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1 INTRODUCTION 

Freight transport has increased by 45% in Europe over 

the past decade (Eurostat 2008) and this trend seems 

likely to continue into the medium term future. A possi-

ble solution to the resulting capacity problem that this 

creates would be to increase the permitted gross vehicle 

weight to 60t and the number of axles to 8 (OBrien et al. 

2008). The effect on highway bridges of this potentially 

significant change in traffic configuration is currently un-

der evaluation, although Weigh In Motion (WIM) records 

have already observed high frequencies of extremely 

heavy vehicles, with weights well in excess of the normal 

legal maximum in some heavily trafficked highways. 

These extreme vehicles, with gross weight in excess of 

100 tonnes, tend to be either mobile cranes with very 

closely spaced axles or low loaders with much longer 

wheelbases. Such vehicles would be expected to have 

special permits and escort vehicles, but were recorded 

mixed with normal traffic and travelling close to the 

speed limit of 80km/h. Whether or not the legal limit for 

trucks without permits was changed, it is reasonable to 

expect that cranes and crane-type vehicles will govern 

the design/assessment of some bridges in some circum-

stances. Therefore, it is needed to assess their dynamic 

interaction with bridges and the allowance that needs to 

be made for dynamics. So, this paper reviews the dy-

namic effects of large cranes on short to medium span 

bridges and compares them to common 5-axle articu-

lated trucks, focussing on the mid-span bending moment 

load effect. Bending moment load effects are obtained 

using a Monte Carlo simulation that varies the parame-

ters of a 2-dimensional vehicle-bridge interaction model. 

2 CRITICAL VEHICLES 

WIM measurements were taken in 2005 at a heavily  
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Figure 1. Photo examples of recorded WIM trucks, a) 5-axle 
truck, b) crane. 

trafficked site near Woerden, 30 km east of the port of 

Rotterdam, the Netherlands. There are 77 week- days 

for which a full record is available, giving a total of 

546,448 measured trucks. There are cameras at the WIM 

site which photograph unusually heavy trucks, and these 

photographs provide useful evidence to support the 

identification and classification of vehicle types. A sig-

nificant feature of the gathered data is the high popula-

tion of extremely heavy vehicles – cranes and low load-

ers – with a total of 892 vehicles in excess of 70t, daily 

occurrences of vehicles over 100t, and a recorded maxi-

mum of 165t.  

Heavy low loaders are characterised by a group of 

closely-spaced axles at the front of the vehicle, followed 

by a gap of about 10m and another group of axles at the 

rear. On the other hand, all axles on cranes are closely-

spaced, and this concentration of weight over a much 

shorter wheelbase produces significantly higher bending 

moments on the bridge spans under study in this paper 

therefore only cranes are studied here. Figure 1 shows 

an example of a typical crane and a 5-axle truck of the 

type used for comparison. The 9-axle crane in Figure 1(b) 

has a gross vehicle weight of 110.6t and a wheelbase of 

14.85m.  Cranes are frequently accompanied by vehicles 

carrying ballast which have gross weights and axle lay-

outs which are very similar to the cranes.  These “crane-

type” vehicles are included in this study.  

3 VEHICLE-BRIDGE INTERACTION MODEL 

3.1 Vehicle Model 

To describe the vertical forces applied by a vehicle to a 

bridge structure, an articulated 3-dimensional truck 

model that allows for the definition of any number of ax-

les on both, tractor and semitrailer, is built as repre-

sented in Figure 2. This model consists of a combination 

of rigid bodies and lump masses, representing the body 

and axle masses. These are linked together and to the 

profile by spring-dashpot systems, representing the tyres 

and suspensions. 

The vehicle model assumes constant speed, tyre-

ground contact at one single point, vertical vehicle 

forces and linear stiffness and damping elements. Similar 

vehicle models are widely used in the literature (Wang 

et al. 1992, Gillespie et al. 1979) representing vehicle-

bridge interaction with a good accuracy (Cebon 1993). 

Those vehicle models have been extended here to allow 

for a variable number of axles and an optional articula-

tion, making it possible to easily represent either 5-axle 

articulated trucks or larger rigid vehicles such as cranes. 

The vehicle parameters were obtained from a number 

of different sources: the body masses and axle spacing 

were calculated directly from the WIM measurements, 

the suspension mechanical properties for 5-axle trucks 

were taken from the large database provided by Fu et al. 

(2002) who provides a large suspension database, the 

tyre properties are those proposed by Kirkegaard et al. 

(1997), the crane suspension properties are those rec-

ommended for a similar vehicle by Li (2005), and finally, 

the crane tyre properties are those found from extensive 

experimental tests by Lehtonen et al (2006). 

3.2 Bridge Model 

The bridge is represented as a simply supported 

orthotropic plate (Rowley 2007). The finite element 

bridge model consists of plate elements with 16 degrees 

of freedom, and it is solved using Kirchhoff thin plate 

theory. The bridge properties are listed in Table 1 and 

are typical of bridges with voided cross section (OBrien 

et al. 1999). A 3% structural damping is assumed for 

both bridge spans. 

 

Table 1. Properties of studied bridges 

Span Width Depth Density 1
st

 natural frequency 

m m m kg/m
3
 Hz 

15 9 0.8 1929 6.9 

25 9 1.2 1562 4.12 
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Figure 2. Vehicle model sketch, a) Side view, b) Front view 

    

Figure 3. First four mode shapes for simply supported plate 

 

The finite element model allows to specify a non-

uniform spacing and a finer mesh near mid-span. The 

first four mode shapes of the modal analysis for the 

simply supported plate model are illustrated in Figure 

3. 

3.3 Interaction Solution 

The solution of a vehicle moving at constant speed 

over a bridge with an uneven road profile is an itera-

tive procedure (Green et al. 1995). The calculations 

needed in the iteration process can be described in 

five steps: 

1 Calculate vertical forces of vehicle wheels due to 

movement over road profile (ignoring bridge) 

2 Calculate vertical displacements of bridge due to 

vehicle forces 

3 Add bridge deformations to the profile elevations 

4 Recalculate vertical forces for the new 'profile' 

5 Repeat steps 2 to 4 until convergence is reached 

The convergence criterion adopted in this paper is 

that the bending moment difference between two 

consecutive iterations becomes less than or equal to 

1N·m. Figure 4 is an illustration of the iterative proc-

ess.  

 

 

Figure 4. Iterative process diagram 

 

The equations of motion of the vehicle are imple-

mented and solved in Matlab by reducing the second 

order dynamic equations to a system of first order or-

dinary differential equations. These are solved using 

the Runge-Kutta numerical integration scheme, with 

the Dormand-Prince pair (Shampine 1986). The plate 

differential equations are solved by means of modal 

superposition and the exponential matrix integration 

scheme (Busby et al. 1997). The results obtained by 



this iterative process were found to agree with results 

from an experimentally validated 3-dimensional vehi-

cle-bridge-road profile interaction finite element 

model developed by González (2008) using 

MSc/NASTRAN software. 

4 DYNAMIC ANALYSIS 

Dynamic Amplification Factor (DAF) is widely used in 

the literature either for theoretical studies (Ruíz-Terán 

et al. 2006, Savin 2001, Harris et al 2007) or experi-

mental results (Senthilvasan et al. 2002, Naumoski et 

al. 2004, Paultre et al. 1995) to evaluate the dynamics 

of a vehicle-bridge system,. This factor evaluates the 

increase of a certain load effect due to dynamics by 

comparing the total response to the static response. In 

this paper the bending moment at mid-span is under 

consideration, and DAF is defined as the ratio of total 

to static bending moment. 

4.1 Monte Carlo simulation  

From the WIM data described in section 2, the 5-axle 

trucks and cranes that generate the daily maximum 

static bending moment were selected to be studied 

dynamically in a Monte Carlo simulation. A total of 18 

different vehicle parameters were varied within a real-

istic range of values, including speed, suspension me-

chanical properties (allowing for air and steel suspen-

sions), tyre properties, axle masses and others. 

As the condition of the road profile is a major factor 

influencing the response of the bridge to a passing ve-

hicle (DIVINE 1998), simulations have been carried out 

for three different profiles independently for each of 

the two bridge lengths considered. The profiles were 

generated using the recommendations of ISO8608 

(1995). This is a stochastic process described by a 

power spectral density function that varies depending 

on the road class from A (‘very good’) to E (‘very 

poor’). Here only class A profiles have been analysed, 

which are assumed to represent well maintained 

highway pavements. 

4.2 Results 

Over 40,000 dynamic simulations were performed 

within the Monte Carlo simulation scheme described 

in section 4.1. A fleet of 77 crane-type vehicles and 77 

5-axle trucks were studied for both spans under con-

sideration. Each single vehicle was studied for a variety 

of speed and vehicle characteristics combinations. The 

bridge response is quite sensitive to the road surface. 

Due to the huge number of events gathered, the 

means and standard deviations of bending moment 

were found for each specific vehicle. The results, 

shown in Figure 5, correspond to the mean DAF for 

one particular profile. However the conclusions drawn 

are the same for all three profiles under investigation. 

While there is considerable variation in DAF, it can 

be seen that the mean dynamic amplifications for the 

crane population are generally less than for the 5-axle 

truck fleet, and that a similar trend is observed for 

both bridge spans. 

Figure 6 gives the standard deviations of DAF for 

each vehicle and shows that the variability in dynamic 

amplification due to vehicle properties is also smaller 

for cranes. Combining the results of Figures 5 and 6 it 

is shown that any confidence interval for DAF will tend 

to be significantly less for cranes than for 5-axle trucks.  

When assessing a structure for the effects of traffic 

loads, it is clearly the extremely heavy vehicles that 

tend to govern, particularly cranes in the case of a 

simply supported bridge as the axle spacings are quite 

small. These results show that DAF for such extreme 

vehicles is considerably smaller and also less variable 

than DAF for the more common 5-axle truck.  

In Figure 7 the results for the whole vehicle fleet are 

presented in histogram form, showing that the most 

frequent DAF values for cranes are smaller than for 5-

axle trucks. In addition the smaller variability in crane 

values relates to the narrower shape of histograms. 

When results for both bridge spans are compared, 

there is greater scatter for the longer structure.  

 

 



 

Figure 5. Mean DAF value for each vehicle. 5-axle & 15m (+), crane & 15m (), 5-axle & 25m (□), crane & 25m(○). 

 

 

Figure 6. Standard deviation DAF value for each vehicle. 5-axle & 15m (+), crane & 15m (x), 5-axle & 25m (□), crane & 25m(○). 

 

Table 2 presents the mean DAF values for the whole 

vehicle fleet results showing a significant reduction in 

dynamic amplification. Moreover, it shows that the 

value within a 95% confidence interval follows the 

same bias. 

 

Table 2. DAF results summary 

 15m 25m 

 mean 95% mean 95% 

5-axles 1.019 1.077 1.029 1.100 

Cranes 1.010 1.035 1.014 1.056 

 

Within the Monte Carlo simulation carried out in the 

investigation, typical values for air and steel suspen-

sions were considered. Figure 8 gives DAF for the 

range of suspension stiffness tested showing that 

softer suspensions originate smaller and less disperse 

dynamic effects on the bridge. 

5 CONCLUSIONS 

The growth of freight transport in recent decades is an 

important issue in Europe, and an increase of maxi-

mum allowed weight may be a possible solution to in-

crease transport capacity. Heavy trafficked European 

highways are already recording the frequent crossing 

of overloaded vehicles that may be placing the health 

of a number of bridges in jeopardy and immediate at-

tention is required. It also appears that any introduc-

tion of heavier vehicles will be less important for 



bridge loading than these extreme vehicles already 

present in some highways. This paper has studied the 

dynamic effects on short to medium span highway 

bridges of these extreme heavy vehicles by means of a 

Monte Carlo simulation, and compared them to the 

more common 5-axle articulated truck. It has been 

shown that DAF mean and standard deviation values 

are significantly reduced. 
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Figure 7. DAF histograms for cranes (Black) and 5-axle trucks (White). a) 15m span; b) 25m span. 

 

 

Figure 8. DAF for 5-axle trucks on 25 m bridge 
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