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Abstract 

Quantum dots (QDs) are a diverse class of engineered nanomaterials that have great 

potential for use as agents in imaging, diagnostics and drug-delivery because of their 

intense and photostable fluorescence. Advances in the field of nanotoxicology, 

however, have recently identified potential risks and hazards associated with exposure 

to QDs. The main purpose of this research is to investigate the capabilities of a 

synergistic range of different techniques, including cytotoxicity assays, confocal 

microscopy and vibrational spectroscopy, to probe their interaction with Biological 

systems. With the combination of these techniques it is hoped to understand the 

mechanisms of the interaction of QDs with biological systems.  

Cytotoxicity assays demonstrate that polyethylene glycol (PEG) coated CdSe/ZnS 

quantum dots are at most weakly cytotoxic upon prolonged exposure. Simultaneous 

exposure to simulated solar illumination indicates an increased cytotoxic response and 

potential risks of phototoxicity. 

Fluorescence and Confocal Microscopy studies demonstrate that the internalization of 

QDs within HaCaT keratinocytes occurs within 1 hour of exposure, and that QDs are 

retained in the lysosomes supporting a model of internalisation by endocytosis.  

Using an excitation wavelength of 785 nm, the two-photon excitation fluorescence of 

QDs (emission at 625 nm) is observed, whereby the fluorescent emission is observed in 

the anti-Stokes Raman signal, together with the usual Stokes Raman scatter of a single 

cell. Raman microspectroscopy therefore offers the means to both localise (image) and 
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study the chemical interaction between a nanoparticle and its biological environment as 

well as the overall changes to the physiology of the cell as a result of interaction with 

the nanoparticles. 

Localisation of QDs is possible due to the high fluorescence of these nanomaterials. In 

the last chapter a novel technique is investigated for detection of non fluorescent 

nanomaterials within a cell. The characteristic Raman signature of the nanoparticles is 

extracted from the mixed nanoparticle/cellular spectrum using a cross correlation 

technique, and the signature is colocalised with the fluorescent signal in the case of 

QDs. The technique is validated using simulations and experimental data. 
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1.1 Objectives 

 

Quantum dots (QDs) are already widely used in emerging and existing technologies and 

thus it is important to investigate their toxicity and biocompatibility. Before the use of 

these nanoparticles becomes widespread, the potential occupational and environmental 

hazards need to be acknowledged.  

There are various exposure routes for manufactured nanoparticles; they can enter the 

body through inhalation, ingestion and dermal absorption. Furthermore nanocrystalline 

fluorophores such as QDs have several potential medical applications including 

nanodiagnostics, imaging, targeted drug delivery, and photodynamic therapy. For these 

kind of applications, the nanoparticles may be directly injected into the body or 

transported transdermally. In the latter case, the risk of phototoxicity due to exposure to 

sunlight should also be considered. With respect to in vivo applications, a particular 

caution must be exercised with QDs due to their potentially toxic constituent components 

(CdSe). 

In this study, the focus is on dermal absorption risks by analysis of the interaction of QDs 

with keratinocyte cells. The skin is the largest organ of the body with a huge surface area 

(1.6-2 m2) and represents an important potential exposure route. Moreover, QDs are 

readily detected because of their intense and photostable fluorescence, making them a 

useful model for assessing nanomaterial interactions with biological systems in general. 

The main purpose of the research is to investigate the capabilities of a synergistic range 

of different techniques to probe the interaction of QDs with cells. These include 
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cytotoxicity assays, confocal microscopy and vibrational spectroscopy. With the 

combination of these techniques it is hoped to understand the mechanisms of the 

interaction of QDs with biological systems. 

 

1.2 Background on Quantum dots 

 

1.2.1 Introduction to Quantum confinement 

 

In general, the energy of electrons in a semiconductor is limited by their temperature and 

by the properties of the material. Electrons confined in a plane have no freedom of 

motion in a third dimension. Those confined in a quantum wire are free to move in one 

dimension only, and those confined in a quantum dot are not free in any dimension.  

During the early 1970s, groups at AT&T Bell laboratories and IBM made the first two-

dimensional “quantum well”, demonstrating quantum confinement in a semiconductor for 

the first time [1]. The first demonstration of zero-dimensional semiconductors followed 

in the early 1980s, at Ioffe Physical Technical Institute in St. Petersburg [2]. 

These zero –dimensional semiconductors, also known as Quantum Dots or nanocrystals, 

are a special class of semiconductor composed of periodic groups of II-IV, III-V, or IV-

VI materials. They consist of only a few hundred to thousand atoms within the quantum 

dot volume. With a diameter of 10 to 50 atoms; they bridge the gap between the solid-

state and atomic properties of inorganic materials [3]. 
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QDs have attracted considerable interest as materials for optical and nonlinear optical 

applications [4], and their systematically controllable physical properties render them 

ideal materials for understanding structure property relationships at the nanoscale. 

 

1.2.2 Semiconductor – Band theory of solids  

 

The electronic band structure of a solid describes the ranges of energy that an electron is 

“forbidden” or “allowed” to have. Thus the bands of possible electron energy levels in a 

solid are called allowed energy bands. The bands that are impossible for an electron to 

have in are called forbidden bands, or bandgaps. The allowed energy bands sometimes 

overlap and sometimes are separated by forbidden bands.  

The lowermost, almost fully occupied band is called the valence band. The uppermost, 

almost unoccupied band is called the conduction band, because only when electrons are 

excited to the conduction band can current flow in these materials. The energy difference 

between the top of the valence band and the bottom of the conduction band, called 

bandgap, can define three different classes of materials: metals, semiconductors and 

insulators (Figure 1.1). 

In metals, the bandgap is negative or zero and there is just a single band, a valence-

conduction band that is partially filled. There is therefore no energy gap between the 

valence and conduction states and electrons are mobile without the necessity of external 

energy. 
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In insulators and semiconductors there is a finite positive bandgap. The presence of a gap 

means that the electrons cannot easily be accelerated into higher energy states by an 

applied electric field. Insulators are differentiated from semiconductors by the size of the 

bandgap, a general rule of thumb being that materials with a bandgap > 3-4eV are classed 

as insulators.  

 

 

Figure 1.1 Valence and conduction bands of metal, insulator, and semiconductor [5]. 

 

1.2.3 Exciton Theory 

 

Exciton theory helps us to understand the electrical and optical properties of 

semiconductors and particularly of quantum dots. The idea of excitons was first 

introduced by Frenkel in 1931 and Peierls in 1932 as ‘excitation waves’ when light 

energy is absorbed and subsequently transformed into heat in solids. Excitons consist of a 
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negatively charged electron and a positively charged hole bound to each other by 

electrostatic attraction. Excitons exist in all kinds of condensed matter, whenever it is 

possible for an electron to be excited from valence band to conduction band, leaving 

behind a hole. This electron hole and the electron are attracted to each other by Coloumb 

forces creating an electron-hole pair which constitutes a quasi-particle which is mobile 

within the crystal. Excitons transport energy, not charge or mass. Typically, an exciton is 

created when a photon is absorbed in a solid; the exciton then moves through the crystal; 

and finally the electron and hole recombine, resulting in the emission of another photon, 

often at a wavelength different from that of the original photon [5]. 

 

1.2.4 Quantum dots: theoretical description 

 

In the case of the bulk CdSe semiconductor, an electron-hole pair forms a weakly bound 

exciton. The characteristic distance between these two charges can be expressed as [6]  

 

⎥
⎦

⎤
⎢
⎣

⎡
+≅

he

ex

mme
11

2

2hαβ
     Equation 1.1 

me = effective mass of electron  

e = elementary charge 

mh =   effective mass of hole   



 

  7

ε = dielectric constant of the bulk semiconductor 

ħ = reduced Planck Constant 

 

α ex
B is also known as the Bohr radius of the bulk exciton. For the bulk CdSe 

semiconductor, α ex
B is typically about 6 nm. 

When the size of the semiconductor crystal is reduced to the Bohr radius or smaller (Eq. 

1.1), the exciton will be confined spatially inside the material. This results in quantum 

confinement, which modifies the electronic and optical properties of the semiconductor. 

Quantum confinement leads to a collapse of the continuous energy bands of a bulk 

material into a discreet set of energy levels, similar to single atoms/molecules, as shown 

in Figure 1.2.  The energy states become sharp and the gap larger. The lowest excited 

state corresponding to the transition 1Se – 1Sh is commonly referred to as the first 

excitation state. This structure is often referred to an “artificial atom”. The properties of 

the “atom” depend on the size but also the material, through me and mh. 

Using the effective mass approximation, Brus showed that for quantum dots the energy 

gap can be approximately calculated by [6] 

R
e

mmR
E

he ε
π 2

2

22 8.111
2

−⎥
⎦

⎤
⎢
⎣

⎡
+≅Δ

h   Equation1.2 

me  = effective mass of electron 

mh = effective mass of hole 
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e = elementary charge 

R = radius of the Quantum dots 

ħ = reduced Planck Constant 

 

In Equation 1.2, the first term relates to the quantum localization which shifts the energy 

gap to higher energies as R squared. The second term is the Coulomb term which shifts 

the energy to lower energies linearly as function of R. Consequently, the total energy 

bandgap increases in energy with decreasing quantum dot radius. In common words, one 

can think that electrons under these “geometrical” constraints respond to changes in 

particle size by adjusting their energy.  

Experimentally, it can be seen that decreasing the size of QDs leads to an increase in 

energy gap and a consequent shift of their optical absorption and emission wavelength to 

the blue spectral region [7, 8]. 

 

 

Figure 1.2: A comparison of energy levels between a bulk semiconductor and a quantum dot. The valence 

and conduction band in a bulk semiconductor consist of an energy continuum. On the contrary, the valence 

and conduction band in a quantum dot consist of discrete energy levels. 
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1.2.5 Luminescence process 

 

Photons whose energy is greater than the band gap produce electron-hole pairs, which 

first decay down to the bottom of the conduction band and to the top of the valence band 

respectively, forming excitons. For direct gap semiconductors, they subsequently 

recombine, emitting photons with an energy close to exciton binding energy. 

Generally, interactions among electrons, holes, phonons, photons are required to satisfy 

conservation of energy and crystal momentum. In a nanocrystal, the momentum of the 

electron-hole pair is not conserved, because they exchange momentum with the boundary 

of the crystal, so the difference between a direct band gap and indirect band gap is not 

significant. 

 

1.2.6 Properties of QDs 

 

QDs are usually composed of elements from groups II and VI, e.g, CdSe (most common). 

The size of a typical QDs is about 2-10 nm (10-50 atoms) in diameter. QDs are 

fluorophores with a size-tunable emission, strong light absorbance, bright fluorescence, 

narrow symmetric emission bands, and high photostability. Emission spectra can be quite 

narrow: from 20 to 40 nm full width at half maximum intensity. The emission 

wavelength is continuously tunable from the red to the ultraviolet by varying the 

nanocrystal size, as shown in Figure 1.3. 
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Figure 1.3  Solutions of different sized Quantum dots. 

QDs have a large separation between the excitation and emission spectra (Stokes shift), 

as shown in Figure 1.4. The fluorescence lifetime (the time the molecules remain in the 

excited state before emitting a photon) is quite long, about 10-40 ns, which accounts for 

the stable and strong fluorescence.[8, 9] 

 

Figure 1.4:  Absorption and emission spectra of 490QDs. Y axis is arbitrary units 
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1.2.7 Applications of Quantum dots 

 

Many industries will profit from the use of quantum dots. The following applications 

illustrate the many ways that the properties of quantum dots may be exploited [10, 11]: 

• Life Sciences  
• Displays  
• LEDs  
• Thermoelectrics  
• Photonics & Telecommunications  
• Security Inks  
• Solar Cells & Photovoltaics  

 

1.2.8 Biological application of Quantum dots 

 

In 1998, Alivisatos reported for the first time the potential of QDs for applications 

involving biological labelling [10]. They have been demonstrated as suitable for 

immunolabeling, cell mobility assays, and as live cell markers.[14]. The fact that several 

QDs can be excited by the same wavelength of light permits the use of these nanocrystals 

as multi-colour labels.[15] One additional feature of QDs is that they can emit in the 

infrared and near-infrared regions. This makes them suitable for imaging and diagnostic 

applications in cells deep within tissues, as the absorption is minimal in this region.[16]. 

Figure 1.5 is a schematic representation of the range of potential applications of QDs in 

biological sciences. [10, 11] 
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Quantum dots are already commercially available and this suggests their use for the 

above type of applications is increasing. However, very little is currently known about 

the potential health risks and toxic effect associated with this new material. 

 

 

 

Figure 1.5 Biological applications of Quantum dots 
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1.3  Toxicology of Quantum Dots 

 

The new field of nanotoxicology leads to novel requirements in terms of risk assessment. 

The outstanding chemical and physical properties that make nanomaterials so attractive 

for industrial and medical applications may also lead to unforeseen adverse effects upon 

environmental and human exposure. 

Cadmium and selenium, two of the most widely used constituent metals in QD core 

metalloid complexes, are known to cause acute toxicity in humans and are of 

considerable concern for human health. For instance, Cd, a probable carcinogen, has a 

biological half-life of 15-20 years in humans; bioaccumulate is systemically distributed to 

all bodily tissues, the liver and kidney being target organs of toxicity.[17] 

Ron Hardman [18] carried out a toxicologic review of Quantum Dots. The conclusions of 

this study are: 

1. Not all QDs are alike; engineered QDs cannot be considered a uniform group of 

substances.  

2. toxicity depends on physicochemical properties and environmental conditions; 

QDs size, charge, concentration, core material, outer coating and functional 

groups are implicated in QD toxicity. 

As part of the current study, a literature review of the known toxic response of QDs was 

conducted. In this literature review only one class of QDs is considered: CdSe / ZnS core-

shell QDs coated with PEG. A summary of the literature review is presented in Tables 

1.1, 1.2, 1.3. 
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1.3.1 In vitro studies 

 

In an initial study, Garon at al. [19] showed that QDs can be extremely useful molecular 

imaging tools for the study of hematologic cells. They demonstrated that dividing cells 

can be tracked through at least four cells division. Without performing a formal 

evaluation of cytotoxicity, they observed that proliferation of cells labelled with QDs did 

not appear different than cells without QDs. 

Ryaman-Rasmussen at al. [20] tested two sizes of soluble QDs, QD 565 and QD 655. 

Both QD 565 and QD 655 were obtained with three different surface coatings: 

polyethylene glycol (PEG), PEG-amines, carboxylic acids. The study suggested that the 

surface charge of the QDs, whether cationic or anionic, is an important variable for QD 

cytotoxicity, with the cationic carboxylic acid-coated QDs showing the highest toxicity 

response. 

In a second study, Ryman-Rasmussen investigated the non selective interaction of 

primary neonatal human epidermal kerationocytes (NHEK) with the same untargeted 

QDs used in the previous study [21]. This study showed that untargeted QD can interact 

with NHEK skin cells and that the variables influencing these interactions are time, QD 

surface groups, supplements in the culture medium, and temperature. 

Blue Knight tested various embryonic kidney cell lines (amphibian, A6 and XLK-WG; 

human, HEK-293). Results showed that QDs are internalized by all three kidney cell 

lines and for the human kidney cell line, short-term QD exposure and internalization did 

not alter membrane integrity or metabolism. 
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Rouse showed that the application of 10% cyclic strain to HEK caused a significant 

increased of QD cellular uptake in comparison to QD uptake by HEK that were not 

exposed to tensile strain [22]. Application of physiological load conditions can increase 

cell membrane permeability, thereby increasing the concentration of QD in the cells, 

resulting in irritation and a negative impact on cell viability. 

Lin performed the most complete study of the cytotoxicity of QDs [23].  Embryonic stem 

cells (ES) were labelled with six different QDs (emission at 525, 565, 605, 655,705, 800 

nm). In terms of viability, proliferation, and differentiation, no significant difference 

between labelled and unlabelled cells at 24 hrs, 48 hrs, and 72 hrs was noted. 

Muller-Borer tested mesenchymal stem cells with two concentrations of non targeted 

QDs: 5 and 20 nM. For both concentrations there was no change in proliferation with 

respect to the control but there was an increase in apoptosis at the highest concentration. 
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Table 1.1 Summary of the literature review of QDs toxicity. 
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Table 1.2 Summary of the literature review of QDs toxicity.  
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Table 1.3 Summary of the literature review of QDs toxicity. 
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1.4 Summary and Project outline 

 

From the literature review of the CdSe / ZnS core-shell QDs coated with PEG, it is more 

than clear that further studies are required. It is still not clear what kind of relationship 

exists between the shape, size, time of exposure, concentration, and the toxic response. 

Due to their optical properties (bright emission), QDs can be used to investigate more 

generally the interaction of nanoparticles with various biological systems. The biological 

system interacts primarily with the external coating (PEG) and it may be possible to 

extend the toxicological results to all kinds of nanparticles with the same coating, shape 

and size. 

A spontaneously immortalized human epithelial keratinocyte cell line (HaCaT) derived 

from adult skin will be employed throughout this work. HaCaT cells are normal, non-

tumourogenic and p53 mutated adult keratinocytes. The cells are polygonal, of 

approximately 20-μm diameter, producing a ‘cobblestone’ appearance in culture (Figure 

1.6) 

 

Figure 1.6:  HaCaT cells 
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The starting point of this project will be the characterization of the quantum dots in terms 

of their dimensions and optical properties.  

Classical cytotoxic assays will be used to test the toxicity of the QDs and the results will 

be compared with similar studies present in the literature. 

Finally a range of microscopic and spectroscopic techniques will be employed to examine 

the localisation of the quantum dots within the cells. 

The study will demonstrate the usefulness of QDs to explore and develop methods of 

detection of nanoparticles in cells. 
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Chapter 2 

 

 

Experimental Methods: Characterisation of Semiconductor Quantum 

Dots 
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2.1 Evident Quantum Dots 

 

The nanoscrystalline QDs (490QDs and 625QDs) used in this study are commercially 

available and were purchased from Evident Technology, Troy, N.Y. The core of CdSe 

and the shell of ZnS are surrounded with polyethylene glycol (PEG). PEG renders the 

nanoparticles water soluble and biocompatible.[5,6] Figure. 2.1 shows the schematic 

structure of these water soluble nanoparticles. 

 

Figure 2.1 Schematic structure of ZnS capped CdSe Quantum dots.  
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2.1.1 Core – CdSe 

 

The core material that makes up a quantum dot defines its intrinsic energy signature and, 

as a function of its size, the optical absorption and emission characteristics. When the 

radius of a QD is smaller than the bulk Bohr exciton radius, it is reasonable to refer to 

energy levels rather than energy bands as a result of the quantum confinement. Each 

energy level corresponds to a characteristic feature in the absorption/emission spectrum. 

For CdSe dots the bulk Bohr excitation radius is 50 Å. [1] 

Figure 2.2 shows emission spectra for CdSe quantum dots of different sizes, 

demonstrating that decreasing the CdSe radius results in increased quantum confinement 

of the exciton and an increase of the emission energy. [3]  

 

Figure 2.2 Photoluminescence spectra of CdSe-ZnS quantum dots with different core sizes. Quantum dots 

were excited at 350nm [2] 
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2.1.2 Shell – ZnS 

 

The surface of quantum dots has both free (unbonded) electrons and crystal defects. Both 

of these characteristics tend to reduce the luminescence quantum yield (QY) by allowing 

for nonradiative electron energy transitions at the surface. [4] It is well established that 

capping a core quantum dot with a shell (several atomic layers of a wide band inorganic 

semiconductor) reduces nonradiative recombination and results in brighter emission, 

provided the shell is of a different semiconductor material with a wider bandgap than that 

of the core semiconductor material. The addition of a shell reduces the opportunities for 

these nonradiative transitions by giving conduction band electrons an increased 

probability of directly relaxing to the valence band. The shell also neutralizes the effects 

of many types of surface defects. [4] Adding one or two layers of ZnS has the further 

advantage of significantly reducing ambient air oxidation, increasing the stability of the 

QDs, although it does not fully eliminate photooxidation. [5] 

 

2.1.3 Organic Coating – Polyethylene glycol 

 

In order to use QDs in a biological environment, they need to be water soluble. One 

strategy to make them hydrophilic is capping them with an organic coating. Polyethylene 

glycol is a neutral, nontoxic and nonirritating hydrophilic polymer. Derfus et al. showed 

that successive addition of a layer of PEG, increases the biocompatibility and 
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progressively minimizes the cytotoxicity of CdSe/ZnS QDs. [5] Pishko et al. found that 

nanoparticles coated with PEG had the lowest percentage of uptake by macrophages 

when compared to nanoparticles with either negative or positive charges on their surface. 

The researchers showed that a PEG coating keeps changes in nanoparticle surface to a 

minimum and therefore protects the nanoparticles from elimination by the immune 

system. [6] 

 

2.1.4 Commercially available Quantum Dots 

 

Evident Technologies markets QDs as fluorescent cellular probes because they have 

many advantages such as narrow emission, high brightness and superior photostability 

over conventional organic fluorochromes. They provide four non-functionalized QDs 

with various fluorescent emissions: 490QDs, 605QDs, 625QDs, 650QDs. The 

nomenclature indicates the wavelength of maximum emission. In this study, blue/green 

QDs (490QDs) are used for the cytotoxicity studies and red ones (625QDs) for the 

spectroscopy analysis (Figure 2.3). 
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Figure 2.3 Evident Technologies non functionalized CdSe/ZnS with PEG coating QDs. [4] 

 

2.2 Characterization of Quantum dots 

 

2.2.1 Evident Technologies Certificate of Analysis 

 

A certificate of analysis is supplied with the 625QDs. The physical characteristics are 

presented in the Table 2.1. Unfortunately, a similar certificate was not supplied for 

490QDs.  
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Physical characteristic 

Appearance Red suspension 

Emission Maximum [nm] 627 

1st Excitation Peak [nm] 609 

Concentration [nmol/ml] 10 

Full width at Half Maximum (FWHM) [nm] 34.4 

Quantum Yield [%] 

Reference Dye: 

62 

Rhodamine 6G 

Volume [ml] 0.2 

 Table 2.1 625QDs certificate of analysis. 

 

2.2.2 Size  

 

Dynamic light scattering sizing measurements were performed with the aid of a Malvern 

Instruments Zetasizer Nano Series (purchased from Particular Sciences, UK) operating 

with version 5.03 of the system’s Dispersion Technology Software (DTS Nano). The 



 

  30

Malvern Instruments Zetasizer range uses light scattering techniques to measure 

hydrodynamic size, zeta potential and molecular weight of proteins and nanoparticles. 

The average size of the both QDs, 625QDs and 490QDs, was determined to be 19 nm in 

diameter, as determined by DLS (Dynamic Light Scattering). A monomodal dispersion 

was observed in both cases indicating a good dispersion of the QDs with no aggregation. 

It is interesting to notice that most of volume of the nanoparticle is due by the PEG 

coating; the CdSe/ZnS component is approximately 4-6 nm in diameter and in terms of 

volume is less than 5% of the nanoparticle. As a consequence, it can be assumed that the 

biological system interacts predominantly with the PEG coating, in the absence of 

coating degradation. 

 

2.2.3 Optical Properties  

 

The UV/visible absorption characteristics of the materials were determined using a 

Perkin Elmer Lambda 900 UV/VIS/NIR absorption spectrometer. The spectrometer is a 

double-beam, double monochromator ratio recording system with pre-aligned tungsten-

halogen and deuterium lamps as sources.  The wavelength range is from 175 to 3,300 nm 

with an accuracy of 0.08 nm in the UV-vis region and 0.3 nm in the NIR region.  It has a 

photometric range of ± 6 in absorbance. For all the experimental studies, the absorption 

was measured at all times with reference to a blank sample in a double beam 
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arrangement, to eliminate variations caused by the difference in lamp intensities at 

different frequencies. 

 

Absorption and luminescence spectra in nanostructures are associated with optical 

transitions between electronic states and provide information about the electronic 

structure of CdSe QDs. In figure 2.4 it can be seen that the absorption spectra of both 

490QDs and 625QDs, have a very similar pattern. For the 625QDs, the lowest energy 

excitonic peak is at ~570 nm, and progressive shoulders appear at 428nm, 389nm, 350 

nm and 310nm. It is interesting to note that absorption at 310 nm is significantly more 

intense than that at 560 nm. In the case of the 490QDs, the lowest energy excitonic 

absorption peak at ~ 460nm is experimentally obscured by the strong luminescence 

emission.  

 

Figure 2.4 Absorption spectra of 490QDs and 625QDs 
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The emission properties of the QDs were characterised using a Perkin Elmer LS55B 

Luminescence Spectrometer. The LS55B is a computer controlled luminescence 

spectrometer with the capability of measuring fluorescence or phosphorescence, as well 

as a range of other processes including electro-, chemi- and bio-luminescence. Excitation 

is provided by a pulsed Xenon discharge lamp, of pulse width at half peak height of <10 

micro seconds and pulse power 20kW. The source is monochromated using a Monk- 

Gillieson type monochrometer and can be scanned over the range 200-800nm. 

The luminescence is passed through a similar monochromator, which can be scanned 

over the range 200-900nm. Holographic gratings are incorporated on both 

monochromators to reduce stray light. Synchronous scanning is available with constant 

wavelength or frequency difference. Excitation spectra are automatically corrected and 

sensitivity is specified as a signal to noise ratio of 500:1 rms using the Raman band of 

water with the excitation at 350nm and 10nm excitation and emission bandpass. The 

excitation slits (2.5 - 15nm) and the emission slits (2.5 - 20nm) can be varied and selected 

in 0.1nm increments. In the phosphorescence mode, delay and gate times can be varied 

with a minimum total period of 13.0msecs. Excitation and emission polarizers consisting 

of two filter wheels each with horizontal and vertical polarizer elements are also 

included. 

Figure 2.5 shows the emission spectra of the 490QD and 625QD in water solution. The 

emission spectra are bell-shaped (Gaussian) and have maxima respectively at 489 and 

627 nm. The emission characteristics agree well with the manufacturer’s specifications 

(table 2.1). 
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Figure 2.5 Emission spectra of 490QDs and 625QDs . 

 

Figure 2.4 and Figure 2.5 show that 490QDs and 625QDs can be excited by a wide range 

of excitation wavelengths (310-450 nm) but have narrow, weakly Stokes shifted emission 

spectra. The Full Width at Half Maximum (FWHM) is ~ 35 nm, again in agreement with 

manufacturer’s specifications.  
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2.2.4 Vibrational characterisation 

 

Vibrations can be excited by the absorption of electromagnetic radiation at appropriate 

frequency and analysis of the frequencies where absorption is observed yields 

information about the identity of the material and the flexibility of its bonds. A material 

can absorb radiation of frequencies which exactly match the characteristic frequencies of 

vibration. The characteristic frequencies depend on the forces between the atoms, the 

mass of the atoms and the bonding geometry. The stronger the forces between the atoms, 

the higher the vibrational frequency while heavier atoms display lower vibrational 

frequencies. Traditionally, there are two techniques used to obtain a vibrational spectrum; 

infrared absorption (IR) and Raman spectroscopy. 

 

2.2.4.1 Infra Red spectroscopy 

 

The IR imaging system employed is a PerkinElmer Spotlight 400 imager (Wellesley, 

Massachusetts), which consists of a classical Fourier Transform IR spectrophotometer 

coupled to an infrared microscope. The microscope has a provision to view/focus the 

specimen using visible light, and a moving stage (moves in xyz directions) on which the 

specimen can be mounted. Spectra can be accumulated over the range 7800 cm-1 to 750 

cm-1. 
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Figure 2.6 shows the FTIR spectrum of the sample of 625QDs. Peak assignments 

according to Shanmukaraj et al. are given in Table 2.2. Clearly, the spectrum is 

dominated by the features of the polyethylene glycol coating and there no peaks related 

with the core/shell (CdSe/ZnS). The peaks related to CdSe and ZnS are probably between 

200-300 cm-1, out of the range that can be detected the FTIR imaging system. 

 

Wavenumber [cm-1]  Assignment 

963 cm-1 CH2 rocking 

1109 cm-1 C-O-C sym stretching 

1150-1350 cm-1 CH2  wagging 

1241 cm-1 C-O-C asym stretching 

2990 cm-1 CH2 stretching 

Table 2.2  Assignment of FTIR spectrum of 625QDs. 

 

In the Aldrich Library of FT-IR Spectra (Edition I) are presented the spectra of 

polyethylene glycol (PEG) with two molecular weights: M.W  400 and M.W. 14000.[7]. 

The two spectra have similar pattern with few differences. The main difference is the 

presence of an intense and broad peak at 3334 cm-1 in the M.W 400 PEG spectrum which 

is completely absent in the spectrum of M.W. 14000 PEG.  
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Figure 2.6 FTIR spectrum of 625QDs. 

 

The spectrum presented in Figure 2.6 is very close to the spectrum M.W. 14000. This 

similarity suggests that molecular weight of the PEG coating of Evident Technology QDs 

is closer to 14000 than to 400.  

 

2.2.4.2 Raman spectroscopy 

 

Raman spectroscopy similarly provides data about the vibrational states of materials. 

With a confocal Raman microspectroscope, Raman spectra of a very small measurement 
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volume (less than 1 µm3) can be measured and therefore the chemical composition of 

very small structures can be determined. 

Raman spectral analysis was performed with a Horiba Jobin Yvon HR800 

microspectrometer. The excitation sources used were diode lasers generating single mode 

lines at 473nm and/or 785 nm. All the measurements were recorded using a 100X water 

immersion objective (NA=0.9). The nominal spot sizes at the sample were ~ 0.7 (473 

nm) and 1 µm (785 nm). A multichannel CCD device was used to detect the Raman 

Stokes and anti-Stokes signals dispersed by a holographic grating of 600 lines/mm giving 

approximately 2 cm-1 per pixel spectral dispersion. The spectral dispersion is not constant 

over the spectral range, however. It is about 2.3 cm-1 at -6000 cm-1 and 1.5 cm-1 at 1000 

cm-1. 

 

Figure 2.7 Raman spectrum of 490QDs. 
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Figure 2.8 Raman spectrum of 625QDs. 

 

Figure 2.7 and Figure 2.8 show the Raman spectra of the QDs in the region of 100-1800 

cm-1 using a 785 nm diode laser. The two spectra have almost the same features, but in 

Figure 2.8 we can see an additional peak between 858 and 1062 cm-1. In Table 2.3 the 

assignment of the bands of 625QD is presented. The peak at 212cm-1 is related to 

longitudinal optical (LO) phonon of the QD core material (CdSe) and the peak at ~277 

cm-1 is probably related to the longitudinal mode of the ZnSe shell.[8]  The rest of the 

peaks are due to the PEG coating [9].   
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Raman shift cm[-1] Assignment 

212 

Longitudinal optical (LO) 

phonon of the QD core 

material (CdSe) 

277 

probably related to 

longitudinal mode of the 

ZnSe shell 

843 and 858  skeleton vibrations 

1062 stretching vibrations COH 

1127 and 1143  twisting vibrations of CH2 

1236 and 1279  stretching vibrations of C-H  

1441 and 1477  stretching vibrations of C-H 

Table 2.3 Assignment of Raman spectrum of 625QDs. 

 

FTIR and Raman spectra of the QD samples are dominated by the polyethylene glycol 

signals. Raman spectroscopy reveals contributions from the core (CdSe) and the shell 

(ZnS) and at the same time has a significantly higher spatial resolution than the FTIR. 
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The spatial resolution is intrinsically diffraction limited by the wavelength of the light 

employed, being < 1 µm in the case of Raman versus ~ 10 µm for FTIR spectroscopy. 

2.3 Imaging of QDs 

 

2.3.1 – Confocal Fluorescence imaging 

 

Quantum dots were observed with a confocal laser scanning fluorescence microscopy 

(Zeiss LSM 510 META, Jena, Germany). The system (figure 2.9) offers 6 excitation 

wavelengths (458nm, 477nm, 488nm, 514nm, 543nm and 633nm) and for detection, 

three separate reflected light PMTs, each with its own adjustable pinhole and emission 

filter wheel. 

 

Figure 2.9: Confocal laser scanning microscope (Zeiss LSM 510 META). 
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Confocal Fluorescence Microscopy was initially tested as a probe to detect the 490QDs 

fluorescence emission. 490QDs in water solution were deposited on a quartz slide and 

left to dry completely and then exposed to different excitation wavelengths. QDs dried in 

a circular and almost uniform layer on the quartz slide. In the optical image in figure 

2.10, the presence of the dry 490QDs on the left side and a clear border between the dry 

layer and the quartz on its own can be seen. As expected from the 490QDs absorption 

spectrum (Figure 2.4), the presence of 490QDs using 458 nm, 477 nm and even 488 nm 

excitation wavelengths was detected, but not with 514 nm, at which wavelength the 

sample is not resonant. The readily detectible fluorescence signal promises ease of 

detection of the QDs internalised within cells, as will be demonstrated in chapter 3. 

 

Figure 2.10 Optical and Confocal Fluorescence images of 490QDs on a quartz slide (excitation wavelength 

= 458nm). 
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2.3.2 – Raman imaging 

 

The Raman microspectroscope can similarly be used to detect and image the fluorescence 

from the QDs, provided the excitation wavelength is resonant with the material 

absorption. In this case, an Instruments SA (Jobin-Yvon) Labram 1B, was employed. It is 

similar in design to the Horiba Jobin-Yvon HR800, having 514.5nm or 633nm (Argon 

ion and Helium Neon lasers) as sources, and a choice of 1800 lines/mm or 600 lines/mm 

gratings.   

Figure 2.11 shows the spectrum of a dried sample of 625QD on quartz using the 514.5 

nm laser as excitation source.  It is dominated by the photoluminescence emission and, as 

expected, has the same shape and FWHM (~35 nm) as that measured with the 

luminescence spectrometer (figure 2.5). It is interesting to note, however, that the peak 

wavelength has shifted from 627 nm to 632 nm. This difference can be explained 

considering that the QDs were in a solution for the experiment with the luminescence 

spectrometer and in the solid state for Raman analysis; the aggregation of nanoparticles 

could induces a redshift of the peak emission. This result could potentially be used to 

identify and localise high concentrations of QDs in a biological sample. 
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Figure 2.11 Raman spectrum of 625QDs in the range from -8000 to 8000 cm-1. 

 

2.3.3 Two Photon Excitation Fluorescence (TPEF) in Raman spectra 

 

Using 785nm excitation, away from the absorbance of either QD, it would be expected 

that the Raman spectrum should be free of the strong optical emission. Figures 2.11 and 

2.12 show a very broad Raman spectrum of QDs (from -8000 to 8000 cm-1) for both 

490QDs and 625QDs. In both cases, the luminescent emission observable from one 

photon excitation continues to dominate the spectrum. In figure 2.12, for example, the 
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broad features at -7044 cm-1 corresponds to a wavelength of 506 nm.  The aggregation of 

490QDs red shifts the emission from 490 nm to 506 nm and generates a second weak 

band at 557 nm.  The superimposed structure of narrow intense peaks is due to the 

transmission characteristics of the dielectric edge filter present in the Raman 

spectrometer.  

 

Figure. 2.12 Raman spectrum of 490QDs in the range from -8000 to 8000 cm-1.  

The peaks at 2790 cm-1 (1005nm) and 3670 cm-1 (1114nm) are the second order 

diffraction features. It is interesting to notice that the second order diffraction peak for 

490QDs is more or less 8 times more intense than the corresponding first order peak, 

although the second order diffraction peak should be less intense than the first order peak. 

This is due to the fact that the dielectric edge filter of the Raman spectrometer has only ~ 

5% transmission in this region. 
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Notably, the Raman spectrum of the quantum dots (figure 2.12) is also visible in the 

region 200cm-1 – 2000cm-1. This observation promises combined mapping of the Raman 

and photoluminescence of the QDs. 

A similar behaviour is observed for 625QDs as shown in figure 2.13. Although 785nm is 

used as source, the QD emission at 616nm as well as the second order is clearly visible. 

Again, the Raman spectrum is simultaneously visible between 200cm-1 and 2000cm-1. 

 

2.3.4 Two Photon Excitation Fluorescence (TFEF): Theory 

 

The concept of two-photon excitation is based on the idea that two photons of energy less 

than the bandgap, co-incident on a material, combine to excite a fluorophore. Any 

combination of photons of different energies that sum up to give the energy difference 

between the ground state and the excited state will suffice. 

The probability of the near-simultaneous absorption of two or more photons is extremely 

low, but by concentrating photons both temporally and spatially, the probability of 

multiphoton absorption is greatly increased. Furthermore, the two-photon requirement for 

fluorescence excitation implies that the generated fluorescence will depend on the square 

of the number of photons per unit time and area, the intensity squared (the reason this 

phenomenon is called “nonlinear”). [10] 
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Figure 2.13 Raman spectrum of 625QDs in the range from -8000 to 8000 cm-1. 

 

In order to demonstrate that the broad peak in the anti-Stokes side of the Raman spectrum 

is due to a Two-Photon excitation process, the spectrum recorded by the Raman 

spectrometer was measured using 4 different excitation powers.  
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The Raman spectrometer is provided with multiple neutral density filters that permit 

variation of the incident light levels. 10%, 25%, 50% and 100% of the beam power for 

the same acquisition time of 90 sec was employed. Table 3 shows the maximum intensity 

of the 625QDs fluorescence peak in the anti-Stokes side as a function of intensity. 

 

BEAM 

% 

Raman 

intensity     

INT in INT out ln(INT in) ln(INT out) 

10 678.585 2.302585 6.52001 

25 2938.24 3.218876 7.985566 

50 12614.8 3.912023 9.442626 

100 53077 4.60517 10.8795 

 

Table 2.3 Raman intensity in function of the percentage of beam power and corresponding logarithmic 

values. 
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Figure 2.14 Plot of the intensity OUT Vs the intensity IN in logarithmic scale.  

 

Figure 2.14 shows a plot of the luminescent intensity Iout versus the incident intensity, Iin. 

The best fit slope of 1.903 in this logarithmic representation is indicative of a quadratic 

dependence of the emission intensity with respect to the excitation intensity, 

characteristic of a two photon excitation process. 

A second experiment was performed, varying the excitation intensity and the time of 

acquisition and then comparing the intensity response as measured by the Raman 

spectrometer.  The spectrum with acquisition time of 22.5 sec using an intensity of 100% 

has almost the same intensity values as the spectrum with acquisition time 90 sec and 

50% intensity, as shown in figure 2.15. This result provides further confirmation of 

Raman intensity’s quadratic response respect to the excitation intensity. 
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Figure 2.15  QDs Fluorescence emission in function of time of acquisition and intensity of beam. 

 

As a probe, two photon fluorescence has intrinsically higher spatial resolution than single 

photon fluorescence[10]. In the case of the single photon excitation it can be assumed 

that the spatial resolution (X-Y) depends on the diffraction-limited laser focal point. [11] 

 

R= (1.22 λ/ NA )/2     Equation 2.1  

 

where NA is the numerical aperture of the objective. For a microscope objective of  

NA=0.9, R= 0.532 µm at a wavelength of 785nm and 0.321 µm at a wavelength of 

473nm. 
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In the z-direction, the depth resolution is limited by the depth of focus: 

 

Depth of focus = 4 λ \ (NA)2              Equation 2.2  

 

Depth resolution is half of the depth of focus and thus for a wavelength of 785 nm the 

depth resolution is 1.939 µm while for 473nm it is 1.168 µm. 

As shown above the spatial and depth resolutions are both a function of the laser 

wavelength (λ) and the Numerical Aperture (NA), and thus reducing the laser wavelength 

yields better spatial resolution. 

Two-photon excitation fluorescence (TPEF) is a nonlinear phenomenon: the two-photon 

requirement for fluorescence excitation implies that the generated fluorescence will 

depend on the square of the number of photons per unit time and area, the intensity 

squared. As a result of focusing the beam, the intensity along the optical axis increases at 

the focus and decreases as the distance squared, so that 2PEF increases and then 

diminishes as the distance raised to the fourth power, confining 2PEF to the immediate 

vicinity of the focal point. [10] 
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In a mathematical form this can be expressed in the following way: 

 

Iin α 1/ d2   Equation 2.3 

 Iout α (Iin) 2   Equation 2.4  

therefore   

Iout α 1/d4   Equation 2.5 

  

Iin = intensity of the laser 

Iout = intensity of the TPEF 

d = distance from the focal plan in the optical axis (z) 

 

Therefore the spatial resolution due to two photon excitation fluorescence should not be 

limited by the diffraction limit. 

Figure 2.16 clearly demonstrates this phenomenon for the case of a fluorescein solution. 

For identical microscope objectives and incident powers, the single photon emission 

profile (330nm) traces the focal profile of the objective, whereas the TPEF profile is 

limited to the focal point. 
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Figure 2.16  SPEF and TFEF of fluorescein. [12] 

 

Figure 2.17  Z-profile of the 2PEF of 625QDs. Parameters: ex: 785 nm, 15 sec X 2, -2 to 2 µm, Z 

increment 0.5 µm.  
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Figure 2.17 shows the Z-profile of the 2PEF of 625QDs with an increment of 0.5 µm. At 

position 0 the maximum intensity of the fluorescence of the QDs is observed. The 

FWHM is 1.1 µm and it can be used as an estimation of the depth resolution. Assuming 

there is a cluster of QDs in the zero position it should be possible to localise the QDs with 

a resolution of 1.1 µm, a significant improvement compared to the single photon depth 

resolution (1.939 µm). 

The Raman spectrometer can therefore be used to locate the QDs within the cells via their 

fluorescent emission. The QDs also have a characteristic Raman spectrum which can be 

used to identify them, and also to identify their local environment within a cell, giving an 

indication of the internalisation and transport mechanisms. 

Raman spectroscopy has also been extensively used to identify physiological changes to 

cells and tissue due to disease, fixation and nanotoxicants.[13,14,15] Thus the 

combination of techniques promises an overall profiling of the interaction of 

nanoparticles with cellular material. 

 

2.4 Summary 

 

Starting with identifying the relevant information about the commercially available QDs 

used in this study, the present chapter analyzed the physical (size and material 

composition) and optical properties of the QDs employed. Particle size and optical 
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properties agree well with manufacturers specifications. It was noted that the particle size 

is dominated by the PEG coating of the QDs rather than the core material. 

The vibrational properties in both IR and Raman spectroscopy are similarly dominated by 

those of the PEG coating, although the Raman spectrum does show some features 

assigned to the CdSe core and the ZnS shell. Raman also affords significantly higher 

spatial resolution and can simultaneously record the vibrational spectrum and the 

emission spectrum via TPEF. Thus it is the method of choice for probing the interaction 

of QDs with biological cells. 
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Chapter 3 

 

 

Interaction of QDs with cells 
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3.1 Introduction 

 

The biological interactions of nanoparticles, both at the tissue and cellular levels, are 

dictated by the unique physiochemical properties inherent in nano-sized structures. The 

objective of this study is to investigate the mechanisms of interaction between 

nanoparticles and the biological environment using different techniques: cytotoxicty 

assays, confocal microscopy and vibrational spectroscopy. The combination of 

techniques permits visualisation and understanding of different aspects of the mechanism 

of interactions. A key point of this study was to connect the information gleaned from 

these techniques and reach a more broad vision of the issue.  

 

3.2 Materials and Methods 

 

3.2.1 Cell culture 

 

A spontaneously immortalized human epithelial keratinocyte cell line (HaCaT) derived 

from adult skin was used throughout this work. The cells are normal, non-tumorigenic 

and p53 mutated adult keratinocytes. The cells are polygonal, approximately 20-μm 

diameter, and produce a ‘cobblestone’ appearance when confluent. [1] 
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HaCaT cells were grown in Dubeccos's modified minimum essential medium (DMEM, 

Cambrex). All media were supplemented with 10% foetal bovine serum (FBS) and 

45 IU/ml penicillin and 45 μg/ml streptomycin and cells were maintained at 37 C in a 5% 

CO2 humidified incubator. 

 

3.2.2 Quantitative cytotoxicity assessments 

 

For cytotoxicity assays, cells were seeded in 96-well microplates (Nunc, Denmark) at a 

density of 1 x 105, 7 x 104, 3 x 104 and 2 x 104 cells/ml in Dubeccos's modified minimum 

essential medium (DMEM, Cambrex) for 24, 48, 72 and 96 h studies, respectively. These 

seeding densities were found to be optimal to achieve 80% confluency at the end of each 

respective exposure period. After 24 h of cell attachment, plates were washed with 100 

µl/well phosphate buffered saline (PBS) and the cells were treated with increasing 

concentrations of QDs. All media were supplemented with 10% foetal bovine serum 

(FBS) and 45 IU/ml penicillin and 45 μg/ml streptomycin and cells were maintained at 

37°C in a 5% CO2 humidified incubator. Three replicate wells were used for each control 

and test concentration per microplate. Cytotoxicity was assessed using three assays as 

outlined below. 
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3.2.2.1 Alamar Blue and Neutral Red assays 

 

The Alamar Blue (AB) and Neutral Red (NR) assays were conducted consecutively on 

the same set of plates. The AB assay was performed first. The bioassay was carried out 

according to manufacturer’s instructions. Briefly, control media or test exposures were 

removed; the cells were rinsed with PBS and 100 μl of an AB/NR medium (5% [v/v] 

solution of AB and 1.25% [v/v] of NR dye) prepared in fresh media (without FBS or 

supplements) were added to each well. Following 3 h incubation, AB fluorescence was 

quantified at the respective excitation and emission wavelength of 540 and 595 nm using 

a microplate reader (Tecan GENios, Grödig, Austria). Wells containing medium and AB 

without cells were used as blanks. The mean fluorescent units for the 3 replicate cultures 

were calculated for each exposure treatment and the mean blank value was subtracted 

from these. Viability and protein determination of the cells following exposure to each 

chemical were then subsequently investigated using the NR. 

 

3.2.2.2 MTT assay 

 

The MTT assay is a standard laboratory test and standard colorimetric assay for 

measuring of viable cells. 

The plates for the MTT assay were seeded and exposed identically to the first series of 

plates prepared for the AB, NR. 10 μl of MTT (5mg/ml) prepared in PBS were then 
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added to each well and the plates were incubated for 3 h at 37oC in a 5% CO2 humidified 

incubator. After this incubation period the medium was discarded, the cells were washed 

with 100 μl of PBS and 100 μl of DMSO were added to each well to extract the dye. The 

plates were shaken at 240 rpm for 10 min and the absorbances were measured at 570 nm 

using a microplate reader (Tecan GENios, Grodig, Austria). 

 

3.2.3 Phototoxicity 

 

The Q-sun solar spectrum simulating irradiator (Q-Panel, Cleveland, USA) is a solar 

simulator whose spectral output mimics that of natural sunlight reasonably well and it 

offers a unique opportunity to assess the effect of sunlight on human keratinocytes.  

 

 

Figure 3.1 Q-Sun xenon solar simulator test chamber 
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3.2.3.1 Methodology of QDs Phototoxicity assay 

 

The protocol for the assessment of the phototoxicity of QDs was as follows: 

 

• HaCaT cells were seeded in two 96 well plates (10,000 /well).     [day 1] 

• HaCaT cells were exposed to QDs625 for 1 hr (20, 2, 0.2 nM and control). [day 2] 

• QDs+medium were replaced with 200 µl PBS. 

• One 96 well plate was exposed to solar light for 30 min. 

• PBS was replaced with cell culture medium 

• HaCaT cells were incubated at 37º C and 5% CO2 for 24 hrs 

• The MTT assay was conducted      [day 3] 

 

 

Figure 3.2 Schematic of Phototoxicity assay. 
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Prior to exposure, it is important to replace the medium with PBS because it has been 

demonstrated that absorption by the cell culture medium can modify the effective 

spectrum of the Q-sun. [3] Moreover, the cell culture medium can itself photodegrade 

and significantly contribute to cell death. PBS is however transparent in the spectral 

region of interest and does not photodegrade. 

 

3.2.4 Confocal Microscopy 

 

The Zeiss LSM 510 META, (Jena, Germany) (section 2.3.1.1) Confocal Fluorescence 

microscope was employed as a probe of the QDs within the cells. Evident Technologies 

490QDs and 620QDs were used as supplied. HaCaT cells were incubated with 20 nM 

QDs solution for 1-2 hours and then washed in PBS to remove excess QDs. Finally 3ml 

saline solution was added.  

Lysotracker probes are fluorescent acidotropic probes for labelling and tracking acidic 

organelles in live cells. Lysotracker (511 nm fluorescence peak emission) was purchased 

from Invitrogen, Carlsbad, CA . [2] 

Cell were incubated with 60 nM Lysotracker solution for 2 hours and then washed three 

times in PBS and finally 3 ml of saline was added to the Petri dish. To examine co-

localization of the QDs with the lysotracker, HaCaT cell were incubated first with the 

QDs for 1 hour and then with the Lysotracker for 2 hours. Finally images were taken 
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using the 458nm line of the argon laser to excite the QDs and 488 nm line to excite the 

Lysotracker. 

 

3.2.5 Statistics 

 

For the cytotoxicity assays, fluorescence as fluorescent units (FU), luminescence as 

relative light units (RLU) and absorbance were all quantified using a microplate reader 

(TECAN GENios, Grödig, Austria). Experiments were conducted in at least triplicate 

(three independent experiments). Test treatments for each assay (AB, NR, MTT) were 

expressed as percentage of the unexposed control ± standard deviation (SD). Control 

values were set at 100%.  

 

3.2.6 Raman mapping of HaCaT cells 

 

HaCaT cells were loaded at a concentration of 6 X 104 per quartz substrate and, after 24 

hours, QDs probe solution was added to the cells at the final QDs concentration of 20 nM 

for 1-2 hours and then washed to remove excess QDs. Finally, the cells were fixed in 4% 

formalin in PBS for Raman analysis. 
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For Raman spectral imaging, isolated single cells were scanned with a 1 µm step (ex = 

785 nm) and with 0.5 µm step (ex = 473 nm). Table 3.1 shows the parameters used for 

these Raman acquisitions. 

 

  Parameters A Parameters B 

Laser Line 785 nm 473 nm 

Binning Factor 2 1 

Filter 100% 50% 

Number of 

Accumulations 1 2 

Increments 1 µm  0.5 µm  

Range and Time 

of acquisition 400-1800 cm-1: 45 sec 600-1800 cm-1 : 1.5 sec 

  

-8000 to -5000 cm-1: 

45 sec 2500-400 cm-1 : 0.3 sec 

    

4500-5800 cm-1 : 0.3 

sec 

Table 3.1 Raman mapping parameters. 
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3.2.7 Hybrid Confocal Raman Fluorescence    

 

Section 2.3 demonstrated how hybrid confocal Raman fluorescence microscopy (Figure 

3.3) can detect the presence of the quantum dots and at the meantime determine 

information from the cell in the finger print region (400 -1800 cm-1). 

Figure 3.3 Hybrid Confocal Fluorescence Scheme 

 

Using an excitation wavelength of 785 nm it is possible to combine the two-photon 

excitation fluorescence emission of QDs (emission at 625 nm) on the anti-Stokes side 

with the Stokes signal of human cells and the quantum dots (Figure 3.3). 
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3.3 Results 

 

3.3.1 Cytotoxicity 

 

3.3.1.1 Time dependent and dose dependent cytotoxicity 

 

HaCaT cells were treated for 24, 48, 72 and 96 hours with 490QDs at a final 

concentration of 0.02 nM, 0.2 nM, 2 nM, 20 nM and 200 nM. Then Alamar Blue and 

Neutral Red assays were performed. 

The AB assay is designed to quantify the proliferation of various cell lines and is widely 

used as a measure of cytotoxicity. Viable proliferating cells cause a reduction of the dye 

causing a colour change from a non-fluorescing indigo blue (oxidized) to a fluorescent 

pink species (reduced). As displayed in Figure 3.5, exposure of HaCaT cells to QDs 

resulted in a small time-dependent decrease in AB reduction close to 10% compared to 

control levels following 72 h exposures just at highest concentration (200 nM). However, 

no AB reduction has been noticed after 96 h exposures. 

The NR cytotoxicity assay is based on the ability of viable cells to incorporate and bind 

neutral red, a weak cationic dye that readily penetrates cell membranes by non-ionic 

diffusion. [5] It accumulates in the lysosomes of cells where it binds to the sensitive 

lysosomal membrane. Cells damaged by xenobiotic action have decreased ability to take 

up and bind NR, so that viable cells can be distinguished from damaged or dead cells. 
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Figure 3.4 Alamar Blue and Neutral Red response at 24 and 48 hrs reduction with respect to the control. 
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Figure 3.5 Alamar Blue, Neutral Red and MTT response at 72 and 96 hrs reduction with respect to the 
control. 
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Exposured of HaCaT cells to QDs resulted in a dose-dependent decrease in NR by only 5 

% compared to control levels at all time points. It is interesting to notice that the highest 

NR reduction, close to 10%, occurred after 72 h exposure and not after 96 h exposures. 

The MTT colorimetric assay determines the ability of viable cells to reduce the soluble 

yellow tetrazolium salt MTT into an insoluble purple formazan precipitate [6,7]. Addition 

of solvent destroys the cell membrane and results in liberation and solubilisation of the 

crystals. The number of viable cells is thus directly proportional to the level of the initial 

formazan product created and can be quantified by measuring the absorbance at 570 nm. 

[6] The MTT assay was conducted in parallel with AB and NR assays. No significant 

cytoxicity was determined following 72 h exposure of the HaCaT cells. Following 96 h 

exposure, significant cytotoxicity was determined however, with approximately 42% 

inhibition recorded at the top concentration (Figure 3.5) 

 

3.3.2 Phototoxicity 

 

As some applications envisage transdermal exposure to QDs, it was decided to 

investigate the phototoxicity of QDs by exposing HaCaT cells with increasing QDs 

concentrations (0.2, 2, 20 nM) for 1 h, and simultaneously irradiating with simulated 

solar radiation.  

 



 

  71

 

 

 

 

 

 

 

 

 

Figure 3.6 MTT response after 1 hr QDs exposure and 30 min of Q-sun exposure with respect to the 
control. 

 

In this study, two different kinds of exposures are of relevance: exposure of the QDS and 

subsequent interaction of the excited QDs with the cells, and direct exposure of the cells. 

Consequently two independent controls have to be considered; two identical 96 well 

plates were prepared, one of which was not been exposed to the solar light radiation 

(control 1). As expected, no sign of cytotoxicity in the plate not exposed to the solar light 

simulator was observed. In contrast, in the 96 well plate exposed for 30 min to the Q-sun 

radiation there is a reduction in MTT compared to the control (not exposed to the solar 

light) close to 20%.(Figure 3.6). 
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From the cytotox analysis without the solar exposure it can be seen that after an exposure 

of 96 hrs with 20 nM there is a reduction in MTT of just 5% with respect to the control 

(cells not exposed to QDs). 

Repeat the same test in the presence of the solar exposure for 30 min, a reduction in MTT 

of 18% with respect to the control is observed; in this case it should be noted that the 

control is the MTT value of HaCaTs simply exposed to the nanoparticles for 96 hrs. 

 

3.3.3 In vitro imaging  

 

Intracellular accumulation of 625QDs after 1-2 hr exposure was revealed in HaCaT cells 

through confocal fluorescence microscopy by combining “z-stack” image series cutting 

through the cell in single z-steps of X µm (Figure 3.7) with three-dimensional (3D) 

animation using the Zeiss LSM Image software.  
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Figure 3.7 Confocal slices through the volume of a cell incubated with the QD625 show that the signal 
originates from the cell interior and not from material adhered to the surface. 

 

3.3.3.1 Internalization 

 

After a 2hr incubation period, QDs were present in most of the cells analysed appearing 

as aggregates within the cell cytoplasm, indicating that the uptake was accomplished in a 

relatively short period of time. This pattern is likely due to the presence of vesicles that 

result from the endocytotic uptake of QDs. 
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Z-axisZ-axis

 

Figure 3.8 Images shows the z,x section (upper panel) and the z,ysection (right panel) cutting orthogonally 
through the cell obtained from z-stack image series of the cells. QDs were observed in perinuclear clusters 
inside the cells. 
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3.3.3.2 Colocalisation 

 

The perinuclear distribution of the QDs in the HaCaT cells (Figure 3.8) is consistent with 

location within the lysosomes. Lysosomes are spherical organelles that contain enzymes 

(acid hydrolases). They break up food so it is easier to digest. They are found in animal 

cells and their function is to digest excess or worn-out organelles, food particles, and 

engulfed viruses or bacteria.[4] 

The presence of QDs within the lysosomes was tested by analyzing the HaCaT cells 

labelled with green Lysotracker probes and red-emitting QDs. The vesicles containing 

QDs colocalized almost completely with those labelled by the lysosome marker as shown 

in Figure 3.9. This represents strong evidence that the QDs are internalized by 

endocytosis and localized in the lysosomes. This mechanism has similarly been proposed 

by Montiero.[8] 

 

Figure 3.9  Confocal images of HaCaT cell with green Lysotracker (A) and with 625QDs (B) 
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3.3.4 Raman mapping  

 

Figure 3.10 demonstrates the possibility of Raman spectroscopy to localise the presence 

of the QDs within the cell using two different approaches: single photon excitation 

fluorescence (SPEF, ex = 473 nm) and two-photon excitation fluorescence (2PEF, ex = 

785 nm). Spectra were collected over a HaCaT cell (~ 20x15 µm) respectively over the 

range 4000 – 6000 cm-1 and -5000 to - 3000 cm-1.  

The step size was 0.5 µm for the single photon excitation process and 1 µm for the two 

photon excitation process. The two maps give a broad idea about the distribution of the 

NPs within a cell and demonstrate that either one or two photon fluorescence can be 

employed to localize the QDs inside the cells. 

 

After the localisation of QDs based on their fluorescence, it is possible to record spectra 

of the cell in the fingerprint region (600-1800 cm-1); potentially changes to the cellular 

spectrum can be mapped and localised with the QDs fluorescence. Ultimately Raman can 

look at local changes as well as over changes to cellular physiology as a result of 

interaction with the QDs. 
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785 nm 

 

473 nm 

 

Figure 3.10,  QDs localization within a single cell. (A) laser line 785. (B) laser line 473. The differential 
intensity of the QDs emission possibly depends on the concentration of the QDs and on the distance from 
the focal plane. 
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Figure 3.11,  Raman spectrum of HaCaT cells exposed to QDs. 

 

It is interesting to note that it is not possible to see any difference between the Raman 

spectrum of HaCaT cells exposed to QDs and not exposed to QDs. 

 

3.4 Conclusion 

 

3.4.1 Cytotoxicity 
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Results suggest no significant change in metabolic activity as a measure of proliferation 

and viability at 24 hrs and 48 hrs. At 72 hrs, however, a moderate decrease in the 

metabolic activity at high concentrations (20 nM, 200 nM) is discernable. After 96 hrs of 

exposure at a concentration of 200 nM no significant change in proliferation and viability 

activity but a significant reduction of the mitochondrial activity is observed. The weak or 

negligible cytotoxicity of these materials is not unexpected as the PEG coating is 

specifically added to improve the biocompatibility of the QDs.  

 

3.4.2 Photoxicity 

 

The three concentrations chosen (0.2, 2, 20 nm) are part of the concentration set utilized 

for the dose and time dependent toxicity study; this choice permits us to give a more 

broad vision of sun light, concentration and time of exposure effects. The results show a 

reduction of almost 20% in mitochondrial activity due to the exposure to the solar light 

simulator. 

In conclusion it is confirmed that QDs nanoparticles are not particularly toxic even after 

long exposures and high concentrations (200 nm) but they become toxic under solar light 

irradiation. 
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3.4.3 Confocal and Raman mapping 

 

The confocal fluorescence study showed that the QDs after one hour exposure stay in the 

lysosomes, supporting an internalisation of endocytosis. The particles are easily 

detectable inside the cells using the Raman spectrometer. At the same time with Raman 

spectroscopy it should be possible to detect the local environment of QDs within a 

HaCaT cell. Ultimately, Raman spectroscopy can be used to monitor changes in the 

physiology of the cell as a result of interaction with the QDs. 
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Chapter 4 

 

 

Localisation of QDs using Raman Cross-correlation 
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4.1 Introduction 

 

In Chapter 2 it was shown that it is possible to localize Quantum dots by both single 

photon excitation fluorescence (SPEF) and two photon excitation fluorescence (PEF). In 

the latter case, the Raman and fluorescence can be collocated by analyzing respectively 

the Stokes and the anti-Stokes side of the Raman spectra.  

In general, however, nanoparticles are not fluorescent and it is a challenge to locate the 

particles within cells and even more so to perform collocation studies such as those of 

section 3.2.4 using lysotracker. Such studies are extremely valuable in identifying uptake 

mechanisms, mechanisms of toxicity and ultimate fate of the nanoparticles in cells [1] 

Although fluorescent labelling of nanoparticles is common practice, the stability of the 

labels has been called into question. [2] Ultimately it is desirable to be able to locate the 

nanoparticles within cells based on their chemical composition. To this end the highly 

luminescent QDs can be employed to explore detection methods. 

In Chapter 1 it was shown that the QDs used in this study are coated externally with a 

thick layer of PEG. The PEG coating constitutes more than 90% of the entire volume of 

the NP. As shown in chapter 2, it gives the QDs a characteristic Raman signature which 

can potentially be used to locate them within a cellular environment. Collocation of the 

PEG Raman signature with the intrinsic luminescence can be used to validate the use of 

the Raman signature as a detection and location technique, such that it can be potentially 

extended to non fluorescent nanoparticles.  
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The PEG signature spectrum will be locally correlated with the cellular spectrum and 

thus a cross-correlation method will be developed to extract the PEG signal and thus 

locate the QDs within the cells. The feasibility of the process will initially be 

demonstrated using simulated mixtures of cellular and QD Raman spectra, whereby the 

sensitivities and detection limits can be explored. The process will then be demonstrated 

experimentally. 

Before presenting the theoretical and experimental study, the mathematical concept of 

cross-correlation is outlined. 

 

4.1.1 Cross correlation - Theory 

 

Cross correlation is a measure of similarity between two data sets, computed by the sum 

of the products between the two data sets at different (x-axis) off sets. In another words, 

the cross-correlation function gives a measure of the extent to which two signals correlate 

with each other as a function of the displacement between them. If the signals are 

identical, an autocorrelation is performed and the result will be one, and if they are 

completely dissimilar, the cross correlation will be zero.  

The complex cross correlation of f(x) with g(x) is defined as: [3] 

 Equation 4.1 

 



 

  85

The corresponding definition of cross correlation for sequences would be: 

 

    Equation 4.2 

 

If the functions are identical, the cross correlation gives the autocorrelation function. 

 

Cross correlating one signal with another is a means of measuring how much of the 

second signal is present in the first. This can be used to “detect” the presence of known 

signals as components of more complex signals. The cross-correlation function is used 

extensively in pattern recognition and signal detection.[4] In the current study, the Raman 

spectrum of PEG is known and the objective is to detect and localise it within a spectral 

map of a cell. In this scenario, x of equation 4.1 is the spectral axis in wavenumber and 

the process of cross correlation is performed by shifting the spectra along the axis an 

amount u.  

Cross correlation analysis was performed with MATLAB, using the function crosscorr.  

It computes and plots the sample cross correlation function (XCF) between two 

univariate, stochastic time series. In MATLAB crosscorr produces correlations 

identically equal to 1.0 at zero lag only when an autocorrelation is performed. 
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4.1.2 Cross-correlation for identification of external agents in Raman Spectra of a 

single cell. 

 

The potential uses of the cross correlation technique for the localization of QDs within a 

cellular map were initially explored using simulated mixtures of cellular and QD spectra. 

Raman spectra of QDs (i.e. PEG spectrum) and HaCaT cells were initially recorded 

(Figure 4.1) and simulated spectra of mixtures of QDs within a cell were generated. After 

a normalization of both QD and cell spectra, varied percentages of the QD spectrum: 

100% - 0.01%, are added to simulate varying contributions in a real sample. A second 

normalization is then performed. Subtraction of background from both spectra as well as 

derivatisation was explored to improve the correlation process. The simulated spectra 

were loaded in MATLAB and then a cross-correlation of the simulated spectra with 

respect to the QD spectrum was performed. [Appendix A - MATLAB codes] 

To decide the most appropriate spectral windows to apply the cross-correlation to, the 

QD spectrum compared to the HaCaT cell spectrum was analysed. The ideal region is 

one with intense QD peaks and no peaks in the cellular spectrum.  

As described in chapter 2 and shown in figure 4.1, the QD spectrum shows various 

intense peaks at 850, 1062,1129/1145, 1281 (shoulder at 1295), 1442/1475 cm-1.   
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Figure 4.1 QDs and HaCaT cell Raman spectra.  

 

Comparing the QD spectrum with the cellular spectrum, (Figure 4.1) it can be seen that 

there is no clear window where QDs peaks do not overlap with cellular features. The best 

region to perform the cross correlation was chosen to be 800-1250 cm-1, because the QDs 

peaks at 1281 (shoulder at 1295) and 1442/1475 cm-1 overlap with some characteristic 

Raman peaks of human cells. For comparison, in this study the cross correlation was 

applied to two different spectral windows: the extended region, 800-1800 cm-1, and the 

reduced region, 800-1250 cm-1 . 
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4.2 Cross-correlation of simulated spectra  

 

4.2.1 Raw data 

 

Initially, the cross correlation of the raw data was performed without any preprocessing 

such as baseline correction or filtering.  

 

4.2.1a. Window: 800-1800 cm-1 

 

Figure 4.2 Cross-correlation of QD spectrum and simulated spectra. 

 

Figure 4.2 shows the cross correlation curves of the QD spectrum with the simulated 

spectra of decreasing ratios of QD:cellular spectra. The parameter nLags describes the x-



 

  89

axis shift and the response is peaked at nLags = 21. The “max” curve of Figure 4.2 shows 

an auto-correlation which shows a maximum of 1, as expected. 

Figure 4.3 shows a plot of the cross-correlation maxima as a function of spectral ratio.  It 

is first noted that there is very little difference between the maximum (autocorrelation) 

and minimum curve (correlation between cell spectrum without QDs and QD spectrum). 

The Range of Maxima expresses this difference; Range of Maxima: 0.88-0.96 

(ΔMax=0.08). The cross-correlation is also observed to be distinctly sublinear.  In this 

study the norm of residuals is used as a measure of the goodness of the linear fit; a lower 

norm means a better fit. In this case the norm of residuals is 0.017339. 

In figure 4.4, for visual purposes, the lowest value is subtracted from the cross-correlation 

maxima. 

  

 

Figure 4.3 Cross-correlation maxima Vs concentration of QDs spectrum in a cell spectrum. 
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Figure 4.4 Cross-correlation maxima (after the deduction of the lowest value) Vs concentration of QDs 

spectrum in a cell spectrum. 

 

Finally in figure 4.5 the data is presented in a log-log representation from which it is 

possible to deduce the limit of detection; the intercept of the curve with the x axis in a 

log-log scale is a measure of the limit of detection for the cross-correlation method. The 

limit of detection can be extrapolated to 6 x 10-5, which indicates that the technique could 

be employed to detect “concentrations” of QDs as low as 0.01%. 
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Figure 4.5 Cross-correlation maxima Vs concentration of QDs spectrum in cell spectrum in a log-log scale. 

 

4.2.1b. Window 800-1250 cm-1 

 

Figure 4.6 Cross-correlation of QDs spectrum and simulated spectra – reduced range. 
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The cross-correlation of the raw data was performed in the reduced spectral window: 

800-1250 cm-1. The range of maxima increases sensibly compared to the full range: 0.5-

0.78  (ΔMax=0.28). The linearity is reduced, however, the norm of residuals increasing 

from 0.017339 (full window) to 0.024787 (small window). The extrapolated limit of 

detection has been reduced to 1 x 10-5. 

 

 

Figure 4.7 Cross-correlation maxima Vs concentration of QDs spectrum in cell spectrum in a log-log scale. 
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4.2.2 Baseline correction 

 

Although the cross-correlations of 4.2.1 promise extreme sensitivity, the correlation 

range and linearity are disappointing. An ideal Raman spectrum has Raman bands which 

lie on a flat baseline. A broadband perturbing spectrum or background spectrum, 

generally from fluorescence or Mie scattering, is unfortunately often superimposed on the 

Raman spectra. This perturbing spectrum may have very different profiles. In any event, 

a perturbing spectrum falsifies the desired Raman spectrum and makes it difficult to 

evaluate. Various methods have therefore already been employed in order to eliminate 

the perturbing spectrum from the Raman spectrum. 

 

Figure 4.8 Spectra of HaCaT cells and QDs after the baseline subtraction. 
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A baseline correction to the QD and cellular spectra using a “rubber band” function was 

performed.[5] A “rubber band” function consists of finding a convex envelope of the 

spectrum and subtracting the convex part of the envelope lying below the spectrum from 

the spectrum in the portion to be corrected. Figure 4.8 shows the cellular and QD Raman 

spectra after background subtraction. 

 

4.2.2.a Window: 800-1800 cm-1 

 

Figure 4.9 Cross-correlation of background subtracted QDs and simulated spectra. 

Figure 4.9 shows that the baseline correction considerably improves the range of 

maxima: 0.1 – 0.6 (ΔMax=0.5). Strangely, the linearity is decreased with respect to the 

raw data.  The norm of residuals is now 0.057078. The limit of detection is ~1.5 x 10-5. 
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Figure 4.10 Cross-correlation maxima Vs concentration of QDs spectrum in cell spectrum in a log-log 

scale. 

 

4.2.2.b Window 800-1250 cm-1 

 

Figure 4.11 Cross-correlation among QDs spectrum and simulated cells spectra. 
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Figure 4.12 Cross-correlation maxima Vs concentration of QDs spectrum in cell spectrum in a log-log 

scale. 

 

Using the reduced spectral window, the Range of Maxima is slightly improved: 0.1-0.63 

(ΔMax=0.5).  As compared to the raw data, the linearity is negatively affected by the 

reduction of the window. The norm of residuals increases from 0.024787 to 0.030756. 

The limit of detection is increased to ~ 4 x 10-5. 

 

4.2.3 Baseline correction plus filtering 

 

Filtering of the spectra was performed by use of Savitzky-Golay filters. This filter is used 

for smoothing of one-dimensional data. The fundamental idea is to fit a different 
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polynomial to the data surrounding each data point. The smoothed points are computed 

by replacing each data point with the value of its fitted polynomial. The smoothing 

function was applied to the baseline subtracted spectra and the simulated cross correlation 

repeated. 

 

4.2.3a  Window: 800-1800 cm-1 

 

Figure 4.13 Cross-correlation of smoothed and baseline subtracted QDs simulated spectra. 

Filtering is seen to increase the range of Maxima with respect to the baseline correction 

data: 0.1-0.63 (ΔMax=0.53). The linearity is slightly improved due to the filtering; the 

norm of residuals is now 0.0072434. The Limit of detection is now ~1.5 x 10-5. 
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Figure 4.14 Cross-correlation maxima Vs concentration of QDs spectrum in cell spectrum in a log-log 

scale. 

 

4.3.3b Window 800-1250 cm-1 

 

Figure 4.15 Cross-correlation among QDs spectrum and “artificial” cells spectra. 
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Figure 4.16 Cross-correlation maxima Vs concentration of QDs spectrum in cell spectrum in a log-log 

scale. 

With the reduced window, the range of maxima is increased from 0.1 to 0.7. The linearity 

is also positively affected by the reduction of the window. In this case the norm of 

residuals is 0.0.031425. The Limit of Detection remains at 4 x 10-5. 

 

4.2.4 Filtering and First derivative 

 

In the last case studied, filtering of the QDs and cell spectra was performed and 

subsequently the first derivative of both was taken before cross correlation. In this case, 

the baseline correction is not necessary because the baseline is effectively removed by 

derivatisation. 
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4.2.4a. Window: 800-1800 cm-1 

 

Figure 4.17 Cross-correlation among QDs spectrum and “artificial” cells spectra. 

 

Figure 4.18 Cross-correlation maxima Vs concentration of QDs spectrum in cell spectrum in a log-log 

scale. 
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The first derivative doesn’t increase the Range of Maxima: 0.1-0.5 (ΔMax=0.4). In 

general, the linearity is very badly affected by the first derivative as the norm of residuals 

is 0.086059. The limit of detection is ~2 x 10-5. 

 

4.2.4b Window 800-1250 cm-1 

 

Figure 4.19 Cross-correlation among QDs spectrum and “artificial” cells spectra. 

 

With the reduced spectral range, the Range of Maxima is still high: 0.1-0.5 (Δ=0.4). The 

linearity improved sensibly using the reduced range. The norm of residuals 0.014287, the 

best value among all the cases studied. The limit of detection has decreased to ~ 2 x 10-5.   
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Figure 4.20 Cross-correlation maxima Vs concentration of QDs spectrum in cell spectrum in a log-log 

scale.  

 

4.2.5 Conclusion 

 

Table 4.1 summarises the results of the simulation study. It is concluded that the best 

compromises among the various parameters (range of Maxima, linearity, limit of 

detection) are the filtering and baseline correction and filtering and first derivative both in 

the reduced spectral range (800-1250 cm-1). 
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 Range 800-1800 cm-1 Range 800-1250 cm-1 

Raw data Range of Maxima: 0.88-0.96 
(Δ=0.08) 

Norm of residuals: 0.017339 

Limit of detection: 6 x 10-5 

 

Range of Maxima: 0.5-0.78 

(Δ=0.28) 

Norm of residuals: 0.024787 

Limit of detection: 1.5 x 10-5 

 

Baseline 
correction 

Range of Maxima: 0.1 – 0.6 (Δ=0.5) 

Norm of residuals: 0.057078 

Limit of detection: 2 x 10-5 

 

Range of Maxima: 0.1 – 0.63 

(Δ=0.53) 

Norm of residuals: 0.030756 

Limit of detection: 4x 10-5 

 

Filtering 
and 
baseline 
correction 

Range of Maxima: 0.1-0.63 

(Δ=0.53) 

Norm of residuals: 0.057358 

Limit of detection: 2 x 10-5 

 

Range of Maxima: 0.1-0.7 

(Δ=0.60) 

Norm of residuals: 0.031425 

Limit of detection: 4 x 10-5 

Filtering 
and first 
derivative 

Range of Maxima: 0.1-0.5 

(Δ=0.4) 

Norm of residuals: 0.086059 

Limit of detection: 2 x 10-5 

Range of Maxima: 0.1-0.5 

(Δ=0.4) 

Norm of residuals: 0.014287 

Limit of detection: 2 x 10-5 

Table 4.1 Cross-correlation parameters 
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4.3 Cross-correlation - Experimental Study 

 

In the previous section, the potential of the cross-correlation method to detect and locate 

the presence of known external agents within a cell was demonstrated using simulated 

spectral mixtures. In the case of the highly luminescent inorganic semiconductor quantum 

dots, in Chapter 2 it has been shown that it is possible to localize them by both single 

photon excitation fluorescence (SPEF) and two photon excitation fluorescence (TPEF). 

In the latter case the Raman and fluorescence can be collocated by analyzing respectively 

the Stokes and the anti-Stokes side of the Raman spectra. (Figure 4.22).  A comparison 

between the spatial profile of the fluorescence and that of the cross-correlation maxima 

can demonstrate whether cross-correlation is a suitable method to detect and locate any 

nanoparticles or external agents within a cell. 

 

  

Figure 4.21 Line Raman mapping of a single HaCaT cells.  
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To this end, fluorescent maps of HaCaT cells exposed to QDs were performed, and in 

regions where the QD were identified, Raman line maps (Figure 4.21) were performed 

and subsequently cross-correlated with the QD spectrum. The fluorescence spatial 

profiles were then compared to the cross-correlation profiles. 

Below, the procedures used to perform this experimental study are listed: 

 

• Seeding of 20,000 HaCaT cells on a quartz slide. 

• HaCaT cells exposed to 20 nM of 625QDs for 1 h. 

• Line Raman mapping of two widows: -4000 to -2700 cm-1 (anti-Stokes side) and 

400-1800 cm-1 (Stokes side). 

• Line Raman mapping in the Stokes-side, 400 to 1800 cm-1. 

• Raman spectrum of dried QDs, 400-1800 cm-1. 

• Cross-correlation of the Raman spectra respect to the QDs Raman spectrum in the 

finger print region. 

• Comparison of the fluorescence profile of the QDs with the cross-correlation 

maxima profile in the finger print region. 
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Figure 4.22 Raman scheme of TPFE and finger print region Raman spectra. 

 

Four independent experiments were performed. The Raman spectra were exported to 

MATLAB and subsequently preprocessed. From the simulated study it was concluded  

that, regarding the cross-correlation results, the best compromise among the various 

parameters (range of Maxima, linearity, limit of detection) is the filtering and baseline 

correction or filtering and first derivative both in the reduced window (800-1250 cm-1). 

For each experiment, the cross-correlation was performed after a filtering (Savitzky-

Golay filters) and a baseline correction or applying the first derivative.  

Just before the first experiment, the laser line was changed from 785 nm to 473 nm; 

because of the strong fluorescence emission at this wavelength, the 473 nm laser of the 
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Raman microscope is able to map very quickly (0.1 second per point) and give a detailed 

distribution of the 625QDs within the cell. It was subsequently possible to identify the 

area of the cell with highest concentration of QDs was and centre the study there (Figure 

4.23). 

A problem of this methodology is that the lasers of the Raman Spectrometer can lose 

alignment in the transition from one laser to another one. The process of alignment is 

quite long and complicated and makes this methodology not suitable for this study.  

The problem was overcome by using just the 785 nm laser line and line mapping the 

fluorescence of 3 or 4 areas of the cell. This procedure is a bit longer and does not 

produce a complete and detailed fluorescence distribution within the cell but it still can 

provide an indication of where there are the highest concentrations of QDs are. 

 

 

Figure 4.23 473 nm Raman mapping generates the QDs fluorescence distribution within a cell. The solid 

line indicates a line to be mapped using the 785nm laser. 
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4.3.1 First experiment 

4.3.1a Filtering and baseline correction of the first set of data 

 

Figure 4.24 Cross-correlation of 14 points of a single HaCaT cell (the max curve is the autocorrelation of 

the QDs spectrum). 

 

Figure 4.25 Cross-correlation maxima (Stokes side) compared to fluorescence maxima (anti-Stokes side). 

The y-axis indicates signal strength. 
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Figure 4.25 shows the profile of the line mapping indicating the fluorescence as measured 

on the anti-Stokes side and the corresponding profile of cross-correlation maxima. There 

is a good correspondence between the two profiles. The cross-correlation maximum is 

plotted as a function of fluorescence in figure 4.26 and an approximate linear 

correspondence is noted for low values. At high fluorescence intensities, however, the 

cross-correlation is seen to saturate, which results in the profile of figure 4.5 being rather 

flat in comparison to the sharply peaked fluorescence profile. 

 

 

Figure 4.26 Cross-correlation versus fluorescence 
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4.3.1b Filtering and first derivative of the first set of data 

 

Figure 4.27 Cross-correlation 17 points of an HaCaT cell 

 

Figure 4.28 Cross-correlation maxima (Stokes side) Vs fluorescence maxima (anti-Stokes side). 

 



 

  111

For the same dataset, filtering and derivatisation indicates a significantly worse 

correlation. There is not a clear correspondence between the cross-correlation maxima 

profile and the fluorescence profile. (Figure 4.28) 

 

4.3.2 Second experiment 

 

4.3.2a Filtering and baseline correction of the second set of data 

 

Figure 4.29 Cross-correlation of 17 points of a HaCaT cell. 
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Figure 4.30 Cross-correlation maxima (Stokes side) Vs fluorescence maxima (anti-Stokes side). 

Figure 4.30 illustrates a second linear map. The cross correlation profile is very flat 

compared to the fluorescence profile but it is possible to see a light correspondence. 

Again, a saturation of the cross-correlation response versus the fluorescence intensity can 

be observed in Figure 4.31. 

 

Figure 4.31 Cross-correlation versus fluorescence 
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4.3.2b Filtering and first derivative of the second set of data. 

 

Figure 4.32 Cross-correlation of 17 points of a HaCaT cell. 

 

 

 

 

Figure 4.33 Cross-correlation maxima (Stokes side) Vs fluorescence maxima (anti-Stokes side). 

 

 

Figure 4.30 Cross-correlation maxima (Stokes side) Vs fluorescence maxima (anti-Stokes side). 

As with the first profile, the cross-correlation of the derivatised Raman spectra is noisy 

and shows a poor correlation with the fluorescence profile. 
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4.3.3 Third experiment  

4.3.3a    Filtering and baseline correction of the fifth set of data. 

 

Figure 4.34 Cross-correlationof 15 points of a HaCaT cell 

 

Figure 4.35 Cross-correlation maxima (Stokes side) Vs fluorescence maxima (anti-Stokes side). 
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In a third linear map, the patterns of the two profiles indicate some similarities; peaks at 

point 2 and point 13 are present in both profiles even if there is a poor correspondence of 

the intensities as can see in figure 4.36. Again a saturation of the cross-correlation 

maximum is inferred. 

 

 

Figure 4.36 Cross-correlation versus fluorescence 
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4.3.3b  Filtering and first derivative of the third set of data 

 

Figure 4.37 Cross-correlation of 15 points of a HaCaT cell. 

 

Figure 4.38 Cross-correlation maxima (Stokes side) Vs fluorescence maxima (anti-Stokes side). 

In the case of this linear map, the first derivate correlation gives a much better 

correspondence between the two profiles. 
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Figure 4.39 Cross-correlation versus fluorescence 

 

4.3.4 Fourth experiment 

4.3.4a    Filtering and baseline correction of the fourth set of data 

 

Figure 4.40 Cross-correlation of 8 points of a HaCaT cell. 
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Figure 4.41 Cross-correlation maxima (Stokes side) Vs fluorescence maxima (anti-Stokes side). 

The cross correlation profile is very flat while the fluorescence profile has a very intense 

peak at the sixth point. No correlation is seen between the cross-correlation maximum 

and the fluorescence intensity as shown in figure 4.41. 

 

Figure 4.42 Cross-correlation versus fluorescence. 
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4.3.4b  Filtering and first derivative of the fourth set of data 

Figure 4.43 Cross-correlation of 8 points of a HaCaT cell. 

 

Figure 4.44 Cross-correlation maxima (Stokes side) Vs fluorescence maxima (anti-Stokes side). 
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As expected, no similarities between the two profiles are observed for the derivatised 

spectra. 

 

4.3.5 Cross-correlation versus Fluorescence 

 

In Figure 4.44 the cross correlation maxima with respect the fluorescence maxima for all 

the experimental data are plotted. There is a good correspondence at low correlation 

values.  However, there is a clear saturation of the cross-correlation above a value of 

approximately 0.5. 

 

Figure 4.45 Cross-correlation maxima in the X axis and   fluorescence maxima in the Y axis for the all 

experimental data. 
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4.4 Conclusion  

 

From the experimental study it seemed that it is possible to see in some cases 

correspondence between the fluorescence profiles and the cross-correlation maxima 

profiles. However, in general a saturation of the correlation response is observed and a 

further evaluation of the technique is required. 

It is possible to guess for what reasons it is not possible to detect in all cases the QDs 

presence using the cross-correlation methodology. One reason could be found in the 

preprocessing technique: the filtering and baseline correction of the spectra are obviously 

critical to obtaining good correlation and the processes employed here may not be 

sufficient to achieve a good correct cross-correlation between the spectra.  

A second reason could be an intrinsic limit of the cross correlation process applied to this 

specific technique; from the theoretical study it is possible to notice a lack of linearity for 

the cross correlation maxima in function of the QDs spectrum percentage.  A reasonable 

explication for this lack of linearity has to consider in all its complexity the Raman 

technique, the combination of more Raman spectra in a single Raman spectrum, and how 

the cross correlation process reads the contribution of a second spectrum. Of particular 

note is the shift of the maximum of the correlation “spectra” from the zero shift or nLag 

position as a function of concentration in both the simulated and experimental results. It 

should be expected that maximum correlation should occur at zero shift and this 

observation is not expected. It may contribute to the nonlinearities observed in the 

concentration dependent maxima plots. 
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A third reason may derive from the nature of the PEG spectrum; ideally the cross 

correlation should be done using a spectrum of PEG in a water solution simulating the 

conditions within the cell. Unfortunately the PEG of the QDs does not give a very intense 

Raman spectrum and it was only possible to detect a clear PEG Raman spectrum after 

drying the QDs nanoparticles on quartz slides. The spectrum of the dried QDs could be 

shifted with respect to that of the QDs in solution. Thus these possible differences 

between the dried and solution spectra could affect the cross correlation process. 

Nevertheless, the initial exploration of the technique indicates that it is worth refining for 

the location of nonfluorescent particles in cells. Further exploration could employ 

nanoparticles with a strong intrinsic Raman signature, but which are also fluorescently 

labelled. Potential candidates are Fluorescently labelled polystyrene nanoparticles, which 

are commercially available. 
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Chapter 5 

 

 

Conclusion 

 

 

 

 

 

 

 



 

  125

5.1 Conclusion 

 

By most if not all estimates, nanotechnology promises to impact on society to a far 

greater extent than the Industrial Revolution and is projected to become a $1 Trillion 

market by 2015. Within this context, Quantum dots (QDs) are very promising 

nanomaterials which are already exploited commercially and production volumes 

continue to rise. There is however, almost unanimous opinion among proponents and 

sceptics alike that attention to potential environmental and human risks of nanomaterials 

is required. 

So far, issues regarding adverse health and environmental effects of QDs have not been 

resolved, but in this study contribution is made for a specific class of QDs, CdSe/ZnS 

QDs coated with PEG. 

In this study, a range of different techniques are explored with the aim of better 

understanding the interaction between human cells and QDs and consequently identifing 

the health risks derived from the contact with these NPs. 

The cytotoxicity study showed that the QDs (CdSe/ZnS covered with PEG) are not 

particularly toxic even at high concentration (200 nM) and after long exposure (96 hrs). 

Interestingly, the combination of QDs and solar light exposure reduced the cell viability 

significantly, suggesting that they are phototoxic.  

This preliminary result is particularly important in relation to the risks to human health 

associated with these NPs. Anyone working with QDs or using any device made with 
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QDs has to be aware that the combination of exposure to these nanoparticles and to the 

sun light is potentially harmful. This lay be of particular importance given that these 

materials are employed as labels for targeted drugs and photo dynamic therapy agents 

[1,2]. 

In order to visualize the interaction with the cells, confocal microscopy was employed. 

This technique revealed the internalization of the QDs within 1 h of exposure and more 

specifically clearly demonstrated that the particles are encapsulated within lysosomes. 

Such an intracellular mechanism for anionic or neutral particles has been postulated [3]. 

Whereas cationic particles are easily coated in (negatively charged) proteins contained in 

the cell culture medium, the anionic or neutral particles are recognized as foreign, 

engulfed in endosomes and then lysosomes for disposal [4]. The highly fluorescent QDs 

are thus a model particle for studying the mechanisms of NP transport within cells.  

Using an excitation wavelength of 785 nm, two-photon excitation fluorescence in QDs 

(emission at 625 nm), can be observed. Within the Raman spectrometer, the fluorescent 

emission is observed as the anti-Stokes Raman signal, together with the usual Stokes 

Raman scatter of the particle.  

When exposed to the QDs, fluorescence or two photon fluorescence can be mapped 

within a cell. However, since most particles are not fluorescent, it remains a challenge to 

track and localize them within a cell. Raman spectroscopy can localize the particles due 

to their unique fingerprint spectrum. However, the spectrum is often weak and swamped 

by the cellular spectrum.  In this study, a cross correlation technique has been employed 

for the first time.  The QD spectrum has been correlated within the cellular spectrum and 
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through a cross-correlation process their presence and location within a cell can be 

determined. The preliminary results suggest that this new technique theoretically and 

experimentally could work although improvements in the preprocessing of the data are 

required. The potential success of this technique highly depends on the signature Raman 

spectrum; in the case explored here, the PEG spectrum is not very intense and it will be 

interesting to validate this technique using a nanoparticulate material with a much more 

intense Raman spectrum. Ultimately if developed, the technique could track 

nonfluorescent nanoparticles, and even therapeutic or pharmaceutical agents in cells. 
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Appendix A 

MATLAB codes 

 

Cross correlation of QDs within a cell 

(Baseline correction) 

%% Cross Correlation file 

%%ccorr.m baseline correction data full range 400 1800 cm-1 

%%% lorenzo Salford   %15/02/2010 

  

matrix=load('cross corr.txt'); 

%wavenumber=matrix(1:end,1); 

%cell=matrix(:,2); 

%QD=matrix(:,3); 

%range 600-1800 

  

range=141:982 

wavenumber=matrix(range,1); 

cell=matrix(range,2); 

QD=matrix(range,3); 

  

cell=normaliz(cell')'; 

QD=normaliz(QD')'; 

  

%cell=sgolayfilt(cell,5,13);cell=diff(cell); 

%QD=sgolayfilt(QD,5,13);QD=diff(QD); 
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order=1; 

sg_order=5; 

window=13; 

%rubberband - baseline correction 

 cell=Raman_PreProcess(cell,wavenumber,order,sg_order,window); 

 QD=Raman_PreProcess(QD,wavenumber,order,sg_order,window); 

  

figure(1) 

  

plot(wavenumber,cell,'r-');hold on 

plot(wavenumber,QD,'b-');hold off 

  

cell_QD=cell+QD; 

cell_QD2=cell+(QD/2); 

cell_QD5=cell+(QD/5); 

cell_QD10=cell+(QD/10); 

cell_QD20=cell+(QD/20); 

cell_QD50=cell+(QD/50); 

cell_QD100=cell+(QD/100); 

cell_QD200=cell+(QD/200); 

cell_QD500=cell+(QD/500); 

cell_QD1000=cell+(QD/1000); 

cell_QD2000=cell+(QD/2000); 

cell_QD5000=cell+(QD/5000); 

cell_QD10000=cell+(QD/10000); 

  

  

%second normalization 
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cell_QD=normaliz(cell_QD')'; 

cell_QD2=normaliz(cell_QD2')'; 

cell_QD5=normaliz(cell_QD5')'; 

cell_QD10=normaliz(cell_QD10')'; 

cell_QD20=normaliz(cell_QD20')'; 

cell_QD50=normaliz(cell_QD50')'; 

cell_QD100=normaliz(cell_QD100')'; 

cell_QD200=normaliz(cell_QD200')'; 

cell_QD500=normaliz(cell_QD500')'; 

cell_QD1000=normaliz(cell_QD1000')'; 

cell_QD2000=normaliz(cell_QD2000')'; 

cell_QD5000=normaliz(cell_QD5000')'; 

cell_QD10000=normaliz(cell_QD10000')'; 

 

%range 600-1800 (1-842); 800-1800 (141-842) 800-1250 (141-457) 

range1=141:842 

cell=cell(range1); 

cell_QD=cell_QD(range1); 

cell_QD2=cell_QD2(range1); 

cell_QD5=cell_QD5(range1); 

cell_QD10=cell_QD10(range1); 

cell_QD20=cell_QD20(range1); 

cell_QD50=cell_QD50(range1); 

cell_QD100=cell_QD100(range1); 

cell_QD200=cell_QD200(range1); 

cell_QD500=cell_QD500(range1); 

cell_QD1000=cell_QD1000(range1); 

cell_QD2000=cell_QD2000(range1); 

cell_QD5000=cell_QD5000(range1); 

cell_QD10000=cell_QD10000(range1); 
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QD=QD(range1); 

wavenumber=wavenumber(range1); 

figure(2) 

  

plot(wavenumber,cell_QD,'r-');hold on 

plot(wavenumber,cell_QD10,'b-'); 

plot(wavenumber,cell_QD100,'k-'); 

plot(wavenumber,cell_QD1000,'g-'); 

plot(wavenumber,cell_QD10000,'c-'); 

plot(wavenumber,cell_QD10000,'c-');hold off 

  

h = legend('Cell + QD','Cell + QD/10','Cell + QD/100','Cell + QD/1000','Cell + 
QD/10000','Location','NorthEast'); 

set(h,'Interpreter','none') 

  

%Cross-correlation 

%conv or crosscorr 

%max 

%window 600-800 o 200-300 

ccorr_QDmax=crosscorr(QD,QD); 

%window=200:300; 

%concentrations 

ccorr_QD=crosscorr(cell_QD,QD);y(14)=max(ccorr_QD); 

ccorr_QD2=crosscorr(cell_QD2,QD);y(13)=max(ccorr_QD2); 

ccorr_QD5=crosscorr(cell_QD5,QD);y(12)=max(ccorr_QD5); 

ccorr_QD10=crosscorr(cell_QD10,QD);y(11)=max(ccorr_QD10); 

ccorr_QD20=crosscorr(cell_QD20,QD);y(10)=max(ccorr_QD20); 

ccorr_QD50=crosscorr(cell_QD50,QD);y(9)=max(ccorr_QD50); 

ccorr_QD100=crosscorr(cell_QD100,QD);y(8)=max(ccorr_QD100); 

ccorr_QD200=crosscorr(cell_QD200,QD);y(7)=max(ccorr_QD200); 
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ccorr_QD500=crosscorr(cell_QD500,QD);y(6)=max(ccorr_QD500); 

ccorr_QD1000=crosscorr(cell_QD1000,QD);y(5)=max(ccorr_QD1000); 

ccorr_QD2000=crosscorr(cell_QD2000,QD);y(4)=max(ccorr_QD2000); 

ccorr_QD5000=crosscorr(cell_QD5000,QD);y(3)=max(ccorr_QD5000); 

ccorr_QD10000=crosscorr(cell_QD10000,QD);y(2)=max(ccorr_QD10000); 

%min  

ccorr_QDmin=crosscorr(cell,QD);y(1)=max(ccorr_QDmin); 

  

for i=1:13 

    ymax=max(y); 

    ymin=min(y); 

    delta=ymax-ymin; 

    if ((y(i)-y(i+1))/delta ) <= 0.0001 

       limit=i+1 

    end 

end 

  

figure(3) 

plot(ccorr_QDmax,'-.r');hold on 

plot(ccorr_QD,'k-'); 

plot(ccorr_QD2,'c:'); 

plot(ccorr_QD5,'c--'); 

plot(ccorr_QD10,'b-'); 

plot(ccorr_QD20,'g:'); 

plot(ccorr_QD50,'r--'); 

plot(ccorr_QD100,'k-'); 

plot(ccorr_QD200,'c:'); 

plot(ccorr_QD500,'b--'); 

plot(ccorr_QD1000,'g-'); 

plot(ccorr_QD2000,'r:'); 
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plot(ccorr_QD5000,'k--'); 

plot(ccorr_QD10000,'c-'); 

plot(ccorr_QDmin,'b.-');hold off 

  

h = 
legend('max','1','1/2','1/5','1/10','1/20','1/50','1/100','1/200','1/500','1/1000','1/2000','1/5000','1/10000','min','L
ocation','NorthEast'); 

set(h,'Interpreter','none') 

  

x=[0,1/10000,1/5000,1/2000,1/1000,1/500,1/200,1/100,1/50,1/20,1/10,1/5,1/2,1]; 

  

figure(4) 

plot(x,y,'ro-') 

set(gca,'XDir','reverse') 

  

figure(5) 

y2=y-y(1); 

plot(x,y2,'ro-') 

  

Raman Preprocess code  

 

function [X]=Raman_PreProcess(X,wavenumber,order,sg_order,window) 

  

%Copyright Peter Knief  21-10-09 

  

%%%%%BACKGROUND CORRECTION%%%%% 

  

X=(rubberband_pk(X',0.01,0))'; 

pause (1); 

close all; 
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% SG filtering 

X=sgolayfilt(X,sg_order,window); 

% %X_corr=diff(X_corr); 

 

Cross-correlation of experimental data 

 

%% Cross Correlation file 

%%ccorr.m 800-1800 

  

%Copyright Lorenzo Salford 17/02/2010 

  

matrix=load('table1.txt'); 

range=141:982; 

wavenumber=matrix(range,1); 

cell1=matrix(range,3); 

cell2=matrix(range,4); 

cell3=matrix(range,5); 

cell4=matrix(range,6); 

cell5=matrix(range,7); 

cell6=matrix(range,8); 

cell7=matrix(range,9); 

cell8=matrix(range,10); 

cell9=matrix(range,11); 

cell10=matrix(range,12); 

cell11=matrix(range,13); 

cell12=matrix(range,14); 

cell13=matrix(range,15); 

cell14=matrix(range,16); 
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cell15=matrix(range,17); 

  

QD=matrix(range,2); 

  

cell1=normaliz(cell1')'; 

cell2=normaliz(cell2')'; 

cell3=normaliz(cell3')'; 

cell4=normaliz(cell4')'; 

cell5=normaliz(cell5')'; 

cell6=normaliz(cell6')'; 

cell7=normaliz(cell7')'; 

cell8=normaliz(cell8')'; 

cell9=normaliz(cell9')'; 

cell10=normaliz(cell10')'; 

cell11=normaliz(cell11')'; 

cell12=normaliz(cell12')'; 

cell13=normaliz(cell13')'; 

cell14=normaliz(cell14')'; 

cell15=normaliz(cell15')'; 

 QD=normaliz(QD')'; 

  

%cell=sgolayfilt(cell,5,13);%cell=diff(cell); 

%QD=sgolayfilt(QD,5,13);%QD=diff(QD); 

  

ordercell=2; 

orderQD=2; 

sg_order=5; 

window=13; 

cell1=Raman_PreProcess2(cell1,wavenumber,ordercell,sg_order,window); 

cell2=Raman_PreProcess2(cell2,wavenumber,ordercell,sg_order,window); 
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cell3=Raman_PreProcess2(cell3,wavenumber,ordercell,sg_order,window); 

cell4=Raman_PreProcess2(cell4,wavenumber,ordercell,sg_order,window); 

cell5=Raman_PreProcess2(cell5,wavenumber,ordercell,sg_order,window); 

cell6=Raman_PreProcess2(cell6,wavenumber,ordercell,sg_order,window); 

cell7=Raman_PreProcess2(cell7,wavenumber,ordercell,sg_order,window); 

cell8=Raman_PreProcess2(cell8,wavenumber,ordercell,sg_order,window); 

cell9=Raman_PreProcess2(cell9,wavenumber,ordercell,sg_order,window); 

cell10=Raman_PreProcess2(cell10,wavenumber,ordercell,sg_order,window); 

cell11=Raman_PreProcess2(cell11,wavenumber,ordercell,sg_order,window); 

cell12=Raman_PreProcess2(cell12,wavenumber,ordercell,sg_order,window); 

cell13=Raman_PreProcess2(cell13,wavenumber,ordercell,sg_order,window); 

cell14=Raman_PreProcess2(cell14,wavenumber,ordercell,sg_order,window); 

cell15=Raman_PreProcess2(cell15,wavenumber,ordercell,sg_order,window); 

  

QD=Raman_PreProcess2(QD,wavenumber,orderQD,sg_order,window); 

  

figure(1) 

%wavenumber=wavenumber(1:end-1); 

plot(wavenumber,cell7,'r-');hold on 

plot(wavenumber,QD,'b-');hold off 

%wavenumber=wavenumber(1:end-1); 

  

figure(2) 

  

plot(wavenumber,cell1,'r-');hold on 

plot(wavenumber,cell2,'b-'); 

plot(wavenumber,cell3,'k-'); 

plot(wavenumber,cell4,'g-'); 

plot(wavenumber,cell5,'c-'); 

plot(wavenumber,cell6,'r--'); 
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plot(wavenumber,cell7,'b--'); 

plot(wavenumber,cell8,'k--'); 

plot(wavenumber,cell9,'g--'); 

plot(wavenumber,cell10,'c--'); 

plot(wavenumber,cell11,'k--'); 

plot(wavenumber,cell2,'b--'); 

plot(wavenumber,cell3,'k--'); 

plot(wavenumber,cell4,'g--'); 

plot(wavenumber,cell5,'b--'); hold off 

 

h = 
legend('Cell1','Cell2','Cell3','Cell4','Cell5','Cell6','Cell7','Cell8','Cell9','Cell10','Cell11','Cell12','Cell13','Cell
14','Cell15','Location','NorthEast'); 

set(h,'Interpreter','none') 

  

%Cross-correlation 

%conv or crosscorr 

%max 

%range 800-1250 

range1=141:457 

cell1=cell1(range1); 

cell2=cell2(range1); 

cell3=cell3(range1); 

cell4=cell4(range1); 

cell5=cell5(range1); 

cell6=cell6(range1); 

cell7=cell7(range1); 

cell8=cell8(range1); 

cell9=cell9(range1); 

cell10=cell10(range1); 

cell11=cell11(range1); 
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cell12=cell12(range1); 

cell13=cell13(range1); 

cell14=cell14(range1); 

cell15=cell15(range1); 

QD=QD(range1); 

  

ccorr_QDmax=crosscorr(QD,QD);window=8:32; 

%concentrations 

win=50; 

[ccorr_QD1,Lags1,Bounds1]=crosscorr(cell1,QD);y(1)=max(ccorr_QD1(window));           

[ccorr_QD2,Lags2,Bounds2]=crosscorr(cell2,QD);y(2)=max(ccorr_QD2(window)); 

[ccorr_QD3,Lags3,Bounds3]=crosscorr(cell3,QD);y(3)=max(ccorr_QD3(window)); 

[ccorr_QD4,Lags4,Bounds4]=crosscorr(cell4,QD);y(4)=max(ccorr_QD4(window)); 

[ccorr_QD5,Lags5,Bounds5]=crosscorr(cell5,QD);y(5)=max(ccorr_QD5(window)); 

[ccorr_QD6,Lags6,Bounds6]=crosscorr(cell6,QD);y(6)=max(ccorr_QD6(window)); 

[ccorr_QD7,Lags7,Bounds7]=crosscorr(cell7,QD);y(7)=max(ccorr_QD7(window)); 

[ccorr_QD8,Lags8,Bounds8]=crosscorr(cell8,QD);y(8)=max(ccorr_QD8(window)); 

[ccorr_QD9,Lags9,Bounds9]=crosscorr(cell9,QD);y(9)=max(ccorr_QD9(window)); 

[ccorr_QD10,Lags10,Bounds10]=crosscorr(cell10,QD);y(10)=max(ccorr_QD10(window)); 

[ccorr_QD11,Lags11,Bounds11]=crosscorr(cell11,QD);y(11)=max(ccorr_QD11(window)); 

[ccorr_QD12,Lags12,Bounds12]=crosscorr(cell12,QD);y(12)=max(ccorr_QD12(window)); 

[ccorr_QD13,Lags13,Bounds13]=crosscorr(cell13,QD);y(13)=max(ccorr_QD13(window)); 

[ccorr_QD14,Lags14,Bounds14]=crosscorr(cell14,QD);y(14)=max(ccorr_QD14(window)); 

[ccorr_QD15,Lags15,Bounds15]=crosscorr(cell15,QD);y(15)=max(ccorr_QD15(window)); 

  

figure(3) 

plot(ccorr_QDmax,'-.r');hold on 

plot(ccorr_QD1,'k-'); 

plot(ccorr_QD2,'c:'); 

plot(ccorr_QD3,'c--'); 
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plot(ccorr_QD4,'b-'); 

plot(ccorr_QD5,'g:'); 

plot(ccorr_QD6,'r:'); 

plot(ccorr_QD7,'y.-'); 

plot(ccorr_QD8,'c:'); 

plot(ccorr_QD9,'b--'); 

plot(ccorr_QD10,'g-'); 

plot(ccorr_QD11,'y:'); 

plot(ccorr_QD12,'k--'); 

plot(ccorr_QD13,'c-'); 

plot(ccorr_QD14,'b.-'); 

plot(ccorr_QD15,'k--');hold off 

  

h = legend('max','1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','Location','NorthEast'); 

set(h,'Interpreter','none') 

  

%max abs 

figure(4) 

  

x=0:14; 

yfl=[4200,1500,10000,11000,9000,120,110,90,450,300,180,650,1700,2200,450]; 

nor_y=y/norm(y); 

nor_yfl=yfl/norm(yfl); 

nor_y=2*nor_y 

plot(x,nor_y,'b'); hold on 

plot(x,nor_yfl,'r');hold off 

  

window2=20:22 

%concentrations 

win=50; 
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y2(1)=max(ccorr_QD1(window2)); 

y2(2)=max(ccorr_QD2(window2)); 

y2(3)=max(ccorr_QD3(window2)); 

y2(4)=max(ccorr_QD4(window2)); 

y2(5)=max(ccorr_QD5(window2)); 

y2(6)=max(ccorr_QD6(window2)); 

y2(7)=max(ccorr_QD7(window2)); 

y2(8)=max(ccorr_QD8(window2)); 

y2(9)=max(ccorr_QD9(window2)); 

y2(10)=max(ccorr_QD10(window2)); 

y2(11)=max(ccorr_QD11(window2)); 

y2(12)=max(ccorr_QD12(window2)); 

y2(13)=max(ccorr_QD13(window2)); 

y2(14)=max(ccorr_QD14(window2)); 

y2(15)=max(ccorr_QD15(window2)); 

  

%max around 21 

figure (5) 

nor_y2=y2/norm(y2); 

nor_y2=2*nor_y2 

plot(x,nor_y2,'b'); hold on 

plot(x,nor_yfl,'r');hold off 

  

figure (6) 

plot(nor_y2,nor_yfl) 

yx=(nor_y2)'; 

yy=(nor_yfl)'; 
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