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CBTV: Visualising Case Bases for Similarity
Measure Design & Selection

Brian Mac Namee and Sarah Jane Delany

DIT AI Group, Dublin Institute of Technology, Dublin, Ireland
brian.macnamee@dit.ie,sarahjane.delany@dit.ie

Abstract. In CBR the design and selection of similarity measures is
paramount. Selection can benefit from the use of exploratory visualisation-
based techniques in parallel with techniques such as cross-validation ac-
curacy comparison. In this paper we present the Case Base Topology
Viewer (CBTV) which allows the application of different similarity mea-
sures to a case base to be visualised so that system designers can explore
the case base and the associated decision boundary space. We show,
using a range of datasets and similarity measure types, how the idiosyn-
crasies of particular similarity measures can be illustrated and compared
in CBTV allowing CBR system designers to make more informed choices.

1 Introduction

Similarity measures are widely used in instance-based learning and more specifi-
cally in nearest neighbour classification. The importance of using the appropriate
similarity measure in a k -NN classifier is well known and there has been signif-
icant work on proposing, learning and evaluating new similarity measures [28,
21, 16, 22, 25, 3].

In most cases, the selection of the best measure is based on a comparison of
similarity measure performance in a cross-validation evaluation. Our proposal
in this paper is to provide a tool, the Case Base Topology Viewer (CBTV), for
case base visualisation. This will allow case-based system designers to explore
different similarity measures through visualisations in order to assist them in
choosing the most appropriate measure for the case base in question.

CBTV is based on the force-directed graph algorithm, similar to other work
on case base visualisation [20, 19], and projects a case base onto a two dimen-
sional plane such that cases that are similar to one-another appear closer to-
gether. Changing from one similarity measure to another, users can examine the
class separability possible with different measures, which assists in their decision
as to which similarity measure is most appropriate for their current task.

The contributions of this paper are the presentation of the CBTV system and
the description of a number of illustrative examples that show how the differences
between similarity measures can be explored through visualisations. The paper
is organised as follows: Section 2 gives an overview of existing work, both in the
context of designing or choosing the best similarity measure to use in a case-
based system, and in the context of visualisation of case bases. Section 3 then



describes the CBTV system and how it can be used to visualise the impact of
using different similarity measures. Section 4 then provides a series of evaluation
examples of differing visualisations of various case bases - including numeric only
datasets, textual datasets and heterogeneous datasets. Finally, in Section 5 we
draw conclusions on some of the advantages and disadvantages of using a system
such as CBTV and present a number of avenues for further research.

2 Related Work

A variety of similarity measures are proposed in the literature for use in case-
based systems. Cunningham [5] provides a comprehensive taxonomy of strategies
for similarity assessment in CBR, grouping measures into four different cate-
gories. The most well known of these is the direct category where cases are rep-
resented as feature vectors and similarity is assessed directly from these features.
Less frequently used categories include transformation-based measures where
similarity between cases is based on the effort required to transform one case
into another case (e.g. Edit Distance and Earth Mover Distance ); information-
theoretic measures where the measure is based on the information content of the
case, the most dramatic of these being Compression-Based Similarity; and, fi-
nally, emergent measures such as Random Forests which exploit the considerable
computational power now available.

Most of the existing research into choosing similarity measures has focussed
on (i) proposing or (ii) learning new direct measures. By and large the most
commonly used direct similarity measure is the generalised weighted similarity
measure where the similarity between two cases is a function (often linear) of in-
dividual weighted local feature similarities. The task is then to set the individual
feature weights and Wettschereck et al. [27] introduced a five dimensional frame-
work for categorising automated feature weight setting methods and included a
comprehensive review of early work in this area.

Aside from setting feature weights, there has been work presenting a for-
mal framework for the specification and construction of a wide range of het-
erogeneous similarity measures [22] and proposing new heterogenous and hybid
measures [21, 16]. More recently learning similarity measures has received more
attention. A large proportion of research in this area uses incremental or evo-
lutionary algorithms. These approaches can use system performance feedback
[13, 9], introspective and reinforcement learning [2, 23] or qualitative informa-
tion such as the ranking of cases [3, 4]. Xiong & Funk [29] introduce a novel
learning approach with the advantage that the importance of a feature is built
into a local similarity measure and there is no need to learn individual feature
weights.

In most, if not all, of this previous work, measures such as classification accu-
racy in cross validation are used as a measure of the performance of the similarity
measures, showing which similarity measure is most appropriate for the case base
in question. Our approach to selecting the most appropriate similarity measure
is to provide a visualisation of the case base for a specific similarity measure
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which shows how the cases are distributed and where decision boundaries are
located. It is not intended that this approach replace the use of performance
measures, but rather that it complements these techniques and allows a system
designer to further explore a case base and associated decision boundary space.

Previous work in case base maintenance has used the visualisation of the
case base and its competence model to improve the efficiency of the authoring
process and the quality of the resulting case base [20]. Case-base visualisation
has also been used to provide dynamic visualisations of case base usage over
the life-cycle of a case base [19]. Both approaches use the force-directed graph
drawing algorithm known as the spring model [10] which allows the display of
n-dimensional data on a 2-dimensional plane.

A second category of visualisation focusses more on showing the relationships
between cases by visualising the connections between feature values. Falkman
[11] visualises clinical experience as a three dimensional cube based on the idea of
3D parallel co-ordinate plots. A case feature can be viewed as a two-dimensional
plot with the cases plotted in some order on the x-axis and the possible feature
values on the y-axis. The Cube is a collection of planes, each plane representing
a feature in the case representation and each case is represented as a line con-
necting individual values in the different feature planes. Massie et al. [18] adopts
a similar approach to visualisation for explanation in pharmaceutical tablet for-
mulation. They use a two-dimensional version with each feature represented as a
vertical line rather than a plane, with feature values plotted along this line and
each case represented by connecting the feature lines at positions reflecting the
case feature value. Clusters of similar cases can be observed easily with this par-
allel co-ordinate plot approach and it facilitates the identification of similarities
and differences between cases and groups of cases.

The limitation of these approaches is that they do not support the visuali-
sation of large dimensional case bases. While some of the approaches mentioned
can deal with high-dimensional data (e.g. [20][19]) Kontkanen et al. directly ad-
dress this problem [14]. Visualisations are created in which, rather than basing
case positions on their pairwise Euclidean distances, they use the output of a
Bayesian network - the intuition being that cases that result in similar network
output should appear close together in the visualisation. This, they argue, gives
better visualisations than the use of Euclidean distance measures. However, they
fail to acknowledge the fact that Euclidean distance is not the only similarity
measure available. We examine whether it is possible to create more interesting
visualisations using more sophisticated similarity measures.

3 The CBTV System

This section will describe the CBTV system and how it can be used to visu-
ally explore the suitability of using various similarity measures with particular
datasets. Firstly, we will describe how the system generates visualisations using
a force directed graph drawing algorithm, or the spring model. Then we will
describe how these visualisations can be fine tuned using transformations of the
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calculated similarity values. Finally, we will describe the technique we use to
evaluate how well a particular visualisation matches an underlying dataset.

3.1 Representing Case Bases Using a Force-Directed Graph
Drawing Algorithm

Similarly to Smyth et al. [24], we create visualisations of case bases using a force
directed graph drawing algorithm [10]. We consider a case base as a maximally
inter-connected graph in which each case is represented as a node that is linked
to every other case (or node) in the case base. An example is shown in Fig. 1(a)
in which cases a, b and c are shown as a maximally inter-connected graph. The
layout of the graph should be such that cases most similar to each other appear
close together in the graph.
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Fig. 1. Case base representations used by the force-directed graph drawing algorithm

To allow similarities between cases dictate the arrangement of the graph
the metaphor of springs is used. Each case is imagined as a steel ring with
springs connecting it to every other case (illustrated in Fig. 1(b)). The strength
of the spring between any two cases is proportional to the similarity between the
two cases, i.e. cases that are similar are linked by stronger springs than cases
that are dissimilar. In order to create a visualisation, the cases in a case base
are initially placed in random positions on a two-dimensional plane (a three
dimensional visualisation could also be created in the same way, although this
is not something that we explore in this work). The cases are then allowed to
move according to the forces applied to them until equilibrium is reached. As
the system is allowed find its own equilibrium the stronger springs will draw
together those cases that are most similar to each other. So that all cases do not
form a single small group, a repulsive force between each case is also introduced.

The attractive forces that pull cases together and repulsive forces that push
cases apart are illustrated in Fig. 1(c), in which each case is shown as having
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an attractive and repulsive force due to each other case. Thus the total force
exerted on any case v, f(v), can be calculated as follows:

f(v) =
∑

u∈N(v)

att(u, v) +
∑

u∈N(v)

rep(u, v) (1)

where att(u, v) is the attractive force exerted on case v by case u; rep(u, v)
is the repulsive force exerted on case v by case u; and N(v) is the set of vertices
emanating from case v. Attractive forces are dictated by the strength of the
springs between cases and are calculated using Hooke’s law - i.e. att(u, v) is
proportional to the distance between u and v and the zero energy length of the
spring. The zero energy length of a spring is the length at which the spring
will exert no attractive forces and is directly proportional to the similarities
between the cases it connects. The repulsive forces between cases are modelled
as Newtonian gravitational forces, and so follow an inverse square law.

Thus, Equation 1 can be expanded as follows (only the x component of the
forces is shown - the y component is calculated similarly):

fx(v) =
∑

u∈N(v)

katt ∗
(dist(u, v)− zero(u, v)) ∗ (vx − ux)

dist(u, v)
(2)

+
∑

u∈N(v)

krep ∗
(ux − vx)
dist(u, v)3

where dist(u, v) is the distance on the graph between nodes u and v; zero(u, v)
is the zero energy length of the spring between u and v; ux and vx are the x
components of the positions of cases u and v respectively; krep is the repulsive
force coefficient; and katt is the attractive force coefficient. katt and krep are
used to balance the effects of the attractive and repulsive forces. Based on rec-
ommendations from [12], and some preliminary experiments, we set katt = 1

3
and krep = 3.

The zero energy length of each spring should be proportional to the similarity
between the cases it connects, and is calculated as follows:

zero(u, v) = (1− sim(u, v)) ∗maxZeroEnergyLength (3)

where sim(u, v) is the similarity between cases u and v, and maxZero−
EnergyLength is the distance apart that two cases should appear in the visuali-
sation graph if they are totally dissimilar to each other (i.e. the zero energy length
of a very weak spring). maxZeroEnergyLength is a constant that, again follow-
ing recommendations from [12], we set to 4, 900. In effect,maxZeroEnergyLength
determines the size of the visualisation created.

Equation 2 calculates the forces applied to each case in a visualisation at a
specific moment in time. To animate the way in which a visualisation finds equi-
librium, the forces are repeatedly calculated and small movements are applied
to the cases until equilibrium is reached. In order to avoid large jumps across
the graph space these small movements are limited as follows:
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fx(v) =

 −5 for fx(v) ≤ −5
fx(v) for −5 < fx(v) < 5

5 for fx(v) ≥ 5
(4)

The system at present is capable of handling case bases including thousands
of cases. However, further work will be required in order to make it scalable to
case bases beyond this size.

3.2 Using Similarity Transformations to Aid Visualisations

All of the similarity measures described in this paper are designed to produce
similarity scores in the range [0, 1]. However, with certain case bases some simi-
larity measures can return collections of similarity values that have very skewed
distributions. This can result in visualisations where cases tend to be maximally
separated (when the distributions are skewed towards zero) or bunched very
tightly together which does not allow patterns to be seen (when similarity dis-
tributions are skewed towards one). In these scenarios it is useful to perform a
transformation on the similarity values in order to create more useful visualisa-
tions. The CBTV system uses power law transformations to allow fine tuning
by a user. Power laws transformations were chosen as they are straightforward
to implement and were shown empirically to be effective. Each similarity value
in the pair-wise similarity matrix used to create visualisations is transformed
according to s′ = sγ where s is the original similarity value, s′ is its transformed
equivalent, and γ is a value chosen by the user.

Fig. 2 shows an example for a small classification dataset. It is difficult to
interpret the visualisation shown in Fig. 2(a) as all of the cases are overly clus-
tered together due to the distribution of the similarities being skewed, evident
from the similarity histogram shown in Fig. 2(a). However, by applying a power
law transformation with γ = 4 the skew can be corrected, leading to a much
more useful visualisation, as shown in Fig. 2(b).

However, these sorts of transformations must be used with care, particularly
when comparing different similarity measures. One may draw the conclusion that
one similarity measure creates a better separation of classes than another, when
in fact it is the case that a more appropriate transformation has been applied
to the first visualisation than to the second. For this reason in the scenarios
presented in Section 4 the most appropriate transformations are applied in each
individual case. The appropriateness of a transformation is measured by how well
the similarities in the original feature space and the distances on the resulting
visualisation correlate. This is discussed in the Section 3.3.

3.3 Measuring the Quality of Visualisations

Creating a force directed graph model of a case base involves projecting a series
of multi-dimensional cases to a two dimensional spatial representation. There is a
danger in this projection that the lower dimensional version will not be capable of
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(a) (b)

Fig. 2. The effect on a visualisation of a similarity transformation

suitably representing the higher dimensional information. In fact, we should not
expect the lower dimensional representation to contain all of the information in
the higher dimensional version. However, unless the lower dimensional version is
a reasonable approximation of the higher dimensional version the visualisations
created will not be useful.

In order to evaluate this projection correlation tests following Smyth et al.
[24] are performed. The correlation tests evaluate the Pearson correlation be-
tween the pair-wise similarity matrix generated for the case base and the pair-
wise distance matrix calculated from the visualisation. All correlations are nega-
tive because distances and similarities are being correlated. As long as a reason-
able correlation exists between the two matrices, it is acceptable to interpret the
potential of a similarity measure from the visualisation which uses it. However,
if a reasonable correlation does not exist, then the visualisation is not useful.
Preliminary experiments have suggested that correlations above |0.6| indicate
that a visualisation is a useful representation of the case base.

4 Demonstration and Discussion

In this section we will demonstrate how CBTV can be used to explore the suit-
ability of different similarity measures for different case bases. Before presenting
the actual visualisations, the datasets used and the similarity measures available
for comparison when visualising each of these datasets are described.

4.1 Datasets and Similarity Measures

The datasets used in this work are listed in Table 1. Also shown are the size of
each dataset and the similarity measures that have been used for each dataset
type. Three different types of dataset have been used: textual datasets, numeric
datasets, and heterogeneous datasets.
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Table 1. The datasets used in the demonstration of the CBTV system with their sizes
and the range of similarity measures available for each type.

Type Similarity Measures Name #Instances #Features

Textual
Euclidean, Cosine, Jacard,
Normalized Compression
Distance

Spam-1 500 4, 449
Spam-2 500 3, 219
Reuters 500 828

Numeric
Euclidean, Manhattan,
Chebyshev, Mahalanobis

Breast Cancer 569 30

Heterogeneous Basic, Designed Camera 210 19

Three textual classification datasets are included: two spam detection datasets
[7], and a binary classification dataset generated from the Reuters collection1. For
the textual datasets we have experimented with three feature-based similarity
measures: normalised Euclidean distance [5], cosine similarity [1], and the Jac-
ard index [5]; and one feature-free similarity measure: Normalized Compression
Distance (NCD) [15]. For the three feature-based measures, texts are tokenised
at the word level and feature values are recorded as unit length normalised word
frequencies. Stop-word removal and document frequency reduction (removing
all words that occur in less than 3 documents in the dataset) was performed
on each dataset. Normalized Compression Distance was implemented using the
gzip compressor as described in [6].

The numeric dataset is the Breast Cancer classification dataset [26] from the
UCI Machine Learning Repository2. Four similarity measures are considered:
normalised Euclidean distance, normalised Manhattan distance, Chebyshev dis-
tance [5] and Mahalanobis distance [17].

Although all of the classification datasets used represent binary classification
problems, the system works equally well for classification problems with any
number of classes. Table 2 shows 5*10 fold cross validation average class accura-
cies using a 3 nearest neighbour classifier for each dataset using each similarity
measure (the best result for each dataset is shown in bold).

Table 2. Cross validation accuracies for each dataset.

Dataset Cosine Euclidean Jaccard NCD

Spam-1 96.96 97.56 94.6 98.4
Spam-2 96.12 96.84 95.4 97.92
Reuters 95.36 91.64 94.88 95.8

Dataset Chebyshev Euclidean Manhattan Mahalanobis

BreastCancer 94.8 96.66 96.9 81.98

1 Available at: http://www.daviddlewis.com/resources/testcollections/reuters21578/
2 Available at: http://archive.ics.uci.edu/ml/
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(a) Cosine Similarity (corr: −0.846) (b) Euclidean Distance (corr: −0.854)

(c) Jacard Index (corr: −0.748) (d) NCD (corr: −0.781)

Fig. 3. Visualisations of the Spam-1 dataset using different similarity measures

The final dataset considered in this paper, the Camera dataset3, is a heteroge-
neous case base which contains both numeric and discrete features and examines
choices made by customers in selecting a camera to purchase. Two types of sim-
ilarity measure are considered for this dataset. The first is a straightforward
direct type distance metric and the second type is a designed direct measure
which takes into account domain knowledge to create feature-level utility-type
similarity measures such as those in [8].

4.2 Exploring Datasets Using CBTV

Fig. 3 shows visualisations (and correlation scores) of the Spam-1 dataset using
the four specified similarity measures (with γ equal to 1, 0.3, 0.3 and 0.3 for
the Cosine, Euclidean, Jacard and NCD measures respectively) and tells an
interesting story. Figs. 3(a), 3(b) and 3(c) show that when the Cosine, Euclidean
and Jacard measures are used, the two classes do not appear to separate well

3 Available at: http://cbrwiki.fdi.ucm.es/wiki/index.php/Case Bases
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and there is an amount of confusion at the class boundary. However, in Fig. 3(d)
much better class separation is apparent. This would suggest to us that either
the NCD similarity measure is the most appropriate for this problem - which is
backed up by the accuracies in Table 2.

(a) Cosine Similarity (corr: −0.919) (b) Euclidean Distance (corr: −0.831)

(c) Jacard Index (corr: −0.701) (d) NCD (corr: −0.742)

Fig. 4. Visualisations of the Spam-2 dataset using different similarity measures

Fig. 4 shows a set of visualisations for the Spam-2 dataset (no transformations
are used) and tells a similar, if less pronounced, story. The visualisation showing
the use of the NCD similarity measures, Fig. 4(d), displays the cleanest class
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separation which again suggests that this is likely to be the most successful
similarity measure for this problem. This is in agreement with the results in
Table 2 and confirms previous work on feature-free similarity measures in [6].

(a) Cosine Similarity (corr: −0.874) (b) Euclidean Distance (corr: −0.854)

(c) Jacardian Similarity (corr: −0.778) (d) NCD (corr: −0.828)

Fig. 5. Visualisations of the Reuters dataset using different similarity measures

Fig. 4(d) also illustrates how CBTV can be used for noise detection. A lone
spam example, denoted with the arrow, is seen amongst a number of non-spam
examples. CBTV allows users to select an example and view the underlying case
(in this case the original spam email). Investigation showed that this email is
a one of a number of new journal issue notifications that the user originally
classified as non-spam but over time began to classify as spam.

Fig. 5 shows the set of visualisations for the Reuters text dataset. In all of
these visualisations a power law transformation with γ = 0.3 is used. This time
it is particularly interesting to note the clustering in the region marked with the
arrow in Fig. 5(d). This small cluster, which includes cases from each class, rep-
resents documents that have been truncated and appended with the text “blah
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blah blah”. The NCD similarity measure responds particularly strongly to this
repeated text, a connection that is not evident in the other visualisations. This
is a clear example of how visualising different similarity measures can illustrate
how each responds to particular characteristics of the underlying dataset. The
visualisations of the Reuters dataset also suggest the existence of possible out-
liers, or unusual cases, particularly in Figs. 5(a), 5(b) and 5(c). This is another
useful feature of creating visualisations.

(a) Chebyshev Distance (corr: −0.912) (b) Euclidean Distance (corr: −0.939)

(c) Manhattan Distance (corr: −0.948) (d) Mahanalobis Distance (corr: −0.741)

Fig. 6. Visualisations of the Breast Cancer dataset using different similarity measures

Fig. 6 shows the visualisations created for the numeric BreastCancer dataset
(power-law transformations with γ equal to 5, 5, 3 and 2 are used for the Eu-
clidean, Manhattan, Chebyshev and Mahalanobis measures respectively). These
visualisations tell a slightly different story than those of the text-based datasets.
The best class separation appears using the Manhattan and Euclidean measures,
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which is not surprising as these are the predominant measures used for this kind
of dataset. The visualisation based on the Chebyshev measure (Fig. 6(a)) shows
reasonable separation, while for the Mahalanobis measure (Fig. 6(d)) class sep-
aration is poor, although an interesting and very distinctive pattern is present.
This visualisations match the cross validation results shown in Table 2.

(a) Basic Similarity (corr: −0.66) (b) Designed Similarity (corr: −0.65)

Fig. 7. Visualisations of the Camera dataset using different similarity measures

Finally, Fig. 7 shows the visualisations for the heterogeneous Camera dataset
- the only non-classification dataset used in this paper. We created visualisations
for a number of heterogeneous datasets using basic and the designed measures
and in general found that differences were minimal. This might suggest that the
extra effort of designing a similarity measure to incorporate domain knowledge
is not worthwhile. However, the Camera dataset proved quite interesting and
illustrates the benefits of domain-focussed similarity measures. Fig. 7(a) shows
the visualisation of the basic direct measure where there is a small number of
very tightly packed clusters of cases. In Fig. 7(b) cases are much better spread
out across the visualisation space as a result of the domain knowledge introduced
by the utility-type similarity measure used. We illustrate this by highlighting in
black one of the clusters in Fig. 7(a) and highlighting in black the same cases in
Fig. 7(b). It is clear that in Fig. 7(b) the cases are better spread out.

5 Conclusions and Future Work

In CBR the design and selection of similarity measures is paramount. While
techniques such as the comparison of cross-validation accuracies can be used for
this, it is also useful to have more exploratory techniques available and the CBTV
system has been built for this purpose. Using a force-directed graph drawing
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algorithm visualisations of cases bases using different similarity measures can be
created and compared. Furthermore, by allowing the user to query the underlying
cases in areas of particular interest, possible noisy cases and probable outliers
can be investigated. In this paper we have presented the CBTV system and
illustrated a range of visualisations that can be created using it for a variety of
case base and similarity measure types. We believe that these worked examples
illustrate the usefulness of the system.

In the future we intend to extend this work in a number of potentially in-
teresting directions. The first of these is to look at how the visualisations can
be given broader coverage and made more interactive. For example, we will al-
low interactive selection of particular features to use within a similarity measure
and interactive adjustment of feature weights. Focusing on text, we will allow for
pre-processing tasks such as stop-word removal and stemming to be activated
or deactivated at run-time and, finally, allow for visualisation of interactive ma-
chine learning tasks such as active learning. Finally, there is a random element
present in the creation of visualisations (cases are initially placed randomly in
the visualisation space) and there can be small differences in repeated visualisa-
tions of a dataset. We will investigate techniques such as repeatedly running the
visualisation to an equilibirum state and using an aggregation of these results in
the final visualisation in order to address this issue.
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