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Non-existence of a Minimizer to the Magnetic
Hartree-Fock Functional

M. Enstedt and M. Melgaard∗

Abstract. In the presence of an external magnetic field, we prove absence of
a ground state within the Hartree-Fock theory of atoms and molecules. The
result is established for a wide class of magnetic fields when the number of
electrons is greater than or equal to 2Z + K, where Z is the total charge of
K nuclei. Positivity properties are instrumental in the proof of this bound for
the maximal ionization.
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1. Introduction

In a recent paper [3] we proved existence of a solution in the form of a minimizer
for the nonlinear coupled Hartree-Fock equations of Quantum Chemistry in the
presence of an external magnetic field described by a vector potential which is
supposed to be homogeneous of degree −1 at infinity, roughly speaking. In the
opposite direction, we herein study absence of a minimizer. It turns out that much
weaker conditions on the magnetic field are needed to establish nonexistence.

∗ Corresponding author.
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A molecule consisting of N electrons and K static nuclei with charges Z =
(Z1, . . . , ZK), Zk > 0, placed in an external magnetic field B = ∇ × A, A =
(A1, A2, A3) : R

3 → R
3 being the vector potential, is in quantum theory described

by the Hamiltonian1

HN,Z,A =
N∑

n=1

(−∆A,xn
+ Ven(xn)) +

∑
1≤m<n≤N

Vee(xm − xn)

acting on the space
∧N

L2(R3; C2) of antisymmetric spinor-valued functions. Above
x = (x1, . . . , xN ) ∈ R

3N , xn = (x(1)
n , x

(2)
n , x

(3)
n ) ∈ R

3 being the position of the nth

electron, the components of the magnetic gradient ∇A,xn
= (P (1)

xn , P
(2)
xn , P

(3)
xn ) are

P
(m)
xn = P

(m)
A,xn

= ∂
x
(m)
n

+ iAm(xn), Ven is the Coulomb potential

Ven(y) = −
K∑

k=1

Zk

|y −Rk|

with Rk ∈ R
3 being the position of the kth nucleus, Vee(x) = 1/|x|, and ∆A,xn

=∑3
m=1(P

(m)
xn )2 is the magnetic Laplacian. The interpretation of this Hamiltonian

is as follows: the first term corresponds to the kinetic energy of the electrons, the
second term is the one-particle attractive interaction between the electrons and
the nuclei, and the third term is the standard two-particle repulsive interaction
between the electrons.

Within the Born-Oppenheimer approximation the quantum mechanical ground
state energy of the molecule is the minimum of the spectrum of HN,Z,A or, equiv-
alently,

EQM(N,Z,A) = inf
{

EQM
N (Ψe) : Ψe ∈ He, ‖Ψe‖L2(R3N ) = 1

}
.

where EQM
N (Ψe) = 〈Ψe,HN,Z,AΨe〉L2(R3N ) and He :=

∧N H1
A(R3; C2), i.e., the

N -particle Hilbert space consisting of antisymmetric functions (expressing the
Pauli exclusion principle)

Ψe(x1, . . . , xN ) = sign (σ)Ψe(xσ(1), . . . , xσ(N)) a.e., ∀σ ∈ SN ,

where SN is the group of permutations of {1, . . . , N}, with the signature of a
permutation σ being denoted by sign (σ). The space H1

A(R3) is the“magnetic”
analogue of the standard Sobolev space H1(R3); see Section 2 for its definition.

For several reasons quantum theory is too complicated for both theoretical
and numerical studies. Much of theoretical and computational chemistry has thus
been based on the Hartree-Fock approximation [25,8,17] introduced by Hartree [7]
and improved by Fock [4] and Slater [21] in the late 1920s.

1Expressed in Rydberg units.
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The Hartree-Fock approximation consists in restricting attention to functions
of the form

SN =
{

Ψe ∈ He : ∃Φ = {φn}1≤n≤N ∈ CN ,Ψe =
1√
N !

det (φn(xm))
}

with

CN =
{

Φ = {φn}1≤n≤N , φn ∈ H1
A(R3), 〈φm, φn〉L2 = δmn, 1 ≤ m,n ≤ N

}
.

By taking the infimum over all functions belonging to SN while keeping the expres-
sion 〈Ψe,HN,Z,AΨe〉 for the energy, one arrives at the Hartree-Fock energy which
is an approximation to the full quantum mechanical energy EQM(N,Z,A). If Ψe ∈
SN , then simple algebraic calculations yields that 〈Ψe,HN,Z,AΨe〉 = EMHF(Ψe),
where the magnetic Hartree-Fock functional EMHF

N (·) is given by

EMHF(φ1, ..., φN ) = EMHF
N (Ψe) = 〈Ψe,HN,Z,AΨe〉

=
N∑

n=1

∫
R3

|∇Aφn(x)|2 dx+
∫

R3
Ven(x)ρ(x) dx

+
1
2

∫
R3

∫
R3

ρ(x) ρ(x′) − |τ(x, x′)|2
|x− x′| dxdx′

Here τ(x, x′) =
∑N

n=1 φn(x)φn(x′) is the density matrix, and ρ(x) =
∑N

n=1 |φn(x)|2
is the density associated to the state Ψe; ζ∗ refers to the conjugate of the complex
number ζ.

Definition 1.1. (The Hartree-Fock ground state). Let Z = (Z1, . . . , ZK), Zk > 0,
k = 1, . . . ,K, and let N be a nonnegative integer. The magnetic Hartree-Fock
ground state energy is

EMHF ≡ EMHF(N,Z,A) := inf
{ EMHF(Ψe) : Ψe ∈ SN

}
. (1.1)

If a minimizer exists, i.e., there exists some Ψe such that

EMHF(Ψe) = EMHF, (1.2)

then it is said that the molecule has a magnetic Hartree-Fock ground state
described by Ψe.

When no magnetic field is present, the Hartree-Fock minimization problem
was studied by Lieb and Simon in [15] (see also [14,10,16]). Under the condition
that the total charge Z =

∑K
k=1 Zk of the molecular system fulfills Z+1 > N , they

proved the existence of at least one minimizer, i.e., a Hartree-Fock ground state.
The mathematical requirement Z + 1 > N expresses that the total charge of the
nuclei should be sufficiently positive to ensure that the N electrons are localized
in their vicinity. Prior to [15], the Hartree-Fock equations were studied by more
direct approaches[19,6,5,24,26,20], yielding less general results.

In [3] we established existence of a magnetic Hartree-Fock ground state for a
wide class of magnetic fields under the condition Z > N − 1. The latter condition
is only a sufficient condition. No necessary condition is known for the existence.
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The only result that is known in this direction is a result by Lieb [12] which states
that for N ≥ 2Z+K there never exists a magnetic Hartree-Fock ground state; the
result holds provided A ∈ L∞

ε , i.e., if A is bounded and |Aj(x)| → 0 as |x| → ∞.
In the absence of a magnetic field, Solovej has improved Lieb’s result by proving
that there exists a universal constant Q > 0 such that N ≥ Z + Q ensures that
there are no minimizers [23] (first announced in [22]).

Throughout this paper we impose the following conditions.

Assumption 1.2. (i) div A ∈ L2
loc(R

3) and A ∈ L4
loc(R

3,R3).
(ii) There exists some R > 0 such that A is dominated by a positively homoge-

neous function of degree d ∈ (−∞, 0) for |x| > R.

Under Assumption 1.2 our main result, Theorem 4.1 asserts that there are
no minimizers for the magnetic Hartree-Fock problem when N ≥ 2Z +K, where
N is a positive integer and Z is the total nuclear charge. This gives a bound for
the maximal ionization. The proof of Theorem 4.1, given in Section 4, follows
Lieb’s approach in [12], written out for the full quantum mechanical problem.
New auxiliary results, expressing positivity, are collected in Section 3. It is crucial
for the proof that the energy is monotonically decreasing in the number of elec-
trons. In particular, the proof does not apply to a constant magnetic field; indeed,
placing a particle at spatial infinity costs at least an energy of size equal to the
field strength. The required monotonicity is ensured by imposing that the mag-
netic field decays at infinity which is expressed by the “homogeneity at infinity”
in Assumption 1.2(ii). The latter also suffices to carry over the main result in [3];
in other words, Assumption 1.1(iv) in [3] can be replaced by Assumption 1.2(ii)
above.

2. Notation and preliminaries

Let R
3 be the three-dimensional Euclidean space, denote points by x = (x(1), x(2),

x(3)), and let |x| = (
∑3

m=1(x
(m))2)1/2.

Let L2(R3) be the space of (equivalence classes of) complex-valued functions
φ which are measurable and satisfy

∫
R3 |φ(x)|2 dx < ∞. The measure dx is the

Lebesgue measure. The space L2(R3) is a complex and separable Hilbert space
with scalar product 〈φ, ψ〉L2(R3) =

∫
R3 φ

∗ψ dx and corresponding norm ‖φ‖L2(R3) =
〈φ, φ〉1/2

L2(R3). Let L2(R3)N , be the N -fold Cartesian product of L2(R3), equipped

with the scalar product 〈φ, ψ〉 =
∑N

n=1〈φn, ψn〉L2(R3) and the norm ‖φ‖ = 〈φ, φ〉1/2.
The space of infinitely differentiable complex-valued functions with compact sup-
port in R

3 will be denoted D and the space of distributions by D ′. The Schwarz
space of rapidly decreasing functions and its adjoint space if tempered distribu-
tions are denoted by S(R3) and S ′(R3), respectively. Let p denote the momentum
operator −i∇ and let 〈p〉 = (1 + p2)1/2. For any t ∈ R the standard Sobolev space
Ht(R3) is given by
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Ht(R3) = {φ ∈ S ′(R3) : ‖φ‖Ht(R3) = ‖〈p〉tφ‖L2(R3) < ∞}. (2.1)

Define the “magnetic” Sobolev space by

H1
A ≡ H1

A(R3) :=
{
φ ∈ L2(R3) : ∇Aφ ∈ L2(R3)

}
for ∇A := ∇ + iA, in which ∇φ is taken in the distributional sense, endowed with
norm

‖φ‖H1
A :=

(‖φ‖2
L2 + ‖∇Aφ‖2

L2

)1/2
.

We do not suppose that ∇φ or Aφ are separately in L2(R3). Thus there is usually
no connection between the spaces H1

A(R3) and H1(R3) on the whole of R
3, that

is, in general H1
A(R3) �⊆ H1(R3) or H1(R3) �⊆ H1

A(R3).

3. Positivity properties

Positivity plays a key role at several places in our analysis. We begin with the
following result:

Lemma 3.1. Let Assumption 1.2 hold and suppose ϕ = (ϕ1, . . . , ϕN ) ∈ CN gives
rise to a minimizer Ψe ∈ SN for the magnetic Hartree-Fock functional. Then the
components of ϕ = (ϕ1, . . . , ϕN ) satisfy the magnetic Hartree-Fock equations for
some nonnegative constants εn, i.e.,{

HF
Aϕn + εnϕn = 0

〈ϕm, ϕn〉L2 = δmn,

where HF
A is the magnetic Hartree-Fock operator, defined as the unique self-adjoint

extension of

φ �→ −∆Aφ+ Venφ+ ρ ∗ 1
|x|φ−Kxcφ,

initially defined on D(R3), and with Kxc(x, y) := τ(x, y)/|x−y| being the integral
kernel of the exchange operator Kxc.

Proof. Define the functional Gn : H1
A(R3)N → R by

Φ �→ ‖φn‖2
L2 , Φ = (φ1, . . . , φN ) ∈ H1

A(R3)N ,

and note that clearly G′
n ∈ C(H1

A(R3)N ,R) and, in particular, the Gateaux deriv-
ative at Φ equals

G′
n(Φ)(Ψ) = 2Re

∫
R3
φnψ

∗
n dx.

From the Lagrange multiplier rule [27, Section 4.14] we know that there exists εn
such that, for all n, the components of ϕ = (ϕ1, . . . , ϕN ) satisfy

Re hF
A[ϕn, ψn] + εnRe

∫
R3
ϕnψ

∗
n dx = 0 ∀ψn ∈ H1

A(R3), (3.1)
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where the sesquilinear form hF
A[ϕn, ψn] is defined by

hF
A[ϕn, ψn] :=

∫
R3

∇Aϕn(x)∇Aψ∗
n(x) + Ven(x)ϕn(x)ψ∗

n(x) dx

+
∫

R3

∫
R3

ρ(x)ϕn(y)ψ∗
n(y)

|x− y| dxdy −
∫

R3

∫
R3
τ(x, y)

ϕn(y)ψ∗
n(x)

|x− y| dydx.

Since both the terms in (3.1) are linear in their second argument we can extend
the equations to

hF
A[ϕn, ψn] + εn

∫
R3
ϕnψ

∗
n dx = 0 ∀ψn ∈ H1

A(R3). (3.2)

In [3] it is verified that hF
A is a closed semi-bounded sesquilinear form on H1

A(R3)
and we infer from [2, Theorem IV.2.4] that HF

A is the self-adjoint operator associ-
ated with this form and that −εn corresponds to eigenvalues of this operator.

Let us show that the multipliers εn are non-negative. To do this we shall
verify that ϕn is a minimizer to

inf
{

hF
A[φ, φ] : φ ∈ H1

A(R3) ∧ ‖φ‖L2 = 1 ∧
∫

R3
φϕ∗

m dx = 0, ∀m �= n

}
(3.3)

and the minimum is equal to −εn. Postponing this verification momentarily, we
proceed to show that εn ≥ 0.

The “complementary” minimization problem (3.3) gives us a relation between
the multipliers and the properties of the magnetic field. Let lµ denote the quadratic
form defined by ∫

R3
|∇Aφ(x)|2 +

(
Ven + µ ∗ 1

|x|
)

|φ(x)|2 dx.

on H1
A(R3) where, initially, we let µ be any finite positive Borel measure. Let BR

denote the open ball in R
3 with radius R > 0. Select any normalized function

φ ∈ D(R3), with support in B1, and let

φλ := λ−3/2φ(·/λ), λ > 0.

Observe that
|∇Aφ|2 = |∇φ|2 − 2 Im Aφ · ∇φ∗ + |Aφ|2.

By Assumption 1.2(ii) we know that A(λx) is dominated by a positively homoge-
neous function of degree d ∈ (−∞, 0) when |λx| ≥ R for some R > 0. We have
that

lµ[φλ, φλ] =
1
λ2

∫
B1

|∇φ(x)|2 dx

− 1
λ

∫
B1

2 Im A(λx)φ(x) · ∇φ∗(x) dx+
∫

B1

|A(λx)φ(x)|2 dx

+
1
λ

∫
B1

Vλ(x)|φ(x)|2 dx+
1
λ

∫
B1

(
µλ ∗ 1

|x|
)

|φ(x)|2 dx.
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where

Vλ(x) := −
K∑

k=1

Zk

|x−Rk/λ| , and µλ = λ3µ(λ·).

When λ > R1 we note that

− 1
λ

∫
B1

2ImA(λx)φ(x) · ∇φ∗(x)dx

≤ const
λ

∫
B R

λ

|A(λx)|dx+
const
λ

∫
BC

R
λ

⋂
B1

|A(λx)|dx ≤ const
λ4

+
const
λ1−d

and mutatis mutandis we get that∫
B1

|A(λx)φ(x)|2dx ≤ const
λ3

∫
BR

|A(x)|2 dx+
const
λ−2d

∫
B1

|A(x)|2 dx.

By choosing φ as radially symmetric on R
3, Newton’s theorem for measures [13,

Theorem 9.7] implies that∫
R3

(
µλ ∗ 1

|x|
)

|φ(x)|2 dx =
∫

R3

(
|φ(x)|2 ∗ 1

|x|
)

dµλ

=
∫

R3

∫
R3

|φ(x)|2
max(|x|, |y|) dxdµλ ≤ µλ(R3)

∫
R3

|φ(x)|2
|x| dx,

where, evidently, µλ(R3) = µ(R3). Now let

µ = ρdx

that is, a weighted Lebesgue measure. It is clearly finite and positive. We note
that

hF
A ≤ lρ dx

on H1
A(R3). Therefore by choosing λ large enough we can conclude that εn ≥ 0.
Now we return to the minimization problem in (3.3). First note that

EMHF(ϕ1, . . . , ϕn−1, φ, ϕn+1, . . . , ϕN )

= EMHF(ϕ1, . . . , ϕn−1, 0, ϕn+1, . . . , ϕN ) + hF
A[φ, φ] + r[φ, ϕn], (3.4)

where

r[φ, ϕn] =
∫

R3

∫
R3
φ∗(x)φ(y)

1
|x− y|ϕn(x)ϕ∗

n(y) dxdy

−
∫

R3

∫
R3

|φ(x)|2|ϕn(y)|2
|x− y| dxdy.

It is clear that r[ϕn, ϕn] = 0. The Cauchy-Schwartz inequality implies that∣∣∣∣
∫

R3

∫
R3
φ∗(x)φ(y)

1
|x− y|ϕn(x)ϕ∗

n(y) dxdy
∣∣∣∣ ≤

∫
R3

∫
R3

|φ(x)|2|ϕn(y)|2
|x− y| dxdy
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and we conclude that
r[φ, ϕn] ≤ 0.

We also note that according to (3.2) the minimum equals −εn. �

Next we establish an inequality for the magnetic Laplacian.

Lemma 3.2. (Benguria-Lieb-Baumgartner type inequality). Let Assumption 1.2(i)
hold. Suppose that −∆Aφ, φη−1

δ ∈ L2(R3) for all δ > 0, where ηδ is defined by

ηδ :=
∫

R3
|x− y|−1 dµ(y) + δ

for some positive finite Borel measure µ. Then

Re
∫

R3
−η−1

δ φ∗∆Aφdx ≥ 0. (3.5)

Proof. We claim that, without loss of generality, we may prove the statement for
µ ∈ C∞(R3) and φ ∈ D . Take D � φn → φ in L2(R3), then since, −∆A is
self-adjoint (see [9]) and hence closed we know that −∆Aφn → −∆Aφ. Let kl be
an approximate identity in D . Put µl := kl ∗ µ, then µl ∈ C∞(R3) because a
finite measure is a distribution of order zero. We note that ηδ,l = µl ∗ηδ and hence
that ηδ,l ∈ C∞(R3). Since L2(R3) is a homogeneous Banach space we know that
ηδ,l → ηδ in L2

loc. Then, if nesessary going to subsequence, we can assume that
ηδ,l → ηδ a.e. and since ηδ,l ≤ const, we get, by dominated convergence, that

lim
l→∞

∫
R3

−φ∗
nη

−1
δ,l ∆Aφn(x) dx =

∫
R3

−φ∗
nη

−1
δ ∆Aφn(x) dx.

This prove our claim.
Next let γ > 0 and introduce

uγ := (|u|2 + γ2)1/2.

Then the Kato type inequality

Reu(−∆Au)∗ ≥ uγ(−∆uγ) (3.6)

holds pointwise a.e. on D ; its proof is a variant of the one in [18, Theorem X.33].
Thus, if we let uηδ := φ we get from (3.6) that

Re 〈−∆Auηδ, u〉 = Re 〈uηδ,−∆Au〉 ≥ 〈−∆uγ , uγηδ〉 = 〈−∆v, ηδv〉 + γ〈−∆v, ηδ〉
where v := uγ − γ ≥ 0. With repeated use of the Fourier transform we can prove
that

〈−∆v, ηδv〉 =
∫

R3
ηδ|∇v|2 dx+ 2π

∫
R3

|v|2 dµ

and

〈−∆v, ηδ〉 = 4π
∫

R3
v dµ.

This completes the proof. �
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For the usual (negative) Laplacian, Benguria proved the strict version of (3.5)
provided φ is real-valued and spherically symmetric, and Lieb managed to prove
it for any real-valued φ; see [11, Lemma 7.21]. A more direct approach enabled
Baumgartner [1] to prove it for complex-valued φ. In [12] Lieb carried it over to
the magnetic Laplacian provided A ∈ L∞

ε . For our purpose the strict inequality is
not necessary although it is valid under our hypotheses.

Finally, we note:

Lemma 3.3. Assume that u ∈ L1(R2d) is positive on a set of positive measure.
Then ∫

R2d

u(x, y)((|x| + |y|)|x− y|−1 − 1)dxdy > 0.

Proof. We note that (|x|+ |y|)|x−y|−1 −1 is non-negative by the triangle inequal-
ity. The latter function equals zero if and only if y = −ax for a non-positive a and
since {x,−ax} has zero 2d-dimensional Lebesgue measure we are done. �

4. Absence of minimizer

In this section we prove the main theorem of this paper, a non-existence theorem on
a minimizer to the magnetic Hartree-Fock functional along with a nondecreasing
property (in the number of particles) of the functional.

Theorem 4.1. (Bound on maximal ionization). Let Assumption 1.2 hold. If N is
a positive integer such that N ≥ 2Z +K (Z being the total nuclear charge), there
are no minimizers for the magnetic Hartree-Fock problem.

Proof. We argue by contradiction, whence we assume that ϕ = (ϕ1, . . . , ϕN ) ∈ CN

gives rise to a minimizer Ψe ∈ SN for the magnetic Hartree-Fock problem (1.1).
In view of Lemma 3.1, the components of ϕ satisfy the magnetic Hartree-Fock

equations {
HF

Aϕn + εnϕn = 0

〈ϕm, ϕn〉L2 = δmn,

Introduce the function

ηδ(x) =
K∑

k=1

αk

|x−Rk| + δ, (4.1)

where αk > 0 and δ ≥ 0. Note that infδ ηδ = η0 =: η and that, for any fixed δ > 0,
the function ϕnη

−1
δ belongs to L2(R3). Take the scalar product of HF

Aϕn + εnϕn

and ϕnη
−1
δ and sum over all n. This yields

N∑
n=1

〈ϕnη
−1
δ ,HF

Aϕn〉 =
N∑

n=1

−εn〈ϕnη
−1
δ , ϕn〉. (4.2)

Now, the right-hand side is clearly well-defined and it will have a well-defined non-
positive limit (possibly equal to −∞). Invoking Lemma 3.1 we infer that εn ≥ 0.
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Therefore, if we show that the left-hand side is positive and well-defined (for δ = 0)
we arrive at a contradiction.

By straightforward algebraic calculations we can write the left-hand side of
(4.2) as

N∑
n=1

∫
R3

−ϕ∗
nη

−1
δ ∆Aϕn(x) dx+

N∑
n=1

∫
R3
Ven(x)|ϕn|2η−1

δ dx

+
1
2

N∑
n=1

∫
R6

(
ρ(x)ρ(x′) − |τ(x, x′)|2) |x− x′|−1

(
ηδ(x)−1 + ηδ(x′)−1

)
dxdx′,

where we used symmetry to obtain the last sum. Now, if we assume that the limit
of the last two sums are finite we have that the first sum has a well-defined limit.
Lemma 3.2 informs us that the first sum is non-negative (possibly equal to +∞),
therefore we can conclude that we have a contradiction if we can prove that the
last two sums are positive. To do this recall that 〈ϕm, ϕn〉L2 = δmn, therefore we
may repeat the idea we used to arrive at the magnetic Hartree-Fock functional, to
re-write these sums as

N∑
n=1

∫
R3N

|Ψe(x)|2η−1
δ (xn)Ven(xn) dx

+
∑

1≤m<n≤N

∫
R3N

|Ψe(x)|2|xm − xn|−1(η−1
δ (xm) + η−1

δ (xn)) dx.

By a straightforward estimate we can easily prove that both of these terms are
finite for δ = 0 and by monotone convergence, the limit and integral operations
commute. Let us now derive a condition for

N∑
n=1

∫
R3N

|Ψe(x)|2η−1(xn)Ven(xn) dxn

+
∑

1≤m<n≤N

∫
R3N

|Ψe(x)|2|xm − xn|−1(η−1(xm) + η−1(xn)) dx

to be positive. For this purpose we introduce

ψn(y) :=
∫

R3(N−1)
|Ψe(x1, . . . , xn−1, y, xn+1, . . . , xn)|2 dx1 · · · dxn−1dxn+1 · · · dxn

along with

βk :=
∫

R3
ψ′(y)η(y)−1|y −Rk|−1 dy,

where

ψ′(y) :=
N∑

n=1

ψn(y).
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Then we can write

−
N∑

n=1

∫
R3N

|Ψe(x)|2η−1(xn)Ven(xn) dxn

=
K∑

k=1

Zk

N∑
n=1

∫
R3N

|Ψe(x)|2η−1(xn)|xn −Rk|−1 dx

=
K∑

k=1

Zk

N∑
n=1

∫
R3
ψn(y)η−1(y)|y −Rk|−1 dy =

K∑
k=1

βkZk.

Making the same rewriting as in [1], in conjunction with an application of Lemma 3.3
yields

R :=
∑

1≤m<n≤N

∫
R3N

|Ψe(x)|2|xm − xn|−1(η−1(xm) + η−1(xn)) dx

=
∑

1≤m<n≤N

∫
R3N

|Ψe(x)|2|xm − xn|−1(η(xm) + η(xn))(η−1(xn)η−1(xm)) dx

=
∑

1≤m<n≤N

K∑
k=1

∫
R3N

αk|Ψe(x)|2|xm − xn|−1

×(|xn −Rk|−1 + |xm −Rk|−1)(η−1(xn)η−1(xm)) dx

=
∑

1≤m<n≤N

K∑
k=1

∫
R3N

αk|Ψe(x)|2|xm − xn|−1

×(|xn −Rk| + |xm −Rk|)(η(xn)|xn −Rk|)−1(η(xm)|xm −Rk|)−1 dx

>

K∑
k=1

∫
R3N

αk|Ψe(x)|2

×
∑

1≤m<n≤N

(η(xn)|xn −Rk|)−1(η(xm)|xm −Rk|)−1 dx.

Since

2
∑

1≤m<n≤N

(η(xn)|xn −Rk|)−1(η(xm)|xm −Rk|)−1

=

∣∣∣∣∣
N∑

n=1

(η(xn)|xn −Rk|)−1

∣∣∣∣∣
2

−
N∑

n=1

|(η(xn)|xn −Rk|)−1|2,



12 M. Enstedt and M. Melgaard Positivity

we have from Hölder’s inequality and the property ‖Ψe‖L2 = 1 that

2R >

K∑
k=1

(
αk

(∫
R3
ψ′(y)(η(y)|y −Rk|)−1 dy

)2

−
∫

R3
αkψ

′(y)(η(y)|y −Rk|)−2 dy

)
.

We note that η(y)|y − Rk| ≥ αk, hence αk(η(y)|y − Rk|)−1 ≤ 1 and we conclude
that

2R >
K∑

k=1

(
αk

( N∑
n=1

∫
R3N

|Ψe(x)|2η(xn)|xn −Rk|)−1 dx
)2

−
N∑

n=1

∫
R3N

|Ψe(x)|2(η(xn)|xn −Rk|)−1

)
=

K∑
k=1

αkβ
2
k − βk.

Hence we have a contradiction if
K∑

k=1

βk(αkβk − 1 − 2Zk) ≥ 0. (4.3)

Let Nγk := αkβk along with (2Z +K)λk := 2Zk + 1 and note that
K∑

k=1

γk =
K∑

k=1

λk = 1,

the first equality is true since
K∑

k=1

αkβk =
∫

R3
ψ′(y) dy =

N∑
n=1

∫
R3N

|Ψe(x)|2 dx = N.

and the second one is obvious. Thus we can write (4.3) as
K∑

k=1

βk(Nγk − (K + 2Z)λk) ≥ 0.

An application of the Perron-Frobenius theorem (see [12, Appendix B] for details)
implies that we can choose αk such that γk = λk and, therefore, we arrive at

K∑
k=1

βkλk(N −K − 2Z) ≥ 0

and thus since βkλk ≥ 0 a condition is

N −K − 2Z ≥ 0

so we are done. �
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As a spin-off, the analysis above gives us the following monotonity property:

Theorem 4.2. Under Assumption 1.2, the function

N �→ EMHF = EMHF(N,Z,A)

is non-increasing.

In particular, the latter result holds for A = 0. This property is well-known
but the derivation herein is, to the best of the authors’ knowledge, new.
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