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This paper investigates the effect of improper posttensioning of a 2-way spanning concrete slab subject to a central point load. Due
to plate slippage alone, the support conditions only offered a 1-way spanning action which could have led to premature failure
with dangerous consequences. Posttensioning can strengthen a flat slab against punching shear by controlling deflections and
cracking under service loads compared with traditional punching shear reinforcing methods leading to more slender structures
and economic solutions for longer spans. However, if the method is not properly applied, these thinner floor plates can fail in a
brittle and sudden manner by punching at ultimate limit state and excessive deflection in serviceability. Concrete slabs containing
traditional shear reinforcement performed adequately and demonstrated that the critical punching shear perimeter, defined as twice
the depth of the slab, was confirmed from measured deflections and crack pattern analysis.

1. Introduction

A number of different design codes are used for punching
shear [1–3]. In Ireland, the design of concrete structures
follows the guidelines in [3] which are based on Model Code
1990 [4]. However, most of the formulas are empirical in
nature [5, 6].

Generally, three factors contribute to the shear resistance
of nonreinforced concrete, namely, the area of concrete
in compression, the dowel action of longitudinal tensile
reinforcement and the interlocking nature of the aggregates.
The Eurocode 2 [1] approach for designing against punching
shear failure in solid concrete slabs defines the critical control
perimeter (𝑢

1
) as shown in Figure 1 where 𝑑 is the mean

effective depth of the slab. This perimeter should therefore
be minimized, examples of which are shown in Figure 2
for different cross sections. The approach adopted in the
Eurocode for the punching shear resistance of slabs without
shear reinforcement is empirical and assumes that the shear
resistance is derived from a shear capacity acting uniformly
over the effective area of the section considered.

Posttensioning can lead to uplift of concrete slabs as
the strand straightens during stressing [7]. While this can

reduce self-weight deflections, it can also raise the slab above
its supports, particularly for a 2-way spanning plate [8]. A
posttensioned slab can also be subject to slippage during
stressing which, with inadequate lateral restraint (adjacent
slabs and/or masonry walls), can also change the support
conditions [9]. As the effect of this is difficult to notice on site,
it can result in increased cracking and reduced performance
due to these thinner slabs with reduced reinforcement [10, 11].

The experimental section that follows demonstrates the
effect of posttensioning slippage on 2-way spanning spans
subject to point loads compared with traditional flexural and
punching shear reinforcement.

2. Experimental Programme

Three 1100 × 1100 × 140mm thick concrete slabs were
cast for testing. Slabs S1–S3 assessed the performance under
central point loads in terms of strain, deflection, and crack
pattern analysis The reinforcement details in the three slabs
accounted for a two-way spanning plate with S1 and without
S2 punching shear rebar. Slab S3 did not contain punching
shear reinforcement as the intention is to determine how
effective posttensioning rebar was at reducing this mode of
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Figure 1: Distance of control perimeter from loaded face [2].
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Figure 2: Critical control perimeter for columnswith different cross
sections [1].

Table 1: Mix proportions.

Mass of ingredients (kg/m3)

Water CEM I FA CA
10mm 20mm

225 500 605 445 445
FA: fine aggregate; CA: course aggregate.

failure. The support conditions of the test rig were provided
a simply supported 2-way spanning arrangement. Figure 3
shows the 100 × 150 × 8mm RHS frame used to support the
slabs during testing.

2.1. Mix Proportions. The concrete for this study included
CEM I cement (500 kg/m3) complying with [12] was used
as the cementitious material with a fixed water to cement
(w/c) ratio of 0.45. Both the fine and coarse aggregates were
obtained from local sources in Ireland. The fine aggregate
used was medium graded sand and the coarse aggregate
was crushed limestone with a maximum size of 20mm.
Before mixing, the water absorption of the aggregates was
determined and the water added to the concrete was adjusted
accordingly to cater for this.

Following a number of trial mixes, the final proportions
were determined so that a slump between 100 and 150mm (S3
class slump) [13] could be achieved. The mix proportions are
summarised in Table 1.

2.2. Concrete Manufacture. The concrete was manufactured
using a pan mixer. For each mix, one slab (1100 × 1100 ×
140mm), three cubes (150 × 150 × 150mm), and two 100m
diameter × 200mm long cylinders were cast. Each mix had a
volume of 0.20m3 including 10% for wastage. After mixing,
the concrete was poured in 50mm thick layers into the
moulds with each layer vibrated on a vibrating table for

1050mm

4 number 100 × 100 × 8mm

10
5
0

m
m

4 number 100 × 150 × 8mm RHS

triangular pieces welded to 
the RHS sections

Figure 3: RHS frame used to support the concrete slabs.

a time until no more air bubbles were visible on the surface.
Curing of the concrete was provided by placing a polythene
sheet over the specimens for 24 hours to trap moisture that
evaporates from the surface. Following demoulding, the slabs
were wrapped in wetted tarp and stored in a laboratory at
20 ± 3∘C until testing. The cubes and cylinders were placed
in water in a curing tank at 20 (±1)∘C until testing.

2.3. Workability. The workability (i.e., consistence) of the
concrete was measured immediately after its manufacture in
terms of slump in accordance with [14].

2.4. Compressive Strength. The compressive strength was
determined by crushing three 150mmcubes at 7 days for each
mix in accordance with BS EN 12390-3 for testing hardened
concrete [15]. Seven days was chosen as the age to test the
slabs as it is a typical to apply posttensioning along with a
minimum compressive strength of 25N/mm2.

2.5. Tensile Strength. The indirect tensile strength was deter-
mined by splitting two 200mm cylinders (100mm diameter)
at 7 days for each mix in accordance with [16].

2.6. Reinforcement Details. Figures 4–6 and Table 2 sum-
marise the strain gauge locations. Longitudinal reinforce-
ment (6mm diameter) strain gauges were placed on the
steel reinforcement just off midspan in both orthogonal
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x Strain gauges 1.3 and 1.4

Strain gauges 1.1 and 1.2

Strain gauges 1.3

Strain gauges 1.4

10mm mild steel bars
Cover depth = 25mm

y

z

y

Figure 4: Reinforcement details and location of strain gauges 1.1 to 1.4 in slab S1.

x
Strain gauges 2.5 Strain gauges 2.6

Strain gauges 2.6

Strain gauges 2.5
Strain gauges 2.7

10mm mild steel bars
Cover depth = 25mm

y

z

y

Figure 5: Reinforcement details and location of strain gauges 2.5 to 2.7 in slab S2 (gauges 2.1 to 2.4 are identical to 1.1 to 1.4 in slab S1).

x Strain gauges 3.6

Strain gauges 3.1 and 3.2

Strain gauges 3.3 and 3.4

Strain gauges 3.5

10mm mild steel bars
Cover depth = 25mm

y

Figure 6: Reinforcement details and location of strain gauges 3.1 to 3.6 in slab S3.

directions on all slabs. To increase the accuracy of the strain
readings and assess the degree of bending occurring in the
reinforcement, two gauges were placed on the top and bottom
of each reinforcing bar.

Strain gauges were also placed on one shear link leg
(6mm diameter × 100mm long) in slab S2 (2.5 and 2.7) on
each layer to assess their stress profile during loading. Two
extra longitudinal reinforcement strain gauges were placed
on a reinforcing bar in the top flexural steel layer of at either

end of the posttensioned slab (slab S3) to determine the effect
of stressing on the longitudinal reinforcement. The strain
gaugeswere fitted onto the steel by sanding the bars, polishing
them using a degreaser and applying using fast drying super
glue. Lead wires were soldered to the terminal and multiple
layers of protective varnish applied. An example of a prepared
strain gauge on the steel is shown in Figure 7.

Seven Linear Variable Displacement Transducers
(LVDT) where placed on the soffit of each slab to record
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Table 2: Steel strain gauge label and position.

Strain
gauge
label

Slab
number Strain gauge position

1.1

S1

Top of 𝑥-direction flexural reinforcement

1.2 Bottom of 𝑥-direction flexural
reinforcement

1.3 Top of 𝑦-direction flexural reinforcement

1.4 Bottom of 𝑦-direction flexural
reinforcement

2.1

S2

Top of 𝑥-direction flexural reinforcement

2.2 Bottom of 𝑥-direction flexural
reinforcement

2.3 Top of 𝑦-direction flexural reinforcement

2.4 Bottom of 𝑦-direction flexural
reinforcement

2.5 Leg of link in perimeter 1
2.6 Leg of link in perimeter 2
2.7 Leg of link in perimeter 3
3.1

S3

Top of 𝑥-direction flexural reinforcement

3.2 Bottom of 𝑥-direction flexural
reinforcement

3.3 Top of 𝑦-direction flexural reinforcement

3.4 Bottom of 𝑦-direction flexural
reinforcement

3.5 Top of 𝑥-direction flexural reinforcement
(L2)

3.6 Bottom of 𝑥-direction flexural
reinforcement (R2)

𝑥1–4 Top face of concrete 𝑥-direction
𝑦1–4 Top face of concrete 𝑦-direction

Figure 7: Strain gauge attached to an embedded steel bar.

the deflections during loading and to locate the punching
shear perimeter (Figures 8 and 9) [17]. One additional LVDT
was placed in the centre of slab S3 (PL) during stressing to
record the effect of prestressing on the deflection shows the
LVDT arrangement in all three slabs. Figure 10 shows the
LVDT arrangements on the top surface of each slab.

2.7. Posttensioning Ducts. Test specimen S3 was designed and
tested as an unbonded posttensioned slab. The strands used
for the prestressing procedurewere isolated from the concrete
during both casting and testing using 20mmdiameter plastic
ducting (Figure 11) which was inserted into preformed holes
cut into the formwork.

PL

Slab soffit

400mm
275mm

150mm

Figure 8: LVDT arrangements on the soffit of all slabs.

Figure 9: LVDTs positioned on the soffit of each slab.

60mm

60mm

Front left LVDT

Back right LVDT

Figure 10: LVDT’s locations on the top of all slabs.

Each slab was cast with four 8mm diameter lifting eyes
(Figure 12) to aid movement. Each eye was lapped 200mm
under the top layer of flexural reinforcement and protruded
90mm above the surface of the concrete.
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Figure 11: PVC duct locations prior to casting.

Figure 12: Lifting eye positioned during casting.

Figure 13: Steel bearing plates prior to drilling.

2.8. Posttensioning Bearing Plates. To distribute the com-
pressive forces into slab S3 in a safe and controlled manner
a composite 17mm thick steel bearing plate (Figure 13) was
prepared with two 12mm holes to receive the prestressing
strands [18, 19].

2.9. Prestressing Procedure. Following casting, the PVC ducts
were trimmed flush with the side of the concrete face to
ensure a flat surface for the steel plates to bear against during
stressing. The steel strands were fed through the bearing
plates and ducts and a barrel and wedge anchor was fixed at
either end. The strand was pulled taught ensuring that any
slack was removed [20].

Stressing of the strands was performed using a 25T
hydraulic monostrand jack, as shown in Figure 14 calibrated
to a pressure of 200 Bar equal to a stressing force of 65.1 kN
and a stress of 1252N/mm2 corresponding to 67% of the
tensile strength of the strand (𝑓pk = 1860N/mm2). The jack
was placed onto the “live” end of the strand (Figures 15 and 16)

Figure 14: 25T hydraulic monostrand jack.

Dead end Slab S3 Prestress strand
Live end

Figure 15: Dead and live end anchor.

Figure 16: Live end anchor.

and prevented from moving at the opposite end by the “dead
end” anchor. Once the stressing jack reached a pressure of 200
Bar, jacking stopped.

As ten 10 strands were to be stressed in both orthogonal
directions, a logical stressing plan was employed to account
for effects of elastic deformation as the posttension force is
applied on the level of prestress transferring into the slab.
With multiple strands, stressing the first does not cause
any losses as, although the concrete undergoes shortening,
the jack is not removed until the specified (calibrated)
value of prestress is applied therefore negating any elastic
deformation. However, stressing the 2nd strand does cause
a loss in force in the former due to concrete shortening. If
the stressing procedure took place in a sequential manner
the losses in prestress force due to elastic deformation in the
strands would range from zero in the final strand stressed to
maximum in the first.

Therefore, the strandswere stressed in a “skipped” fashion
[19, 20] with the second one to be tensioned was furthermost
from the previous. The next strand prestressed was adjacent
to strand 1 and so on until all 20 were stressed. The method-
ology is shown in Figure 17.

Furthermore, the strands parallel to the 𝑥-axis were
tensioned first before those parallel to the𝑦-axis as these were
located at a smaller eccentricity. The readings these strain
gauges were used to confirm the effects of the tensioning on
the strands in the concrete member.
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Figure 17: Stressing procedure.

0
20
40
60
80

100
120
140
160
180

Slab S1 Slab S2 Slab S3

Sl
um

p 
(m

m
)

Figure 18: Slump values.

3. Discussion of Results

3.1. Workability. The slump values recorded are shown
in Figure 18 which shows the required workability (100–
150mm) was achieved in all the concrete cast. Concrete mix
S3 had a slightly higher slump than the others but in conjunc-
tion with the compressive and strength results (Figure 18) it
is clear that it had no significant effect.

3.2. Compressive Strength. The compressive strength results
are presented in Figure 19. As shown, the entire concrete cast
achieved the characteristic strength specified (35N/mm2).
There is a slight decrease in strength for slab S3 which cor-
responds to the higher slump result for that mix (Figure 18)
which may indicate excess water added in error. However, as
the design strength was achieved the concrete was deemed
satisfactory.

3.3. Tensile Strength. The tensile strengths are presented in
Figure 20. As shown, all concretes achieved a minimum
tensile strength of 3.0N/mm2. As with the compressive
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Figure 19: Compressive strength results.
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Figure 20: Tensile strength results.
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Figure 21: Strain time lapse analysis for gauge 1.2, slab S1.

strength, the tensile strength for slab S3 was slightly lower
than the others.

3.4. Slab S1 Results

3.4.1. Strain Analysis. Failure of slab S1 occurred at a load of
256 kN.The predicted failure load (using [3]) was 201 kN.The
strain gauge results are shown in Figures 21–23 with gauge 1.1
braking during testing.

Figure 21 shows the increase in strain in gauge 1.2 with
load in the bottom of the flexural reinforcement (𝑥, btm)
indicating the rebar contribution to the load carrying capacity
of the slab. At 40 kN, increases in strain in the top bar
of the flexural reinforcement (𝑦, top, parallel to the 𝑦-
direction) were observed (Figure 22) and are lower due to
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Figure 22: Strain time lapse analysis for gauge 1.3, slab S1.
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Figure 23: Strain time lapse analysis for gauge 1.4, slab S1.
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Figure 24: Deflection V’s distance from support (𝑦-direction).

local compression. It is not until 160 kN that a compressive
strain is recorded. At 40 kN, the strain in the bar increased
linearly until approximately 3200𝜇𝜀 corresponding to a load
of 240 kN where the bar began to yield.

3.4.2. Flexurally Reinforced Concrete Slab S1: Deflections. The
deflections at reference points A–F are shown in Figures 24
and 25. At “postfailure,” the instant after failure, the LVDT
deformations indicate considerable deflection. However, the
deflection at point E has decreased indicating that the
punching shear critical perimeter is located between points C
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Figure 25: Deflection V’s distance from support (𝑥-direction).
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Slab S1—corner LVDT

Figure 26: Load V’s corner deflection on slab S1.

and E. Eurocode recommendations propose that the critical
perimeter to be checked at a distance 2𝑑 from the loaded
area which relates to 210mm from the loaded area or 240mm
from the supported edge here [21].

A similar deflection pattern can be seen in Figure 25.
Again, at postfailure, the deflections at B and D increase
considerably while at F, it decreases indicating that the critical
perimeter for punching is located at a distance between
150mm to 275mm. The LVDT readings on the top surface
are shown in Figure 26 where negative deflection indicating
slab uplift. As may be seen, the results demonstrate an uplift
of 3.8mm at the back right corner of the slab at the failure
load (256 kN).

3.4.3. Crack PatternAnalysis. Figure 27 shows the post failure
crack patterns on the underside of the slab. As indicated, a
clear well defined punching shear perimeter is visible with the
failure perimeter passing between LVDT locations C and E
confirming the deformations as seen in Figures 24 and 25.
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Figure 27: Crack pattern on Soffit of slab S1.
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0 100 200 300 400 500 600 700 800 900 1000
Time (s)

Strain versus time
Load versus time

St
ra

in
 (𝜇

𝜀)

−50

0

50

100

150

200

250

300

350

Lo
ad

 (k
N

)

Slab S2—Bar, x

0

1

2

3

4

5

6
×103

Figure 29: Time lapse for gauges on Bar, 𝑥.

3.5. Slab S2 Results

3.5.1. Failure Load Analysis: Slab S2. Failure of Slab S2
occurred at a load of 293 kN due to its inability to sustain
load after this point.The theoretical punching failure load for
this test specimen was calculated as 278 kN (using cl 6.4.5(1)
Expression 6.52 [1]).

3.5.2. Strain Gauge Analysis. The results from strain gauges
2.2–2.4 are shown in Figures 28 and 29. As may be seen,
the strain in gauge 𝑥 (Bar, 𝑦) increases with load until the
failure load (293 kN) is reached. The trend of strain increases
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Figure 30: Strain readings recorded on shear links.
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Figure 31: Transducer displacements (𝑦-direction).

confirms that the bar passed through the elastic range where
strain increases faster than the applied load until approxi-
mately 3000 𝜇𝜀 where the bar behaves plastically.

Also shown is a change in strain at approximately 80 kN,
where the first crack occurred. A linear increase of strain
occurs in the bar until approximately 280 kN (3200 𝜇𝜀) where
the reinforcement is assumed to have yielded.

3.5.3. Shear Link Strain Gauges. The strain readings for
gauges 2.5 to 2.7 on links L1 to L3, respectively, are shown
in Figure 30. As may be seen, a shear force was experienced
by the concrete and its tensile capacity was exceeded. Links
crossing cracks contributing to the capacity of the section
indicating that the links experienced a tensile stress and
positive strain. Link L3 experienced the greatest positive
strain. Link L2 experienced a negative strain until a load of
225 kN was applied.

3.5.4. Deformation Analysis: Soffit of Slab. Figures 31 and
32 show the deflections at locations A–F from zero at the
supported edge to maximum at the centre (7.2mm at 293 kN)
suggesting the slab was failing in flexure.
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Figure 32: Transducer displacements (𝑥-direction).
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Figure 33: Slab S2—load V’s corner deflection.

3.5.5. Deformation Analysis: Top Surface. Figure 33 shows
that the deflections from the top surface are similar to those
seen in slab S1 with no uplift at the front left corner.

3.5.6. Crack Pattern Analysis. The crack pattern for Slab S2
postfailure is shown in Figure 34. The slabs failing in punch-
ing shear within the loaded area (perimeter P, Q, R, S) and
the cracks formed part of one long flexural crack. Although
cracks were initiated by a flexural mechanism, the capacity
of the cracked surface reduced leading to the formation of
punching shear cracks.

3.6. Slab S3 Results

3.6.1. Tensioning Analysis. The short-term loss of prestress
and subsequent force transfer to the concrete section was
determined by attaching eight strain gauges to the top surface
of the six connected to four reinforcing bars in the flexural
steel.

3.6.2. Concrete Strain Gauge Analysis. The strands parallel
to the slabs 𝑥-direction were tensioned first (Figure 35)
with the effect shown in Figure 36. As expected gauge 𝑥

1
,

Figure 34: Crack pattern on soffit of slab S2.

 P (kN) 

x4 x1

P (kN) 
Compression

Tension

Figure 35: Behaviour of slab during Event 1.

located directly above the position of strand 1, experienced
the greatest compressive strain as a result of the applied
axial load during tensioning of strand one. It appears that
gauges 𝑥

3
(top) and 𝑥

4
(below) experienced a small tensile

strain.Therefore, although the slab was in compression in the
vicinity located adjacent to the stressed strand, tension was
induced on the slab at locations 𝑥

3
and 𝑥

4
(Figure 36).

The second strand tensioned was directly beneath gauge
𝑥
4
. The effects of tensioning on the strains of gauges 𝑥

1

to 𝑥
4
are shown in Figure 37. As may be seen, the gauge

located on top of the strand being tensioned is undergoing
increases in compressive strain while the two gauges located
furthest away are exhibiting tension. In addition to providing
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Figure 36: Strains parallel to applied axial compression.
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Figure 37: Strains parallel to applied axial compression.
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4
—end Event 1 to start Event 2.

information on the effect in the slab during stressing, the
strain gauges parallel to the direction of stressing highlight a
loss in prestress force that occurs in the concrete immediately
after the end of an event, that is, the removal of the stressing
jack. The losses which occur between the end of Event 1 and
the start of Event 2 are represented by the changing strain
readings for gauges 𝑥

1
to 𝑥
4
.

Immediately following the end of Event 1, strain gauge 𝑥
1

reads a compressive strain of 43 𝜇𝜀 (Figure 38). By the time

x1
x2
x3

x4

0 100 200 300 400 500 600 700 800 900
Time (s)

End of stressing

St
ra

in
 (𝜇

𝜀)

−90
−80
−70
−60
−50
−40
−30
−20
−10

0
Tensioning procedure-x-direction

Figure 39: Total increase in strain in direction 𝑥.
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Figure 40: Total increase in strain in direction 𝑦.

tensioning of strand two took place, that is, the start time of
Event 2, this compressive strain decreased to 19𝜇𝜀. This sug-
gests that the concrete surrounding strand 1 is experiencing a
smaller compressive stress at the time of stressing strand two
than at the end of Event 1. There has been a significant loss
in prestress force from the end of Event 1 until the stressing
of strand two takes place. The most likely cause of this loss in
prestress force is as a result of anchorage draw-in losses which
have been discussed previously.

Figure 39 shows the total increase in strain on gauges 𝑥
1

to 𝑥
4
over the time taken to tension all ten strands in the 𝑥-

direction. As may be seen, the highest compressive strains
occurred at locations 𝑥

2
and 𝑥

3
which was expected due to

the sequence of tensioning undertaken.
Four gauges were located perpendicular to the direction

of stressing during Events 1–10. The strains recorded in
Figure 40 show tensile strains occur in gauges 𝑦

1
to 𝑦
4
with

the maximum occurring in gauges 𝑦
2
and 𝑦

3
. By applying

the compressive force in the 𝑥-direction the axial shortening
in the direction of stressing is accompanied by a lateral
elongation, that is, expansion normal to the applied load.
Assuming the concrete slab was acting as an uncracked sec-
tion, themagnitude of this lateral expansion can be attributed
to Poisson’s ratio.
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3.6.3. Steel Strain Gauges. The strains in the four flexural
reinforcement bars within slab S3 are shown in Figure 41. As
shown, there is a clear loss in strain within the bars during the
changeover period between tensioning the strands indicating
a loss in prestressing force and in the compression force
applied to the slab.

3.6.4. Failure Load Analysis. The failure load of Slab S3 was
252 kN (Figure 42). Upon reaching this load, the slab failed
in a brittle manner.

3.6.5. Strain Gauge Analysis. Strain Gauges 3.3 and 3.4
located on Bar, 𝑦 exhibit much larger strains than those on
Bar, 𝑥 (3.1 and 3.2) as shown in Figure 43. First cracking
occurred parallel to the slabs 𝑥-direction at a load of 90 kN.
The first crack passed the steel reinforcement at a load of
150 kN. However, upon reaching failure, the strains in Bar, 𝑦
are three times greater than those in Bar, 𝑥. Figures 43 and
44 both indicate that neither bar had yielded which is unex-
pected considering that once the maximum load had been
reached, the slab was unable to sustain any increase in load.

3.6.6. Deformation Analysis: Deformation Results—Soffit of
Slab. Figures 45 and 46 show the deflections in the 𝑦- and
𝑥-directions, respectively. As may be seen, the deflections in
the two directions are not consistent with what would be
expected for a 2-way spanning slab. Comparing the various

0
50

100
150
200
250
300

0 500 1,000 1,500 2,000 2,500 3,000 3,500

Lo
ad

 (k
N

)

Strain (𝜇𝜀)

Gauge 3.3
Gauge 3.4

Gauge 3.1
Gauge 3.2

= 252.117 kNMax load

Slab S3—load versus rebar strains

−50
−500

Figure 43: Load V’s strain (gauges 3.1–3.4).

Strain (𝜇𝜀)

−50
−500

= 252.117 kNMax load
Average 3.3 and 3.4

Average 3.1 and 3.2

Slab S3—load versus average strains

0
50

100
150
200
250
300

0 500 1,000 1,500 2,000 2,500 3,000 3,500

Lo
ad

 (k
N

)

Figure 44: Load V’s strain (average readings).
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LVDTs along the two orthogonal directions there noticeable
differences between the magnitude of deflection.The vertical
deflection recorded decreases from a maximum underneath
the point of application to the slabs. The deflections along
the 𝑥-direction indicate the slab was deflecting as one-way
spanning. This suggests that slab S3 during testing following
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posttensioning hadmarginally less support along the slabs 𝑦-
direction.

3.6.7. Deformation Analysis: Top Surface. Figure 47 indicates
that there was no uplift in both the front left and front right
corners with uplift occurring in the back left and, to a lesser
extent, at the back right corner.

3.6.8. Crack Pattern Analysis. Figure 48 shows the crack
pattern on the soffit of the slab post failure. The first crack
to form was along FDB. Only minor cracking occurred along
points ECA.The brittle failure crack shown occurred at a load
of 236 kN and the soffit of the slab punched through along the
top edge.

3.7. Comparison of Results between Slabs S1–S3. The loads at
failure were 256, 293, and 252 kN for slabs S1–S3, respectively.
While the punching shear reinforcement did yield a higher
load capacity in slab S2, the effect of slippage in S3 created a 1-
way spanning system with a reduction in capacity. The mode
of failure also confirms this with a brittle, sudden collapse
behaviour observed in S1 and S3 with punching through the
slab while flexural was observed in S2. The strain behaviour

A

B

C

D

E

F

Front right corner

Brittle crack occurs
at 236kN

Figure 48: Crack pattern on failure surface of slab S3.

in the reinforcement in S1 suggests the bars yielded under the
loading point and while this would be expected in S3 due to
the creation of a 1-way spanning slab and the brittle failure
mechanism, this was not the case.

The deflections in S1 and S3 showed failure by punch-
ing through the concrete. S2, again, demonstrated flexural
behaviour with the maximum deflection occurring centrally.
The clearly defined crack patterns in both S1 and S3 indicate
punching shear perimeters. S2, however, did not yield a
well-defined crack pattern with good dispersal and ring-like
concentrations under the load. Although they were initiated
by a flexural mechanism, the capacity of the cracked surface
reduced leading to the formation of punching shear cracks.

4. Conclusions

The following conclusions from the work above are summa-
rized below.

The exact location of the critical punching shear perime-
ter is specified as being located a distance of 2𝑑avs from the
face of the loaded area. The results here, in terms of both the
deflection and crack pattern analysis for slab S1, show that this
perimeter is accurate.

The punching shear resistance of the slab without shear
reinforcement (S1) yielded a conservative load estimate of
201 kN in comparison with the experimental failure load of
256 kNwhich questions the reliability of themethod for small
cross-sectional slab depths.

The introduction of an external axial force has enhanced
both the flexural and shear capacity of the section.

The support condition has an effect on the results. While
the support rig used here was adequate to resist the forces
applied to it, care must be taken during testing to ensure
the support conditions accurately simulate the conditions
designed for.

Although the benefit of prestressing has been shown, the
measurement of force transfer and subsequent loss in force
is a difficult task and extra attention should be paid to these
crucial factors.
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