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Development of a calix[4]arene sensor for soft 
metals based on nitrile functionality. 
 
Benjamin Schazmann, Shane O�Malley, Kieran Nolan and Dermot Diamond♣. 
 
National Centre for Sensor Research, School of Chemical Sciences, Dublin City 
University, Dublin 9, Ireland. 
 

Abstract 

The current work is amongst the first to examine the potential usefulness of the nitrile 

functional group in potentiometric analytical sensors for soft metals.  Nitrile 

functionality has hereby been incorporated into a calix[4]arene skeleton to give a 

series of new cation selective hosts.  The analytical sensing behaviour of these hosts 

was examined by Ion Selective Electrode (ISE) based potentiometry.  In all cases a 

preference for soft metals was observed, explained primarily in terms of soft-soft 

compatibility between calix[4]arene nitrile hosts and metal guests in combination with 

a classical �lock and key� best fit mechanism.  Hosts 2, 4 and 5 showed very strong 

responses towards Hg(II) ions, with Ag(I) being the main interferant.  The 

introduction of electron delocalising aromaticity proximal to the nitrile functionality 

was thought to reduce the availability of negative charge for cation coordination, 

apparently affecting the Hg(II) cation in particular.  An acute fall in Hg(II) response 

coupled with the emergence of Ag(I) as the primary ion was observed for 7 and 8.    

  
Keywords:  Calixarene, nitrile, mercury, silver, Ion Selective Electrodes (ISE), 

potentiometry. 

Introduction:  Calixarenes are a class of supramolecular receptor, synthesised by 

phenol-formaldehyde condensation reaction, to give oligomers comprising a central 

                                                
♣  corresponding author: Dermot.Diamond@dcu.ie 
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macrocycle of varying repeat phenolic units linked by methylene groups at the o 

position.  Since their description by Gutsche in the 1980s1, many calixarene 

derivatives have been described, due to the ease of modification of the so called upper 

and lower rims of the calixarene�s central annulus2-7.  The most noteworthy 

achievement of these structural modifications has been the advent of many cation 

selective host compounds.  The t-butylcalix[4]arene family substituted at the lower 

rim have proven especially popular for this purpose, yielding highly preorganised and 

symmetrical supramolecular structures, often restricted to a cone conformation due to 

upper rim bulky t-butyl groups.  The properties and characterisation of the 

calix[4]arene scaffold are well established1,8.  

The quintessential calix[4]arene host is the symmetrically substituted tetraester type 

compound like 69.  This neutral host offers a polar cavity on its lower rim with 

localised negative charge provided by four ester carbonyls and four phenoxy oxygens.  

This represents a host providing an ideal �lock and key� fit for the sodium ion as well 

as providing hard donor oxygens to coordinate effectively with the sodium ion.  The 

sodium selectivity of the tetraester may be considered a kind of default for 

calix[4]arenes with extensive potentiometric investigations on these calix[4]arens 

already published10.  Because of their excellent binding characteristics (selectivity, 

reversibility and rapid kinetics), their potential as active agents in chemical sensors 

was recognised at an early stage and in particular, several derivatives have provided 

the basis for successful ion-selective electrodes3,9-11.  Similar but somewhat less 

celebrated success was achieved when soft donor groups are used.  Selectivity has 

been observed for softer cations (e.g. transition metals, lanthanides and heavy 

metals)12-14.   
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The synthesis of the asymmetric tetranitrile calix[4]arene 5 was previously 

described15.  Initial potentiometric screening of 5 confirmed the absence of sodium 

selectivity.  This prompted the screening of 5 and related alkyl nitrile calix[4]arenes 2 

and 4 by potentiometry for response towards a comprehensive range of hard and soft 

cations.   

.In previous cases where nitrile groups have been incorporated into a molecular 

backbone such as a calixarene or a bis-calixarene, these compounds have been used 

(in monomeric form or attached to a polymer backbone), to perform multiphase 

extraction experiments of metals16-20.  Hg(II) in particular was found to be extracted 

well in most cases.  The best Hg(II) selectivity was observed for the alkyl nitrile 

substituents21.  Aryl nitrile substituents enabled a delocalisation of nitrile electrons 

over the proximal π-electron cloud leading to less pronounced selectivity. 

The early work on Hg(II) coordination involved solvent extraction experiments using 

macrocyclic polythiaether ligands22-25.  These studies revealed Ag(I) as the main co-

extractant (equivalent to interferant in sensor terms).  Furthermore, recent developers 

of Hg(II) sensitive compounds often implicate silver (I) as a major co-analyte26-30.  

Electrochemical Hg(II) sensors developed recently include an ISE of a calix[4]crown 

based on imine30, an ISE of a mercapto based system with it�s soft nitrogen and 

sulphur donors31 and a more classical thia-crown ether based ISE32 amongst 

others33,34.  Several charged compounds used in electrodes for Hg(II) detection have 

also been reported35-37.   

Relatively little reference is made in the literature to the cation coordinating ability of 

the soft nitrile functional group in analytical sensors.  The use of nitrile functionality 

in calixarene (or other scaffolds) based Ion Selective Electrodes (ISEs) has not been 

reported to date to the best of our knowledge.   
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The aims of the current work were, using potentiometry to (1) investigate the mode of 

binding towards metals of a series of nitrile calixarenes and compare selectivity 

patterns (2) change ISE membrane parameters like polarity and host structure and 

correlate these changes to an analytical signal (3) discuss viability of calix[4]arene 

nitriles for use in chemical sensors for soft metals by focussing particularly on 

reversible and selective analyte detection and (4) to allude to future work and 

structural tuning strategies for synthesising improved supramolecular hosts with 

nitrile functionality.  

Results and Discussion:  The synthesis of 2 and 4 were carried out according to 

Scheme 1 and Scheme 2 respectively.  5-8 were synthesised as described elsewhere 

(Figure 1). 

Scheme 1.  The synthesis of 2. 

Scheme 2.  The synthesis of 4. 

Neutral hosts 2 and 4 are asymmetrically tetrasubstituted on the lower rim, each 

containing four alkyl groups.  In each case, two of the alkyl chains terminate with 

nitrile groups.  The two possible cation binding sites within each of these compounds 

are the four hard phenoxy oxygens just below the calixarene�s annulus and the two 

soft nitrile groups, either of which may interact with cations.  Host 2 contains the two 

possible binding sites in close proximity, thus allowing possible cooperative binding 

between the two sites.  Host 4 contains the two sites at a greater distance from each 

other and so in contrast a cation guest is more likely to interact with one or the other.  

The other host calixarenes discussed in the current report are shown in Figure 1. 

Figure 1.  Structures of calixarenes 5-8. 

Figure 2 highlights some of the absolute ISE potentials observed when 5 was screened 

separately with a selection of cations in aqueous solution at log activity (a) = -3.0. 
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Figure 2.  Potentials of an ISE based on 5 screened with a selection of cations, 

each at log activity (a) = -3.0.  The effect of changing membrane plasticizer is also 

shown. 

It can be seen that 5 shows a strong response towards soft metals, in particular to 

Hg(II) and Ag(I).  The selectivities of ISEs are expressed formally by selectivity 

coefficients, K pot
IJ , based on the Nernst equation38,39.  Using the Separate Solutions 

Method (SSM), the selectivities were calculated for 2, 4 and 5.  Table 1 shows 

selectivity coefficients for a comprehensive range of cations tested. 

Table 1.  Selectivity Coefficients, log K pot
JHg +2 , for 2, 4 and 5, calculated using the 

Separate Solutions Method (SSM). 

The very strong selectivity towards silver (I) and Mercury (II) is immediately 

apparent from Figure 2 and confirmed in Table 1.  The soft metals in general show a 

better response than the harder group I and II metals.  This indicates that perhaps the 

nitrile functionality of the current host series dictates the response rather than the 

phenoxy oxygen atoms, which is consistent with the predicted conformation from 

theoretical calculations (Figure 3).   

The theoretical molecular models in Figure 3 reveal the classic calixarene cone 

conformation adopted, allowing the selective binding of sodium ions by tetraester 6, 

involving phenoxy and ester carbonyl oxygens.  Conversely, we speculated that 5 

(and related calixarene nitriles) would bind cations by association with nitrile 

functional groups as seen in Figure 3.  This example of 5 coordinating a cation shows 

a more peripheral cavity binding at a greater distance from the annulus, not 

significantly involving the calixarenes phenoxy oxygen atoms.   

Figure 3.  General modes of complexation of 5 and 6 with cations.  Atoms are 

scaled by size according to Huckel partial charges.  Red and blue are areas of 
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positive and negative localised charge respectively.  Software and calculation 

details are in the Experimental section. 

The selectivity of an ISE can be modified by a number of strategies38.  For example 

ISE membrane polarity can influence selectivity.  Selectivity for divalent cations is 

generally enhanced in more polar membrane phases40.  The polarity of the ISE 

membrane of 5 was changed by changing the plasticizer from NPOE (dielectric 

constant εr = 23.9) to DOS (εr = 3.9).  This spans the majority of the polarity range of 

common ISE plasticizers.  From Figure 2 it can be seen that the resultant ISE 

potentials observed were lower in general accompanied by somewhat more uniform 

selectivities as seen in Table 1.  The NPOE membranes showed similar selectivities 

for Ag(I) and Hg(II), whereas for the DOS based ISE of 5, there is a considerable 

margin of selectivity of Ag(I) over Hg(II) (log K pot
AgHg ++2 2.2).  However, the 

interference from group I metals like sodium and potassium is much greater with log 

K pot
IJ  values increasing by approximately six and five orders of magnitude 

respectively compared to NPOE based membranes.  Similarly, proton interference 

was a greater factor with DOS membranes indicative of greater pH sensitivity.  These 

observations are due to a much smaller margin of response between Ag(I)/Hg(II) and 

other cations when DOS plasticizer was used (Figure 2).  In light of these 

observations, it was decided to use only NPOE for all further ISE work on 

Hg(II)/Ag(I) selective systems based on further receptors.   

Table 2 reveals the ISE titration slopes obtained for Ag(I) and Hg(II) of the ISEs 

tested.   

Table 2.  Characteristics of ISEs based on 2, 4 and 5 for the indicated activities. 

This ISE data was used to shed light on the complex formation process specifically.  

All slopes obtained for Hg(II) were super-Nernstian, except for the DOS membrane.  
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Concurring with the slope values for mercury (II) is the Donnan failure (Figure 4) of 

the titration curves at higher concentrations of Hg(II) (log a ~ -2.0) . 

Figure 4.  ISE titrations of 2, 4 and 5 showing Donnan failure occurring  

at higher cation concentrations.  

Donnan failure is caused by the co-extraction of counter ions of measured ions and 

can be symptomatic of excessive affinities of an ISE towards the measured ion. 

The complex formation process is known to be a major perpetrator causing Donnan 

failure with high analyte affinity or complex stabilities lowering the upper 

concentration limit at which the phenomenon takes place41.  When developing a 

potentiometric sensor from a host compound, Donnan failure and its causes, as 

observed, would certainly impair the process of optimising the lower limit of 

detection (LOD) below the frequently observed classical LOD in the µM region.  In 

addition, such a sensor would show poor reversibility11,39,42.   

Donnan failure and/or super-Nernstian slopes were observed for 2, 4 and 5 in 

response to Hg(II) in all cases at log a ~ -2.0, regardless of membrane polarity.  The 

phenomenon was further probed in the case of 5.  Figure 5a shows the dynamic 

response when an ISE containing 5 was placed from water into a 10-2M solution of 

Hg2+ and placed directly back into water.  Even after 1.5 hours, the sensor had not 

recovered it�s starting potential.  Analogously, an ISE of 5 conditioned and filled with 

0.01M HgCl2
 instead of 0.01M NaCl showed very little sensitivity towards mercury 

(II) over a large concentration range (Figure 5b).  Therefore, in order to show 

unbiased selectivity coefficients, a non-primary salt, NaCl, was generally used for ISE 

filling and conditioning for the current work39. 
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Figure 5.  (a) The dynamic recovery of an ISE of 5 after exposure to 0.01M 

HgCl2: Partial recovery after 1.5 hours.  (b) The reduced sensitivity of an ISE of 

5 with HgCl2 filling and preconditioning . 

Another strategy therefore was to structurally modify the ionophore/host itself to 

modulate the interaction with guests.  For example to lower the Hg(II) affinity or 

improve Ag(I) selectivity, strategies had to be applied to weaken the affinity of nitrile 

calix[4]arenes towards mercury (II) ions. 

Hosts 2 and 4 contain only two instead of the previous four possible coordinating 

nitrile groups.  It was thought that this would generally reduce complex stability.  

Furthermore, 2 has a smaller and more rigid lower rim cavity than 4, which has longer 

alkyl nitrile appendages yielding a larger more flexible cavity.   

The availability of somewhat more confined preorganised cavities in 5 and 2, with 

nitriles closer to the calix[4]arene annulus, may have resulted in the identical 

selectivities towards mercury (II) observed (Table 1), with marginal selectivity over 

silver (I) for both hosts.  Conversely, 4 showed a modest selectivity for silver(I) over 

mercury(II).  The larger silver ion may favour the greater flexibility of the two nitrile 

groups in the cavity of 4.  Table 3 compares the ionic radii of some selected cations43. 

Table 3.  Ionic radii of selected cations. 

Unlike with Hg(II), 2, 4 and 5 yielded Nernstian or near Nernstian slopes for silver(I) 

and Donnan failure was not observed in the activity ranges of titrations carried out. 

By and large, Hg(II) selectivity values over other cations are quite similar for 2, 4 and 

5 (Table 1).  Lowering the number of nitriles from four to two did not yield a 

noticeably weaker Hg(II) interaction.  As Hg(II) ions are known to preferably form 

two coordinate linear complexes44, the tetrahedral arrangement of nitrile functionality 
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offered by 5 may not necessarily lead to stronger complex formation compared to 

dinitriles 2 and 4.   

In order to maintain the selectivity of Ag(I)/Hg(II) over the other cations but to 

discriminate more between them, hosts 7 and 8 were synthesised.  These introduce 

aromatic moieties proximal to the nitrile functionality (Figure 1), and, in addition, 

each lower rim benzene ring contains two nitrile groups, the idea being that one nitrile 

of each benzene ring would serve as guest coordinator whilst the other nitrile group 

and benzene ring would serve as electron withdrawing and delocalising agents 

respectively.  It was hoped that the net effect would be to weaken the affinity for 

cations of these hosts by reducing the availability of negative charge.  It was thought 

that this would suppress the excessive Hg(II) affinity previously observed and 

possibly induce discrimination between Ag(I) and Hg(II).  With the large margin of 

selectivity of Hg(II)/Ag(I) previously enjoyed over the other cations for 2, 4 and 5, a 

modest loss in overall selectivity could be sustained. 

Table 4 shows the selectivity values obtained for 7 and 8, from ISEs prepared in an 

identical fashion to the other receptors described.  

Table 4.  Selectivity Coefficients, log K pot
JAg+ , for 7 and 8, calculated using the 

Separate Solutions Method (SSM). 

Immediately apparent was the suppression of the Hg(II) sensitivity but maintenance 

of the Ag(I) response.  Interestingly, selectivities are more uniform in the case of 8 

and the margin of selectivity of Ag(I) over the other cations is greater for 7 (e.g. log 

K pot
HgAg ++ 2  of -5.1 and -3.3 for 7 and 8 respectively) .  Perhaps this is due to the larger 

more flexible cavity of 8 discriminating less between cations than the more rigid 

preorganised cavity of 7.  The ISE characteristics of 7 and 8 (Table 5) confirmed that 

they are poor hosts for Hg(II) as response slopes went from previously observed 
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super-Nernstian to sub-Nernstian (Typically >+40mV/decade for 2, 4 and 5 compared 

to <1+15mV/decade for 7 and 8).  Furthermore, Donnan failure is absent in the 

activity ranges examined.  Slopes closer to Nernstian values were observed for Ag(I) 

in all cases. 

Table 5.  Characteristics of ISEs of 7 and 8 at the indicated activities. 

Conclusion:  The current work describes calix[4]arene host systems based on nitrile 

functional groups, which display excellent Hg(II)/Ag(I) selectivity over other cations.  

In the course of the work described, an �overtuning� of host structure led to the near 

suppression of a formerly excessive Hg(II) response, leaving Ag(I) as the primary 

analyte.  In all cases changes in potentiometric ISE data could be correlated to the 

structural differences between hosts examined.  ISEs were found to be an excellent 

tool for the design of host systems, as they conveniently served to evaluate the work 

of the organic chemist whilst representing an analytical technique known to be readily 

implementable in real life pratical sensors. 

It was found that structural modifications of the host ionophore had a more dramatic 

effect on selectivity patterns observed than changing other ISE membrane 

components like membrane plasticizer (affecting polarity).  The positioning of 

electron withdrawing groups and delocalising aromaticity proximal to the 

coordinating nitriles (7 and 8) led to a dramatic suppression of the Hg(II) response 

observed before and a corresponding Ag(I) selectivity.  On the other hand, changing 

the number of nitrile groups available for binding and changing cavity dimensions (2, 

4 and 5) did not appear to dramatically change the high affinity for Hg(II).  It is 

thought that Hg(II) forms a two coordinate complex with two nitrile groups per 

calixarene host, perhaps in a tweezer like fashion.  This is in agreement with the 

theory suggesting Hg(II) ions ideally form linear two coordinate complexes.  
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The structural fine tuning of present hosts is ongoing.  In particular, efforts will focus 

on modifying the chemistry proximal to the nitrile groups in a way that could yield a 

practical and reversible Hg(II) sensor, by controlling the localisation of negative 

charge available for cation coordination.  A further strategy will be to adorn other 

molecular scaffolds, apart from calixarenes, with cation coordinating nitrile groups for 

the purpose of soft metal sensor development. 

Materials and methods:  The synthesis of hosts 1, 515, 63, 7 and 845 was described 

elsewhere.  NaH used was a 60% dispersion in mineral oil.  All reactions were carried 

out under argon.  The name p-tert-Butylcalix[4]arene was used instead of the IUPAC 

name for convenience:  5,11,17,23-tetra-p-tert-butyl-25,26,27,28-

tetrahydroxycalix[4]arene.   

HPLC was carried out using a HP1100 with UV detection.  For LC-MS and direct 

injection MS work, a Bruker/Hewlard-Packard Esquire system, using a positive ESI 

source and the software�s default �smart� settings were used.  Mobile phase used was 

isocratic LC grade Acetonitrile with 0.25% formic acid content.  This also served as 

the sample solvent.  A Synergy 150.0 x 2.0mm, 4µm Fusion-RP column was used.  

Flowrate was 0.2ml/min.  Detection wavelength was 210nm.  Injections were 5µl of 

0.5mg/ml sample.   

Potentiometric membranes were prepared using 250mg 2-Nitrophenyl octyl ether, 

125mg PVC, 6.5mmol Kg-1 host ionophore and 2.7mmol Kg-1 potassium tetrakis(4-

chlorophenyl) borate dissolved in dry THF and evaporated slowly. 

The electrochemical cell used consisted of a double junction reference electrode and a 

PVC membrane working electrode in the following arrangement:   

Ag│AgCl│3M KCl║0.1M LiOAc║sample solution│PVC membrane│0.01M 
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NaCl│AgCl│Ag.  Membranes were conditioned in 0.01M sodium chloride for 12 

hours and deionised water for half an hour prior to ISE titrations.  The potentiometric 

cell was interfaced to a PC using a National Instruments SCB-68 4-channel interface.  

All ISE measurements were performed in triplicate. 

Energy minimised molecular models were generated using Chem3D pro v.8.0 

software, using the MM2 forcefield method.  This software was also used to calculate 

extended Huckel charges to display partial charge surfaces. 

5,11,17,23-Tetra-p-tert-butyl-25,27-bis[(cyanomethyl)-oxy]-26-28-bis[(butyl)-

oxy]calix[4]arene (2).  Calixarene 1 (2.0g, 2.76mmol) and NaH (0.22g, 5.52mmol) 

was stirred 1 h at room temperature in anhydrous DMF (100ml).  4-Bromobutane 

(0.82g, 5.52mmol) was added batch wise and the mixture was stirred at 75 oC for 24 h 

and a further aliquot of NaH and 4-bromobutane added as above.  The reaction was 

monitored by HPLC-MS.  After a further 24 h, the DMF was evaporated and the 

residue taken up in CH2Cl2 (200ml), washed with 1N HCl (100ml), H2O (50ml), brine 

(50ml) and saturated NH4Cl (50ml) and dried with Mg2SO4.  After filtration the 

CH2Cl2 was removed to yield an oily solid.  Upon washing with 20ml MeOH at 0oC, 

0.84g of a white solid was obtained: yield 37%; mp 165-170  oC; IR (KBr) 2174cm-1 

(CN); 1H NMR δ 7.16 (s, 4H), 6.42 (s, 4 H), 5.01 (s, 4H), 4.39 and 3.24 (ABq, 4H, J = 

13.0), 3.78 (t, 4H), 1.97 (m, 4H, J = 7.2), 1.49 (m, 4H, J = 7.6), 1.35 (s, 18H), 1.00 (t, 

6H, J = 7.2), 0.79 (s, 18H); 13C NMR δ 152.6 (s), 151.9 (s), 147.6 (s), 144.7 (s), 135.8 

(s), 131.4 (s), 126.1 (s), 124.6 (s), 117.2 (s), 76.1 (s), 57.8 (s), 34.8 (s), 33.6 (s), 32.5 

(s), 31.6 (s), 31.0 (s), 22.7 (s); 19.5 (s), ESI mass spectrum +m/e 861.4 ([M + Na+], 

calcd 861.5); HPLC purity: 95.6%.  Anal. Calcd for C56H74N2O4:  C, 78.46; H, 8.94; 

N, 3.27.  Found: C, 78.42; H, 9.18; N, 2.90. 
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5,11,17,23-Tetra-p-tert-butyl-25,27-bis[(cyanopropyl)-oxy]-26-28-

dihydroxycalix[4]arene (3).  p-tert-Butylcalix[4]arene (5.0g, 7.72mmol),  K2CO3 

(1.28g, 9.26mmol) and bromobutyronitrile (2.41g, 16.20mmol) was heated in CH3CN 

(80ml) at 80 oC for 5 days.  The reaction was monitored by LC-MS.  The solvent was 

evaporated and the residue taken up in CH2Cl2 (300ml), washed with 1N HCl 

(100ml), H2O (50ml) and brine (50ml) and dried with Mg2SO4.  CH2Cl2 was 

evaporated and the residue was recrystallised from CHCl3/MeOH yielding 3.7g of a 

white solid: yield 61%; mp 295-300 oC; IR (KBr) 2250 cm-1 (CN), 3406 cm-1 (OH) ; 

1H NMR δ 7.46 (s, 2H), 7.05 (s, 4 H), 6.86 (s, 4H), 4.16 and 3.37 (ABq, 4H, J = 13.0), 

4.09 (t, 4H, J = 5.6), 3.05 (t, 4H, J = 7.2), 2.34 (m, 4H, J = 5.6), 1.27 (s, 18H), 1.00 (s, 

18H); 13C NMR δ 150.3 (s), 148.8 (s), 147.6 (s), 142.1 (s), 132.6 (s), 127.5 (s), 125.8 

(s), 125.3 (s), 119.5 (s), 73.3 (s), 34.0 (d), 31.8 (d), 31.0 (s), 26.6 (s), 14.2 (s); ESI 

mass spectrum +m/e 805.5 ([M + Na+], calcd 805.5); HPLC purity: 97.3%.  Anal. 

Calcd for C52H66N2O4: C, 79.76; H, 8.50; N, 3.58.  Found: C, 79.64; H, 8.44; N, 3.54.  

5,11,17,23-Tetra-p-tert-butyl-25,27-bis[(cyanopropyl)-oxy]-26-28-bis[(butyl)-

oxy]calix[4]arene (4).  Calixarene 3 (4.0g, 5.12mmol) and NaH (0.41g, 10.21mmol) 

was stirred 1 h at room temperature in anhydrous DMF (100ml).  4-Bromobutane 

(1.52g, 10.21mmol) was added batch wise and the mixture was stirred at 75 oC for 24 

h and a further aliquot of NaH and 4-bromobutane added as above.  The reaction was 

monitored by HPLC-MS.  After a further 24 h the DMF was evaporated and the 

residue taken up in CH2Cl2 (200ml), washed with 1N HCl (100ml), H2O (50ml), brine 

(50ml) and saturated NH4Cl (50ml) and dried with Mg2SO4.  After filtration the 

CH2Cl2 was removed to yield an oily solid.  Upon washing with 40ml MeOH at 0oC, 

3.89g of a white solid was obtained: yield 85%; mp 190-195  oC; IR (KBr) 2244cm-1 

(CN); 1H NMR δ 7.06 (s, 4H), 6.52 (s, 4 H), 4.30 and 3.17 (ABq, 4H, J = 12.8), 4.06 
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(t, 4H, J = 7.2), 3.74 (t, 4H, J = 7.2), 2.64 (t, 4H, J = 7.6), 2.41 (m, 4H, J = 7.6), 1.86 

(m, 4H, J = 7.6), 1.49 (m, 4H, J = 7.6), 1.28 (s, 18H), 1.02 (t, 6H, J = 7.6), 0.88 (s, 

18H); 13C NMR δ 153.4 (s), 152.3 (s), 145.5 (s), 144.3 (s), 135.1 (s), 132.1 (s), 125.6 

(s), 124.7 (s), 119.9 (s), 75.7 (s), 72.7 (s), 34.1 (s), 33.7 (s), 31.7 (s), 31.2 (s), 30.9 (s), 

25.9 (s); ESI mass spectrum +m/e 917.4 ([M + Na+], calcd 917.5); HPLC purity: 

97.5%.  Anal. Calcd for C60H82N2O4:  C, 80.49; H, 9.23; N, 3.13.  Found: C, 80.50; H, 

9.41; N, 3.01. 
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Abbreviated title:   

Nitrile calix[4]arene compounds for soft metal sensing. 

 

 

 

 

Graphical Abstract: 

 

Development of a calix[4]arene sensor for soft metals based on 
nitrile functionality. 
Benjamin Schazmann, Shane O�Malley, Kieran Nolan and Dermot Diamond♣. 
National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland. 

Abstract 
Nitrile functionality has been incorporated into a calix[4]arene skeleton to give a series of new soft cation selective 
hosts.  Structural modifications in particular influence the Hg(II) and Ag(I) selectivity of a potentiometric sensor. 
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Scheme 1.  The synthesis of 2. 
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Scheme 2.  The synthesis of 4. 
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Host 5 4 2 5 

Plasticizer NPOE NPOE NPOE DOS 

Hg2+ 0 0 0 0 

Ag+ -0.19±0.07 0.95±0.14 -0.25±0.12 2.25±0.10 

Pb2+ -7.86±0.07 -7.20±0.00 -7.03±0.14 -3.02±0.02 

Cu2+ -7.00±0.09 -7.73±0.02 -6.56±0.19 -1.62±0.03 

Co2+ -8.21±0.10 -7.74±0.14 -8.03±0.07 n/a 

Cd2+ -9.41±0.07 -8.64±0.02 -8.84±0.12 -5.04±0.03 

Zn2+ -8.82±0.07 -8.88±0.02 -9.32±0.12 -4.75±0.02 

H+ -5.52±0.14 -5.02±0.02 -5.00±0.33 0.72±0.02 

Mg2+ -9.32±0.05 n/a n/a n/a 

Ca2+ -8.82±0.05 n/a n/a n/a 

Li+ -7.48±0.05 n/a n/a n/a 

K+ -3.91±0.07 -2.49±0.02 -3.45±0.24 0.72±0.02 

Na+ -6.23±0.08 -4.94±0.00 -5.31±0.19 -0.25±0.02 

Note:  I is the primary ion Hg2+ and J is the interferant specified.   
The Separate Solutions Method (SSM) was used where log 
aI=logaJ=-2.3.  Reproducibility based on three ISEs.  n/a = Data not 
available. 

Table 1.  Selectivity Coefficients, log K pot
JHg +2 , for 2, 4 and 5, calculated using the Separate 

Solutions Method (SSM). 
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Host Ion Plasticizer 
Range 

(log a) 

Slope 

(mV/decade) 

Donnan 

Failure (log a) 

5 Hg2+ NPOE -4.0→-1.0 +49.7 -1.6 

5 Hg2+ DOS -4.0→-1.0 +29.0 -1.6 

2 Hg2+ NPOE -4.0→-1.0 +46.1 -1.6 

4 Hg2+ NPOE -4.0→-1.0 +37.0 -1.6 

5 Ag+ NPOE -4.0→-1.0 +56.9 NO 

5 Ag+ DOS -4.0→-1.0 +54.8 NO 

2 Ag+ NPOE -4.0→-1.0 +55.2 NO 

4 Ag+ NPOE -4.0→-1.0 +53.4 NO 

Note:  NO=Not Observed.  Theoretical Nernstian slopes are 59.6 and 29.3mV/decade for mono 

And divalent ions respectively. 

Table 2.  Characteristics of ISEs based on 2, 4 and 5 for the indicated activities. 
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Ion Radius (pm) Coordination 

K+ 138 VI 

Na+ 102 VI 

Hg2+ 102/69 VI/II 

Ag+ 115/67 VI/II 

Table 3.  Ionic radii of selected cations. 
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Host 7 8 

Plasticizer NPOE NPOE 

Hg2+ -5.09±0.05 -3.26±0.02 

Ag+ 0 0 

Pb2+ -4.50±0.02 -2.25±0.12 

Cu2+ -4.90±0.02 -3.07±0.14 

Co2+ -4.57±0.03 -2.80±0.11 

Cd2+ -4.96±0.04 -2.63±0.04 

Zn2+ -5.09±0.04 -2.80±0.06 

H+ -3.86±0.05 -2.29±0.06 

Mg2+ -6.66±0.10 -3.07±0.07 

Ca2+ -6.11±0.10 -2.49±0.02 

Li+ -4.00±0.01 -2.46±0.05 

K+ -1.78±0.03 -1.26±0.03 

Na+ -3.38±0.03 -2.09±0.01 

Note:  I is the primary ion Ag+ and J is the interferant specified.   
The Separate Solutions Method (SSM) was used where log 
aI=logaJ=-2.3.  Reproducibility based on three ISEs.   

Table 4.  Selectivity Coefficients, log K pot
JAg+ , for 7 and 8, calculated using the 

Separate Solutions Method (SSM). 
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Host Ion 

Range 

(log a) 

Slope 

(mV/decade) 

Donnan 

Failure (log a) 

7 Hg2+ -4.0→-1.0 +14.8 NO 

8 Hg2+ -4.0→-1.0 +14.0 NO 

7 Ag+ -4.0→-1.0 +58.3 NO 

8 Ag+ -4.0→-1.0 +53.1 NO 

Note:  NO=Not Observed.  Plasticizer used:  NPOE. 

Table 5.  Characteristics of ISEs of 7 and 8 at the indicated activities. 
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Figure 1.  Structures of calixarenes 5-8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supramolecular chemistry  page - 26 - 

 26

 

Figure 2.  Potentials of an ISE based on 5 screened with a selection of cations, each at log 
activity (a) = -3.0.  The effect of changing membrane plasticizer is also shown. 
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Figure 3.  General modes of complexation of 5 and 6 with cations.  Atoms are scaled by 
size according to Huckel partial charges.  Red and blue are areas of positive and negative 
localised charge respectively.  Software and calculation details are in the Experimental 
section. 
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Figure 4.  ISE titrations of 2, 4 and 5 showing Donnan failure occurring  
at higher cation concentrations. 
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Figure 5.  (a) The dynamic recovery of an ISE of 5 after exposure to 0.01M HgCl2: Partial 
recovery after 1.5 hours.  (b) The reduced sensitivity of an ISE of 5 with HgCl2 filling and 
preconditioning . 
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