
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Physics, Clinical and Optometric 
Science 

2012 

The Effects of Fatty Desposits on the Accuracy of the Fibroscan The Effects of Fatty Desposits on the Accuracy of the Fibroscan 

Liver Transient Elastography Ultrasound System Liver Transient Elastography Ultrasound System 

S. Cournane 
Trinity College Dublin 

Jacinta Browne 
Technological University Dublin, jacinta.browne@tudublin.ie 

Andrew Fagan 
St. James's Hospital 

Follow this and additional works at: https://arrow.tudublin.ie/scschphyart 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Cournane, S., Browne, J.E., Fagan, A. J.:The Effects of Fatty Desposits on the Accuracy of the Fibroscan 
Liver Transient Elastography Ultrasound System. Physics in Medicine and Biology, Vol.57, no. 12, 2012, 
pp. 3901-3914. doi:10.1088/0031-9155/57/12/3901 

This Article is brought to you for free and open access by the School of Physics, Clinical and Optometric Science at 
ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU 
Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, 
vera.kilshaw@tudublin.ie. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschphyart
https://arrow.tudublin.ie/scschphy
https://arrow.tudublin.ie/scschphy
https://arrow.tudublin.ie/scschphyart?utm_source=arrow.tudublin.ie%2Fscschphyart%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=arrow.tudublin.ie%2Fscschphyart%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


 

 

 

 

 

 

 

The effects of fatty deposits on the accuracy of the 

Fibroscan® liver transient elastography ultrasound 

system 

 
 

S Cournane
1
, J E Browne

2
 and A J Fagan

1,3
 

 
1Dept. Medical Physics & Bioengineering, St. James’s Hospital, Dublin 8, Ireland 

2Medical Ultrasound Physics and Technology Group, School of Physics & FOCAS Institute,  

Dublin Institute of Technology, Kevin’s Street, Dublin 8, Ireland. 
3Centre for Advanced Medical Imaging, St. James’s Hospital / Trinity College Dublin, Ireland 

 

 

Abstract 

A new generation of ultrasound transient elastography (TE) systems have emerged which 

exploit the well-known correlation between the liver’s pathological and mechanical properties 

through measurements of the Young’s elastic modulus; however, little work has been carried 

out to examine the effect that fatty deposits may have on the TE measurement accuracy. An 

investigation was carried out on the effects on the measurement accuracy of a transient 

elastography ultrasound system, the Fibroscan®, caused by overlaying fat layers of varying 

thickness on healthy liver-mimicking phantoms, simulating in vivo conditions for obese 

patients. Furthermore, a steatosis effect similar to that in non-alcoholic fatty liver disease 

(NAFLD) and alcoholic liver disease (ALD) was simulated to investigate its effect on the TE 

system. A range of novel elastography fat-mimicking materials were developed using 6-

10wt% poly(vinyl alcohol) cryogel capable of achieving a range of acoustic velocities (1482-

1530m/s) and attenuation coefficients (0.4-1dB/MHz/cm) for simulating different liver states. 

Laboratory-based acoustic velocities and attenuation coefficients were measured while the 

Young’s modulus was established through a gold standard compression testing method. A 

significant variation of the Young’s elastic modulus was measured in healthy phantoms with 

overlaying fat layers of thicknesses exceeding 45mm, impinging on the scanners region of 

interest, overestimating the compression tested values by up to 11kPa in some cases. 

Furthermore, Fibroscan® measurements of the steatosis phantoms showed a consistent 

overestimation (~54%), which strongly suggests that the speed of sound mismatch between 



that of liver tissue and that assumed by the scanner is responsible for the high clinical cut-offs 

established in the case of ALD and NAFLD. 

 

1. Introduction 

Elastography techniques for both estimating and imaging the mechanical properties of soft 

tissues have been of great interest for more than two decades (Ophir et al., 1991; Céspedes et 

al., 1993). A number of ultrasound elastographic approaches have been developed, such as 

static elastography, acoustic radiation force imaging (ARFI), transient elastography methods 

and shear wave imaging. Static elastography compares ultrasonic signals pre and post manual 

compression, thus identifying areas of increased relative stiffness (Ophir et al., 1991), while 

acoustic radiation force strain imaging uses an acoustic radiation force to produce an effective 

compression of the tissue (Nightingale et al., 2001; Mauldin et al., 2008). Transient 

elastography uses a low-frequency pulsed excitation to generate shear waves in the tissue, 

typically liver tissue as depicted in Figure 1, with the velocity of the shear wave, established 

to be related to tissue stiffness, measured with an ultrasound pulse-echo technique and used to 

calculate the elasticity (Sandrin et al., 2003). Shear imaging utilizes ARFI to generate shear 

waves in the tissue with the resultant shear wave velocities used to derive an elasticity map of 

the tissue which can then be overlaid on conventional ultrasound images (Sarvazyan et al., 

1998; Bavu et al., 2010; Fink & Tanter, 2010). In recent years there has been an increase in 

the introduction of ultrasound elastography technology into the hospital environment, with 

transient elastography (TE) having become one of the more established elastography 

techniques in the clinical setting (Sandrin et al., 2003; Bavu et al., 2010; Evans et al., 2010). 

The current gold standard for classification of liver fibrosis is through biopsy and 

histopathological analysis (Zhou and Lu, 2009), an invasive process which categorises five 

fibrotic stages of the liver according to the METAVIR classification, ranging from F0, 

regarded as a healthy liver state, to F4, the most severe stage of fibrosis (Bendossa and 

Poynard, 1996). Several studies have compared the METAVIR classification with stiffness 

values reported by the Fibroscan® system showing excellent correlation between the two and, 

hence, cutoff values have been established for various liver diseases in order to differentiate 

between fibrotic stages (Castera et al., 2008).
 
For instance, a typical range of 2.7 – 7 kPa has 

been established as a cutoff for the F0 – F1 stage in a viral hepatitis C study (Castera et al., 

2008), while 4.8 ± 0.9 kPa has been established as a healthy liver stiffness for a study on 

NAFLD (Yoneda et al., 2008). While non-invasive transient elastography is emerging as a 

credible alternative to the invasive biopsy procedure, the Fibroscan® has been reported to 

significantly overestimate the absolute shear elastic modulus values measured when 

compared with ‘gold standard’ mechanical testing (Cournane et al., 2010). Furthermore, the 

system has been reported to rely on a single-point acoustic velocity calibration and on an 



assumption that the liver is approximately elastic, when in fact liver tissue can have a wide 

range of acoustic velocities and is regarded as highly viscoelastic (Cournane et al., 2010; 

Asbach et al., 2008). Accordingly, although transient elastography techniques can provide 

clinically useful information, there remains a need to identify limitations of the technique to 

facilitate informed clinical interpretations of results. 

 

Figure 1 Schematic of a transient elastography system used for measuring liver stiffness.  

 

One concern with transient elastography is the effect that the presence of fatty deposits and fat 

tissue layers may have on the accuracy of the measured shear elastic modulus. Indeed, an 

identified shortcoming of the Fibroscan®, and its standard “M” probe, has been the 

unreliability in scanning patients of increased body mass index (BMI), where increased 

subcutaneous fat thickness has interfered with the intended interrogated region of the liver. 

This prompted the development of the “XL” probe which, in one study, was reported to 

successfully scan up to 59% of obese patients (BMI > 30kg/m
2
) who could not be scanned 

using the M probe (de Lédinghen et al., 2010).
 
The XL probe is further reported to provide 

greater penetration depth due to its lower frequency ultrasonic signal while also sampling the 

elastogram from a deeper region, in order to avoid the fatty tissue layer. While the use of the 

XL probe leads to a higher success rate for valid measurements on obese patients, no study 

detailing the accuracy of the shear elastic modulus measurements has been carried out, and 

moreover, little is known about the effect that fatty deposits have on the Young’s elastic 

modulus accuracy. Of the range of chronic liver conditions that can lead to fibrosis of the 

liver, non-alcoholic fatty liver disease (NAFLD), accounting for up to 60% of chronic liver 

cases in obese patients, encompasses a range of liver abnormalities characterised by 

macrovesicular hepatic steatosis (Miele and Forgione, 2007; Yoneda et al., 2008), while 

alcoholic liver disease can also result in increased amounts of fatty deposits in the liver 

(Yang, 2008). The effect that this increased fat content, either overlaying the liver or in the 

organ itself, may have on transient elastography stiffness measurements has yet to be 



assessed. Numerous clinical studies have been conducted to establish patient cut-off limits 

using the Fibroscan®; however, no physics studies have been conducted to investigate the 

affect of fat content on its accuracy. 

 

Subcutaneous and intraperitoneal fat are generally considered a hindrance to good B-mode 

image resolution in conventional ultrasound imaging in clinical practice. The main cause of 

the degradation, taking the form of noise and clutter, is reported to stem from the composition 

of the body wall where fat, skin layer thickness and hydration level may all contribute in 

some way to the beam distortion and scattering (Browne et al., 2005). While it has been 

somewhat established how the presence of fatty tissue may affect B-mode scanning, it is not 

known how fatty tissue may affect elastography imaging and quantitative stiffness 

measurement. Given that approximately 500 million people worldwide were regarded as 

clinically obese in 2008, with obesity levels ever-rising, having doubled since 1980 (WHO, 

2011),
 
combined with the ever-increasing use of elastographic techniques for diagnosis, there 

is a need to understand what effect the presence of fatty tissue may have on elastographic 

measurements.  

 

The increased use of elastography techniques in the clinical setting has stimulated the 

development of tissue-mimicking material (TMM) phantoms for testing the capabilities of 

this relatively new technology (Cournane et al., 2012). TMMs previously produced for use in 

elastography phantoms include oil-in-agar, oil-in-gelatin and agar dispersions (Madsen et al., 

2005), co-polymer in oil (Oudry et al., 2009), polyacrylamide gels (Klinkosz et al., 2008; Lou 

and Konofagou, 2009) and the poly(vinyl alcohol) cryogel (PVA-C) (Cournane et al., 2010).
 

In particular, PVA-C has been successfully used to assess the accuracy of transient 

elastography, with the properties of the material optimised to best represent the acoustic and 

shear elasticity properties of a range of liver tissues ranging from healthy to cirrhotic 

(Cournane et al., 2010).
 
There are no published studies describing fat-mimicking materials 

used for transient elastography; however, materials such as olive oil, lard and fish oil capsules 

have been used to mimic fat in studies assessing the effect of fat on conventional ultrasound 

B-mode imaging image quality performance. The use of olive oil, whose acoustic velocity of 

1490 m/s and an attenuation coefficient of 0.87 dB/cm at 3MHz closely matches that of fat, 

has been used to introduce phase aberrations usually caused by subcutaneous fat layers, and 

was found to significantly reduce contrast resolution in B-mode scanning (Browne et al., 

2005).
 
The inclusion of olive oil into agar based TMMs has also been successfully used to 

simulate subcutaneous fat in the breast in a study involving the development of clinically 

relevant quality assurance and anthropomorphic training phantoms (Cannon et al., 2011). 

Furthermore, an elastography breast phantom was developed wherein the subcutaneous fat 



was mimicked using an oil-in-gelatin dispersion in which it was possible to achieve different 

mechanical, acoustic and nuclear magnetic resonance properties by varying the volume 

percentages of oil (Madsen et al., 2006); however, the elastic modulus values achieved were 

of the order of 20 kPa, much higher than the values required for mimicking liver tissue.  

 

The aim of the current study was to investigate the effects that fatty deposits have on the 

measurement accuracy of a commercially available liver transient elastography system. It was 

of interest to consider two separate scenarios, one with a layer of fat overlying the liver, and a 

second with fatty deposits distributed uniformly throughout the liver, since both situations 

present clinically and yet both represent quite different technical challenges to the 

elastography system. To this end, a novel range of custom test phantoms were developed to 

mimic both overlying fat layers and fatty liver tissue. This is the first study of this type, 

firstly, to construct an elastography phantom specifically for mimicking fat and, secondly, to 

investigate the effects that fat content may have on elastography ultrasound results. Such a 

study was necessary and timely given the increasing levels of obesity on a global scale, 

coupled with the increased interest in ultrasound elastography for use in the clinical setting. 

 

2. Materials and Methods 

Given the ability to tailor the properties of PVA-C to mimic a wide range of acoustic 

properties relevant to both healthy and cirrhotic liver tissue, together with previous work 

using olive oil dispersions to mimic fat, these materials were chosen for use in the current 

study. Indeed, PVA-C has also been shown capable of achieving a range of stiffness values 

similar to those of the liver, thus presenting as an ideal TMM for this study. The preparation 

method of PVA-C phantoms for mimicking the acoustic and Young’s elastic modulus 

properties of a range of healthy to cirrhotic liver tissue has previously been described in 

detail, and thus for a full description of this method the reader is referred to Cournane et al., 

(2010). In the current study, the preparation of the fat PVA-C phantoms is described 

following a similar procedure to the liver PVA-C phantoms with the added measure of 

incorporating olive oil into the PVA mixture. 

 

2.1 PVA-C phantom preparation 

99+% hydrolysed poly(vinyl alcohol) powder (Sigma-Aldrich® typical Mw 89,000 – 98,000) 

was employed to produce 6, 8 and 10 wt% PVA solutions, respectively. 0.05 wt% 

concentration benzalkonium chloride was used as an antibacterial agent while 2 wt% of 

0.3 μm aluminium oxide (Al2O3) (Logitech ultrafine Aluminium Oxide powder, LOT 

O81236) was included as acoustic scatterers. Separately, an olive oil component was made up 

using 90 wt% olive oil, 9 wt% degassed water and 1 wt% Synperonic A7 surfactant. This was 



produced by initially mixing the surfactant and water together and heating to 50 ºC, to ensure 

a homogenous solution, before adding olive oil and blending with a domestic hand blender. 

Once blended, the olive oil component was added to the PVA mixture and stirred until a 

homogenous mixture containing 0 – 35 % by weight olive oil component was produced. This 

mixture was used to produce phantoms for fatty liver experiments and for fat layers 

overlaying a healthy liver phantom. In order to produce normal liver phantoms (Phantom 

numbered 1 – 4 with no overlaying fat layers), 13% by weight glycerol (C3H8O3) was mixed 

with the initial PVA solution in preparation for processing. The mixtures, either for the fat 

experiments or the healthy liver experiments, were poured into airtight moulds, creating a 

humid environment to ensure no skin formed on the surface of the solution while cooling to 

room temperature, and left to rest for an additional 2 hours to allow for the removal of air 

bubbles. Solidification of the PVA samples was induced by a series of 24-hour freeze/thaw 

cycles (Cournane et al., 2010).
 
In cases where investigations of the physical and acoustic 

characteristics of the phantoms were carried out, the samples were sectioned after being 

allowed to condition, reaching thermal equilibrium with the ambient temperature, for 3 hours 

prior to sectioning (ISO-7748, 2008). 

 

A number of experiments were carried out, wherein the phantoms’ constituent ingredients 

were varied, to optimise the materials tissue-mimicking properties to best mimic a range of 

fatty, healthy and fibrotic liver tissue. To this end, 6, 8 and 10 wt% PVA solutions with 0 – 

35% olive oil component, including Al2O3 acoustic scatterers and benzalkonium chloride 

were used to produce phantoms of diameter 6.7 cm and thickness 2.5 cm, processed through 2 

freeze/thaw cycles. In addition, the effect of progressive 1 – 5 freeze/thaw cycling, 

respectively, on 5 fat phantoms was investigated using 6% PVA solution with a 35 wt% olive 

oil component and acoustic scatterers and anti-bacterial agent. To mimic fat layers, 6 wt% 

PVA solution with 35% by weight olive oil mixture including 2% by weight 0.3μm Al2O3 

scatterers and the anti-bacterial agent were processed through 3 freeze/thaw cycles to create 

both fat layer phantoms (Fat layers ranging from 15 – 55 mm in depth) and fatty liver 

phantoms (Phantoms numbered 5 – 9). Furthermore, normal liver phantoms (Phantoms no. 1 

– 4) were constructed using 6 wt% PVA solution, 13 wt% glycerol, 2% by weight 0.3μm 

Al2O3 scatterers and processed through 2 – 5 freeze/thaw cycles, respectively. 

 

2.2 Acoustic and Mechanical characterisation of the TMMs 

The TMM samples’ acoustic velocity and attenuation coefficient were determined using an 

in-house built scanning acoustic macroscope (SAM) system (Cournane et al., 2010), which 

utilises the pulse-echo substitution (Browne et al., 2003). The SAM system consisted of a 

pulse receiver (Model 5052PR, Panametrics, UK), an immersion broadband transducer (5.15 - 



9.44 MHz, Panametric, UK), a high-speed digitiser (250 MS/s, bandwidth of 125 MHz with 2 

simultaneously sampled channels, National Instruments, USA), a water tank and a transducer 

holder. The transducer, submerged in a tank of degassed water (20 ± 0.5 °C), both transmitted 

and received ultrasonic pulses with the received RF signal, as reflected from the glass tank 

bottom, then amplified and outputted to the digitiser where it was saved for subsequent 

analysis. Scans were captured with and without TMM samples present in the path of the 

ultrasonic beam with the fast Fourier transform (FFT) spectra of both scans compared in order 

to determine the acoustic velocity (c) and the acoustic attenuation coefficient (α) as a function 

of frequency. The acoustic velocity and attenuation coefficients of each sample, determined 

using 5 measurements on each sample, were calculated using the following equations: 
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where d, Δt, cs and cw, are the thickness of the sample, the resultant time shift in the RF pulse 

with and without the sample in the path of the ultrasonic beam, and the acoustic velocities in 

the sample and degassed water, respectively. The attenuation as a function of frequency, f, 

was calculated from the log difference between the two spectra where A and A0 are the 

magnitudes of the signal with and without the sample in the path of the beam (Browne et al., 

2003). 

 

The phantoms were mechanically compression tested using a Lloyd Instruments LR30KPlus 

system (Ametek® measurement and calibration technology, USA) with a 500 N load cell. 

Samples were tested according to a standard compression protocol (ISO-7743, 2008) where 

metal plates were used to apply a compressive force to lubricated samples providing complete 

slip conditions such that the calculated modulus of the material was independent on the test 

piece shape. The compression stress was defined as the stress applied to cause a deformation 

of the test sample in the direction of the applied stress, expressed as the force divided by the 

original area of cross-section perpendicular to the direction of application of the force, or 

parallel to the compression plate face. The compression strain was defined as the deformation 

of the test piece in the direction of the applied stress divided by the original dimension in that 

direction and this is usually expressed as a percentage of the original dimension of the test 

sample. The compression modulus was the applied stress calculated on the original area of 



cross-section divided by the resultant strain in the direction of application of the stress.  Using 

this gold-standard technique, it is possible to provide measurements of the true mechanical 

properties of the phantoms (specifically, the Young’s elastic modulus), against which the 

elastography system’s measurements could be compared. Cylindrical samples, conditioned at 

the mechanical testing temperature (20 ± 0.5 °C) for the recommended 3 hours, were tested 

according to a standard compression protocol (ISO-7748, 2008). The machine operated at 

50 mm/min until a strain of 30% was reached, with the strain then automatically released at 

the same rate, completing one compression and release cycle. Five cycles were completed 

with the mechanical properties of the phantom material calculated from the release stage data 

of the 5
th
 compression and release cycle (ISO-7748, 2008). Samples were considered to be 

non-standard as defined by ISO 7743:2008, which states that for strains of up to about 30%, 

the relationship between stress and strain is given as: 
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where σ , ε and E are the average stress, strain and Young’s modulus, respectively. Indeed, in 

this study, the Young’s elastic modulus values for each sample were determined for strains up 

to 10% where there was a linear relationship between stress and strain, given as: 

 

 E                                                      (4) 

 

The uncertainties for the Young’s modulus measurements were calculated by propagation of 

errors associated with the inherent precision limitations of the LR30KPlus system and the 

uncertainties of the linear least squares fitting (n = 5) of the stress-strain data.  

 

 

2.3 Transient elastography measurements 

The Fibroscan® (Echosens, France), composed of a shear elasticity probe and a dedicated 

electronic system and control unit, utilises a transient elastography technique to estimate the 

Young’s elastic modulus of the liver. The original and possibly most commonly employed 

probe used with this system, the M probe, consists of a low-frequency piston-like vibrator 

with a single-element ultrasonic transducer operating at 3.5 MHz on the tip of the vibrator 

which operates in transmit/receive mode (Sandrin et al., 2003). The shear wave, generated by 

the vibrator, is tracked using a cross-correlation technique which records the amplitude of the 

strain induced as a function of depth and time in the interrogated region. The elasticity of the 

region of interest (ROI) can be derived by calculating the velocity of the low frequency shear 



wave located from 25 to 65 mm below the skin surface, as depicted in Figure 1. Thus, the 

Young’s modulus is directly dependant on the shear velocity if dissipation in the medium is 

ignored (Sandrin et al., 2003). The ROI in the case of the M probe has been set by the 

manufacturer for use on the general population to avoid the subcutaneous tissue and the liver 

fibrous capsule of the patient, and to ensure that the signal to noise ratio (SNR) of the 

ultrasound allows for good estimation of the tissue deformations. The ROI is thus not 

adjustable for different patients when using the M probe but it rather assumes that the liver is 

located in the region. 

 

The setup used to measure the stiffness of the fatty liver phantoms via the Fibroscan® was 

similar to that already described in a previous study (Cournane et al., 2010).
 
The phantoms, 

typically with a diameter and height of 63 and 100 mm, respectively, were centred in a 92 mm 

diameter plastic container ensuring there was no contact with the container walls. A taut 

electrostatic discharge sheet (ESD) was used to overlay the top of the test objects in order to 

bear the majority of the force exerted by the Fibroscan® probe in order to reduce the potential 

for anisotropic effects. A thin film of water was present on top of the phantom to ensure 

adequate coupling. The probe was positioned orthogonally to the phantom, with 10 

measurements recorded for each of the 5 fatty liver phantoms (Phantoms 5 – 9), respectively, 

returning the median stiffness value and interquartile range (IQR). In the case where fat layer 

phantoms (ranging from 15–55mm in depth) overlaying normal liver phantoms (Phantoms no. 

1 – 4) were used to mimic subcutaneous fat overlaying a range of healthy to fibrotic liver 

tissue, the fat layer phantom was placed between the taut ESD sheet and the liver phantom, as 

depicted in Figure 2. 10 measurements were taken for each fat layer and liver phantom 

combination, with the median stiffness and IQR value recorded.  

 

Figure 2 Schematic of the experimental setup with fat layer phantoms overlaying healthy 

liver phantoms.  

 



3. Results 

3.1 Acoustic velocity experiments 

The results of preliminary acoustic velocity experiments to empirically determine the suitable 

constituents for producing fat-mimicking phantoms are presented in Figure 3. Each data point 

represents the average of 5 measurements on each sample with the error bars representing the 

standard deviation (±σ). An increase in the olive oil content of the phantoms material 

produced test objects of relatively low acoustic velocity, while, in addition, a reduction in the 

PVA wt% solution resulted in a lower acoustic velocity. Accordingly, the TMM produced 

using 6% wt PVA solution with 35% olive oil solution exhibited suitable properties for fat 

layer and fatty liver phantoms. 
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Figure 3 The acoustic velocity (m/s) (±σ, n = 5 per sample) measured using the SAM system 

for a range of phantoms with 6, 8 and 10 wt% PVA and 0–35 wt% olive oil. 

 

The effect of increased freeze/thaw cycling on the test object characteristics is shown in 

Figure 4(a), showing an increased shear elastic modulus, while, as evident from Figure 4(b) 

and 4(c), the acoustic velocity and acoustic attenuation coefficient are shown to be relatively 

constant. 
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Figure 4 (a) Young’s elastic modulus (kPa) (±σ), (b) acoustic velocity (m/s) (±σ, n = 5 per 

sample) and (c) attenuation coefficient (dB/cm/MHz) (±σ, n = 5 per sample) with increasing 

f/t cycling. 

 

3.2 Overlaying Fat Layer experiments 

Figure 5 shows a comparison of the Young’s elastic modulus values of a range of liver 

phantoms measured using the ‘gold standard’ compression testing technique and using the 

Fibroscan®, in addition to Fibroscan® measurements of the liver phantoms overlaid with fat 

layers of different thicknesses of 15, 25, 35, 45 and 55 mm. The compression tested shear 

elastic modulus values of the liver phantoms, produced by processing through 2 – 5 

freeze/thaw cycles, were between 4 to 8.1 kPa, an elastic modulus range representative of the 

early stages of fibrosis of the liver as established through empirical studies using the 

Fibroscan® system (Sandrin et al., 2003; Caster et al., 2008). The acoustic velocity of the 

liver phantoms was 1563 ± 4 m/s, which is within the typical range for healthy liver tissue 

(Lin et al., 1987; Szabo, 2004) while the shear elastic modulus and acoustic velocity of the fat 

layers were 8.4 ± 1.6 kPa and 1491±2 m/s, respectively. 

 

3.3 Fatty Liver experiments 

A further investigation was carried out to observe the effect that fatty deposits in the liver, 

affecting a decreased acoustic velocity, may have on the measurement accuracy of the 

Fibroscan®. To this end, the Young’s elastic modulus of 5 fatty liver phantoms, which had 

each been processed through 3 f/t cycles (Phantoms 5 – 9) , were measured using the 

(a) (b) 

(c) 



mechanical compression testing technique and the Fibroscan®; the results are presented in 

Table 1. The acoustic velocities and attenuation coefficients of the phantoms were measured 

to be 1500 ± 4 m/s and 0.8 ± 0.05 dB/cm/MHz, respectively. 
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Figure 5 Young’s elastic modulus values of a range of liver phantoms (numbered 1 – 4) 

measured using the ‘gold standard’ technique (± σ) and compared with the transient 

elastography (± IQR/2) with a range of fat layers, of different thicknesses in the range 15 – 

55 mm (as detailed in brackets in the legend), overlaying the liver phantoms. 

 

Table. 1 Young’s elastic modulus values (kPa) of the fatty liver phantoms (5 – 9) as 

measured using the mechanical testing technique (±σ) and transient elastography (± IQR/2). 

Phantom 

Number 

Mechanical 

testing 
Fibroscan® 

5 16.0 ± 0.6 18.6 ± 0.7 

6 11.2 ± 0.5 20.6 ± 0.9 

7 13.5 ± 0.6 22.2 ± 1.4 

8 9.7 ± 0.4 20.1 ± 0.8 

9 13.8 ± 0.5 13.1 ± 0.7 

 

4. Discussion 

The Young’s elastic modulus values achieved ranged from 3.6 – 34.1 kPa, encompassing the 

healthy to cirrhotic liver condition values observed in clinical studies using the Fibroscan® 



(Sandrin et al., 2003; Castera et al., 2008). Accordingly, PVA-C with incorporated olive oil 

offered a novel means of assessing the accuracy of transient elastography when affected by 

fatty deposits. The acoustic velocity of fat in the body is documented to be in the range 1430 

– 1500 m/s (Browne et al., 2005; Szabo, 2004; Mast, 2000), while previous TMM studies 

mimicking the acoustic characteristics of fat have used TMMs with acoustic velocities of 

approximately 1490 m/s (Browne et al., 2005; Madsen et al., 2006). The optimum acoustic 

velocities produced in this study are thus in good agreement with values documented in the 

literature. The Young’s elastic modulus of the fat layer is of the order of values previously 

reported for abdominal fat, measured in vivo to be 3.8 – 5.6 kPa (Nightingale et al., 2003),  

 

Scanned measurements of the phantoms (Figure 5) show good correlation with the 

compression tested values; however, with the presence of the fat layers overlaying the liver 

phantoms, an increased uncertainty is evident. In the case of the 45 and 55 mm fat layers, a 

significant overestimation is apparent, with the scanned transient elastography Young’s 

elastic modulus measurement overestimating the compression tested value by up to 11 kPa in 

some cases. This is most likely due to the impingement of the fat layers, measured to have a 

Young’s elastic modulus of the order of the liver phantoms, on the ROI depth of 25 – 65 mm 

from where the stiffness measurement is calculated and due to the variation of the acoustic 

velocity in the ROI. It is assumed that the shear wave velocity is constant in the region of 

interest and, thus, the progression of the shear wave with depth will be linearly related to 

time. The Fibroscan® estimates the shear wave velocity by fitting a straight line to the slope 

of the strain induced as a function of depth and time. In the case where there are different 

layers with different Young’s elastic modulus values or acoustic velocities, the relationship 

between the depth of the shear wave and time will thus be non-linear, resulting in an 

inaccurate calculation of the shear wave velocity. In Figure 6, elastograms are presented for 

the case of (a) no fat layer and (b) with a 45 mm thick fat layer, illustrating the modified 

appearance of the elastogram in the latter case, from which the Fibroscan® determines the 

shear wave velocity from a linear fit to the shear wave depicted (basically, from the slope of 

the line fitted to the data, illustrated as the white line in this figure).  While the interference of 

the fat layers on the measurement ROI may contribute to the measurement discrepancy, the 

Young’s elastic modulus values of the fat layers (8.4 ± 1.6 kPa) are much lower than those 

measured in the case of the 55 mm layer. This experiment simulates the case of an obese 

patient and highlights the increased unreliability when scanning patients with increased fat 

layers, concurring with clinical studies (de Lédinghen et al., 2010). Furthermore, the 

overestimation encountered for thicker overlaying fat layers may have implications when 

considering the clinical management of obese patients. Phantoms 1 – 3 (Figure 5) should be 

categorised as healthy or mildly fibrotic (F0 – F1), according to the clinically established cut-



off values using the Fibroscan®; however, with a 55 mm overlaying fat layer, the Fibroscan® 

measurements indicates the liver to be in the latter fibrotic stages or cirrhotic stage (F3 – F4) 

when interpreted using these clinical cut-offs (Castera and Forns, 2008). 

 

 

Figure 6 Elastograms of a healthy liver phantom for the case of (A) no overlaying fat layer 

and (B) with a 45 mm thick overlaying fat layer, illustrating the modified appearance of the 

elastogram in the latter case. The Fibroscan® determines the shear wave velocity from a 

linear fit to the shear wave (white line), which is clearly problematic in the case depicted in 

(B).  

 

Table 1 reveals a consistent overestimation of the shear elastic modulus for fatty liver 

measured using the transient elastography technique when compared with the ‘gold standard’ 

compression testing approach. Although there are variations in the Young’s elastic modulus 

values of the produced fatty liver phantoms, due to variability in the production process, the 

relative difference between the gold standard and the Fibroscan® was of interest. 

Accordingly, a paired Student t-test indicated a significant difference between the data sets (p 

< 0.013), with an average percentage difference of the overestimation in the order of 54%. A 

likely cause of the observed discrepancy is the mismatch between the acoustic velocities of 

the constructed phantoms and that assumed by the Fibroscan®. In this case, since the acoustic 

velocity of the fat phantom is lower than that typically seen in the liver, the depth calculations 

will be inaccurate resulting in an overestimation of the shear wave depth and hence the shear 

wave velocity. Since the stiffness calculated by the Fibroscan® is related to the square of the 

shear wave velocity, the overestimation of the stiffness will be further increased. This 

acoustic mismatch has previously been suggested in the literature as a potential source of 

error given the single-point acoustic velocity calibration of the transient elastography system 



and the range of acoustic velocity values observed in the liver for stages of fibrosis (Cournane 

et al., 2010; Meziri et al., 2005). Indeed, the overestimation of the absolute shear elastic 

modulus of the fat-mimicking phantoms offers an indication as to why the impinging fat 

layers in the previous investigation also caused an overestimation of the Fibroscan® 

measurements. A number of clinical studies have established cut-off stiffness values, 

measured using the Fibroscan® and correlated with biopsy results, in order to differentiate 

between the cirrhotic stage (F4) of the liver and the latter fibrotic stages (<F4). These cut-offs 

have been observed to be disease specific ranging from 17.5 kPa for NAFLD (Yoneda and 

Mawatari, 2008) to 22.6 kPa for alcoholic liver disease (ALD), while two different studies 

have determined cirrhosis cut-offs of 14.6 and 12.5 kPa for Hepatitis C (HCV) (Castéra et al., 

2005; Ziol et al., 2005), and 10.6 kPa for Hepatitis B (HBV) (Marcellin et al., 2005). In the 

context of this current study, the elevated established cut-off values determined for ALD and 

NAFLD, as compared with HCV and HBV, could be as a result of fatty deposits impinging 

on the measurement region of interest. Certainly, for both ALD and NAFLD the liver is 

known to exhibit increased fatty deposits when compared to conditions such as HCV and 

HBV (Yang, 2008), providing a likely reason for the differences in cut-off values. 

 

Radiation force techniques, also capable of inducing shear waves in vivo in the human liver 

and estimating the Young’s elastic modulus of liver tissue, can provide an alternative to 

transient elastography. The methods have established typical healthy liver elastic modulus 

values in the range 0.8 – 3 kPa and have also reported scanning to be unconstrained by 

obesity (Palmeri et al., 2008) and to be capable of delivering acoustic radiation force to tissue 

depths of 8 cm (Fahey et al., 2005). A more recent study has added that there is no correlation 

between BMI and stiffness when using ARFI and, indeed, in the case where the BMI > 40 

kg/m
2
, the increased BMI was not a limiting factor for ARFI (Palmeri et al., 2011). 

Supersonic shear imaging (SSI) has also been identified as a means of assessing the health of 

the liver through stiffness measurement, establishing healthy liver tissue stiffness values to be 

of the order of 4.8 ± 0.8 kPa (Bavu et al., 2010). When compared with the typical healthy 

liver stiffness value of 5 kPa established using the Fibroscan®, radiation force techniques 

indicate cutoff values to be much lower while SSI values are of the same order (Bavu et al., 

2010; Castera and Forns, 2008; Palmeri et al., 2008). Accordingly, one recent study has 

recorded differences in stiffness measurements between ARFI and transient elastography, 

with ARFI proving more accurate than transient elastography for the non-invasive staging of 

both significant and severe classes of liver fibrosis (Rizzo et al., 2011). This difference may 

be as a result of the elastography technique-specific generation of the shear waves in addition 

to the acoustic velocity values assumed by the different scanners for the interrogated tissue. 

Furthermore, while the liver is assumed to be elastic in the case of transient elastography, it is, 



rather, viscoelastic (Asbach et al., 2008) and thus the stiffness values measured with transient 

elastography techniques may not accurately reflect those mechanical properties measured by 

other methods. Indeed, if it is assumed that the liver is viscoelastic, it would be necessary to 

include a viscosity component in calculating the Young’s modulus. Thus, clinical cutoffs 

established by the Fibroscan® should not be used for other emerging techniques until 

comprehensive clinical studies are conducted or unless empirical evidence suggests 

otherwise. 

 

In conclusion, for transient elastography measurements of the Young’s elastic modulus of 

liver phantoms, the presence of overlaying fat layers leads to an increased error of the 

stiffness values and also significant overestimation of the stiffness when using fat layers 

thicker than 45 mm. In addition, a further significant overestimation of the shear elastic 

modulus values was observed in steatosis liver phantoms compared to measurements made 

using a gold standard compression testing technique, most probably due to the mismatch 

between the acoustic velocities of the constructed phantoms and that assumed by the transient 

elastography scanner. This effect may be responsible for the high clinical liver stiffness cutoff 

values established for ALD and NAFLD, which may not reflect the absolute Young’s elastic 

modulus values due to the presence of fatty deposits in the clinical populations examined. 

Similarly, in the case of obese patients, transient elastography measurements in the presence 

of overlaying fat layers could lead to patient mismanagement if the stiffness values are the 

sole means of diagnosis. As this new generation of ultrasound elastography systems become 

more prevalent in the clinical setting, it is imperative that clinicians relying heavily on such 

physics-based instrumentation for patient management are fully aware of the method’s 

capabilities so that it may be used appropriately. The provision of comprehensive training for 

users is critical in this context. 
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