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We establish existence of infinitely many distinct solutions to the semilinear elliptic Hartree-Fock

equations forN-electron Coulomb systems with quasirelativistic kinetic energy
√
−α−2Δxn + α−4 −

α−2 for the nth electron. Moreover, we prove existence of a ground state. The results are valid under
the hypotheses that the total charge Ztot of K nuclei is greater than N − 1 and that Ztot is smaller
than a critical charge Zc. The proofs are based on a new application of the Fang-Ghoussoub critical
point approach to multiple solutions on a noncompact Riemannian manifold, in combination with
density operator techniques.

Copyright q 2009 M. Enstedt and M. Melgaard. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

In the present paper we prove existence of infinitely many solutions to the quasirelativistic
Hartree-Fock equations

T̃0φn + Venφn +
(
ρ ∗ 1

|x|
)
φn −Kxcφn + λnφn = 0, n = 1, . . . ,N, (1.1)

associated with N electrons interacting with K static nuclei with charges Z1, . . . , ZK, where
Zk > 0. The nonlinear coupled equations arise as the Euler-Lagrange equations of the total
energy functional E(·) defined as the quantum energy restricted to (antisymmetric) Slater
determinants (see Section 3) constructed from L2-orthonormal functions {φn}Nn=1 belonging

to the Sobolev space H1/2(R3). Above T̃0 =
√
−α−2Δxn + α−4 − α−2 is the quasirelativistic

kinetic energy of the nth electron located at xn ∈ R
3 (Δxn being the Laplacian with respect

to xn), α is Sommerfeld’s fine structure constant, Ven is the attractive interaction between an
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electron and the nuclei, ρ =
∑N

n=1 |φn|2 is the density, andKxc is the exchange operator defined
in (4.1) below. For the nonrelativistic setting, a review on classical results on existence of a
ground state and its properties is found in Lions [1]. In the latter paper, Lions studied both
minimal and nonminimal (excited states) solutions to the equations by using critical point
theory in conjunction with Morse data. Lions’ idea is to construct convenient min-max levels
which yield the desired solutions through abstract critical point theory. For the nonrelativistic
HF model, Lions verifies a Palais-Smale (compactness) condition which, roughly speaking,
amounts to “being away from the continuous spectrum” or, equivalently (when the so-called
Morse information is taken into account), showing that certain Schrödinger operators with
Coulomb type potentials have enough negative eigenvalues.

The novelty of the present paper is Theorem 7.1, wherein we establish the following
results for the quasirelativistic Hartree-Fock equations. (1) A ground state exists provided
the total charge Ztot of K nuclei is greater than N − 1 and Ztot is smaller than a critical
charge Zc to be defined below; (2) under the same assumptions, infinitely many distinct
solutions to the quasirelativistic Hartree-Fock equations exist; we refer to the theorem for
the full statement. We proceed to sketch the proof of Theorem 7.1, starting with the existence
of a ground state. We consider the C2-functional E on a (Hilbert) manifold CN defined in
(3.7). Since E is bounded from below, we may try to find a critical point at the level l = infCNE
by determining whether the infimum is achieved. As we will see, it is easy to find an almost
critical sequence at the level l, that is, a sequence {h(j)} in CN satisfying

lim
j→∞

E
(
h(j)

)
= l, lim

j→∞
E′
(
h(j)

)
= 0. (1.2)

The hard part is to prove existence of a converging subsequence of {h(j)}. Unfortunately,
roughly speaking due to ionization, the energy functional will not satisfy a Palais-Smale
condition at level l. To make sure that we can extract a convergent subsequence, we use
second-order information of E.

In the process of implementing these ideas we have to overcome additional
technicalities for the quasirelativistic setting compared to the nonrelativistic, for instance,
the Coulomb potential is not relatively compact (in the operator sense) with respect to the
quasirelativistic energy operator. In particular, compact Sobolev imbeddings are not available
(for a recent survey of such problems, we refer to Bartsch et al. [2]). To overcome this problem,
it is necessary to switch to a density operator formalism, as pioneered by Solovej [3], and
use that for an enlarged set of admissible density operators, one can, at least for the certain
sequences, establish the inequality (6.20) below. A different proof for existence of a ground
state was given by Dall’Acqua et al. [4]. Moreover, regularity of the ground state away from
the nucleus and pointwise exponential decay of the orbitals were established therein.

In the opposite direction, Lieb [5] has proved that for N ≥ 2Ztot + K there never exists
a quasirelativistic Hartree-Fock ground state (see Enstedt and Melgaard [6] for an analogous
result). For the nonrelativistic setting, Solovej has improved Lieb’s result by proving that
there exists a universal constant Q > 0 such that N ≥ Z + Q ensures that there are no
minimizers [7] and Lewin [8] has applied Lions’ approach to the nonrelativistic MCSCF
equations. For further references, we refer to the survey by Le Bris and Lions [9, Section
3.1.6].

We invoke a direct method developed by Fang and Ghoussoub [10, 11] to address the
existence of infinitely many nonminimal solutions. Since we are looking for nonminimal (or
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unstable) critical points, we consider a collection H of compact subsets of CN which is stable
under a specific class of homotopies and then we show that E has a critical point at the level

l = lE,H = inf
M∈H

max
h∈M

E(h). (1.3)

As we will see, the method by Fang and Ghoussoub gives us an almost critical sequence at
the level l, that is, a sequence {h(j)} in CN satisfying (1.2), with additional Morse information
(as mentioned above) which is crucial for proving that the sequence is convergent.

Work related to our study of semilinear elliptic equations and critical point theory
includes existence of solutions with finite Morse indices established by Dancer [12], de
Figueiredo et al. [13], Flores et al. [14], and Tanaka [15], existence of multiple solutions
established by Cingolani and Lazzo [16] and Ghoussoub and Yuan [17], “relaxed” Palais-
Smale sequences as in Lazer and Solimini [18] and Jeanjean [19], and problems on
noncompact Riemannian manifolds found in Fieseler and Tintarev [20, 21], Mazepa [22],
and Tanaka [23].

2. Preliminaries

Throughout the paper we denote by c and C (with or without indices) various positive
constants whose precise value is of no importance. Moreover, we will denote the complex
conjugate of z ∈ C by z.

Function Spaces

For 1 ≤ p ≤ ∞, let Lp(R3) be the space of (equivalence classes of) complex-valued functions φ
which are measurable and satisfy

∫
R3 |φ(x)|p dx <∞ if p <∞ and ‖φ‖L∞(R3) = ess sup |φ| <∞

if p = ∞. The measure dx is the Lebesgue measure. For any p the Lp(R3) space is a Banach
spacewith norm ‖·‖Lp(R3) = (

∫
R3 |·|p dx)1/p. In the case p = 2, L2(R3) is a complex and separable

Hilbert space with scalar product 〈φ, ψ〉L2(R3) =
∫

R3φψ dx and corresponding norm ‖φ‖L2(R3) =
〈φ, φ〉1/2

L2(R3). Similarly, L2(R3)N , theN-fold Cartesian product of L2(R3), is equipped with the

scalar product 〈φ, ψ〉 =
∑N

n=1〈φn, ψn〉L2(R3). The space of infinitely differentiable complex-
valued functions with compact support will be denoted C∞

0 (R3). The Fourier transform is
given by

(Fψ)(ξ) = ψ̂(ξ) = (2π)−3/2
∫

R3
e−ixξψ(x)dx. (2.1)

Define

H1/2
(
R

3
)
=

{
φ ∈ L2

(
R

3
)
: (1 + |ξ|)1/2φ̂ ∈ L2

(
R

3
)}
, (2.2)

which, equipped with the scalar product

〈φ, ψ〉H1/2(R2) =
∫

R3
(1 + |ξ|)φ̂(ξ)ψ̂(ξ)dξ, (2.3)
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becomes a Hilbert space; evidently, H1(R3) ⊂ H1/2(R3). We have that C∞
0 (R3) is dense in

H1/2(R3) and the continuous embedding H1/2(R3) ↪→ L3(R3) holds; more precisely, the
Sobolev inequality

∥∥φ∥∥2
L3(R3) ≤ csob

∥∥φ∥∥2
H1/2(R3) (2.4)

is valid with csob = 2−1/2π−2/3. Moreover, we will use any weakly convergent sequence that
in H1/2(R3) has a pointwise convergent subsequence.

Operators

Let T be a self-adjoint operator on a Hilbert space H with domain D(T). The spectrum and
resolvent set are denoted by σ(T) and ρ(T), respectively. We use standard terminology for
the various parts of the spectrum; see, for example, [24, 25]. The resolvent is R(ζ) = (T − ζ)−1.
The spectral family associated to T is denoted by ET (λ), λ ∈ R. For a lower semibounded
self-adjoint operator T , the counting function is defined by

Coun (λ; T) = dimRanET ((−∞, λ)). (2.5)

The space of trace operators, respectively, Hilbert-Schmidt operators, on h = L2(R3) is
denoted by S1(h), respectively, S2(h).

We need the following abstract operator result by Lions [1, Lemma II.2].

Lemma 2.1. Let T be a self-adjoint operator on a Hilbert spaceH, and letH1,H2 be two subspaces of
H such thatH = H1 ⊕H2, dimH1 = h1 <∞ and P2TP2 ≥ 0, where P2 is the orthogonal projection
onto H2. Then T has at most h1 negative eigenvalues.

3. The Quasirelativistic Hartree-Fock Model

Within the Born-Oppenheimer approximation, the quantum energy of N quasirelativistic
electrons interacting withK static nuclei with charges Z = (Z1, . . . , ZK),Zk > 0, is, in Rydberg
units, given by

EQM(·) :
N∧
1

H1/2
(
R

3,C
)
⊂ L2

(
R

3N,C
)
−→ R : Ψe

�→ α−1
N∑
n=1

∫

R3N
|FnΨe(x1, . . . , xn−1, ξ, xn+1, . . . , xN)|2 dx1 · · ·dμ(ξ) · · ·dxN

+
∫

R3N

(
−α−2 + Ven(xn) +

1
2

∑
m/=n

Vee(xm − xn)
)
|Ψe(x1, . . . , xN)|2 dx1 · · ·dxN,

(3.1)
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where x = (x1, . . . , xN) ∈ R
3N , xn = (x(1)

n , x
(2)
n , x

(3)
n ) ∈ R

3 is the position of the nth electron, α
is Sommerfeld’s fine structure constant, and the potentials Vee and Ven are given by

Vee(x) =
1
|x| , Ven

(
y
)
=

K∑
k=1

Vk
(
y
)
, Vk

(
y
)
= − Zkα∣∣y − Rk

∣∣ (3.2)

with Rk ∈ R
3 being the position of the kth nucleus. Here it is important that Ztot < Zc :=

2/(απ). See Section 3.1 for details. In what follows, we ignore the spin variable but the entire
contents can be trivially carried over to the spin-valued setting. Above FnΨe is the Fourier
transform of Ψe(x1, . . . , xn−1, ·, xn+1, . . . , xN), in the case when N = 1 we will just write FΨe,
and

dμ(ξ) :=
√
|ξ|2 + α−2. (3.3)

The interpretation of the quadratic form (3.1) is as follows (see Section 3.1 for its well
definedness). The first term corresponds to the quasirelativistic kinetic energy of the
electrons, the second term is the one-particle attractive interaction between the electrons and
the nuclei, and the third term is the standard two-particle repulsive interaction between the
electrons. The wave functionΨe : R

3N → C in (3.1) belongs toHe = ∧NH1/2(R3), that is, the
N-particle Hilbert space consist of antisymmetric functions (expressing the Pauli exclusion
principle)

Ψe(x1, . . . , xN) = sign (σ)Ψe
(
xσ(1), . . . , xσ(N)

)
a.e., ∀σ ∈ SN, (3.4)

where SN is the group of permutations of {1, . . . ,N}, with the signature of a permutation
σ being denoted by sign (σ), and H1/2(R3) is the Sobolev space introduced in Section 2. The
ground state energy is defined as

EQM(N,Z) = inf
{
EQM(Ψe) : Ψe ∈ He, ‖Ψe‖L2(R3N) = 1

}
. (3.5)

To determine EQM(N,Z) directly turns out to be too difficult, even for small N. One of
the classical approximation methods for determining EQM(N,Z) is the Hartree-Fock theory,
introduced by Hartree and improved by Fock and Slater in the late 1920s (see, e.g., [26]),
which consists of restricting attention to simple wedge products Ψe ∈ SN , where

SN =
{
Ψe ∈ He : ∃Φ =

{
φn

}
1≤n≤N ∈ CN s.t. Ψe =

1√
N!

det
(
φn(xm)

)}
(3.6)

with

CN =
{
Φ =

{
φn

}
1≤n≤N, φn ∈ H1/2

(
R

3
)
,
〈
φm, φn

〉
L2 = δmn, 1 ≤ m,n ≤N

}
. (3.7)

This space is clearly a complete metric space and also an (Hilbert)manifold. A function Ψe ∈
SN is sometimes called a Slater determinant, and the φn are called orbitals [26].
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In fact, if Ψe ∈ SN then, by simple algebraic calculations, EQM(Ψe) = E(Ψe), where the
quasirelativistic Hartree-Fock functional (or simply the energy functional) E(·) : (H1/2(R3)N →
R is given by

E(Ψe) = E(φ1, . . . , φN
)
= α−1

N∑
n=1

∫

R3

∣∣Fφn
∣∣2 dμ(ξ) −

∫

R3
α−1

∣∣φn
∣∣2 dx

+ α−1
∫

R3
Ven(x)ρ(x)dx +

1
2

∫∫

R3

ρ(x)ρ(x′) − |D(x, x′)|2
|x − x′| dx dx′.

(3.8)

Here

D(
x, x′) =

N∑
n=1

φn(x)φn(x′) (3.9)

is the density matrix, and

ρD(x) =
N∑
n=1

∣∣φn(x)
∣∣2 (3.10)

is the density associated to the state Ψe; when there is no risk of confusion we will suppress
the dependence of D.

By standard arguments (see, e.g., [27, Lemma 4.1]) we obtain the following result on
the regularity of quasirelativistic functional E(·).

Lemma 3.1. The functional E(·) belongs to C2(H1/2(R3)N,R).

Analogous to (3.5) we define what follows

Definition 3.2 (quasirelativistic Hartree-Fock ground state). Let Z = (Z1, . . . , ZK), Zk > 0,
k = 1, . . . , K, and let N be a nonnegative integer. The quasirelativistic Hartree-Fock ground
state energy is

E(N,Z) = inf {E(Ψe) : Ψe ∈ SN}, (3.11)

and if it is attained we say that the molecule has a quasirelativistic Hartree-Fock ground state
described by Ψe.

3.1. Atomic and Molecular Hamiltonians

By p we denote the momentum operator −i∇ on L2(R3). The operator T0 =
√
p2 + α−2 is

generated by the closed positive form t0[φ, φ] = 〈T1/2
0 φ, T1/2

0 φ〉L2(R3) on the form domain
D(t0) = H1/2(R3). Set S(x) = Zα/|x|, Z > 0, Zc = 2α−1π−1, and let T̃0 = T0 − α−1. The following
facts are well known for the perturbed one-particle operatorH1,1,α = T̃0 − S(x) [25, 28].
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Small Perturbations

If Z < (π/2)Zc then S is T̃0-bounded with relative bound equal to two. If, on the other hand,
(2α)−1 < Z < Zc then S is T̃0-form bounded with relative bound less than one.

We prove the above-mentioned form boundedness. It follows from the following
inequality (first observed, it seems, by Kato [25, paragraphV-5.4]):

〈
Sφ, φ

〉
L2(R3) ≤

(
Z

Zc

) ∥∥φ∥∥2
H1/2(R3), ∀φ ∈ H1/2

(
R

3
)
. (3.12)

Indeed, if, for any ψ, φ ∈ H1/2(R3), we define the sesquilinear forms

s
[
ψ, φ

]
:=

〈
S1/2ψ, S1/2φ

〉
L2(R3)

,

t0
[
ψ, φ

]
:=

〈
T1/2
0 ψ, T1/2

0 φ
〉
L2(R3)

,

t̃0
[
ψ, φ

]
:= t0

[
ψ, φ

] − α−1〈ψ, φ〉L2(R3),

(3.13)

then (3.12) shows that s is well defined and also, by invoking | − i∇| ≤ T0, we infer that, for
all φ ∈ H1/2(R3),

s
[
φ, φ

]
< t0

[
φ, φ

]
provided Z < Zc. (3.14)

This is the Coulomb uncertainty principle in the quasirelativistic setting. The KLMN theorem
(see, e.g., [25, paragraph VI-1.7]) implies that there exists a unique self-adjoint operator,
denotedH1,1,α, generated by the closed sesquilinear form

h1,1,α
[
ψ, φ

]
:= t̃0

[
ψ, φ

] − s
[
ψ, φ

]
, ψ, φ ∈ D(h1,1,α) = H1/2

(
R

3
)
, (3.15)

which is bounded below by −α−1. It is well known [28] that

σ(H1,1,α) ∩
[
−α−1, 0

)
is discrete

σ(H1,1,α) ∩ [ 0,∞) is absolutely continuous.
(3.16)

In particular,

σess(H1,1,α) = [0,∞). (3.17)
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The form construction of the atomic Hamiltonian H1,1,α can be generalized to the molecular
case, describing a molecule withN electrons and K nuclei of charges Z = (Z1, . . . , ZK), Zk >
0, located at R1, . . . , RK, Rk ∈ R

3, if we substitute s by

ven
[
ψ, φ

]
=

K∑
k=1

〈
V 1/2
k

, ψ, V 1/2
k

φ
〉
, ψ, φ ∈ H1/2

(
R

3
)
, (3.18)

where Vk is defined in (3.2) and by assuming that Ztot < Zc. Under the same hypothesis, we
note that the discussion on the forms s, t0, and ven immediately gives us that the form (3.1)
(and thus E(·)) is well defined closed and bounded from below.

3.2. Density Operator Formalism

We can re-express E(·) and the Hartree-Fock ground state energy via the one-to-one
correpondence between elements of CN and projections onto finite-dimensional subspaces
of L2(R3). Indeed, given an element {φn}Nn=1 in CN we can associate a canonical projection
operator, D =

∑N
n=1〈·, φn〉φn with trace equal toN. We may therefore write

E(D) = α−1
(
Tr

[
T̃0D

]
− Tr [VenD]

)
+ J(D) −K(D), (3.19)

where

Tr
[
T̃0D

]
=

N∑
n=1

t0
[
φn, φn

] − α−1[φn, φn
]
,

Tr [VenD] =
N∑
n=1

ven
[
φn, φn

]
.

(3.20)

The direct Coulomb energy defined in terms of the Coulomb inner product

J(D) = J(
ρD, ρD

)
=

1
2

∫∫

R3
ρD(x)

∣∣x − x′∣∣−1ρD
(
x′)dx dx′ (3.21)

and the exchange Coulomb energy defined by

K(D) :=
1
2

∫∫

R3

|D(x, x′)|2
|x − x′| dx dx′. (3.22)

Furthermore, it is not hard to verify that given a projection operator with traceN defined on
L2(R3) we can also find an element in CN corresponding to this operator. It is therefore clear
that the Hartree-Fock ground state energy can be expressed as

E(N,Z) = inf
{
E(D) : D∗ = D = D2, Tr[D] =N

}
. (3.23)
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More generally, a density operator D is a trace class operator on h = L2(R3), in symbols
D ∈ S1(h), which satisfies the operator inequality 0 ≤ D ≤ I. This motivates the following
definition:

Madm = {D ∈ S1(h) : 0 ≤ D ≤ I, Tr [D] =N}. (3.24)

Using standard arguments [3] in combination with (3.12), and the Sobolev inequality (2.4), it
is easy to show that E(·) is well defined on the following enlarged set of density operators:

Menl = {D ∈ Madm : Tr [T0D] < +∞}. (3.25)

For later purpose we also introduce

Mproj =
{
D ∈ Menl : D2 ≥ D

}
. (3.26)

4. The Quasirelativistic Fock Operator

Herein we introduce the quasirelativistic Fock operator.

Lemma 4.1. Assume Ztot < Zc. Let

Kxc(x, x′) =
D(x, x′)
|x − x′| (4.1)

be the integral kernel of the exchange operatorKxc. Then the unique self-adjoint operator F associated
with the differential expression

α−1T̃0φ + α−1Venφ + ρ ∗ 1
|x|φ −Kxcφ (4.2)

is generated by the sesquilinear form

f
[
φ, ψ

]
= α−1t̃0

[
φ, ψ

]
+ α−1

∫

R3
Ven(x)φ(x)ψ(x) dx

+
∫∫

R3

ρ(x)φ
(
y
)
ψ
(
y
)

∣∣x − y∣∣ dx dy −
∫∫

R3
D(

x, y
)φ(y)ψ(x)∣∣x − y∣∣ dy dx.

(4.3)

Proof. Bear in mind the definitions of t0, t̃0, and ven from Section 3.1. Define vρ∗(1/|x|) as the
third form on the right-hand side of (4.3). Then (3.12) yields the estimate

vρ∗(1/|x|)
[
φ, φ

] ≤ C(Zc,N)t0
[
φ, φ

]
. (4.4)

Under the hypothesis, we already know from Section 3.1 that the quadratic form t0 + ven
is nonnegative on H1/2(R3). Evidently, vρ∗(1/|x|) is a nonnegative form and, consequently,



10 International Journal of Mathematics and Mathematical Sciences

f̃ = t0 + ven + vρ∗(1/|x|) is a nonnegative form on H1/2(R3). Closedness of the nonnegative
quadratic form f̃ is equivalent to lower semicontinuity of f̃ onH1/2(R3). In fact, f̃ is continuous.
Indeed, (3.12), respectively, (4.4) enables us to show continuity of the second, respectively, the
third terms, in f̃. For instance, we consider ven and assume that φj → φ in H1/2(R3). Then an
application of Hölder’s inequality and (3.12) yields

∣∣ven
[
φj

] − ven
[
φ
]∣∣ ≤

∫

R3
|Ven|

∣∣φj − φ
∣∣∣∣φj + φ

∣∣dx

≤ c
(∫

R3
|Ven|

∣∣φj − φ
∣∣2 dx

)1/2

≤ C∥∥φj − φ
∥∥
H1/2(R3).

(4.5)

We conclude that f̃ is a closed quadratic form on H1/2(R3). The first representation theorem
[24, Theorem VI.2.4] informs us that the nonnegative closed form f̃ is associated to a unique
self-adjoint operator, say F̃. Furthermore, the exchange operator Kxc is a Hilbert-Schmidt
operator. Indeed, using, in this particular order, the weak Young inequality, the Hölder
inequality and (3.12) we find that Kxc(x, x′) ∈ L2(R3 × R

3). It is clear that the form f̃[·, ·] −
α−1〈·, ·〉L2 − 〈Kxc·, ·〉L2 is closed and, once again applying the first representation theorem, we
obtain a unique self-adjoint operator F associated with the form in (4.3).

5. Lower Spectral Bound

We will later need the following spectral result.

Lemma 5.1. Assume ϑ < Ztot < Zc, and let ρ ∈ L1(R3) ∩ L4/3(R3) such that
∫

R3ρ dx < ϑ. Define
the quasirelativistic Schrödinger operator

T = α−1T̃0 + α−1Ven + ρ ∗ 1
|x| . (5.1)

Then, for any κ ≥ 1 and any 0 ≤ ϑ < Ztot, there exists εκ,ϑ > 0 such that

Count (−εn,ϑ; T) ≥ κ. (5.2)

Proof. By a minor modification of [28, page 291], which carries over the result (3.17) from
the one-nucleus to the many-nuclei cases, we deduce that the essential spectrum of T̃0 + Ven

equals the semiaxis [0,∞). Next, a standard perturbation argument and (yet) an application
of Weyl’s essential spectrum theorem prove that σess(T) = [0,∞). Let tμ denote the quadratic
form defined by

α−1t̃0
[
φ, φ

]
+
∫

R3

(
α−1Ven + ρ ∗ 1

|x|
)∣∣φ(x)∣∣2 dx. (5.3)
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For any κ ≥ 1 and any 0 ≤ ϑ ≤ Ztot we construct a κ-dimensional subspace Hκ,ϑ in H1/2(R3)
such that

t
[
φ, φ

]
< −εκ,ϑ < 0 (5.4)

for all L2-normalized φ ∈ Hκ,ϑ. We note that

α−1 t̃0
[
φ, φ

] ≤ C
∫

R3

∣∣∇φ∣∣2 dx. (5.5)

As a consequence, by selecting a κ-dimensional subspace of normalized radially symmetric
functions in C∞

0 (R3), we can construct a subspace Hκ,ϑ of functions satisfying (5.4), away
from φ = 0, by repeating the arguments in [1, Lemma II.1] (see also [27, Lemma 6.1]). Then
the assertion follows by an application of Glazman’s Lemma.

Within the nonrelativistic context a similar result was first given by Lions [1,
Lemma II.1].

6. Relative Compactness of Palais-Smale Type Sequences

In this section we give the main auxiliary result that will be used in the proof of Theorem 7.1.
We emphasize that the functional E(·) is not weakly lower semicontinuous on (H1/2(R3))N

and, in the proof below, it is thus necessary to switch to a density operator formalism.
In particular, we use that for a specific sequence of density operators (see the proof for
details), one can establish the inequality (6.20) below (replacing the notion of weak lower
semicontinuity which is absent).

Proposition 6.1. Assume that l ∈ R, that m ∈ N, and let N − 1 < Ztot < Zc. Then any sequence
{φ(j)}∞j=1 ⊂ CN satisfying a Palais-Smale condition at level l and of order less than m is relatively
compact in CN , that is, any sequence {φ(j)}∞j=1 in CN is relatively compact whenever the sequence
satisfies the following conditions:

(i) limj→∞E(φ(j)) = l;

(ii) limj→∞E′(φ(j)) = 0;

(iii) there exists a sequence of positive reals {δ(j)}∞j=1 with δ(j) → 0 such that for each j, E′′(φ(j))
has at mostm eigenvalues below −δ(j).

Moreover, the components of the limit element φ = (φ1, . . . , φN) of {φ(j)}∞j=1 in CN satisfy
the quasirelativistic Hartree-Fock equations

Fφn + λnφn = 0, n = 1, . . . ,N,

〈φm, φn〉L2(R3) = δmn,
(6.1)

where λn ≥ 0 for Ztot > N − 1, respectively, λn > 0 for Ztot > N, and F is the Fock operator defined
in Lemma 4.1.
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Proof. First we treat the case N < Ztot. Henceforth we let {φ(j)
n }Nn=1 ∈ CN be the canonical

sequence associated with an operator D(j) in Mproj defined in Section 3.2. The hypotheses (i)
and (ii) give us that

sup
‖ψ‖H1/2(R3)

=1

∣∣∣∣fj
[
φ
(j)
n , ψ

]
+ λ(

j)
n

〈
φ
(j)
n , ψ

〉∣∣∣∣ −→ 0, ∀n, (6.2)

where λ(j)n is a sequence of reals and fj is a sequence of quadratic forms associated with {φ(j)
n },

defined as in (4.3).
Let us now extract some subsequences that we will need. Let us start by proving

existence of 0 < λ < λ̃ < ∞ such that λ < λ
(j)
n < λ̃. To prove existence of a lower bound

we note that from hypothesis (iii) we get (in particular) that

fj
[
ψ, ψ

]
+
(
λ
(j)
n + δ(

j)
n

)∥∥ψ∥∥2
L2(R3) ≥ 0 (6.3)

with δ(j)n → 0 in the standard Euclidean metric for each fixed n and ψ in a closed subspace
of H1/2(R3) with finite codimension N + m. By invoking Lemma 2.1 we deduce that the
quasirelativistic Schrödinger operator

T (j) = T̃0 + Ven + ρ(j) ∗ 1∣∣x − y∣∣ (6.4)

has at mostN +m eigenvalues strictly less than −(λ(j)n + δ(j)n ). Moreover, since

∫

R3
ρ(j) dx =

N∑
n=1

∫

R3

∣∣∣∣φ
(j)
n (x)

∣∣∣∣
2

=N < Ztot, (6.5)

Lemma 5.1 ensures that there exists δ > 0 (independent of j) such that T (j) has at leastN +m
eigenvalues strictly below −δ. As a consequence, we infer that

λ
(j)
n + δ(j)n ≥ δ, ∀j. (6.6)

Since δ(j)n → 0 as j → ∞, we conclude that, for j large enough,

λ
(j)
n ≥ λ > 0, ∀n. (6.7)

We note that the hypothesis Ztot < Zc and the fact that {D(j)} ⊂ Mproj satisfies

E
(
D(j)

)
−→ l (6.8)
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ensure the existence of a constant C, depending onN, such that

Tr
[
T0D(j)

]
≤ C

(
1 + Tr

[
D(j)

])
. (6.9)

To prove existence of an upper bound we note that

0 ≤
N∑
n=1

λ
(j)
n ≤ −E

(
D(j)

)
≤ C̃, (6.10)

which follows from the Cauchy-Schwarz inequality and (6.8). Now, perhaps after going to a
subsequence using the Bolzano-Weierstrass theorem, we may assume that

λ
(j)
n −→ λn > 0. (6.11)

We know from (6.9) that

Tr
[
T0D(j)

]
(6.12)

is uniformly bounded in j. Then some straightforward calculations give us that

Tr
[
T1/2
0 D(j)T1/2

0

]
(6.13)

is also uniformly bounded in j. Here the T1/2
0 is defined using Kato’s second representation

theorem [24, Theorem VI.2.4] . Hence we may, using the Banach-Alaoglu theorem, extract
a subsequence such that T1/2

0 D(j)T1/2
0 converges weakly in S2 to an element D̃. Fix any ψ ∈

L2(R3), then

〈· ψ, ψ〉 : S1 −→ R (6.14)

is a linear bounded functional. We get that

lim
j

〈
D(j)ψ, ψ

〉
= lim

j

〈
T1/2
0 D(j)T1/2

0 T−1/2
0 ψ, T−1/2

0 ψ
〉
=

〈
T−1/2
0 D̃T−1/2

0 ψ, ψ
〉
. (6.15)

Define D := T−1/2
0 D̃T−1/2

0 and let {ψn}∞n=1 ⊂ H1/2(R3) be a basis in L2(R3). Then a direct
application of Fatou’s lemma (with respect to a counting measure) gives us that

Tr [D] ≤ lim inf
j

Tr
[
D(j)

]
≤N. (6.16)

Mutatis mutandis it is clear that

Tr [T0D] ≤ lim inf
j

Tr
[
T0D(j)

]
≤ C. (6.17)
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We note that D(j) converges weakly to D in S2 and hence that the kernels of the operators
D(j) will converge weakly in L2(R3 ×R

3) to the kernel of D. In view of (6.17) and the fact that
Tr [D(j)] ≤ C we infer that there exists a subsequence such that

φ
(j)
n −→ φn ∈ H1/2

(
R

3
)

(6.18)

weakly in H1/2(R3) and, by invoking weak compactness (see Section 2), the convergence
holds almost everywhere. Since weak limits are unique, we may assume that the kernel
associated with D can be written as

D(
x, x′) :=

N∑
n=1

φn(x)φn(x′). (6.19)

The inequality

lim inf
j

E
(
D(j)

)
≥ E(D) (6.20)

can be derived by arguments similar to the ones in [4, pages 722–724], wherein it is proven for
a minimizing sequence (bearing in mind the spectral properties of the one-particle operator
H1,1,α in (3.15) which we summarized in Section 3.1). More specically, using arguments by
Barbaroux et al. [26] and Solovej [30] , the inequality (6.20) was proved by Dall’Acqua et al
[16] (for specfic sequences) in the quasirelativistic setting and their proof carries over to our
sequence. As a consequence, we have that

lim sup
j

N∑
n=1

λ
(j)
n

∥∥∥φn(j)
∥∥∥
2

L2
= −lim inf

j
E
(
D(j)

)
+
1
2

(
J
(
D(j)

)
−K

(
D(j)

))

≤ −E(D) − 1
2
(J(D) −K(D)) =

N∑
n=1

λn
∥∥φn

∥∥2
L2

≤ lim inf
j

N∑
n=1

λ
(j)
n

∥∥∥φn(j)
∥∥∥
2

L2
.

(6.21)

From this we conclude that Tr [D] = N and therefore that ‖φn‖L2(R3) = 1. Repeating the
argument above, we obtain the convergence in H1/2(R3)N . We recall the regularity property
of E and that the quasirelativistic Hartree-Fock equations are the Euler-Lagrange equations
corresponding to this functional. The last assertion then follows from hypothesis (ii) and the
relative compactness that was just proved.

Finally, we consider the case N − 1 < Ztot. By going to the limit in (6.3), the resulting
inequality

f
[
ψ, ψ

]
+ λn

∥∥ψ∥∥2
L2(R3) ≥ 0 (6.22)
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holds on a closed subspace of H1/2(R3) with finite codimension; this requires that φ(j)
n → φn

weakly in H1/2(R3) (inspection of the argument above justifies this). Hence we infer that T
(defined similar to T (j) with ρ(j) replaced by ρ) has at most finitely many eigenvalues less
than or equal to −λn ≤ 0. If Tr [D] = N, then we are done. If, on the other hand, Tr [D] < N
then we apply Lemma 5.1 and repeat the reasoning above. This completes the proof.

The density operator argument in the proof of Proposition 6.1 is inspired by Solovej
[3].

Remark 6.2. It is worth to mention that from the perspective of Physics, there is no difference
between the requirements Ztot > N − 1 and Ztot ≥N because Ztot is integer valued.

7. Existence of a Ground State and Excited States

The main result is the following theorem.

Theorem 7.1. Assume that the total nuclear chargeZtot =
∑K

k=1Zk satisfiesZtot < Zc and letN ∈ N

satisfyN − 1 < Ztot. Then
(1) every minimizing sequence of the quasirelativistic Hartree-Fock functional E(·) is relatively

compact in CN . In particular, there exists a minimizer ϕ of E(·) on the admissible set CN and (up to
unitary transformations) the components of ϕ = (ϕ1, . . . , ϕN) satisfy the quasirelativistic Hartree-
Fock equations

Fϕn + λnϕn = 0,
〈
ϕm, ϕn

〉
L2(R3) = δmn,

(7.1)

where F is the quasirelativistic Fock operator defined in Lemma 4.1, and the numbers −λn are the N
lowest negative eigenvalues of F,

(2) there exists a sequence {ϕ(k)}k≥1, with entries ϕ(k) = (ϕ(k)
1 , . . . , ϕ

(k)
N ), of distinct solutions

of the quasirelativistic Hartree-Fock equations (7.1) in H1/2(R3)N which satisfy the constraints
〈ϕ(k)

m , ϕ
(k)
n 〉L2(R3) = δmn for all 1 ≤ m,n ≤ N and, furthermore, the Lagrange multipliers λ(k)n are

positive, respectively, nonnegative, whenZtot > N, respectively,Ztot > N−1. Moreover, the following
properties are valid as k → ∞:

λ
(k)
n −→ 0, E

(
ϕ(k)

)
−→ 0,

ϕ(k) −→ 0 weakly in H1/2
(
R

3
)N

,

(7.2)

(3) any solution to (7.1) belongs to C
∞(R3 \ {R1, . . . , RN })N and ϕn decays exponentially

sufficiently far away from the locations of the nuclei.

Before proving assertion 1 of Theorem 7.1, let us give a few explanations. To ensure
that a Palais-Smale sequence converges, one needs to somehow “improve” it. Since E is a C2-
functional, one may try to obtain an almost critical sequence with some information on the
second derivative. This enables us to built an almost critical sequence which satisfies (6.3).
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Due to lack of compactness, one cannot find critical points of E and therefore one perturbs
the functional while, simultaneous, ensuring that the new functional has critical points of
the kind, one expects for the original one. The way one will obtain such sequences consist in
applying a “perturbed variational principle” by Borwein and Preiss [30].

Proof of Theorem 7.1 (assertion 1). First of all we note that using (3.12) and the Cauchy-Schwarz
inequality that E is bounded from below uniformly on CN and we may therefore conclude
existence of a minimizing sequence, {Φ̃(j)}∞j=1 to (3.11). To prove relative compactness we will
now prove that the hypotheses (ii) and (iii) in Proposition 6.1 are satisfied. An application
of the Borwein and Preiss variational principle [30, Theorem 2.6] provides us with a new
minimization sequence {Φ(j)}∞j=1, such that

∥∥∥Φ(j) − Φ̃(j)
∥∥∥
H1/2(R3)N

−→ 0. (7.3)

We will also have that Φ (j) minimizes

E(·) + γ(j)
∥∥∥· − Ψ(j)

∥∥∥
2

H1/2(R3)N
(7.4)

for some Ψ(j) ∈ H1/2(R3)N and γ (j) > 0, where γ (j) → 0. From this we can conclude that
hypothesis (ii) is satisfied. If we then follow the idea to prove a lower bound on the reals
in the proof of Proposition 6.1 it is not difficult to show that hypothesis (iii) is satisfied for
N. Existence of a minimum follows from Proposition 6.1. To show that λn > 0 one argues
by contradiction as in [27, page 2139]. The last assertion on the Lagrange multipliers and its
relation to the Fock operator has been proven in [4].

Proceeding towards the second assertion of Theorem 7.1 which addresses the existence
of infinitely many nonminimal solutions, one would expect from the previous proof that a
more involved perturbed variational principle is needed. For our specific setting, however, it
suffices to apply the direct method by Fang and Ghoussoub [10] (see also [11, 31]). Again,
due to the lack of weakly lower semicontinuity, it is necessary to switch to density operators
in the proof below.

Proof of Theorem 7.1 (assertions 2 and 3). We will prove that there exists a critical point at
infinitely many distinct levels. We will use abstract critical point theory by Fang and
Ghoussoub [10]. Consider the C2-functional E on the C2-Riemannian manifold CN . We
consider Z2 = {0, 1} to be the compact (0-dimensional) Lie group, with groups actions
(0, φ) �→ φ and (1, φ) �→ − φ (φ ∈ CN). We note that the functional is even, in fact it
is invariant under unitary transformation, this can be seen by repeating the proof from the
nonrelativistic Hartree-Fock case (see, e.g., [27, Lemma 2.3]. Next we make preparations for
the min-max principle: For each k ∈ N, we consider the following homotopic classes of order
k

Hk =
{
M : M = h

(
S
k−1

)
for some odd continuous h : S

k−1 → CN
}
, (7.5)



International Journal of Mathematics and Mathematical Sciences 17

where S
k−1 is the unit sphere in the Euclidean space R

k. Let

lk = inf
M∈Hk

max
φ∈M

E(φ). (7.6)

We claim that −∞ < lk ≤ lk+1 < 0 for each k ∈ N and that limk→∞lk = 0, the proof of this
fact will be given last in this proof. We may of course, after perhaps going to a subsequence,
assume that lk < lk+1 for each k. Now, we will use the abstract results by Fang and Ghoussoub
[10] (in particular [31, Theorem 11.1 and Remark 11.13]), to extract a sequence satisfying the
assumptions of Palais-Smale condition at level lk and of order less than k, but such a sequence
is according to Proposition 6.1 relatively compact in CN .

Let us now prove the properties of the sequence {ϕ(k)}k≥1 of distinct solutions.We have
already seen that we may assume that −∞ < lk < lk+1 < 0 so we may find a sequence such that

−∞ < lk−1 < lk = E
(
ϕ(k)

)
< lk+1 < 0. (7.7)

We conclude that

E
(
ϕ(k)

)
−→ 0. (7.8)

Now using the Cauchy-Schwarz inequality (recall that 0 < λ(k)n )

−
N∑
n=1

λ
(k)
n ≤ E

(
ϕ(k)

)
< 0, (7.9)

and thus λ(k)n → 0 in k for each n. We note that the right-hand side of

2

(
E
(
ϕ(k)

)
+

N∑
n=1

λ
(k)
n

)
= −

∫

R6

ρ(k)(x)ρ(k)(x′) − ∣∣D(k)(x, x′)
∣∣2

|x − x′| dx dx′ (7.10)

tends to zero. This together with (7.7) allows us to conclude that we can find (perhaps
after going to a subsequence) a weak limit, ϕ ∈ H1/2(R3)N , for our sequence. Due to the
assumption Ztot < Zc we may find a constant C > 0 such that

E
(
ϕ(k)

)
−
∫∫

R3

ρ(k)(x)ρ(k)(x′) − ∣∣D(k)(x, x′)
∣∣2

|x − x′| dx dx′ ≤ Ct0
[
ϕ, ϕ

]
, (7.11)
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and we may therefore conclude that ϕ = 0. This finishes the part on the properties of the
sequence. It remains to prove the claim stated above. The monotonicity of {lk}∞k=1 is a direct
consequence of how we have defined Hk and since E is uniformly bounded below on CN ,
we immediately get that lk > −∞. An application of Lemma 5.1 ensures that there exists a k-
dimensional subspace Hk of H1/2(R3) such that for all φ ∈ Hk with ‖φ‖L2(R3) = 1 (we denote
the unit sphere in this subspace by S̃

k−1), one has

t̃0
[
φ, φ

]
+ ve

[
φ, φ

]
+
∫∫

R3

ρ(x)
∣∣φ(x′)

∣∣2
|x − x′| dx dx′ ≤ −εk (7.12)

for some εk > 0. It is not hard to find a continuous isomorphism g : Hk → R
k such

that g(Sk−1) = S̃
k−1, now denote by e the natural embedding of S̃

k−1 into CN (due to the
monotonicity we may assume k to be sufficiently large) and therefore g ◦ewill be an odd and
continuous mapping from S

k−1 into CN where E negative and therefore we can conclude that
lk < 0. Hence we can find Mk ∈ Hk such that

lk ≤ max
Mk

E < lk
2
. (7.13)

To prove that limk→∞lk = 0, we use the separability of H1/2(R3) by considering a nested
sequence of finite-dimensional subspaces Wk of H1/2(R3) such that dim (Wk) = k and ∪kWk

is dense in H1/2(R3). Define Vk as the orthogonal complement of Wk−1. Now, assume that
Mk ∩ Vk = ∅, let πk−1 be the orthogonal projection from H1/2(R3) onto Wk−1. Then (Vk :=
ker (πk−1))

π(Mk) ⊂ Wk \ {0} ∼= R
k \ {0}, (7.14)

and by following Rabinowitz [32] and using the Borsuk-Ulam theorem we will now arrive
at a contradiction. Using that zero is an upper bound for the functional we can extract a
sequence hk ∈ Mk ∩ Vk such that hk tends weakly to some element that must be equal to 0. By
repeating the arguments in Proposition 6.1 we may find a subsequence (which is of course
sufficient in our case) such that D(k), the density operator corresponding to hk, tends weakly
to 0 in S2. We get by the same type of argument as for (6.20) that

0 = E(0) ≤ lim inf
k
E
(
D(k)

)
≤ 0. (7.15)

The latter together with (7.13) implies that limk→∞, lk = 0.
The regularity and decay properties of our sequence were proved in [4] for an atom

and it carries over to our setting mutatis mutandis.
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