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ABSTRACT 

Gene therapy aims to revert diseased phenotypes by the use of both viral and nonviral gene delivery 

systems. Substantial progress has been made in making gene transfer vehicles more efficient, less 

toxic, and nonimmunogenic and in allowing long-term transgene expression. One of the key issues in 

successfully implementing gene therapies in the clinical setting is to be able to regulate gene 

expression very tightly and consistently as and when it is needed. The regulation ought to be 

achievable using a compound that should be nontoxic, be able to penetrate into the desired target 

tissue or organ, and have a half-life of a few hours (as opposed to minutes or days) so that when 

withdrawn or added (depending on the regulatable system used) gene expression can be turned 

“on” or “off” quickly and effectively. Also, the genetic switches employed should ideally be 

nonimmunogenic in the host. The ability to switch transgenes on and off would be of paramount 

importance not only when the therapy is no longer needed, but also in the case of the development 

of adverse side effects to the therapy. Many regulatable systems are currently under development 

and some, i.e., the tetracycline-dependent transcriptional switch, have been used successfully for in 

vivo preclinical applications. Despite this, there are no examples of switches that have been 

employed in a human clinical trial. In this review, we aim to highlight the main regulatable systems 

currently under development, the gene transfer systems employed for their expression, and also the 

preclinical models in which they have been used successfully. We also discuss the substantial 

challenges that still remain before these regulatable switches can be employed in the clinical setting. 

 

INTRODUCTION 

Gene therapy has evolved into a promising therapeutic modality to treat and manage a diverse array 

of diseases. The technology for using genes to provide a desired treatment has become an effective 

strategy due to advances in viral vector engineering and improved gene regulatory systems to 

facilitate and control tightly therapeutic gene expression. These transcriptional regulatory systems 

have been encoded within several viral vectors to facilitate gene expression and further improve the 
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kinetics of gene regulation. Among the existing inducible transcriptional gene regulatory systems, 

the Tet-regulatable system is the most widely exploited tool for controlling gene expression, as it has 

many advantages. Tetracyclinebased regulatable systems can facilitate regulatable targeted gene 

expression with the use of cell-type-specific promoters. In addition, this system is nontoxic to 

mammalian cells and exhibits no pleiotropic consequences for other cellular metabolic pathways. 

The Tet regulatory system has been encoded within lentiviruses, adeno-associated viruses, first-

generation and high-capacity helper-dependent adenoviruses (HC-Ad), and retroviruses, yielding 

successful gene regulation. This review will concentrate on the studies that have utilized viral vectors 

engineered with Tet-regulatable systems and also on new developments for generating superior 

inducible regulatory systems to optimize gene therapy strategies. Akin to drug treatment, for gene 

therapy to be used as a clinical treatment, gene therapists must also achieve an adequate 

understanding of the short- and long-term safety issues involved in the use of regulatable gene 

expression systems. This includes assessing long- and short-term applications of viral vectors and 

regulatory systems to produce safe and efficient levels of regulatable transgene expression and the 

immune impact to the host. With the development of safer viral and nonviral vectors, the current 

challenge for gene therapists, in conjunction with combating vector-mediated immune responses, is 

the translation of the concept of efficiently regulating therapeutic gene expression into the clinic. 

This is critical for chronic diseases, such as neurodegenerative disorders; activating and silencing 

therapeutic genes will be essential to alleviating recurrent symptoms of the disease in a timely 

manner and avoiding side effects due to overexpression of these genes. Stringent regulation of 

therapeutic gene expression within specific cells or in a localized anatomical region by means of cell-

type-specific and/or targeted vector systems coupled to efficient transcriptional switches will 

significantly decrease the potential safety risks. This is especially relevant for chronic neurological 

diseases like multiple sclerosis and Alzheimer and Parkinson diseases, which exhibit progressive 

symptoms over time. The goal of clinical gene therapy utilizing emerging Tet-regulatable systems is 

to manage patients’ symptoms successfully and efficiently by administering an exogenous drug that 

could turn the therapeutic gene expression on and off as required. There are several other promising 

drug/hormone-regulatable systems that have been encoded within different vector systems; these 

include rapamycin and progesterone analogue-inducible systems. Some of the challenges still 

remaining in all regulatable gene expression systems include leaky gene expression in the off state, 

which is crucial to address, especially in the case of proteins that could exert untoward toxic effects 

if expressed long term; lack of penetration of the inducer to the target tissue/organ; and untoward 

immune effects of the transcriptional activator proteins. 

 

DELIVERY SYSTEMS AVAILABLE FOR GENE THERAPY  

The aim of gene therapy is to introduce therapeutic genes into target cells, leading to efficient and 

stable expression of the therapeutic molecules and minimizing any putative adverse inflammatory or 

cytotoxic side effects. This can be achieved using viral and nonviral vectors. Important parameters to 

be considered when choosing a gene therapy vector include: (1) size limitations for insertion of 

transgenes, (2) purity and titer of the vector, (3) transduction efficiency, (4) ability to infect dividing 

and/or quiescent cells, (5) long-term expression of transgenes, (6) integration into the host genome, 

(7) the need for cell-type specificity or targeted delivery, and (8) vector-associated toxicity and 

immunogenicity. 
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Viral Vectors 

Viruses can easily enter cells and deliver their genetic material into the nucleus of target cells; 

therefore, they are in most cases more efficient than nonviral delivery systems (Fig. 1). Most vectors 

used for gene delivery are derived from human viral pathogens that have been made nonpathogenic 

by deleting essential viral genes. They usually have a broad tropism; therefore they can infect and 

deliver their encoded transgenes to a wide spectrum of cells and/or tissues. The most commonly 

used viral vectors for gene therapy are adenovirus (Ad), adeno-associated virus (AAV), herpes 

simplex virus type 1-derived vectors (HSV-1), and retrovirus/lentivirus vectors (Table 1). We will 

briefly discuss the main groups of viral vectors currently being developed for gene therapy 

applications. These vectors have also been used to encode regulatable gene expression systems. 

 

Adenoviral vectors 

Adenoviruses are a family of DNA viruses characterized by a capsid containing a linear double-

stranded DNA genome of 36 kb. Adenovirus infection is initiated when the fiber protein binds to the 

coxsackievirus and adenovirus receptor on the cell surface [1]. The penton then binds to integrins 

αvβ3 and αvβ5 on the cell surface, which facilitates viral internalization by endocytosis *2+. Once 

inside the cell, the Ad virion disassembles, during which the adenovirus hexon capsid protein 

remains at the nuclear membrane while the viral DNA is released into the nucleus and remains as an 

episome [3]. 

First-generation adenoviral vectors (RAd) have been developed for gene therapy based on human 

adenovirus type 2 and human adenovirus type 5 and were made replication defective through 

deletions in the E1 and E3 regions. The transcriptional cassette can be inserted into the E1 region, 
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yielding a recombinant E1/E3-deleted Ad vector. In one of the most frequent systems to produce 

these RAds the viral genomes are transfected into human 293 cells that express the E1 proteins in 

trans, allowing for E1-deleted Ad vector replication and packaging. However, these RAd vectors have 

residual expression of viral genes that leads to a strong host immune response, resulting in the 

generation of a high titer of neutralizing anti-capsid antibodies that inhibit reinfection with the same 

serotype of Ad vector [4-6]. At high viral doses, this viral gene expression leads to immune-mediated 

cellular cytotoxicity, which results in an immune-mediated loss of the Ad vector-transduced cells 

[7,8]. To overcome this limitation, a series of Ad vectors with multiple deletions has been developed, 

eliciting reduced toxicity in animal models [9-11]. More recently, a newer generation of helper-

dependent high-capacity adenoviral vectors (also known as high-capacity, “gutless” or “gutted” 

vectors), which are devoid of all viral coding sequences [12-16] have been developed. These vectors 

have a minimum requirement for the extreme termini of the linear adenoviral genome, containing 

only those cis-acting elements needed for viral DNA replication and packaging, mainly the inverted 

terminal repeat sequences (ITR) and the packaging signal (Ψ). Since these elements are contained 

approximately 500 bp from the ends of the genome [17], these helper-dependent vector genomes 

have the potential to carry from a few hundred base pairs up to approximately 36 kb of foreign DNA, 

which is close to the size of the wild-type Ad genome. HC-Ads are copropagated with an E1-deleted 

helper virus, which provides in trans all the proteins required for the propagation of the vector. 

Since the 293 cell line used to propagate HC-Ad also expresses Cre or Flpe recombinase, it causes the 

excision of the Ψ in the helper genome, rendering it unpackageable. HC-Ad vectors can efficiently 

transduce a wide variety of cell types from numerous species in a cell-cycle-independent manner. 

HC-Ad vectors have the added advantage of an increased cloning capacity compared to other viral 

vectors, and due to their reduced immune responses and toxicity, they elicit stable transgene 

expression in vivo both in peripheral organs and in the central nervous system [4,8,18-23]. The 

limitations of HC-Ad vectors include difficulty in large-scale production and helper virus 

contamination. If these obstacles can be surmounted by improving viral vector production 

techniques, the HC-Ad vectors will become one of the key viral vectors for gene therapy 

applications. 

Adeno-associated virus vectors 

The adeno-associated virus is a linear, single-stranded DNA parvovirus, which is currently being 

developed as a gene therapy vector for the treatment of numerous diseases. During AAV 

recombinant vector (rAAV) production, cap and rep sequences are provided by a helper plasmid, and 

a recombinant vector is easily rescued by co-infection with adenovirus [24]. 

Initially, AAV vectors were developed by replacing viral genes with transgene sequences. The second 

generation of rAAV vectors consists of only a transgene-expressing cassette flanked by ITRs, which 

prevents the formation of wild-type AAV during vector production [25]. Recently, a new rAAV 

production system completely free of Ad helper virus has been developed. This system consists of a 

plasmid containing a mini-Ad genome capable of propagating rAAV in the presence of AAV rep and 

cap genes. Transfection of 293 cells with the new mini-Ad helper and AAV packaging plasmids results 

in high-titer rAAV vectors [26]. The most significant limitation of rAAVs is their relatively small 

packaging capacity of approximately 4.7 kb. Currently, the packaging capacity of these vectors has 

been increased by exploiting the fact that rAAV genomes concatemerize after transduction [27]. This 

means that two vectors can be used, one encoding the first half of a protein and the other encoding 
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the second half. When both are transduced into cells, head-to-tail stitching of the viral genomes 

results in the reconstitution of a functional gene, effectively increasing the size of the gene that can 

be delivered [28,29]. Usually, rAAVs remain within the target tissues as episomal entities, although it 

has been demonstrated that they can also integrate into the host cell’s genome *25+. 

Retroviral and lentiviral vectors 

Retrovirus- and lentivirus-derived vectors constitute a group of RNA viral vectors that can integrate 

into the host cellular genome unlike many other viruses that remain episomal. This ability to 

integrate into host DNA makes these vectors an attractive choice for gene therapy applications. 

Once the vector integrates, the transgene of interest will be copied during DNA replication of the 

host cell, allowing for prolonged (up to 2 years) transgene expression, which is essential for chronic 

therapeutic applications [30]. However, there have been documented cases in which transgene 

expression was gradually silenced over time [31]. 

Theoretically, the integrated viral DNA would be inherited and this may have beneficial effects for 

the treatment of genetic diseases, in which inheritance of a therapeutic transgene may be a 

promising form of preventive therapy. However, this approach is not currently being developed. 

Also, integration of a gene within random chromatin sites could have the added side effects of 

oncogene activation, tumor suppressor gene inactivation, or insertional mutagenesis, leading to 

possible oncogenic transformation in the target cells [32-34]. 

The most widely used retroviral vectors for gene therapy applications have been the 

oncoretroviruses. These viruses can transduce only dividing cells, which poses a problem for gene 

therapy applications for nondividing cells such as those found in the CNS. One of the most 

commonly used oncoretroviruses is Moloney murine leukemia virus (MMLV), and pseudotyping was 

first performed using these viral vectors. The vesicular stomatitis virus G protein (VSV-G)was used to 

pseudotype the MMLV envelope glycoprotein. This modification confers higher stability to the 

vector particles and allows for viral preparations with higher titers. 

Lentiviral vectors are members of the retrovirus family that can transduce nondividing as well as 

dividing cells [35-39]. Many lentiviral vectors are derived from the human immunodeficiency virus 

(HIV) and are modified such that less than 5% of the parental genome is retained in the vector and 

less than 25% of the viral genome is incorporated into packaging constructs. These small 

percentages minimize the probability of replication-competent revertants. Lentiviral vectors are 

often pseudotyped with VSV-G. The biosafety of these retroviral vectors has been further increased 

through the development of self-inactivating vectors that contain deletions of the regulatory 

elements in the downstream long terminal repeat sequence, thus preventing the transcription of the 

packaging signal that is required for vector mobilization [40]. Another safety precaution for 

preventing lentiviruses from becoming replication-competent was the cloning of the viral genes 

needed for virus packaging and replication in two separate plasmids [41]. Lentiviral vectors have 

been proposed for treating a wide range of diseases such as hematopoietic disorders and CNS 

diseases [42-44]. 

Herpes simplex type 1 vectors 
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Herpes simplex virus type 1 is a human pathogen and has probably infected around 80% of the 

population. Once infection occurs in the epithelium, the virus travels to the CNS ganglia via 

retrograde axonal transport, where it establishes latency as an episome; under reactivation 

conditions, the virus spreads from the ganglia via anterograde transport to the epithelium 

(recurrence) where virus replication is active [45]. HSV establishes latency in the nervous system and 

can therefore exist in an individual for his or her entire lifetime. HSV contains a double-stranded 

DNA molecule with two unique sequences, which are linked by internal repeat sequences and 

flanked by terminal repeats. There are about 80 genes in the viral genome, half of which are 

nonessential. These nonessential genes are deleted during vector development allowing for 

approximately 50 kb of foreign DNA to be inserted [46]. HSV vectors are rendered recombination 

deficient to ensure that the stringent biosafety requirements necessary for gene transfer and gene 

therapy applications are met. Recombination deficiency is achieved by deleting the immediate early 

genes, such as ICP0, ICP4, ICP22, ICP27, and ICP 47, which are needed for lytic infection and 

expression of all other viral proteins. The ICP0 is needed for viral replication and is also essential for 

long-term, high-level transgene expression. Therefore, the production of multiple immediate early 

gene-deleted HSV-1 vectors is a balance between efficiency, persistent transgene expression, and 

cytotoxicity. Mutations in the Vmw65 and IE3 genes are also used to prevent viral replication 

[47,48]. Some viral gene deletions can lead to cytotoxicity in the brain [49]. The use of multiple 

deletions, including Vmw65, IE1, and IE3, results in reduced cytotoxicity and is therefore a promising 

vector manipulation for gene therapy [50-56]. The herpesviruses are nonintegrative vectors and, 

therefore, they remain episomal. 

Herpesviral vectors have been used in CNS gene therapy due to their ability to persist in a latent 

state in neurons. Long-term transgene expression is achieved by using a neuron-specific latency-

activated promoter [57-59]. HSV-based vectors are either recombinant viruses containing the gene 

of interest [60,61] or plasmid-based constructs encompassing certain viral sequence elements that 

allow for the replication and packaging of the plasmid DNA into HSV capsids in the presence of a 

defective helper virus [62,63]. Using replication-defective HSV vectors, highly encouraging results 

have emerged from recent preclinical studies in models of neurological disease including glioma, 

peripheral neuropathy, chronic pain, and neurodegeneration [64]. 

Some of the drawbacks of these vectors include the immune response that develops upon their 

administration and their cytotoxicity [56,65-68]. Another disadvantage to HSV vectors is that a large 

percentage of the human population has been exposed to herpesviruses and therefore has 

antibodies to the virus that would hamper the use of HSV vectors for gene therapy applications. 

However, it has been shown that the use of HSV vectors in the CNS in the presence of a preexisting 

immune response did not significantly affect transgene expression [69]. 

Nonviral Vector-Mediated Gene Delivery 

In trying to circumvent safety issues inherent to the use of viral vectors, development of numerous 

nonviral vectors is actively being pursued. The underlying principle of nonviral vector systems is to 

complex DNA that carries a therapeutic gene with molecules that will facilitate DNA entry into the 

cells of interest. Complexed DNA binds to the cell membrane, triggering either nonspecific or 

receptor-mediated endocytosis. Upon entry into the cell these complexes are contained in 

endosomes. The ability of these complexes to escape from endosomes before lysosomal enzymes 
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destroy them is an essential characteristic of a successful nonviral vector. Once released from the 

endosomes, these complexes must enter the nucleus to undergo transcription. To be successfully 

transcribed, complexed DNA must be released from its carrier molecules and stably express RNA. 

Aside from avoiding the issues of viral safety, nonviral vector DNA remains episomal, allowing long-

term and also high levels of gene expression, i.e., in muscle cells for Duchenne muscle dystrophy 

[70], glial cells and primary neurons [71], fibroblasts for lysosomal storage disorders [72], glial cells 

for cerebral ischemic diseases [73], and glioblastoma cells [74]. There are several types of nonviral 

vector systems being explored to find optimal carrier systems. Although uncomplexed DNA has been 

successfully used to transfect skeletal muscle [75], systemic administration has been unsuccessful 

due to clearance of DNA by serum nucleases [76,77]. 

The majority of nonviral vector systems use cationic lipids, polymers, or both as carriers. In these 

systems negatively charged DNA is strongly attracted to the lipid or polymer, and this interaction 

causes condensation of the DNA [78,79]. Cationic lipids, which self-assemble into vesicles that 

adsorb DNA, are known as lipoplexes. The stability of these lipoplexes is dependent on the lipid:DNA 

ratio [80]. Since lipoplexes are electrostatically, but nonspecifically, attracted to cellular membranes, 

the specificity of this carrier is low. 

Polymers like poly-L-lysine (PLL) and polyethylenimine (PEI) have been used in vitro to introduce 

DNA more efficiently into cells. The PLL:DNA ratio is essential for successful condensation and 

efficient intracellular release from endosomes [80]. However, the use of PLL as a carrier agent is 

limited due to its toxicity. To circumvent this toxicity and prevent rapid clearance from serum, 

modifications to the basic PLL—DNA complex via conjugation to other substances have been 

explored. Conjugation to polyethylene glycol (PEG) chains, 2-hydroxypropyl methacryl amide 

polymer, low-density lipoprotein, and palmitoyl—PEG have all produced more efficient transduction 

of target cells [81-86]. The targeting specificity of PLL complexes can be increased through the use of 

specific receptors, antibodies, sugars, peptides, or growth factors [87-95]. 

PEI polymers are highly branched molecules with an excellent buffering capacity, making efficient 

the release of DNA from endosomes. As with other polymer systems, the PEI:DNA ratio is an 

essential consideration for the toxicity and stability of the vector. Conjugation, as with PLL, can 

improve cell targeting and uptake. Carbohydrates, integrin-binding peptides, transferrin, and 

antibodies have been successfully used to increase uptake and targeting specifically for PEI [96-100]. 

While PLL and PEI have been extensively studied, several other cationic polymers are under 

investigation, including dendrimers [101], Polybrene [102], gelatin [103], tetraminofullerene [104], 

poly-L-histidine—graft—poly-L-lysine [105], and chitosan [106]. 

While nonviral vectors are easy to produce and have low immunogenicity, issues of toxicity, 

specificity, and transfection efficiency must be addressed before wide clinical implementation will be 

possible. 

 

REGULATABLE GENE EXPRESSION SYSTEMS FOR GENE THERAPY APPLICATIONS  

Gene therapy’s success hinges on several factors including site, duration, and levels of gene 

expression. Regulatory systems have been developed to control the temporal expression of a target 
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gene in vitro and in vivo. Currently, the tetracycline regulatory system [107] is the most widely used 

and versatile system. We will review this system and will also briefly discuss other regulatory 

systems that have potential for gene therapy applications. 

Initially, promoters that were responsive to a variety of environmental or physiological changes, 

including heat shock [108], metal ions [109], interferons or double-stranded RNA [110], and steroids 

[111], were developed as putative regulatable gene expression systems. More recently, a lac 

operator—IPTG-based system and an FKB12—rapamycin-associated protein/FK106 binding protein 

were tested in vitro and in vivo [112,113]. Many of these systems suffer from limitations and are 

currently unsuitable for use in clinical gene therapy. However, the steroid hormone receptor 

regulatory system is promising for gene therapy applications and will be discussed further in this 

section. 

Steroid hormone receptors are the largest group of transcription factors in the mammalian 

proteome. The endogenous ligands of steroid receptors cross epithelial barriers and plasma 

membranes with ease. Ligands bind to their receptors in the cytoplasm and these ligand—receptor 

complexes can then be translocated to the nucleus where they regulate gene expression [114]. 

However, a number of drawbacks are associated with steroid hormone receptor regulatory systems. 

Inducers or repressors of target genes may also modulate endogenous gene expression in cells. 

Conversely, physiological changes in natural ligand expression may affect expression of the target 

gene. Several groups have successfully designed strategies to surmount some of the problems 

associated with steroid hormone receptor regulatory systems [115]. 

An elegant example of this is the progesterone receptor regulatory system. The progesterone 

receptor is an attractive regulatory system to be further developed for gene therapy. In addition, the 

effects of several synthetic progesterone receptor agonists and antagonists have been characterized 

[116]. This system also contains a gene that encodes the progesterone receptor with a C-terminal 

truncation, which prevents binding with progesterone, yet the truncated receptor retains the ability 

to bind with the antagonist mifepristone (RU 486). Furthermore, mifepristone acts as an agonist, 

promoting transcription of reporter genes containing progesterone-responsive elements [117]. To 

improve the specificity of this regulatory system, the truncated progesterone receptor was fused 

with the Gal4 DNA binding domain and VP16 activation domain, a eukaryotic transactivator derived 

from HSV-1. This chimeric protein induces transcription more than 10-fold in vivo at a dose of 

mifepristone well below the threshold required to induce abortions in women. However, 

concentrations of mifepristone used to induce this activation are similar to estrogen replacement 

therapies currently used during menopause [118]. This system reduces many problems associated 

with steroid hormone regulatory systems. A modified version of this regulatory system has been 

tested in high-capacity adenoviral vectors. This vector induced potent liver-specific expression of 

human growth hormone (hGH) in vitro and in vivo only in the presence of mifepristone. In addition, 

only slight decreases in transgene expression were evident in animals, even after 4 weeks of 

continuous mifepristone administration [119]. An advantage of steroid hormone receptors is that 

the majority of the system comprises modified human proteins and should not be a potent activator 

of the immune system. However, inducers of the steroid hormone receptor system are generally 

able to activate native steroid hormone receptors in cells in addition to regulating transgene 

expression. As a consequence, such systems may have significant side effects or may not be suitable 

for use in all individuals. 
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A strategy designed to overcome the limitations of steroid hormone receptor regulatory systems 

was the utilization of a nonmammalian steroid hormone receptor. Ecdysone receptor (EcR) is a 

steroid hormone receptor involved in triggering metamorphosis in Drosophila melanogaster. A 

different class of steroid ligands called ecdysteroids bind to EcR, and the ecdysone-responsive 

element is also unique [120]. EcR offers a number of advantages over mammalian steroid receptors. 

Ecdysteroids have short half-lives, which aids in precise, potent gene induction. In addition, studies 

indicate that ecdysteroids are relatively nontoxic and nonteratogenic in mammals and do not appear 

to affect mammalian physiology [121]. Systemic delivery of an adenoviral vector with an ecdysone 

reporter system in mice showed in vivo favorable baseline and rapid and robust induction of 

reporter gene expression in tumor xenografts [122]. Since steroids diffuse through the blood—brain 

barrier, the EcR regulatory system was successfully used in a gene therapy study to regulate 

neuronal excitation using adenoviral vectors [123]. Also, mutation of EcR amino acids critical for 20-

hydroxyecdysone binding led to a steroid-insensitive EcR that responds to nonsteroidal ligands [124]. 

The combination of this mutant with the wild-type EcR could be useful to regulate the expression of 

two genes in the same cell. This system may eliminate many of the side effects of mammalian 

steroid hormone receptors, because the DNA binding site of EcR is unique. However, expression of 

insect proteins in vivo may induce an immune response eliminating transgene expression. Also, the 

lipid solubility of steroid hormones results in slower metabolism and clearance from the body than 

highly hydrophilic drugs. This may affect the ability to reduce transgene expression rapidly should an 

adverse reaction to the therapy result. 

 

PRECLINICAL APPLICATIONS OF REGULATABLE GENE EXPRESSION SYSTEMS  

Regulatable gene expression systems are an attractive gene therapy development, and potential 

applications have been assessed in a wide variety of preclinical laboratory models of disease. In this 

section we highlight some important advances and promising strategies in the most commonly 

studied diseases, namely cancer, diabetes, arthritis, and ischemia, that make use of inducible gene 

expression systems. The tetracycline-dependent regulatable system is not included in this section 

but will be reviewed on its own later in this article. 

Cancer 

The majority of research into applications for regulatable gene expression vectors is in models of 

cancer. This is due, in part, to inadequacies of current therapies, including radiotherapy and 

chemotherapy. One strategy commonly employed is to regulate expression of a cytotoxic gene with 

a promoter that can be activated by ionizing radiation. The first example of successfully utilizing 

radiation to induce gene expression in a tumor model was described more than a decade ago. It was 

found that TNF-α expression, under the control of the Egr-1 promoter, could be increased in 

response to ionizing X-ray radiation and this was associated with an improved control of tumor 

growth in comparison with X-ray radiation alone [125]. Since then, other radiation-sensitive 

promoters, including VEGF, Rec-A, and WAF-1 promoters, have been investigated in preclinical 

tumor models [126-128]. Induction of gene expression by ionizing radiation offers a number of 

advantages over other inducible systems for treating cancer. These include the ability to control 

temporal and spatial gene expression within the ionizing radiation field, reducing damage to 

adjacent, healthy tissue. In addition, certain genes, including TNF-α and inducible nitric oxide 
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synthase, have synergistic cytotoxic functions when utilized in combination with ionizing radiation 

[125,129]. 

The anatomy of growing tumors has been exploited by another commonly employed inducible gene 

therapy strategy. As a consequence of relatively poor vascularization, the center of most tumors is 

usually a nutrient-starved and hypoxic environment. Promoters activated by hypoxia or nutrient 

deficiency have been utilized to drive expression of tumoricidal genes. The glucose-regulated protein 

78 promoter was used to express HSV-1 thymidine kinase (TK) and successfully eliminate murine 

fibrosarcomas [130]. HSV-1-TK was also used successfully to treat hepatocellular carcinoma when 

expressed by a hypoxic-responsive element/α-fetoprotein promoter [131]. Inducible promoters such 

as radiation-sensitive or hypoxia-sensitive promoters are highly specific, and ease of use makes them 

valuable tools for managing certain diseases. Unfortunately, the application of these promoters is 

limited and they are not suitable for treating the majority of diseases. 

Ischemia 

Hypoxia-driven promoters are also of great benefit against other diseases, most notably ischemia. 

Myocardial ischemia can be a chronic illness with repeated bouts of severe hypoxia and can 

eventually result in myocardial fibrosis and death. By placing hypoxia-responsive elements within 

the promoter MLC2v, researchers have developed a tissue-specific hypoxia-responsive promoter 

expressed predominantly in heart tissue that can induce reporter gene expression by up to 400-fold 

when expressed by adeno-associated viral vectors [132]. Similar vectors expressing VEGF have been 

demonstrated to increase angiogenesis, improve cardiac function, and reduce myocardial infarcts in 

mouse model of ischemia [133]. 

Diabetes 

Diabetes is currently treated by daily injections of recombinant insulin to compensate for a 

deficiency in either production or function of insulin. Although successful for treating the disease, it 

can be expensive and can also result in a reduction of quality of life due to daily injections and 

imposed dietary restrictions. Inducible insulin expression by gene therapeutic vectors would 

circumnavigate many of the disadvantages of conventional insulin therapy. Researchers have 

investigated the ability to engineer hepatocytes to express and secrete a functional, modified insulin 

protein under the control of a rapamycin-responsive promoter. Using adenoviral-associated vectors 

to infect hepatocytes, gene expression was found to be negligible in the absence of rapamycin, but 

was potently and reversibly expressed in a mouse model of the disease when treated with 

rapamycin [134]. In a related study, glucose-responsive elements were used to drive insulin 

expression in hepatocytes in vitro and in vivo. The authors found that fasting blood glucose levels 

were returned to normal in a rat model of diabetes [135]. 

Arthritis 

Arthritis affects 1% of the population and is primarily a disease of the elderly. It is characterized by 

chronic and painful inflammation at the joints of individuals. This chronic inflammatory response has 

been used by researchers attempting to treat symptoms of arthritis with inducible gene therapeutic 

vectors. Although cytokine-responsive promoters were successfully used to drive the expression of 
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reporter genes in a model of arthritis [136], most current research is now focused on the robust Tet-

ON regulatory system for treating this disease [137]. 

TETRACYCLINE-DEPENDENT REGULATABLE GENE EXPRESSION SYSTEMS  

The Tet-ON system offers many advantages over other regulatable gene expression systems. The 

inducer has been used as an antibiotic for decades and it has been well characterized in a clinical 

setting. It is nontoxic at doses required for gene activation in preclinical and clinical studies, and the 

margin of safety is high. Tetracycline, (and its analogue doxycycline), is rapidly metabolized and 

cleared from the body, making it an ideal drug for the rapid increase in expression, long-term 

expression, and rapid decrease in expression of the desired transgene. The components of the Tet-

ON system recognize unique sequences of DNA, and doxycycline does not interfere with native 

proteins, reducing the potential of serious side effects when using this system. However, because 

these proteins were derived from bacteria, they may be immunogenic. Further study is required to 

determine whether the immune system can recognize components of the Tet-ON system over the 

long time periods required for the treatment of such chronic illnesses as Parkinson disease and 

multiple sclerosis. 

Dynamics of the Tet-OFF and Tet-ON Regulatory Systems 

The first studies of Tet-regulatory transcriptional expression systems emerged from experimental 

studies on the prokaryotic bacterial strain Escherichia coli [138]. Since then, the utilization of Tet-

inducible molecular switches to regulate the transcription of genes has become an effective and 

popular tool to control mammalian gene expression. The Tet-OFF system operates via a coordinated 

interaction of two important components (Fig. 2A): the Tet repressor protein (TetR) and the 

tetracycline-response element (TRE). The 23.6-kDa [139,140] protein TetR inhibits the transcription 

of genes in the tetracycline-resistance operon on the Tn10 transposon. In bacteria, the TetR hinders 

transcription of these genes by docking to the Tet operator sequences (tetO) in the absence of 

tetracycline. Fusion of the TetR to a viral protein (VP) domain, VP16, a eukaryotic transactivator 

derived from herpes simplex virus type 1, converts the TetR from a transcriptional repressor to an 

activator termed the transactivator (tTA). The tTA is operational under its own promoter and 

polyadenylation sequences and is autonomous of the TRE-driven transgene encoding cassette. A 

framework of seven tandem tetO sequences is positioned upstream of the immediate transgene 

initiation codon sequence and of the minimal cytomegalovirus (CMV) promoter. When the inducer 

binds to the transactivator, the complex activates the minimal human CMV promoter driving 

transgene expression. The tetO sequences and the minimal CMV promoter together constitute the 

TRE. Independent promoters, TRE and CMV or other cell-type-specific promoters, control the 

transgene and the transactivator. Gene regulation is achieved by the synthesis of transactivators by 

the tTA-encoded regulatory switch and their further interaction with the tetracycline inducer and 

TRE. The Tet-OFF system works by switching gene expression on and off in the absence or presence 

of the inducer, respectively. In the off situation, i.e., upon delivery or presence of the tetracycline 

derivative antibiotic, the administered inducer binds to the tTA, thereby hindering the capacity of 

the tTA to become docked to its tetO sequences within the TRE, thus impeding subsequent 

transcription from the TRE. In the on situation, i.e., upon removal or absence of inducer, tTA binds to 

its tetO sequences within the TRE, thus activating TRE and inducing gene expression (Fig. 2A). 
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Randomly induced mutations of the Tet-OFF-based tTA led to the subsequent development of the 

Tet-ON system [141] (Fig. 2B). Gossen and colleagues induced mutations in the original TetR that is 

bound to the VP16 domain, which resulted in four amino acid exchanges, yielding a protein that 

exhibits opposite functions. This mutant, termed rtTA, triggers transcription by activating the TRE 

only in the presence of the inducer, thereby activating the silent minimal CMV promoter. Transgene 

expression is switched off in the absence of the inducer. The rtTA reverse transactivator has been 

utilized successfully by achieving the desired regulation of gene expression in a number of 

applications, but has some limitations with respect to the precision of gene regulation. Despite the 

complete withdrawal or absence of the inducer, Tet-ON-based rtTA was found to exhibit some 

degree of affinity for the Tet operator sequences within the TRE, thus activating the minimal 

promoter and inducing low levels of gene transcription in the off state. This interaction between the 

response element and the transactivator, which produces basal activity in the off mode, is the main 

setback in attaining tight gene regulation using this system. 

Since tetracycline-dependent and steroid hormone receptor regulatory systems are the most widely 

used regulatory systems, studies have attempted to compare both. Adenoviral vectors expressing 

the chloramphenicol acetyl transferase (CAT) reporter gene under the regulation of either the Tet-

ON- or a mifepristone-regulated system were generated and compared. Both systems permit tight 

control of CAT reporter gene expression in vitro, with induction levels of approximately 1800- (Tet-

ON system) and 600-fold (RU486-regulated system) [142]. Though in vitro reporter protein 

expression with the mifepristone regulatory system was more sensitive to the levels of the inducer, 

this was not demonstrated in vivo. The ecdysteroid regulatory system was compared with both Tet-

ON and Tet-OFF regulatory systems in transient transfection studies. The ecdysteroid muristerone A 

was reported to boost reporter activity by nearly 1000-fold. In contrast, the Tet-OFF system 

displayed a 59-fold change in gene expression in the absence of doxycycline and the Tet-ON system 

showed only a 2.5-fold induction in the presence of doxycycline. The maximum activity of the Tet-

ON system was higher than that of all other regulatory systems analyzed but high basal activity of 

the reporter gene was present even in the absence of doxycycline [121]. Tetracycline is commonly 

fed to cattle and contaminates fetal bovine serum from sources in the United States and many other 

countries. The high levels of expression in the absence of doxycycline in the Tet-ON system suggest 

that medium components were not screened for tetracycline contamination in this study. A number 

of reports have demonstrated effective silencing of gene expression in the Tet-ON system in the 

absence of doxycycline [139,143-147]. More recently, novel tetracycline-regulated systems that 

display high inducibility and very low to negligible basal activity have been developed [148-150]. 

To improve Tet-ON regulatory systems further, Hillen, Bujard, and colleagues induced random and 

directed mutagenesis, searching for novel rtTA forms that could enhance tight regulation and 

minimize background expression in the absence of the inducer [139]. Using Saccharomyces 

cerevisiae for screening assays, their experiments uncovered five rtTA mutants, from which one 

mutant transactivator generated virtually negligible basal expression in the absence of the inducer 

and required a 10-fold lower doxycycline concentration for TRE activation. Quantitative luciferase 

assay data on the novel mutant transactivator, rtTA2S-M2, revealed tight regulation of Tet-

regulatory switch-dependent β-galactosidase gene expression in transfected HeLa X1/6 cells in the 

presence and absence of the inducer [139]. 
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Another strategy to reduce unwanted gene expression from the Tet-regulatable system in the off 

state was also pursued successfully by Bujard and colleagues. A chimeric protein incorporating a 

modified TetR fused to transcriptional silencing domains of the protein Kid was generated. When 

this protein (tTSKid) was coexpressed with rtTA proteins it was unable to heterodimerize. This was 

due to modifications on the dimerizing surfaces of the TetR component. In vitro studies of the 

silencing efficiency demonstrated that aberrant reporter transgene expression was reduced by as 

much as 1000-fold by tTSKid in the absence of Dox. Furthermore, tTSKid did not significantly affect 

maximal expression of the reporter transgene [151]. 

A multicomponent regulatory switch composed of a tetracycline response promoter coengineered 

with rtTA2S-M2 transactivator and a tTSKid repressor element, separated by an internal ribosome 

entry site (IRES), has been shown to be very effective in achieving tight regulation of transgene 

expression in mice and nonhuman primates [148,149]. Lamartina and co-workers engineered and 

examined ex vivo a bicistronic vector containing a single regulatory cassette, encompassing the 

rtTA2S-M2 and tTSKid elements. In the absence of doxycycline, the rtTA2S-M2/tTSKid-encoded Tet-

regulatory switch produced negligible basal activity. In the presence of doxycycline, there was a 

1000-fold inducibility of serum alkaline phosphatase gene expression and elevated sensitivity to 

doxycycline [148]. Such novel transcriptional regulatory switches are advantageous for tight 

regulation of transgene expression to facilitate further their application for gene therapies [150]. 

Effects of Different Ratios of TRE to Transactivators on Regulation, Kinetics, and Levels of Transgene 

Expression Using the Tet-Regulatable System 

The VP16 transactivator domain is an important unit of the regulatory switch that interacts with a 

diverse pool of transcriptional regulatory proteins, exhibiting tight regulation of a gene of interest 

[152]. The use of different versions of the transactivator elements revealed important data on the 

ratios of the TRE promoter and tTA transactivator elements required to produce the desired 

transgene induction levels, while simultaneously minimizing basal expression of the transgene in the 

uninduced state. Studies on the rtTA and tTA transactivator ratios versus levels of TRE appear to 

produce varying results as to what proportion of each element is required for optimal induction 

levels and negligible basal expression [153,154]. 

While some authors report that a 1:1 tTA:TRE ratio is required for optimal induction and negligible 

background expression [155], others report the need for excess tTA vs TRE [153,156,157]. This 

highlights the dependency of the system on the promoters used for driving the expression of the 

transactivator, cell lines, or in vivo target organ; the delivery system used; and the sensitivity of the 

method used to evaluate levels of transgene expression. It is therefore important to set up the 

optimal conditions for each application or target organ. 

Characteristics of an Ideal Tet-ON Regulatory System for Clinical Gene Therapy Applications 

It has become apparent that tight regulation of therapeutic genes is of critical importance in clinical 

gene therapy. Tet-ON-based regulatable gene-expression systems are preferred for use in clinical 

gene therapeutics principally because of the constant administration of antibiotics needed to silence 

gene expression with the Tet-OFF system. The Tet-OFF switch system would allow for transgene 

expression only in the absence of antibiotics, and a continuous administration of tetracycline would 

be required to switch off the system. The constant high levels of antibiotics in the general circulation 



Goverdhana S et al.  
PubMed ID: 15946903 

14 
 

could lead to other complications such as patients’ increased tolerance to the tetracycline derivative, 

cytotoxicity, or adverse side effects. Therefore, novel Tet-ON transactivator systems are more 

attractive in a clinical setting as they do not require constant administration of the inducer and can 

be switched on only when needed. Nevertheless, choosing the optimal Tet-dependent regulatory 

system will rely on the pathogenicity and etiology of the disease. 

The optimal Tet-ON gene regulatory system should exhibit (a) no basal activity of the tTA/TRE unit in 

the absence of the tetracycline inducer, (b) good regulation and induction kinetics, (c) quick 

response to the administration or removal of the inducer, (d) stringent transgene regulation, and (e) 

negligible cytotoxic or inflammatory responses associated with the regulatory elements within the 

switch system. For a regulatory system to be used in clinical gene therapy, stringent gene regulation 

must be achieved such that transgene induction and protein synthesis do not occur in the absence of 

the inducer. When dealing with therapeutic transgenes, the basal expression of the transgene in the 

absence of a tetracycline-derived inducer, known as “leakiness,” has been the major obstacle in 

achieving stringent regulation kinetics. Newly emerging transactivators, like the rtTA2S-M2, provide 

superior control of gene expression in vivo, allowing tightly regulated gene expression [148,149]. 

The regulatory switch engineered with a strong promoter, i.e., mouse CMV [158], to drive 

transactivator gene expression, will exhibit higher levels of transgene expression upon induction 

with a given dose of the inducer [150]. The higher levels of therapeutic transgene expression 

attained in the on state will allow the use of lower titers of the vector to express and regulate the 

therapeutic gene during treatment (Fig. 3). This will minimize the chance of induced toxicity and 

inflammation due to high vector doses [158,159]. High sensitivity of the transactivator to the 

tetracycline inducer is a desirable feature in this kind of system since enhanced sensitivity means 

that lower antibiotic concentrations will be required to trigger transgene expression. The quantity, 

concentration, and frequency of antibiotic administration needed to attain the desirable levels of 

therapeutic product are crucial factors that require careful evaluation when considering antibiotic-

based gene control systems for clinical use (Table 2).  

The well-characterized tetracycline derivative 
doxycycline is a broadly employed antibiotic in 
medical treatment largely due to its nontoxic 
effects. A recent study by Chtarto et al. [146] 
revealed an additional tetracycline derivative 
that was shown to be effective and less cytotoxic 
than doxycycline in vivo. Minocycline, an 
antibiotic that is considered to possess 
antiapoptotic and anti-inflammatory properties, 
exhibits reduced cytotoxicity and more rapid 
elimination from the body than doxycycline. 
Although improved doxycycline-based Tet-ON 
regulatory systems show promising results, 
additional studies are needed to advance the 
effectiveness and minimize the side effects of 
antibiotics used in conjunction with the Tet-ON 
system. 
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REGULATABLE TETRACYCLINE-DEPENDENT GENE EXPRESSION SYSTEMS USED IN PRECLINICAL 

GENE THERAPY APPLICATIONS  

Tetracycline-inducible promoter elements have been encoded within several gene delivery systems 

and used in preclinical animal models. We will discuss the main vector systems that have been used 

to transfer genes under regulation of the tetracycline-inducible promoters, since this is the most 

widely characterized system available to date. 

Regulating Transgene Expression from First-Generation Adenoviral Vectors 

A number of studies utilizing first-generation adenoviral vectors with Tet-regulatory systems 

targeted at specific cell types produced successful transgene regulation within the brain in vivo 

[156,160-162]. Smith-Arica and co-workers [156] have established effective doxycycline-dependent 

transcriptional regulation and cell-type-specific transcriptional targeting, producing successful 

regulatable transgenesis in cell lines, primary brain cultures, and localized regions within the rat 

brain. A first-generation adenoviral vector encoding the glial fibrillary acidic protein promoter driving 

the expression of β-galactosidase under the control of the Tet-OFF regulatory switch produced 

localized doxycycline-dependent β-galactosidase expression within glial cells in vitro and in vivo in a 

dose-dependent manner [156]. The neuron-specific enolase (NSE) promoter was used to induce 

expression of β-galactosidase in the absence of doxycycline within neurons. Although the NSE 

promoter did not exhibit neuronal-restricted transgene expression in vitro, it attained successful 

neuronal specificity in vivo [156]. These results indicate that the choice of a specific promoter 

designed for expressing a therapeutic or cytotoxic gene does not always result in the expected 

localized transgene expression when tested in vitro; therefore it is imperative to test these systems 

in vivo. Another study that employed the prolactin promoter, specific to anterior pituitary 

lactotrophic cells, encoded within a first-generation adenoviral vector driving the Tet-OFF regulatory 

cassette elicited inducible β-galactosidase expression within lactotrophs, both in vitro and in vivo 

[160]. 

Using the Tet-OFF system, successful regulation of tyrosine hydroxylase (TH) expression elicited 

effective regression of estrogen-induced pituitary prolactinomas in vivo [163]. TH is the rate-limiting 

enzyme in the dopamine biosynthetic pathway. Dopamine, in addition to its principal role in keeping 

the motor circuitry of the basal ganglia intact, is recognized as having inhibitory effects on 

adenohypophysial prolactin-producing cells of the pituitary gland. An adenoviral vector engineered 

with a TH transgene cassette and a Tet-OFF regulatory switch produced regulated TH expression in 

anterior pituitary (AP) cell lines [163]. Also, rats with estrogen-induced hyperprolactonemia and 

pituitary lactotroph hyperplasia showed regression of pituitary mass and normalization of serum 

prolactin levels when injected with the Ad engineered vector into the AP gland, in the absence of 

doxycycline, resulting in normal levels of circulating prolactin [163]. A first-generation Ad was used in 

mammary cancer cell lines for the expression of human H2 preprorelaxin (hH2), a precursor of the 

protein relaxin whose role is critical in tumor cell migration, attachment, and invasion. These in vitro 

experiments demonstrated that the addition of inducer led to hH2 expression, tumor cell migration, 

and proliferation [164]; this represents a new tool for the study of mammalian tumor physiology. 

Tietge and co-workers [168] generated a RAd encoding the human group IIA secretary 

phospholipase A2 (sPLA2), a protein that has been shown to have the ability to degrade plasma 

membrane phospholipids [165,166] and possibly to play a role in removal of metabolically 
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compromised and injured cells [167]. Unregulated expression of sPLA2 might be toxic to 293 cells, 

thereby preventing RAd generation and scale up. When a RAd encoding a group IIA secretary 

phospholipase A2 under the Tet-OFF regulatable system (Adtet-OFF.hsPLA (2)) was utilized, the 

authors describe sPLA2 expression in vitro but they could not detect plasmatic sPLA2 protein in vivo. 

Providing additional tTA protein either by stable transfection or by co-infection with a tTA-

expressing Ad resulted in increased levels of sPLA2 and β-galactosidase expression. Plasmatic sPLA2 

was detectable in a tTA dose-dependent pattern that lasted for 7 days, and β-gal expression was 

observed in the lung and liver exhibiting a tTA dose-dependent pattern [168]. This system represents 

an interesting tool for the generation of RAds encoding potentially toxic genes, allowing vector 

multiplication in the absence of transgene expression. Gene delivery using viral vectors can result in 

long-term sustained transgene expression in the subretinal space, the area that separates the 

photoreceptor outer segments from the retinal pigment epithelium (RPE), resulting in vector 

transduction of RPE [169,170]. Due to the unique immune-privileged status of this site, systemic 

immune responses are minimized [171], making it possible to deliver genes to the ocular cells and 

control them much like any other conventional drug, administered as needed for therapeutic 

purposes. Dejneka et al. [147] described that when a RAd encoding the hGH under the Tet-ON 

system was administered to the subretinal space in mice, 100% of RPE cells were transduced within 

48 h of administration. The hGH produced in the retina was secreted into the bloodstream in a 

doxycycline dose-dependent manner [147]. The delivery route and the gene regulation described in 

this paper offer a unique way to evaluate gene function in the eye and represent a novel method for 

introducing therapeutic proteins into the retina. One example of a Tet-OFF-based regulatory system 

using a bidirectional tetracycline-responsive promoter driving both the transgene and the regulatory 

switch cassettes is the regulation of single-chain interleukin 12 (IL-12) gene expression using first-

generation adenoviral vectors [172,173]. Block and co-workers [172] described the adenoviral-

mediated expression of murine IL-12 under Tet regulation, encoded within the same Ad vector. IL-12 

is chosen for cancer gene therapy because it can stimulate antitumoral immune responses and it 

exerts proliferation of T lymphocytes and NK cells. Thus, the cytolytic activity of these cells is 

enhanced by IL-12-mediated production of interferon-γ. Furthermore, IL-12-secreting tumor cells 

were shown to induce a strong antitumoral response in different models [173,174]. The authors 

demonstrate that IL-12 expression was suppressed up to 6000-fold in the presence of doxycycline, 

resulting in a considerable decrease in interferon-γ secretion by activated splenocytes and, 

consequently, a marked reduction in immune response [175]. Considering that the systemic 

administration of recombinant human IL-12 has been associated with severe side effects like 

hemorrhagic colitis, leukopenia, and elevated liver enzymes; the development of a RAd providing 

regulatable single-chain IL-12 expression for the transduction of tumor cells would significantly 

contribute to the safety of these innovative approaches in cytokine gene therapy. For applications in 

neurological diseases, direct injections into the striatum and the substantia nigra of RAds encoding 

the neurotropic factor glial-derived neurotropic factor (GDNF) have been shown to induce growth 

and protection of viable dopaminergic neurons [176-181]. These results using Ad-vector-mediated 

GDNF gene transfer may substantially slow dopaminergic neuronal cell loss in patients with 

Parkinson disease [180]. Kojima and co-workers [182] described the Tet-regulated expression of 

human GDNF preventing dopamine depletion in brain striatum, in 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-induced injury to nigrostriatal neurons [182]. They found human GDNF to 

be expressed at high levels in vitro in primary cultures of rat nigral neurons. By injecting 2 × 106 PFUs 

into MPTP-treated mice in vivo, they found a decreased loss of dopamine content in the injected 
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side of the striatum (to 16%), whereas administration of the control virus expressing β-gal did not 

have this effect (9%). Although the administration of a higher dose was supposed to provide a more 

beneficial effect, the delivery of 5 × 107 PFUs showed a lower protection against MPTP-induced 

dopaminergic cell loss, probably due to vector-induced neurotoxicity [183]. 

Regulating Transgene Expression from High-Capacity Adenoviral Vectors 

The first in vivo gene transfer and expression study employing a combined Tet-ON transactivator and 

repressor system using HC-Ad vectors produced tight regulation kinetics with maximal induction in 

the on state, while minimizing leakiness of gene expression in the off state [143]. Engineered with 

the Tet-ON transactivator rtTA2S-M2 and the transcriptional repressor tTSKid, doxycycline-

dependent secreted alkaline phosphatase reporter gene expression was tightly regulated upon 

intramuscular injection of the engineered HC-Ad vector in C57/B6 and Balb/C nude mice [143]. In 

this study, the IRES addition to ensure translation of the tTSKid silencer downstream of the CMV 

promoter-driven transactivator produced an almost 100,000-fold increase in transgene expression in 

stable HeLa cell lines. Tight regulation of reporter gene expression was achieved using HC-Ad vector 

constructs with head-to-head configuration of the promoters driving the transgene and regulatable 

switch cassettes [143]. These results are also consistent with another report of adeno-associated 

viral vector-based transcriptional gene regulation using the Tet-ON system. In this study, the two 

promoters driving the expression of the transgene and transactivator were maximally spaced from 

each other in a head-to-head configuration, producing tight regulation kinetics of transgene 

expression while sustaining minimal levels of background activity in the uninduced state [184]. 

When analyzed together, these data suggest that the distance between the individual promoters 

and the orientation of the transgene- and transactivator-encoding cassettes could play an important 

role in achieving good induction kinetics. Also, the promoters positioned closer together might 

induce possible cross talk between them, thus increasing the likelihood of transactivator activation, 

thereby inducing transgene expression in the absence of the inducer. The first studies of intrastriatal 

injections of the Tet regulatory switch encoded within first-generation vectors, i.e., RAd hGDNF, 

demonstrated tight regulation of the transgene expression in both neuronal and glial cells [182]. Our 

own results using HC-Ad indicate that these vectors engineered with the rtTA2S-M2/IRES/tTSKid 

regulatory switch produced strong β-galactosidase expression within the striatum in the induced 

state and negligible basal activity in the uninduced state (Fig. 4) [150,185]. Immunohistochemistry 

and fluorescence confocal microscopy analysis revealed colocalization of transduced β-galactosidase 

expression within neurons and astrocytes in the striatum (Fig. 5) [150]. The strong murine CMV 

promoter driving the transactivator produced high transgene expression levels with negligible basal 

activity in the uninduced state compared to the Ad vectors encoding β-galactosidase driven by the 

constitutive mCMV or hCMV promoter [8,186]. 

Thus utilizing these HC-Ad vectors, engineered to encode specific neurotropic factors under the 

control of a regulatory switch containing the rtTA2S-M2 transactivator, in conjunction with 

transcriptional silencers, tight regulation of neurotropic factor gene expression as would be needed 

for gene therapy of Parkinson disease should be achievable. Another useful application of 

tetracycline-controlled transactivators emerged from studies conducted on the molecular basis of 

long-term potentiation (LTP) to understand further the mechanisms of learning and memory. 

Synaptic plasticity, a key player in the LTP phenomenon, has been thought to be under the control of 

protein kinases and protein phosphatases that are dependent on the enzyme calcium/calmodulin-
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dependent protein kinase IIα (CaMKIIα) *187+. Using the original Tet-ON rtTA system, Hedou and 

Mansuy [188] demonstrated that protein activity of phosphatase CN, a protein opposing CaMKIIα, is 

important for determining synaptic strength and subsequently LTP. The application of upgraded 

tetracycline-dependent molecular switches may be utilized to examine further and establish the role 

of these important kinases in the LTP pathway. 

Since HC-Ad are much safer than their predecessor first-generation adenoviral vectors, regulatable 

switches engineered within these viral vectors will be critical to acquiring safe levels and regulation 

of transgene expression in vivo. The current issues that require further research are to examine the 

extent of HC-Ad vector-induced immune responses, establishing viral vector stability and spread 

once injected into the targeted tissue or organ, and to determine safe viral vector titers needed for 

effective reversion of an affected phenotype in a clinical setting (Table 2). 

Regulating Transgene Expression from Retroviral Vectors 

Engineered retroviral vectors produced successful transgene regulation using the Tet-OFF-based 

tetracycline-dependent system. One of the first Tet-regulatory systems to be used in a retroviral 

vector involved a modified Tet-OFF/tTA that produced successful and stable transgene expression of 

the VSV-G toxin gene in mammalian cell lines in the absence of the doxycycline inducer [189]. In this 

study, a modified version of the tetracycline-controlled inducible system was produced by the 

addition of a ligand-binding domain from the estrogen receptor (ER) to the carboxy terminus of the 

tTA, yielding tTA-ER. A single retroviral vector, encoding the VSV-G gene regulated by the tTA-ER 

element, exhibited a 30-fold induction in the absence of the inducer, 17β-estradiol, in transfected 

mammalian cell lines, producing stable expression of the tTA-ER. Moreover, the addition of the ER 

ligand-binding domain to the tTA was shown to reduce tTA toxicity in the induced state in the 

absence of 17β-estradiol [189]. In another study using the Tet-OFF tetracycline-responsive 

expression system, a single retroviral vector containing TRE and the HSV-1-TK cytotoxic gene under 

the control of the tetO synthetic promoter produced high levels of TK gene expression in transduced 

murine NIH 3T3 cells in the absence of the inducer tetracycline [190]. They observed a 417-fold 

increase in HSV-1-TK enzyme activity in NIH 3T3 cells compared to enzyme activity in control cells. 

These in vitro studies demonstrate good efficiency in attaining high levels of HSV-1-TK expression to 

improve gene therapy strategies for brain tumors. Studies by Kenny and co-workers [191] 

established successful Tet-OFF-based regulation from retroviral vectors and demonstrated the 

effectiveness of the TRE promoter in achieving stringent regulation of gene expression [191]. Upon 

evaluation of different promoters to drive tTA expression, such as CMV, elongation factor 1α, and 

phosphoglycerate kinase-1, in combination with the TRE they observed that only the CMV promoter 

in combination with the TRE promoter produced successful regulatable β-galactosidase expression 

when controlled by the Tet-OFF regulatory switch in HC11 mouse mammary epithelial cell lines 

[191]. 

Although stable and efficient regulatable transgenesis can be attainable with retroviral vectors, their 

restricted cloning size of 8 kb constrains their wide use in gene therapy. Hofmann et al. [192] 

describe a single autoregulatory cassette, containing tandem Tet operator sequences and the 

cytomegalovirus minimal promoter driving the expression of a bicistronic mRNA, leading to 

transcription of the gene of interest (β-gal) and the internal ribosome entry site-controlled 

transactivator (Tetrepressor—VP16 fusion protein). This system allowed reversible induction of 



Goverdhana S et al.  
PubMed ID: 15946903 

19 
 

transgene expression in response to Tet; in the absence of Tet there was a progressive increase in 

transactivator by means of an autoregulatory loop, whereas in the presence of Tet, gene expression 

was prevented [192]. The use of this retroviral vector resulted in rapid gene delivery of inducible 

genes into cell types, i.e., primary mouse myoblasts, in which direct transfection has low efficiency 

[192]. 

Regulating Transgene Expression from Lentiviral Vectors 

Lentiviral vectors have been demonstrated to transduce successfully and drive gene expression in a 

number of mammalian cells and animal models [42,193] and have been engineered using the Tet-

ON- and Tet-OFF-based tetracycline-dependent systems to achieve successful regulation of gene 

expression in vitro into 293 cells [194], ex vivo in cells of the central nervous system [195], and in 

vivo in a rat model for Huntington disease [196]. Kafri et al. [194] demonstrated that after 

administration of a green fluorescent protein (GFP)-expressing lentiviral vector to rats, in a variety of 

tissues including differentiated neurons, myotubes, hepatocytes, and hematopoietic stem cells, 

under the regulation of the Tet system, GFP expression was tightly regulated in vivo following 

addition or withdrawal of Dox in the drinking water. They described a 500-fold increase in cellular 

GFP levels upon withdrawal of the inducer from the culture medium in transfected mammalian cell 

lines. Successful regulatable transgenesis was also achieved in vivo following transduction of rat 

brain; doxycycline-regulated GFP expression was observed in terminally differentiated neurons and 

was regulated by adding or withdrawing doxycycline from the rats’ drinking water *194+. In addition 

to single-gene-engineered lentiviral vectors, doxycycline-mediated regulation was also successfully 

attained from bicistronic lentiviral vectors, as demonstrated by Reiser and co-workers [144]. A dual 

HIV-1-based vector system, one vector encompassing the rtTA-based Tet-ON construct and the 

other encoding the TRE and an enhanced (E) GFP reporter gene, generated effective regulatable 

EGFP expression in primary human skin fibroblasts (HSFs) in the presence of doxycycline [144]. 

Fluorescence microscopy of HSFs transduced with the NL-rtTA/TRE-EGFP bicistronic vector 

demonstrated a 1.7-fold difference in fluorescence intensities in the presence and absence of 

doxycycline. CD81 is a transmembrane protein that is upregulated in the mesolimbic dopaminergic 

pathway after acute administration of high doses of cocaine [197]. Its expression contributes to 

some of the behavioral changes associated with cocaine sensitization [198]. A lentiviral vector 

encoding CD81 under the control of the Tet-ON system was stereotaxically delivered into the ventral 

tegmental area (VTA) of two groups of rats that were given water alone (CD81 expression) or water 

with doxycycline solution (down-regulates CD81 expression). A 3.2-fold augmented locomotor 

activity was observed in those animals expressing CD81 in the VTA vs animals placed on doxycycline, 

which downregulated CD81 expression. Additionally, when the administration of the virus was to the 

nucleus accumbens, it resulted in higher effects, yielding a 4.2-fold increase in locomotor activity 

[198]. 

Regulating Transgene Expression from Adeno-associated Vectors 

One of the first successful applications of achieving regulatable gene expression within the rAAV 

vectors was the efficient Tet-ON-based regulation of the green fluorescent protein. Two rAAV 

vectors, one engineered with a GFP-encoding cassette and the other with the silencer-flanked rtTA 

Tet-ON transactivator tTSKid-rtTA, were constructed [199]. Subretinal injection of these engineered 

rAAV vector particles into rats produced tightly regulated GFP expression. In vitro studies performed 
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by the same group also demonstrated that a higher ratio of silencer-encoded AAV vector to 

transactivator-encoded AAV vector produced higher levels of gene expression in the on state 

compared with an equal ratio of the two vectors. The data also showed that an 8:1 ratio of the 

silencer-encoded vector to the transactivator-encoded vector produced an almost 12-fold increase 

in gene expression. However, compared to an equal ratio of the two vectors, basal activity in the 

absence of the inducer was not further suppressed when using the 8:1 ratio [199]. Studies by 

Rendahl et al. [145] also reported Tet-ON-based stringent gene regulation in vivo by utilizing two 

rAAV vectors, one with a regulatory switch-encoding vector and the other with an erythropoietin 

(Epo) transgene-encoding vector. The tTSKid repressor and rtTA-engineered rAAV vector produced 

both tight and prolonged levels of Epo expression upon intramuscular injection of the engineered 

vector in mice in the presence of doxycycline [145]. Periodic administration of the inducer over a 32-

week period produced constant Epo expression, achieving successful long-term transgene regulation 

[145]. It has been described that leptin, the product of the Ob gene, acts on satiety centers in the 

hypothalamus to both decrease food intake and increase energy expenditure. Virus-mediated leptin 

gene delivery has been shown to cause a rapid and complete disappearance of white adipose tissue 

in genetically normal animals [200]. In a study by Wilsey et al. [201] the use of two rAAV vector 

systems yielded concise Tet-ON-dependent regulation of the expression of leptin in young rats 

injected with the viral vector into the hypothalamus, producing weight gain in the induced state 

[201]. The transgene-engineered rAAV vector contained the inducible TetR promoter, driving a 

bicistronic construct for the expression of Ob and GFP with the addition in the construct of the 

woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) downstream of the 

transgene to augment expression. In the presence of doxycycline, the silencer-encoded rtTA induced 

Ob gene expression, producing an 8-fold increase in hypothalamic leptin [201]. 

In addition to successful tetracycline-inducible transgene expression using dual AAV vectors, the 

utilization of a single AAV vector encoding an autoregulatory cassette that encompasses a 

bidirectional tetracycline-responsive promoter using the Tet-dependent regulatory system was also 

effective [146]. Tet-OFF systems with bidirectional tetracycline-responsive promoter-encoded 

cassettes designed into AAV vectors produced successful transgene expression in the uninduced 

state [202,203]. Folliot et al. [204] used a single rAAV vector engineered with the Tet-OFF regulatory 

switch devoid of the silencer, which elicited efficient and prolonged transgene regulation of GFP 

reporter gene expression. Intravitreal injections of a single rAAV vector coengineered with a 

destabilized GFP gene and Tet-OFF tTA regulatory cassette produced only 5% residual expression of 

GFP 48 h after doxycycline administration, sustaining GFP transduction shutdown for as long as 1 

week in ganglion cells. 

In an another study by Chtarto and co-workers [146], an autoregulatory rAAV vector was engineered 

with the Tet-ON rtTA and the EGFP reporter gene, both driven by a bidirectional Tet-responsive 

promoter and the complete cassette flanked with bidirectional SV40 polyadenylation sites at both 

ITRs. The autoregulatory cassette produced around 50-fold induction of EGFP expression in the 

presence of doxycycline in human tumor cell lines, and in vivo data revealed an 80-fold increase in 

the induced state [146]. Slow regulation kinetics was observed after doxycycline administration but 

rapid termination of the gene expression was observed in the uninduced state. However, the use of 

new Tet-ON-based transactivators encoded with silencers and post-transcriptional elements will be 

difficult using rAAV vectors due to the constrained cloning space within the core rAAV vector. One 

feasible approach of regulating transgene expression using rAAV vectors is through a bidirectional 
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autoregulatory cassette, in which more cloning capacity is available for including silencer elements 

and other short transgenes. In addition to the type of Tet-ON transactivator employed to attain 

optimal gene regulation, the configuration of the transgene and regulatory switch cassettes was 

found to be an important factor in achieving maximum gene expression and virtually negligible 

expression in the on and off state, respectively. In a recent report by Chenuaud et al. [184], an 

optimal design of a single recombinant AAV using two independent promoters was established with 

the use of the Tet-ON transactivator rtTA2S-M2. Promoters driving the transactivator and the 

erythropoietin DNA reporter gene-encoding cassettes situated distant from each other, but oriented 

in the same direction, produced maximal induction and minimal background activity in the off state 

when injected intramuscularly into mice [184]. 

Recombinant AAV vector-based studies suggest advantages to using these vectors to regulate gene 

expression, but there are also possible drawbacks with respect to their application in human gene 

therapy. Due to the predetermined cloning capacity of 5 kb of the AAV vectors, most of the studies 

described to date utilize two vector systems to deliver both the transgene and the regulatory 

cassettes, limiting the choice of transgenes to clone. Second, in the clinical perspective, the 

administration of a higher ratio of silencer- and transactivator-encoding rAAV vector to therapeutic 

gene-encoding rAAV vector to achieve higher transgene expression levels can result in delivery of a 

combined higher vector dose, thus creating a greater potential for adverse immune responses. In a 

Tet-OFF rAAV vector, gene expression has been quantified by very precise techniques [205]; Tet-

regulated transgene expression has been studied in rat retinal ganglion cells [204], the regulated 

expression of erythropoietin from a AAV vector has been proven to improve anemia in a mouse 

model of β-thalassemia [206], and Tet-inducible IL-10 expression has been applied to the 

experimental arthritis model [207]. The interaction between the Tet-ON/OFF regulatory systems and 

the mammalian immune system has yet to be fully characterized. The degree of immune response to 

a viral vector can be a consequence of one or more factors that include the method and route of 

vector delivery at the target site [208], cell-type-specific gene expression [209], and immunogenicity 

of the vector capsid and the transactivator elements making up the regulatory switch [210]. 

Regulating Transgene Expression from Herpes Simplex Vectors 

A number of studies generated successful and efficient regulatable transgenesis from HSV-1-derived 

amplicon vectors engineered with the Tet-OFF tetracycline-responsive system. In one study, 

localized and high levels of β-galactosidase reporter gene expression were observed in the dendrate 

gyrus of the mouse brain with over 10-fold suppression in gene expression and controlled 

cytotoxicity in the presence of doxycycline [211]. In another study, effective inducible reporter gene 

expression was effectively regulated in vitro and in vivo with a Tet-OFF system-based HSV-based 

amplicon vector [212]. Hippocampal cultures infected with the engineered amplicon vectors 

produced over 50-fold repression of firefly luciferase reporter gene expression in the presence of 

tetracycline, with maximal gene expression levels achieved within 10–12 h after the withdrawal of 

tetracycline [212]. Adding tetracycline to cultures without prior tetracycline exposure resulted in 

quick silencing of gene expression, by which luciferase reporter gene activity was reduced to less 

than 8% within 24 h. Maximum gene expression levels from the amplicon vectors occurred within 2–

3 days postinfection and gradually declined subsequently [212]. Combinations of emerging amplicon 

vectors and superior Tet-ON- and Tet-OFF-based tetracycline-regulatable system technologies have 

been shown to generate better and effective HSV-1-derived ampliconmediated therapeutic gene 
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transfer. One example of successful implementation of adapted Tet-regulatable systems can be 

shown from work by Schmeisser and co-workers [213]. In an attempt to find suitable tetracycline-

inducible HSV vector-based systems that exhibit enhanced induction characteristics and flexibility, 

several combinations of TRE regulatory/promoter elements were constructed to regulate β-

galactosidase reporter gene expression in cells [213]. These promoters contained a TRE linked to a 

minimal CMV immediate early promoter, a minimal HSV ICP0 promoter, or a truncated HSV ICP0 

promoter. The ICP0 promoter constructs expressed the highest and most sustained levels of β-gal. 

Vectors were also constructed that coexpressed an inducible Tet transactivator in addition to the 

inducible β-gal marker gene. This resulted in tetracycline-inducible gene expression that was not 

restricted to specific cell lines, and this vector was capable of inducible expression in irreversibly 

differentiated NT2 cells (NT neurons) for several days [213]. In another study, Herrlinger et al. 

demonstrated tetracycline-mediated regulation of the luciferase reporter gene under the control of 

either the Tet-OFF or the Tet-ON system from HSV-1 mutants in infected Vero cells [214]. The study 

revealed the role and importance of selective transactivating factors encoded by immediate early 

genes and their effect on the TRE complex and transgene regulation. The presence of specific 

transactivating factor proteins and viral proteins has been shown to induce the tetO/minimal TRE 

complex in the uninduced state, resulting in their interference in generating effective tetracycline-

regulated transgene expression [214]. Transient transfection into Vero cells of a mutant HSV-1 

expressing ICP4 and VP16 transactivating factors failed to minimize or eliminate basal levels of 

transgene expression in the uninduced state with the Tet-OFF and Tet-ON systems. In contrast, 

mutant HSV-1 vectors devoid of ICP4 and VP16 abolished this basal activity in the uninduced state, 

suggesting the likely role of specific viral proteins in generating an effective tetracycline-based 

regulatory system [214]. This study demonstrates that in the HSV-1 genome, especially the 

transactivating immediate early gene products (ICP4, ICP27, and ICP0) and the VP16 tegument 

protein can activate the tetO/minimal CMV promoter and thereby interfere with the integrity of 

tetracycline-regulated transgene expression [214]. 

Regulatable Expression Systems as Applied to Clinical Trials: Importance and Key Challenges for Their 

Implementation in Human Patients 

The goal of gene therapy is to provide treatment for diseases that currently have limited or no 

therapeutic options. Below, we will review the importance and challenges of the future 

implementation of regulatable gene expression systems in gene therapy clinical trials. To date, phase 

I, II, and III clinical trials have utilized retroviral or adenoviral vectors in treating malignant glioma; 

meanwhile, the first trial utilizing an adeno-associated virus for Parkinson disease treatment has 

recently been approved [215]. Several gene therapeutic strategies have been used to treat 

glioblastoma. In two such trials, although some degree of immune response was elicited, a 

combination of herpes simplex-thymidine kinase/ganciclovir after surgical resection of recurrent 

glioblastoma was observed to be relatively safe and showed statistically significant efficacy 

[216,217]. In this scenario, the use of an inducible gene expression system would allow shutting 

down of expression of HSV-1 TK once tumor regression occurs as assessed by MRI or other imaging 

systems. Another gene therapy trial for glioblastoma involved intratumoral injection of an adenoviral 

vector carrying wild-type p53 [218]. A replication-disabled Semliki Forest viral vector carrying the 

human interleukin 12 gene, which has been shown to be safe and effective in treating breast and 

prostate cancer in prior animal studies [219], was also used in glioblastoma treatment. Again it 

would be clinically advantageous to be able to turn therapeutic gene expression off once the therapy 
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is no longer needed. Clinical trials that use viral vectors to treat other neurological diseases such as 

Parkinson disease are also in progress. One such trial is being proposed for the use of subthalamic, 

glutamic acid decarboxylase gene transfer via an adeno-associated viral vector [220]. If successfully 

transduced, the transgene will increase subthalamic nucleus levels of GABA, an inhibitory 

neurotransmitter involved in the pathological pathway. Although none of the vectors in current use 

contain regulatable systems within their viral vector constructs, utilization of such regulatable 

systems will provide greater safety, thereby increasing the potential for clinical use of viral and 

nonviral vectors for in vivo gene delivery. 

Systems in which the transgene must be repressed by the constant presence of a substance such as 

antibiotics may pose potential clinical problems, such as side effects, making them undesirable. 

However, the use of regulatable systems in which high-level, specific, and transient expression of a 

therapeutic gene can be induced, i.e., the Tet-ON regulatable gene expression system, may prove to 

be a therapeutic powerful tool. Instances in which regulatable switches would have a powerful 

impact might include turning on a transgene used to eliminate a tumor and subsequently turning it 

off to prevent aberrant destruction of other tissues or inflammatory reactions. Also when expressing 

a factor to stimulate growth of specific cells, i.e., GDNF for Parkinson disease, it would be crucial to 

be able to turn gene expression off or be able to regulate levels of expression tightly to prevent 

adverse side effects due to abnormal cell growth, aberrant connections between cells, or abnormal 

neurotransmitter release. 

In solid tumors, radiation-inducible promoters have proven very successful in preclinical models of 

the disease. One such vector, called TNFerade, has been tested in phase I clinical trials on patients 

with solid tumors and soft-tissue sarcoma’s *221,222+. This replication-deficient adenoviral vector 

contains the TNF-α gene and expression is regulated by the Egr1 promoter. Although patient 

numbers were small in these phase I clinical trials, objective responses were high even in patients 

with refractory tumors. This therapy utilizes the ability to focus ionizing radiation at the tumor to 

limit damage to normal tissues and side effects were minor in the majority of individuals. 

Consequently, this novel therapy appears to warrant further investigation in larger, randomized 

trials. 

Myocardial ischemia is also a system in which inducible gene therapy vectors have proven very 

successful in preclinical models of the disease. Although no clinical trials are yet under way, the 

vector system currently in development utilizes a hypoxia-sensitive promoter to regulate gene 

expression [223] and affords us a glimpse of an exciting future in gene therapy in which inducible 

vectors may lie dormant for months or even years before therapeutic gene expression is switched on 

in response to danger signals such as hypoxia. Clinical trials in humans with diabetes are 

unfortunately farther into the future and many technical challenges must still be overcome, 

including correct processing of the insulin transgene and stable expression of an inducible system 

that must be switched on and off many thousands of times. However, early research in liver cells has 

validated the use of gene therapy to replace insulin levels and perhaps an approach unifying stem 

cell research and gene therapy can go some way to surmounting these obstacles in the future. 

Combining regulatable switches with other genetic elements, i.e., the WPRE and regions of the HSV-

1-TK gene, known to increase mRNA stability and levels of transgene expression will further enhance 

their usefulness by promoting long-term and widespread distribution of transgene expression [224]. 
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Alternatively, the development of strategies to promote predetermined therapeutic gene insertion 

within the host genome will also enhance the utility and safety of gene transfer vectors. Utilization 

of regulatable switches driven by strong promoters will allow high levels of transgene expression, 

thus requiring less viral vector dose to be utilized. This in turn will minimize possible toxicity and 

inflammation, making these viral vectors safer for clinical use. Development of tools that allow for 

greater control of gene expression will reduce untoward side effects, creating wider and safer 

clinical settings in which gene therapies could be implemented. 
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FIGURE LEGENDS 

FIGURE 1: “Gutless” viral vectors for gene transfer/therapy applications. The helper viral DNA 

contains viral genes encoding structural proteins and proteins for viral genome replication. The 

vector genome contains the therapeutic gene expression cassette, which is flanked by the inverted 

terminal repeats (ITR) and cis-elements that are required for genome encapsidation. Upon 

cotransfection or infection, the vector and helper virus genome are introduced into a packaging cell 

line. The helper viral genome lacks the packaging signal, rendering the helper virus DNA 

unpackageable, but it provides the viral functions that are required for replication of the vector DNA, 

producing viral structural proteins and packaging the vector DNA into virions. Once released from 

the packaging cells, the viral vector is ready for further purification and titration. 

FIGURE 2: Tetracycline-dependent regulatory systems. (A) Tet-OFF regulatable switch. Tetracycline 

inducers such as doxycycline (Dox) bind to the transactivator (tTA), resulting in the prevention of its 

binding to the tetO elements, thereby blocking promoter activation and subsequent gene 

expression. In the absence of Dox, the binding of the synthesized tTA to the tetO sequences induces 

promoter activation and turns on gene expression. (B) Tet-ON regulatable switch. The absence of 

Dox results in the inability of the synthesized tTA to bind to the tetO elements, subsequently 

blocking promoter activation and subsequent gene expression. The presence of Dox results in its 

binding to the tTA, and then the tTA/Dox complex binds to the tetO sequences, allowing promoter 

activation and gene expression. 

FIGURE 3: An ideal gutless vector for regulatable gene therapeutic strategies. A gutless vector 

engineered with combined regulatory and therapeutic cassettes to express genes efficiently and 

regulate expression tightly. The Tet-ON regulatory switch turns transgene expression on and off in 

the presence and absence, respectively, of the tetracycline derivative. In addition to a TRE obligatory 

for tTA binding to the tetO sequences and promoter induction, cell-type-specific promoters will be 

essential, should localized transgene expression be needed. An ideal regulatory switch should be 

under the control of a strong promoter such as the murine cytomegalovirus promoter, which can 

trigger high transactivator activation and subsequently generate high induction levels of the 

transgene. The switch should contain transcriptional silencers such as the tTSKid repressor to avoid 

significant TRE/tTA interaction and consequently achieve virtually negligible background expression 

in the off state. In addition to utilizing effective promoters and transcriptional silencers, engineered 

transgene cassettes with promoters driving the transgene and transactivator spaced apart maximally 

can minimize promoter cross talk in the off state, thus generating tighter regulatable gene 

expression. 

FIGURE 4: Rat striatum sections showing doxycycline (DOX)-dependent β-galactosidase (β-gal) 

expression in cells infected with a high-capacity, gutless adenovirus vector, i.e., pSTK120m[TRE-βGal-

pA]-[mCMV-rtTA2SM2-IRES-tTSkid-pA]. Lewis rats were injected with 1 × 107 infectious units of the 

HC-Ad vector into the striatum. Twenty-four hours before surgery rats were given drinking water 

containing 2 mg/ml DOX. Rats were perfused, fixed, and processed for β-galactosidase 

immunogenicity and confocal microscopy 4 days after HC-Ad delivery. Note the expression of β-gal-

immunoreactive cells in the striatum (str) and external capsule (ec) in rats treated with DOX (+) 

compared with negligible background expression levels in animals not treated with DOX (-). Scale 

bar, 500 μm. 
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FIGURE 5: Striatal sections of rats injected with HC-Ad vector pSTK120m[TRE-βGal-pA]-[mCMV-

rtTA2SM2-IRES-tTSkid-pA+ showing β-gal expression in (A) neurons and (B) astrocytes. Neurons were 

detected by double immunostaining for β-galactosidase and microtubule-associated protein-2 (MAP-

2) (A). Astrocytes were detected by double immunostaining for β-galactosidase and glial fibrillary 

acidic protein (GFAP) (B). Scale bar, 50 μm.  
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FIGURE 1 
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FIGURE 3 
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FIGURE 5 
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