility of 
particles in SR. The entire mixture was degassed in a vacuum to remove entrapped air bubbles prior to 
being poured into a mould. After degassing for at least 1.5 hours, the compound was solidified in an 
oven at a temperature of 80 °C for about 12 hours. Finally, DE samples of 0.3 mm and 2 mm thickness 
were obtained using two alternative moulds.     
 
2.3 Microscopy observation 

The microstructures of all DE samples with a thickness of 2 mm were examined using a Scanning 
Electron Microscope (SEM, Zeiss Supra). The samples were cut at room temperature to create new 
surfaces which were then coated with a fine layer of gold to make them conductive prior to 
observation. All images were taken with an accelerating voltage of 5 KV using an SE (Secondary 
Electron) detector. 
 
2.4 Mechanical tests 

The bubble inflation test system [32] (Refer to Fig. 2) was designed for the equi-biaxial mechanical 
testing of elastomers by means of hydraulically inflating and deflating test samples using silicone oil. 
Disc samples of 50 mm nominal diameter were prepared and for mechanical testing were constrained 
in the bubble inflation system’s inflation orifice. In the static tests, pressure was applied to the 
samples of 2 mm thickness causing them to inflate. The vision system, utilising two charge coupled 
device (CCD) cameras, recorded the movement of the centres of specific points at the pole on the 
surface of the samples during inflation. Stress values were simultaneously calculated from the applied 
pressure and bubble geometry, while strain (or stretch ratio) values were calculated from the change 
in circumferential distance between the centres of the specific points on the bubble surface at the 
bubble pole using three dimensional position coordinates obtained from the vision system output. 
This allowed the relation between stress and strain (or stretch ratio) to be obtained simultaneously. 
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Fig. 2. Photographs showing a sample undergoing testing in the bubble inflation test system, 
together with a calibration curve of stretch ratio vs true stress. 

 
2.5 Broadband dielectric spectroscopy 

Dielectric measurements of SR/BT films were conducted on a Turnkey broadband dielectric 
spectrometer at 20 °C in the frequency range from 0.1 Hz to 10 MHz. The film of approximate 0.3 
mm was placed on a cell which was a disposable gold-plated flat electrode with a diameter of 20 mm 
and thickness of 2 mm. 
 
2.6 Electromechanical tests 

The electromechanical test system consists of a camera, a biaxial clamp to apply pre-stretching and a 
high voltage power supply. Samples of 0.3 mm thickness were coated with the compliant electrode 
material. The samples were clamped with a pre-stretch ratio applied to them and a camera recorded 
changes in their area when an electric field was incrementally applied in voltage steps of 0.5 kV at 10 
seconds interval. Thereafter, the area was accurately measured using AutoCAD software. 

3. Results and Discussion 
3.1 Microstructure of DEs 
 
The morphology and particle distribution in the SR composites were studied using SEM. Figs. 3 (a) – 
(f) display the micrographs for variations in BT content from 0 wt% to 50 wt% respectively. It is 
evident that the particles were uniformly dispersed in the SR matrices. In addition, agglomerations of 
BT particles of different size dependent on particle content were observed. These micrographs reveal 
that at higher filler loadings, the BT particle tended to produce larger agglomerates and therefore 
large voids were capable of occurring at interfaces between the filler particles and the SR matrix. 



 

 
 

Fig. 3.Micrographs of SR composites with different filler loadings: (a) 0 wt%; (b) 10 wt%; (c) 20 
wt%; (d) 30 wt%; (e) 40 wt%; (f) 50 wt%. 

 
3.2 Stress-stretch and secant modulus-stretch behaviour 
 
Fig. 4 shows the relation between equi-biaxial true stress and stretch ratio for the silicone rubber 
composites for varied BT contents by weight. As can be observed, the true stress was less than 8 MPa 
for all samples when subjected to equi-biaxial stretch up to a stretch ratio of 5. The stress increased 
approximately linearly with increases in stretch ratio for stretch areas from 1 to about 1.2. The slope 
of the initial linear part of the stress-stretch curve decreased as the filler concentration increased 
indicating that stiffness reduced as filler loading increased. All samples used in this test exhibited 
hyperelastic deformation. 
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Fig. 4. True stress related to stretch ratio curves for silicone rubber with various barium titanate 

contents. 
 

The curves of secant modulus related to stretch ratio for these composites are plotted in Fig. 5. As can 
be observed from Fig. 4, the linear elastic portion of all the stress-stretch curves was below the stretch 
ratio of 1.2 where the slope of all curves indicates the initial Young’s modulus [33]. Therefore, the 
stiffness of these composites (apart from the sample with 10 wt% BT) was lower than that of the pure 
silicone. The increased stiffness of DE sample with 10 wt% BT is probably due to enhanced 
intermolecular forces occurring for this specific particle content. Furthermore, as shown in Fig. 5, 
these curves, which are affected by the intermolecular forces between particles and matrices, exhibit a 
single critical point indicating that the stiffness of these materials can be reduced by stretching them 
to small ratios. It can be observed that the minimum elastic moduli were obtained at a stretch ratio of 
approximately 1.6. In line with Eqn. (2), it is reasonable to assume that a maximum voltage-induced 
area strain from pre-stretching can be obtained at this stretch ratio.  
 

 
Fig. 5. Secant modulus of silicone composites with varied BT content related to stretch ratio. 

 
3.3 Dielectric properties of DE composites 
 
The applied electric field necessary to cause a required deformation can be decreased by increasing 
the dielectric constant in a DE composite on the basis of Eqn. (2). The complex dielectric constant 
which is also known as the relative permittivity, ε =ε' - jε", comprises the real part (ε') and the 
imaginary part (ε") which contributes to the energy loss. The dielectric spectra of the unfilled silicone 
matrix and the composites are shown in Fig. 6 and Fig. 7 respectively for ε' and the dielectric loss 



 

tangent (tan δ = ε" / ε'). As observed in Fig.6, the relative permittivity ε' increased gradually with 
increasing content of filler for the silicone possessing a permittivity of about 2.9 at 1 kHz, due to the 
strong presence of Maxwell-Wagner interfacial polarization [34]. The silicone rubber with BT 
loading of 50 wt% displayed the highest permittivity of approximately 6.3 at 1 kHz. All curves 
fluctuated slightly in the wide band frequency from 0.1 Hz to 1 MHz. Because the particles bonded 
strongly with the matrices at low filler loadings, the molecular networks in the polymers restricted the 
mobility of molecular chains. Additionally, polymer chain entanglements were regarded as a factor in 
restricting the movement of polymer chains. Thus, the dielectric constant was hardly affected by 
changes in frequency [35]. Furthermore, there is evidence that the amorphous SR is not influenced by 
dipole orientation due to the molecular structure at room temperature [36]. 

 
Fig. 6. Effect of BT content on the dielectric constant of SR as a function of frequency.  

 
The dielectric loss tangent is a physical parameter of a DE useful for characterizing its 
inherent dissipation of electromagnetic energy. When the value of loss tangent increases, it indicates 
that greater polarization occurs as energy losses increase. Fig.7 shows that tan δ decreased markedly 
for all samples up to a frequency of approximately 10 Hz. The unfilled silicone had a minimum tan δ 
of about 0.012 at 0.1 Hz. In addition, the dielectric loss tangent increased with increasing filler 
content at frequencies above 1 Hz. This is because the presence of agglomerations and defects in the 
SR/BT composites increased the dielectric loss tangent [35]. However, there is no general trend for 
the change of dielectric loss tangent against BT contents at frequencies below 1 Hz because the 
conductivity of polymer composites also contributed to the dielectric loss in this low frequency range 
[37]. 

 
Fig. 7. Effect of BT content on the dielectric loss tangent of SR composites as a function of frequency. 
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In order to improve understanding of the dielectric behaviour of DEs, several mixing rules [1,38-41] 
have been proposed for simulating the dielectric constant (ε′) of polymer composites which comprise 
the isotropic dielectric matrix (dielectric constant ε1′, volume fraction υ1), filled with dielectric 
spheroids (dielectric constant ε2′, volume fraction υ2 = 1 - υ1). The following equations are used to 
express the relations between the dielectric constant of DEs and the volume fraction of spherical 
fillers in DEs: 
The Maxwell-Wagner formula (Eqn. (4)) describes the change of dielectric properties of a diluted 
suspension with spherical conducting particles. It is derived under the assumption that particles are 
dispersed in a continuous matrix phase in such a low concentration that there is no interaction 
between particles. 
 

( )
( )

2 2 1

1

1 2 2 2 1

3
1

2

ν ε ε
ε ε

ε ε ν ε ε

 − ′ = + + − −

′ ′
′

′ ′ ′


′                        

(4) 

 
When the particle volume concentration is high, the assumption is invalid. In order to overcome this 
disadvantage, a formula was proposed by Böttcher: 
 

( )2 2 1
1

2

 
3 2

ν ε εε ε
ε ε ε

−′ −
′

=
′ ′ +

′′

′                                          
(5) 

 
In accordance with Maxwell’s equation, Looyenga developed an equation by assuming that the 
variable particle volume concentration was a function of ε′ and Δε provided that ε1′ = ε′ - Δε and ε2′ = 
ε′ + Δε. The equation is expressed as: 
 

3
(1/3) (1/3)

2 1 2 2(1 )ε ν ε ν ε ′ ′= − +
 

′                           (6) 

 
The modified Rother-Lichtenecker model [38,42] based on the Rother-Lichtenecker equation is a 
representation of a logarithmic law of mixing for a chaotic or statistical mixture, as shown in Eqn. (7): 
 

1 2 2 1ln ln (1 )(ln ln )ε ε ν κ ε ε′ ′ ′′ = + − −                (7) 
 
where κ is a shape-dependent parameter. It was reported that κ had a value around 0.1-0.3 for most 
well-dispersed polymer-ceramic composites [43]. For example, a κ of 0.1 was reported for a 
compound DE material consisting of a form of lead-free perovskite ceramic particle (CaTiO3) in a 
polyvenylidene fluoride [44]. Jayasundere and Smith derived Eqn. (8) for permittivity as a randomly 
connected state in a binary piezoelectric 0-3 composite by modifying the well-known Kerner 
equation [45] including interactions between neighbouring spheres. 
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2 2 1
1 2 2

1 1

1 2 1 2

2 2 1
1 2
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1 2 1 2
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2 2
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(8) 

 



 

A relationship was observed between the volume faction and the weight percentage relying on the 
density of the matrix (1.07 g/cm3) and the filler (6.08 g/ cm3) in these experiments. 
 

2
1.07

6.08 5.01
mv

m
=

−
                                             (9)   

 
The curve fitting for dielectric constant of SR/BT composites by means of these equations (4 - 8) in 
conjunction with the volume fraction expression (Eqn. (9)) is shown in Fig. 8. As can be seen from 
this figure, the result obtained by utilising the Rother-Lichtenecker equation with κ = 0.2 was the best 
fit with the experimental data. However, the dielectric constant of all the DE films calculated from the 
other equations was significantly smaller than the experimental data. The best-fit κ-value (0.2) 
determined from the modified Rother-Lichtenecker expression indicates that the ceramic BT particles 
are reasonably well-dispersed. This κ-value lies between that of low values associated with small 
(often nano-sized) particles [46] and larger ceramic particles [43]. In practice κ often reflects the size 
and orientation of embedded ceramic particles.  
 
 

 
Fig. 8. Dielectric constant related to the BT content. 

 
 
3.3 Voltage-induced strain 
 
Samples of SR fabricated with different filler loadings ranging between 0 % and 50 % in 10% 
increments by weight were bonded to the equi-biaxial clamps at a pre-stretch ratio of 1.6 prior to high 
voltages being applied to them. Fig. 9 shows that area strains for all samples actuated by high voltages 
increased greatly with increases in electric field strength, mainly due to the voltage-induced strain 
dependent on electric field strength as expressed in Eqn. (2). All the samples containing BT exhibited 
higher actuated area strains than the pure SR sample. As can be seen from the curves, the actuated 
area strains increased with increasing content of BT. The SR composite with 20 wt% BT achieved an 
area strain of 57 % under an electric field of 46 V/µm which is larger than that obtained by the 
unfilled silicone rubber that only produced an actuated area strain of 34 % with a dielectric strength of 
43 V/µm. Hence, the composite with 20 wt% BT displayed the most pronounced electromechanical 
effect. 
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Fig. 9. The actuated area strain related with applied electric field. 

 
The electromechanical sensitivity (β), which is the ratio of dielectric constant to elastic modulus, was 
considered a significant value in determining voltage-induced deformation [16]. As can be seen from 
Fig. 10, sensitivity increased with an increase in BT content in SR composites. However, the 
voltage-induced area strain displayed a maximum value of 57 % for a filler content of 20 wt%, but 
was surprisingly lower at 28 % for the SR composite with 50 wt% BT. This is possibly due to the 
viscoelasticity of the samples with higher filler content restricting large voltage-induced deformation. 
Also, defects in DE composites were regarded as a factor contributing to reductions in breakdown 
voltage [47], this also led to small voltage-induced deformations. In addition, energy loss increased 
with increasing dielectric loss tangent. This possibly relates directly to the heat increase associated 
with increase in filler content [48]. Consequently, the energy loss contributed to the decrease of 
breakdown voltage for the DE films.  
 

 
Fig. 10. The ratio of dielectric constant to secant modulus at λpre = 1.6 and the voltage-induced strain 

related to the BT filler content in SR composites. 
 

For a DE, electromechanical energy density (e) is the amount of work generated in one actuation 
cycle per unit volume of actuator. The electromechanical coupling efficiency (K2) is the electrical 
energy converted into mechanical energy per cycle, so is a measure of the electrical energy that needs 
to be supplied to provide a level of mechanical energy (or physical actuation). Each parameter is of 
importance when characterizing the energy efficiency produced by a DE. ‘e’ and ‘K2’are obtained 
from Eqn. (10) and Eqn. (11) [6] respectively. 



 

( )- ln 1-V ze sσ=
                                                      

(10) 
2 22 -z zK s s=                                                   (11) 

The dependence of electromechanical energy density and electromechanical coupling efficiency on 
filler content is shown in Fig. 11. As can be observed from this figure, both energy density and 
electromechanical coupling efficiency rises with increased filler content to about 20 wt%, then 
decreased with an increase in filler content thereafter. Hence, the energy density for SR composites 
with 50 wt% BT was smaller than for DEs with 30 wt % BT which exhibited the largest 
electromechanical energy densities in the region of 0.042 MJ/m3, (3 times greater than that of pure 
silicone rubber) and the maximum electromechanical coupling efficiency K2 of 0.59.  

  
Fig. 11. The dependence of electromechanical energy density and electromechanical coupling 

efficiency on BT content.  

Conclusions 
SR is an excellent candidate for fabricating DEs with BT used as a filler. The SR based DE samples 
used in this research are soft and capable of high extensibility. The moduli of elasticity for the 
materials are low which allows them to achieve high area strains when employed in DE devices. In 
addition, an optimum equi-biaxial pre-stretch ratio of 1.6 was determined by means of equibiaxial 
mechanical testing. By comparison with conventional uniaxial testing, the equi-biaxial loading 
method is more representative and appropriate for defining the mechanical properties and is therefore 
a far more reliable indicator of properties displayed in practical applications of DEs. Furthermore, the 
dielectric constants for this range of DEs increased with increasing filler content, while dielectric loss 
tangent also increased at a frequency of 0.1 Hz. This means that the more filler that was added, the 
more heat and energy loss generated. This effect, associated with increased agglomeration, and other 
defects in the composites having higher filler content inhibited the increases in dielectric strength. 
Finally, the maximum voltage-induced area strain of 57 % together with an electromechanical 
coupling efficiency of 0.59 was achieved for an SR with 20 wt% BT by employing an electric field of 
46 V/µm. 
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