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Abstract 

Stock modelling, based on representative archetypes, is a promising tool for exploring areas for 

resource and emission reductions in the residential sector. The use of archetypes developed using 

detailed statistical analysis (multi-linear regression analysis, clustering and descriptive statistics) 

rather than traditional qualitative techniques allows a more accurate representation of the overall 

building stock variability in terms of geometric form, constructional materials and operation.  

This paper presents a methodology for the development of archetypes based on information from 

literature and a sample of detailed energy-related housing data. The methodology involves a 

literature review of studies to identify the most important variables which explain energy use and 

regression analysis of a housing database to identify the most relevant variables associated with 

energy consumption. A statistical analysis of the distributions for each key variable was used to 

identify representative parameters. Corresponding construction details were chosen based on 

knowledge of housing construction details. Clustering analysis was used to identify coincident 

groups of parameters and construction details; this led to the identification of 13 representative 

archetypes.     
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1 Introduction 

The residential sector is a significant consumer of energy in every country, and therefore a focus 

for energy reduction efforts [1]. The residential sector consumes approximately 30% of global 

primary energy [2]. Households accounted for 25 % of total energy use in the EU27 in 2007 [3], 

for 17% in 2003 in Canada [4], and for 33% in Spain [6]. In the UK, the residential sector 

accounted for 27% energy-related CO2 emissions [5] and for 26.5% in Ireland [7]. 

The residential sector therefore represents an important research area for the generation of the 

information needed for evidence-based energy and emissions policy development for the housing 

stock. However, energy consumption is complex, depending on many parameters associated with 

building geometry, the thermal characteristics of the constructions and the way in which the 

building is operated. For stock modelling, an approach is needed that captures the key 

determinants of energy performance for the housing stock to allow technical and economic 

evaluation of retrofit options. Sampling actual buildings from the complete housing stock 

requires a large database of houses in order to ensure that a representative selection can be made 

that can be aggregated to determine building stock performance. An alternative is to create an 

archetype for each significant class of house based on statistical analysis, and then scale these 

according to the number of houses (or total floor area) for that archetype in order to represent the 

whole housing stock. If the archetypes are carefully selected, this procedure enables an 

evaluation of the different house types, key determinants of energy performance and economic 
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interventions to improve energy performance to be evaluated with a reduced set of models. The 

approach can be applied at a national, regional or local level. 

Archetypes are particularly helpful in stock aggregation, because they have the potential to 

support analyses of the existing stock, and, by making assumptions regarding changes in the 

housing stock and energy retrofit measures, they can be used to make future projections. Stock 

aggregation can be used to highlight areas where substantial potential exists for improvement in 

resource use and economic efficiency, enable quick what-if analyses, allow policy makers to 

optimize regulations and market incentives to achieve specific targets, and analyze how policies 

in one area (such as energy security or housing affordability) can affect other impacts from 

buildings (such as air pollution or energy demand), and develop priorities for research and 

development [8]. Scenarios of possible futures developed for a housing stock through use of 

archetypes can be used by governments and other stakeholders as a basis for strategic planning 

[9].  

The remainder of this paper is organised as follows. Section 2 summarises the overall 

approaches to existing archetype classification methodologies. Based on the housing database 

[10] Section 3 describes the methodology used in the development of archetypes, and 

conclusions are drawn in Section 4.  

 

2 Existing archetype development methodologies  

The house archetype approach has been used by a number of authors to model energy and 

resource quantities and impacts, from a study at a regional level by Lechtenböhmer and Schüring 

[11] to more recent studies at urban scales by Firth et al. [12] and Shimoda et al. [13]. The 

emergence of many energy and resource reduction models driven by the need to support the 
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assessment of emissions mitigation policies in the UK residential sector has been demonstrated 

by the BREHOMES model [14], the 40% house project [15] and the model developed by 

Johnston et al. (henceforth referred to as the Johnston model) [16].  

The number of archetypes used in published research varies from as few as two to several 

thousand, and often data from actual buildings are used. Lechtenböhmer and Schüring [11] used 

only two archetypes, while admitting significant uncertainties resulting from the lack of precise 

statistical information of the characteristics of the EU building stock. The authors still provide 

rough quantifications of the potential, appropriateness and cost of relevant strategies for 

improving the quality of the building shells of residential buildings in the EU.  Shimoda et al. 

[13] developed 20 dwelling types and 23 household (occupancy) types for the city of Osaka, but 

the results indicated that total estimated energy use is less than measured values. Forty-seven 

archetypes were developed by Firth et al. [12]. However, their models’ annual gas consumptions 

for mid-terrace, semi-detached and purpose-built flats are slightly below the lower 95% 

confidence interval for English House Condition Survey measurements, which the authors 

attributed to a combination of assumptions and inaccuracies in the modelling process as well as 

the effects of sampling and measurement errors in English House Condition Survey itself. Three 

other studies, Johnston et al. [16], Shorrock et al. [14] and Boardman et al. [15], employed just 2 

archetypes, 1,000 archetypes and 20,000 dwelling types, respectively. Johnston projected that the 

UK would reach its 60% emission reduction target by 2050; however, this is disputed by another 

study [9], and the discrepancy may be the result of the intrinsic simplifications made in 

Johnston’s model. Small variations are also observed between the modelled output of UKDCM 

[15] and BREHOMES [14] when compared to the same scenarios run in another model – the 

DECarb model of [9].  
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The present paper presents a methodology that can be used to achieve ‘trade-offs’ between 

simplifying residential dwelling stocks into characteristic archetypes and loss of resolution where 

the attributes of small groups of similar buildings are omitted. Multiple linear regression analysis 

(MLRA) is used to determine predictor variables of house energy use in order to allow a more 

accurate representation of the overall building stock variability in terms of geometric form, 

construction materials and operation. Complementary literature reviews of the different 

archetype bottom-up modelling techniques can be found in [1] and [17].  

 

3 Methodology 

To develop representative archetype houses, a housing database was required. In this paper, two 

databases have been useful in the development of archetypes – the Energy Performance Survey 

of Irish Housing (EPSIH) [10] and the Irish National Survey of Housing Quality (INSHQ) [18]. 

While the EPSIH was predominantly used in the current study, INSHQ was used to check the 

representativeness of the EPSIH. The EPSIH database contains data on energy use, energy 

rating, physical characteristics and occupancy patterns for a representative sample of 150 Irish 

dwellings. The INSHQ contains detailed information from a representative sample of over 

40,000 householders on building characteristics, building condition and occupancy. 

The broad methodology employed in this study involves the following steps:  

1. Checking that the EPSIH database is representative of the Irish housing stock by comparing it 

with the INSHQ.  

2. Using studies reported in literature to develop a full set of housing stock variables which 

impact energy use. 
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3.  Conducting a statistical parametric analysis to identify and rank the key variables 

determining energy use which are particular to the Irish housing stock. 

4. Developing representative archetypes based on the prevalence of parameters which are 

typically present for each key variable. 

 

3.1 Step 1 - Representativeness of housing database 

The set of common variables recorded in the EPSIH and INSHQ databases were compared in 

order to check the representativeness of the EPSIH database. The conclusions were that the 

variables of both databases demonstrate evidence of significant consistency (see Figure 1). One 

such example is dwelling type where the EPSIH recorded 4% more detached houses, at 50% of 

the existing housing stock, than the INSHQ.  

 

 

3.2  Step 2 - Ranking of Household Variables 

In this step an initial ranking of key independent variables is performed. A full set of variables 

influencing energy use as found in international literature, and as recorded in the EPSIH, were 

identified and tabulated based on their ranking in 17 different studies (see Table 1). The ranking 

approach was useful in the selection of supplementary variables in Section 3.2.1.    

 

3.3 Step 3 - Statistical analysis 

A total of 23 variables were selected for the multiple linear regression analysis that was 

performed. The approach adopted in selecting these variables was to include all variables in the 

housing database that will ordinarily contribute to prediction of house energy use [19] while only 
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one out of any two or more variables with a high bivariate correlation was used in the analysis 

[20], resulting in a total of 23 variables. For example there are high bivariate correlations 

between house volume, floor area and window area. While the three variables were used in turn 

for the initial MLRA, house volume resulted in the highest coefficient of determination (R2), so 

it was chosen for the final MLRA. The 23 variables selected for the final MLRA include: Wall 

U-values (W/m2K), Roof U -values (W/m2K), Floor U -values (W/m2K), Window U -values 

(W/m2K), Air Change Rate (ac/h), Internal Temperature (oC), House Volume (m3), Heating 

System Efficiency (%), Dwelling Type, Temperature controls (Basic control/Thermostatic 

radiator valve/Full-time temperature zone control), Number of Occupants, DHW Cylinder 

Insulation Thickness (mm), Cylinder Size (litre), Pipe-work Insulation (mm), Previous upgrades 

(upgrades/no-upgrades), Electricity Tariff rate (day/night/standard), Draughts (persistent 

draughts/some draughts when high winds/no draughts even when high winds), Humidity 

(typically damp/occasionally damp/typically dry), Immersion Heater Weekly Frequency, Electric 

shower weekly frequency, Electric water heater frequency, Typical Weekly Occupancy Pattern 

(heating season) (low/medium/high) and Number of Storeys. 

To identify the importance of the above variables in Irish housing, MLRA was undertaken using 

a statistical computer package (SPSS) [19]. All 23 variables were regressed as independent 

variables against Total Energy Use. It should be noted that Total Energy Use in this instance is 

the sum of fuel and electricity purchased (in kWh) for the purposes of space and water heating, 

lighting and appliances.  

 

3.3.1 Results of the statistical analysis 
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The results of the linear regression indicate a coefficient of determination (R2) of .391 (see Table 

2), indicating that 39.1% of the variance in household Total Energy Use is described by the 

model. Four of the variables are significant at the 1 and 5% levels; indicating a confidence that 

these variables influence the dependent variable, Total Energy Use. Variables which are 

significant at this level include: Typical Weekly Occupancy Pattern (heating season) 

(low/medium/high), Internal Temperature (oC), Air Change Rate (ac/h) and Immersion Heater 

Weekly Frequency. Table 2 gives the results of MLRA model; column headings are explained 

below. 

 

 

• Unstandardised Regression Coefficient (B) – gives the change in the dependent variable 

(Total Energy Use) due to a change of one unit of a predictor variable. The relationship 

between Air Change Rate (ac/h) and Total Energy Use indicates the greatest strength with an 

un-standardised coefficient of 150.5 (i.e. significantly different from 0; for every unit 

increase in house air change rate there is an increase of 150.5kWh/m2.yr in house energy use) 

showing that Air Change Rate (ac/h) contributes significantly to the estimation of Total 

Energy Use. This is followed by un-standardised coefficients for Internal Temperature (oC) 

of 71kWh/m2.yr, Typical Heating Season Weekly Occupancy Pattern of 40.3kWh/m2.yr, and 

Immersion Heater Weekly Frequency of 1.3kWh/m2.yr. The high unstandardised coefficient 

for air change rate can be explained as most of the sample houses indicate significant air 

tightness. For example, Sinnott and Dyer [21], report on the air permeability of the existing 

Irish housing, and found the pre-1975, 1980’s and 2008 dwellings to be 7.5m3/hr/m2, 

9.45m3/hr/m2 and 10.45m3/hr/m2, respectively, and that new dwellings cannot be 
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automatically be assumed more air-tight than older buildings. Similarly, the high 

unstandardised coefficient for internal temperature can attributed to the presence of sample 

houses with high heating energy. For example, one such example is a 47m2 floor area house 

running on a peat-fired Back-Boiler with main heat source seasonal (SEDBUK) efficiency of 

50% and 709.4kWh/m2.yr heating energy.  

•  Standardised Coefficient (Beta) – indicates which independent variables have the greatest 

effect on the dependent variable, since the variables have different measurement units subject 

to certain data quality assumptions. Internal Temperature (oC) is the most significant in 

predicting Total Energy Use with a standardised coefficient of 0 .243, followed by Typical 

Heating Season Weekly Occupancy Pattern (heating season) of 0.233, Air Change Rate 

(ac/h) of 0.211 and Immersion Heater Weekly Frequency of 0.172.  

• Significance level of a predictor variable quantifies the probability that the relationship 

identified between Total Energy Use and the independent variables is chance. A significance 

threshold of 5% was chosen.  

 

It has been mentioned previously that, 60.9% of the variation in house energy use is not 

explained by the model. This is not surprising because occupancy behaviour, for which data were 

not available, will have a significant impact on the main energy use. Occupancy is ignored in the 

analysis because long-term average occupancy is best applied for stock modelling purposes and 

the houses are occupied by many different types of users (young couples, families with young 

children, families with teenagers, older couples, pensioners etc.) over their lifespans. 

Furthermore, some data exhibited evidence of weak interactions among two or more variables, 

possibly due to the upgrade of individual building elements over the years so that, for example, 
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wall, window and roof U-values were not clustered. In some situations, it may be impossible to 

establish if an outlying point is bad data as outliers may be a result of random variation or 

indicate something scientifically interesting [22]. For example, when buildings are renovated, it 

is expected that wall and roof U-values will comply with the current building regulations. So it is 

would be expected to see some clustering between those variables. Furthermore, while [23] 

found that the levels of cavity-wall insulation in Ireland were at 42% in 1998 and remained static 

over the period 1996–2001, the levels of roof insulation were significantly better, with almost 

four-fifths of the stock possessing this energy efficiency measure, mainly a result of the State-

funded attic-insulation scheme of the 1980s [24]. It should also be noted that the present study 

found that roof U-values were in closer compliance with current building regulations than wall 

U-values.  

 

3.3.2 Final list of key household variables (explanatory variables) 

In the previous section the four key variables impacting house energy use were determined based 

on a multiple linear regression analysis of the EPSIH database. In this section, these variables are 

adjusted and combined with other information to determine the final list of variables required in 

the formation of archetypes. The final list of household key variables obtained from MLRA was 

streamlined to remove behavioural variables and those with very small effects. It was then 

supplemented with variables which are undisputedly important based on literature/or theory as 

outlined below: 

 

Although four variables were found to be significant at the 5% threshold in the MLRA (see 

above), Internal Temperature (oC), Typical Weekly Occupancy Pattern (Heating Season) 
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(low/medium/high) and Immersion Heater Weekly Frequency were excluded since the final 

archetypes will operate under average, long-term temperatures and occupancy. These variables 

are ones that are determined by the behaviour of occupants, and for the stock modelling 

objectives of this study occupant-related variables are standardised. Thus, only one key variable 

was selected from the results of the regression analysis, namely Air Change Rate (ac/h).  

 

As one key variable selected from the results of the regression analysis is not sufficient to 

provide the necessary parameter inputs to adequately define representative archetypes and 

perform energy analysis, it was therefore, important to obtain supplementary variables. Eight 

supplementary variables were obtained from the ranking of key variables in Table 1 and are 

justified as follows:  

i. Wall, Roof, Floor and Window U-values were selected based on their importance in 

determining energy consumption, as reported in the literature (see Table 1). 

ii. Similarly, Dwelling Type was chosen based on the literature review (see Table 1), and in 

particular as it is a major determinant of energy for space heating whilst also determining the 

number of exposed walls and the average floor area (both of which influence the dwelling 

heat loss) [12]. For example, it is possible to have a terrace and detached house with the same 

values for all the parameters, such as U-values, air change rate, and so on, but they would 

have very different energy consumptions because of the difference in the number/area of 

external walls.  

iii. Heating System Efficiency (%) was selected based on the ranking of variables in Table 1, and 

in particular as the primary energy use for operating a building depends mainly on the 

processes in the energy supply systems for electricity and heat [25]. It should be noted that 
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primary energy refers to the total energy required to provide the end user with delivered 

energy, including energy losses due to transformation and delivery. 

iv.     DHW Cylinder Insulation Thickness (mm) was selected because heat losses can be significant              

due to inadequate insulation.  

v. Floor Area (m2) has been selected based on literature, and in particular as it is more 

commonly used for housing energy analysis than house volume. 

 

With the selection of eight supplementary variables above, the final list in the development of 

archetypes in Step 4 below represents nine. These include the one key variable obtained from the 

MLRA and the eight supplementary variables obtained above - Wall U value (W/m2K), Roof U 

value (W/m2K), Floor U value (W/m2K), Window U-values, Air Change Rate (ac/h), Heating 

System Efficiency (%), Dwelling Type, Floor Area (m2), DHW Cylinder Insulation Thickness 

(mm). This number was considered sufficient as the variables were considered most important 

based on Table 1, and in particular as they have been individually justified above.  

 

3.4  Step 4 - Archetype development 

Once the full set of key determinants of Total Energy Use has been identified, a set of archetypes 

could be developed.  The following characteristics were used to differentiate the archetypes. 

1. Those features that are significant in establishing how house energy use might change 

according to the building regulations due to the time of construction (e.g. differences in age) 

[8] –  Wall U-value (W/m2K), Roof U-value (W/m2K), Window U –values (W/m2K), Floor 

U-value (W/m2K), Air Change Rate (ac/h), Floor Area (m2), Heating System Efficiency (%), 

Dwelling Type and DHW Cylinder Insulation Thickness (mm). 
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2. Characteristics of construction detail or construction type – Wall construction types: cavity 

wall (timber walls are considered to be included in the cavity wall category), and single-leaf 

wall (hollow block walls are considered to be included in this category); Roof insulation 

types: ceiling insulation, and rafter insulation; Floor construction types: solid floor and 

suspended timber floor; and Window insulation types: single glazing, double glazing and 

low-e glazing. It should be noted that construction detail has been considered important 

because two dwellings with the same dwelling type may not necessarily have the same 

construction detail, and hence differing impacts on house energy use (e.g. single solid wall 

versus cavity wall). 

 

The above selections generated a matrix that allowed for 81 categories (i.e. the product of 9 key 

variables of energy use and 9 building construction types and which can be described as house 

archetypes. However, in order to comply with the primary aim of the  study, and in particular as 

a large number of archetypes would make description, stock analysis,  and the assessment of new 

scenarios difficult [26], the number of archetypes were significantly reduced using the following 

three principal techniques:  

1. Using frequency histograms to choose parameters which are representative of the key 

variables: Using the data in the EPSIH database, frequency histograms were generated in 

order to identify concentrations of particular values, thus allowing representative values 

(“typical values”) to be chosen. In order to ensure that the representative values represent 

well-defined centres of the distributions, the approach adopted was to choose: (1) modes of 

symmetric distributions of key variables; and (2) means or medians or modes of skewed 
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(non-symmetric) distributions (depending on the summary and characteristics of the dataset 

of the individual distributions) of key variables. Here mode is the preferred central value 

since it will be representative of a common construction type; mean and median may yield 

values which are not. Figures 2 and 3 are histograms of wall and roof U-values from the 

EPSIH database. Figure 2 shows a bimodal mixture of 2 normal distributions with wall U-

values clustering around two peak values from which representative values were chosen. The 

first mode is between 0.375 and 0.5 W/m2K. The second mode is between 1.5 and 1.625 

W/m2K. Figure 3 represents a skewed distribution, and the mode is at or near the left tail of 

the data and so it appears not to be a good representative of the centre of the distribution. 

Having considered the three metrics of mean, median and mode in regard to summarising 

and characterising the dataset, the mean was considered to serve well as the representative 

value (“typical value”), and is between 0.33 and 0.46 W/m2K. The chosen representative 

values for these two variables are:   

a. Wall U-value: between 0.375 and 0.5 W/m2K; and between 1.5 and 1.625 W/m2K. 

b.  Roof U-value: between 0.33 and 0.46 W/m2K. 

 

2. Using representative parameters and knowledge of construction details/building regulations 

to choose representative construction details: Using the above chosen representative U-

values for Wall and Roof U-values and based on knowledge of construction details/building 

regulations, representative construction details were chosen as follows:      

a. 0.375 and 0.5 W/m2K:  full fill cavity wall with 100mm mineral wool insulation and partial 

fill cavity wall with 75mm mineral wool insulation; and 1.5 and 1.625 W/m2K:  un-insulated 

cavity wall.    
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b. 0.33 and 0.46 W/m2K: roof with 120mm mineral wool insulation between the joists or 

150mm mineral wool insulation between the rafters and 75mm mineral wool insulation 

between the joists or 100mm mineral wool insulation between the rafters.   

 

3. Creating scatter-plots based on the datasets of the pairs of the individual variables and 

identifying coincident (clustered) values from the resulting cluster points. In typical building 

regulations, values are specified for various fabric elements and heating systems. However, 

when building regulations are reviewed, it is expected that the U-values of the walls and roof 

of the sample follow the wall and roof U-values of the building regulations being introduced. 

So it is expected to see some clustering between those variables. Therefore, in this procedure, 

variables that are expected to be correlated were paired and scatter plots were generated for 

each of these pairs using their distribution data as recorded in the EPSIH.  Their clusters in 

the scatter-plots were then identified (i.e. as circled in Figure 4). As shown there are three 

clusters of data points from which archetype parameters representative of a combination of 

building construction details were chosen for combined roof and wall construction details. 

Cluster “A” represents the following values (Roof U value, Wall U value): (0.17, 0.25), 

(0.33, 0.25), (0.17, 0.375), (0.33, 0.375), (0.33, 0.5) and (0.46, 0.5) W/m2K; Cluster “B” 

represents (0.33, 1.5), (0.33, 1.625), (0.46, 1.625) and (0.46, 1.75) W/m2K; and Cluster “C” 

is represented by (0.33, 2.0) W/m2K.      

          

Archetype development: The above identified key variables, and clusters of construction 

details served as a basis for defining archetypes. In order to maintain the main purpose of 

simplification in stock aggregation as well as minimise number of archetypes, the approach 
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adopted was to combine cluster values into parameters as much as possible based on the chosen 

representative values in the frequency histograms (see technique 1 above).  

The final parameters of roof and wall construction details in the development of archetypes 

are as follows: 

 

1. Cluster “A” 

o All values of cluster “A” above were aggregated to (Roof U value, Wall U value): (0.33, 

0.375), (0.33, 0.5), (0.46, 0.5) W/m2K. 

2. Cluster “B” 

o All values of cluster “B” were aggregated to: (0.46, 1.625) W/m2K. 

The above procedure was repeated for all the remaining paired variables in succession. Thus, 

the archetype parameters were chosen for: Dwelling Type Class; Wall Construction Type; Roof 

Construction Type; Floor Construction Type; Window Type; Air Change Rate; Heating System 

Efficiency; DHW Cylinder Insulation; and Floor Area. With the above procedures a total of 13 

representative archetype houses have been developed using 9 classes of construction detail 

(construction type) and statistical categories of 9 key variables of energy use.  

Table 3 illustrates the final archetypes identified in this study. For each of the thirteen 

archetypes the parameters for all nine key variables are shown together with a description of the 

characteristic construction details corresponding to these parameters. The thirteen archetypes 

were representative of 98 dwellings in the sample of 150 (or 65% of the sample).  

4 Conclusions 
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This paper develops a methodology for characterising residential dwelling stocks into 

archetypes and implements it using Irish data. The methodology involves a literature review of 

studies to identify the most important variables which explain energy use in domestic dwellings 

and a representative sample of household data to identify which of these variables are most 

relevant to explaining the energy use of the housing stock in question. It should be noted that in 

the case presented in this study only one significant building-related parameter was identified 

from the housing database. Nevertheless, it is believed that this is likely to be due to deficiencies 

in the database, and that this step is worth including in other archetype development studies. 

 A statistical analysis of the distributions for each key variable was used to identify 

representative parameters and corresponding construction details based on a knowledge of 

housing construction details and thermal characteristics for the sample. Clustering analysis was 

used to identify coincident groups of parameters and construction details; this led to the 

identification of 13 representative archetypes.  

The study indicates that archetypes can be developed based on: the identification of key 

variables from literature and sample of statistical analysis; a parametric analysis of these 

variables based on the central values of their distributions; and then determining parameter 

combinations based on cluster analysis. Using this approach and applying it to an Irish case 

study, it was found that the 13 archetypes developed were representative of 65% of the 

population of the existing Irish housing stock. This number should be sufficient to guide policy 

on energy retrofits. Although some smaller groups of house types are not included, the number 

of resulting archetypes is manageable for testing upgrade strategies. 
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Figure 1: Comparison of dwelling types for both the EPSIH and INSHQ 

 

 

Figure 2- Frequency histogram of wall construction type 
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Figure 3 - Frequency histogram of roof construction type 

 

 

Figure 4 - Scatter plot: Roof vs. Wall construction types 



25 

 

Table 1: Ranking of determinants of household use as observed in literature  

*Equal rankings for determinants, **Housing stock of the EU-27, Norway, Iceland, Croatia, and Leichtenstein. 

Table 2: Multiple linear regression results for Total Energy Use (kWh/m2.yr) as the dependent 

variable 
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1 [11] EU** 1* 1* 1* 1*              

2 [12] UK 2* 2* 2* 2* 2*    1* 1* 1* 2*  1*   2* 

3 [23] IE 4 2    3 5  1     6    

4 [25] SE 2* 2* 2* 2* 2*    1* 1* 1*       

5 [27] EU-27 2* 1*  2* 3            1* 

6 [28] UK 1* 1* 1* 1*     2         

7 [29] BE  1 2 3     4         

8 [30] EL 1   3 2             

9 [31] DK 1* 1* 1* 1* 2    4       3 1* 

10 [32] UK 1                 

11 [33] SE    3 1 5   2    4 7 6   

12 [34] UK 9 3 2 5 1             

13 [35] EU-15 1* 1* 1*               

14 [36] SE          2 1       

15  [37] UK 1* 1* 1* 1* 2  3 5         4 

16 [38] SE 1* 1* 1* 1* 2             

17 [39] PT      1       2     
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Coefficients Coefficients 

Beta B Standard 

error 

 Constant 520.13 2,895.23   .86 

1 Wall overall U-value (W/m2K) 16.01 23.68 .07 .68 .50 

2 Roof overall U-value (W/m2K) -16.02 22.76 -.06 -.70 .483 

3 Floor overall U-value (W/m2K) 44.08 42.93 .11 1.07 .307 

4 Window overall U-value 

(W/m2K) 

23.04 13.18 .14 1.75 .083 

5 Air change rate (ac/h) 150.49 59.38 .21 2.53 .013* 

6 Internal temperature (oC) 71.04 24.60 .24 2.89 .005** 

8 Heating system (%) -.01 .21 -.01 -.06 .952 

11 House volume (m3) -.05 .05 -.08 -.84 .405 

12 Number of storeys  3.01 7.22 .03 .42 .677 

13 Dwelling type -16.63 8.99 -.17 -1.85 .067 

14 Number of occupants 3.01 7.22 .03 .42 .677 

15 Cylinder insulation thickness 

(mm) 

-1.03 .71 -.13 -1.45 .149 

16 DHW cylinder size (litre) .30 .21 .14 1.47 .145 

17 Pipe-work insulation (mm) -20.72 20.84 -.08 -.99 .322 

18 Typical weekly occupancy 

pattern (Heating Season) 

40.28 13.33 .23 3.02 .003** 

19 Immersion heater weekly 

frequency 

1.30 .59 .17 2.19 .030* 

20 Electricity tariffs -26.14 24.91 -.08 -1.05 .296 

21 Draughts -18.56 15.25 -.09 -1.22 .226 

22 Humidity 1.13 10.62 .01 .11 .915 
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23 Temperature controls -10.02 18.43 -.05 -.54 .588 

Note: R2 = .39; **(p < .01); *(p < 0.5)  

 

Table 3: Formation of archetypes 
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1 Partial fill cavity wall, ceiling insulation, double-glazed UPVC window, insulated solid floor 

23 0.5 0.33 3.0 0.5 23 133 80 0.87 Oil Conva 30b 

2 Partial fill cavity wall, ceiling insulation, double-glazed UPVC window, insulated solid floor 

11 0.5 0.46 3.0 0.58 23 133 80 0.74 Oil Conva 30b 

3 Partial fill cavity wall, ceiling insulation, draught-proofed single-glazed wooden window, 

insulated solid floor 

6 0.5 0.46 4.75 0.58 23 133 70 0.67 Oil  Conva 30b 

4 Insulated single-leaf wall, rafter insulation, double glazed UPVC window, insulated solid floor  

0.5 0.33 3 0.58 23 133 80 0.87 Oil  Conva 37c 8 

5 Partial fill cavity wall, rafter insulation, double-glazed UPVC window, insulated solid floor 

6 0.5 0.33 3.0 0.58 23 133 80 0.74 Oil Conva 35c 

6 Full fill cavity wall, ceiling insulation, low-e UPVC window, insulated solid concrete floor 

4 0.375 0.33 2.25 0.5 23 133 80 0.67 Oil Conva 37c 
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D
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7 Insulated single-leaf wall, ceiling insulation, double-glazed wooden window, insulated solid floor 

6 0.5 0.33 3.25 0.5 20 100 80 0.94 Gas Conva 35c 

8 Partial fill cavity wall, ceiling insulation, double-glazed UPVC window, insulated solid floor 3 
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0.5 0.33 3.0 0.5 20 100 80 0.94 Gas Conva 50b 

9 Insulated single-leaf wall, rafter insulation, double-glazed UPVC window, insulated solid floor 

3 0.5 0.33 3.0 0.5 20 100 80 0.87 Gas Conva 30b 

10 Partial fill cavity wall, ceiling insulation, double-glazed UPVC window, insulated solid floor 

12 0.5 0.33 3.0 0.5 20 100 80 0.94 Gas Conva 35c 
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11 Partial fill cavity wall, ceiling insulation, double-glazed wooden window, insulated solid floor 

8 0.5 0.33 3.25 0.5 20 100 80 0.87 Gas Conva 30b 

12 Partial fill cavity wall, rafter insulation, double-glazed wooden window, insulated solid floor 

5 0.5 0.33 3.25 0.5 20 100 80 0.87 Gas Conva 30b 

13 Un-insulated cavity wall, rafter insulation, draught-proofed single-glazed wooden window, un-

insulated suspended timber ground floor 

3 1.625 0.46 4.75 0.58 20 133 80 0.94 Gas Conva 35c 

Total sample distribution 98 

Total sample houses 150 

Percentage covered 65 
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