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Abstract 
Breast cancer is a malignancy of the epithelial cells comprising the mammary 

gland. As the ER is necessary for the growth of approximately 70% of breast cancers, 

pharmaceutical efforts have focused on uncovering modulators of the ERα such as anti-

estrogens and Selective Oestrogen Receptor Modulator (SERMs). SERMs differ from 

pure ER antagonists in their capacity to display tissue-selective and C promoter 

dependent agonist-antagonist activities. Tamoxifen (TAM) is a SERM that is used in the 

treatment of hormonally responsive breast cancer. TAM is the most commonly used 

treatment for patients with ERα positive breast cancer. 

In this study we examined the role of Oestrogen Receptor (ER) signaling in the 

regulation of tissue Transglutaminase 2 gene (TGM2). TGM2 encodes tissue 

Transglutaminase (TG2), a multifunctional enzyme with many cellular functions, such 

as matrix remodelling, stabilization of apoptotic cells and cell adhesion and migration 

which are thought to be implicated in inhibition of tumour growth and prevention of 

metastasis. Ligand activated ER has been shown to induce the transcription of the 

TGM2.  

Our results show mRNA expression of TGM2 by E2/ER in breast cancer cells is 

maintained in the presence of TAM but not the SERM Raloxifene. As we would expect 

this gene to be inhibited by TAM, this reveals an added layer of complexity to the 

pharmacology of TAM. To investigate this finding further we studied the effects of 

compounds which are structurally related to TAM, and found that compounds such as 

Endoxifen and 4-Hydroxytamoxifen have similar effects to TAM. To analyse the 

sequence requirements for ER induced activation of TGM2 transcription we cloned the 

5‟ regulatory region into a luciferase vector. Further study is required in this area to 

better understand the significance of TGM2 expression in breast cancer cells. 
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1 Introduction  

1.1 General Principles of Cell Signalling 

Multicellular organisms require elaborate mechanisms of communication 

whereby signals from one cell or group of cells influence the behaviour or function of 

another group of cells. This can involve direct cell-cell contact in which the signalling 

molecule present on the surface of a cell can directly contact a specific protein called a 

receptor on the surface on a target cell, initiating a cascade of events that alters the 

function of the target cell (Paracrine). The second mechanism of intercellular signalling 

involves secretion of a signalling molecule by a cell and the binding of the molecule to 

a receptor located either on the plasma membrane or intracellularly in the target cell 

(Endocrine) [1]. 

 Signaling molecules may act locally on the same cell (autocrine signalling) or 

on neighbouring cells (paracrine signalling) or at a distance as with endocrine 

signalling. Because secreted signalling molecules must travel in a hydrophilic 

extracellular environment, many signalling molecules are hydrophilic and unable to 

cross the plasma membrane. These molecules therefore bind to cell surface receptors 

and transmit signals intracellularly. Hydrophilic signalling molecules include proteins, 

peptides, amino acids, nucleotides, and certain dissolved gases including nitric oxide 

and carbon monoxide. Alternatively, lipophilic signalling molecules, including fatty 

acids, steroid hormones, vitamins D3, and retinoids, can diffuse across the plasma 

membrane lipid bilayer and bind to intracellular receptors found within the cytosol or 

the nucleus.  Because these signalling molecules are lipophilic, they travel through the 

extracellular milieu bound to carrier proteins. Within the target cell lipophilic molecules 

bind to intracellular receptors called nuclear receptors. 
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The nuclear receptor superfamily constitutes a family of intracellular receptors 

that effect transcriptional programs that play roles in a number of biological processes 

by responding to hormonal and metabolic signals.  

1.2 Nuclear receptor signalling 

1.2.1 The Nuclear Receptor Superfamily 

 In humans, the nuclear receptor superfamily consists of 49 different receptors 

(Figure 1.1). Many nuclear receptors are ligand-activated transcription factors that are 

expressed in a cell-restricted manner. Nuclear receptors (NR) can bind a host of 

endogenous ligands including steroid hormones, fatty acids, vitamin D3, xenobiotics, 

cholesterols, and bile acids, some NRs are orphan receptors whose endogenous ligand 

has not been identified.  

 

Figure 1.1 Nuclear Receptor gene family 

AR ERRα LRH PPARα reverbα SF1 

CAR ERRβ LXRα PPARγ reverbβ SHP 

COUPα ERRγ LXRβ PPARδ RORα TIX 

COUPβ FXR MR PR RORβ TRα 

COUPγ GCNF1 NGF1-Bα PXR RORγ TRβ 

DAX GR NGF1-Bβ RARα RXRα TR2α 

ERα HNF4α NGF1-Bγ RARβ RXRβ TR2β 

ERβ HNF4γ PNR RARγ RXRγ VDR 

Adapted with permission from Prof. D McDonnell, Department of Pharmacology and 
Cancer Biology, Duke University, NC. 
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Nuclear receptors share a common modular structure that includes 5-6 conserved 

domains, A through F (Figure 1.2) [2].  The A/B domain of the receptor is located at the 

N-terminus of the protein, and it contains a ligand-independent activation function 1 

(AF-1) domain.  This domain can activate transcription in an autonomous manner.  The 

A/B domain is the most variable of the domains and its length varies widely between 23 

amino acids for the vitamin D3 receptor (VDR) to over 550 amino acids for the 

androgen, mineralocorticoid, and glucocorticoid receptors [3].  The C domain of the 

receptor constitutes the DNA Binding Domain (DBD) of the receptor.  This domain 

confers upon the receptor sequence-specific DNA recognition through two zinc finger 

motifs.  The D domain of the receptor is a hinge region between the highly structured 

domains that precede and follow it.  This domain contains a nuclear localization 

sequence, which may play a role in the dynamic nuclear-cytoplasmic shuttling of 

nuclear receptors that occurs in response to ligand binding [4].  The E domain of the 

receptor is the Ligand Binding Domain (LBD), which is involved in ligand-binding and 

dimerisation.  The LBD also contains an activation domain called activation function 2 

(AF-2), which is a region of the protein involved in recruiting coactivator molecules 

that are essential for ligand-dependent transcriptional activity [5]. Some receptors, 

including the peroxisome proliferator-activated receptor (PPAR) family possess an F 

domain at the very C-terminus [6].  This domain is evolutionarily not well-conserved, 

and the roles of the F domain are largely unknown. 
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Figure 1.2 Modular structure of nuclear receptors 

 
Reprinted with permission from Prof. D McDonnell, Department of Pharmacology and 
Cancer Biology, Duke University, NC. 

 

1.2.2 General Mechanisms of Nuclear Receptor Signalling 

In an unliganded-state, nuclear receptors can be localised to either the cytoplasm 

or nucleus.  Upon ligand binding, nuclear receptors dissociate from any associated heat 

shock chaperone proteins to which they are bound, translocate into the nucleus, and 

homo- or heterodimerise on specific DNA nuclear receptor response elements (NRREs) 

within the promoters of target genes (Figure 1.3). The DNA binding domain, located in 

the centre of the protein, contains nine cysteine residues, eight of which can chelate two 

zinc molecules, forming two zinc fingers that bind to two adjacent major grooves in the 

DNA[7].  Nuclear receptors recognize variations of the hexameric motif 5‟-PuGGTCA 

(Pu = A or G) [3].  Some nuclear receptors, including the retinoid acid receptor (RAR), 

Vitamin D receptor (VDR), and thyroid receptor (TR) bind to direct repeats of the 

hexameric sequence separated by 1-5 nucleotides, termed DR1 through DR5 elements.  

The oestrogen receptor prefers a 5‟-PuGGTCA half site sequence, whereas GR prefers a 

5‟-PuG(G/A)ACA sequence.   

Nuclear receptors regulate gene transcription via several different mechanisms 

[8].  Through binding of various ligands, nuclear receptors can repress or activate 

transcription by recruiting corepressor and coactivator proteins, respectively [9].  
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Binding of agonist to the nuclear receptor alters the conformation of the AF-2 domain, 

facilitating the displacement of corepressors and the recruitment of coactivators.  Most 

coactivators contain a canonical LXXLL amino acid motif that interacts with the AF-2 

of the nuclear receptor.  Recruitment of coactivators is essential for nuclear receptor-

mediated gene transcription; their role is to facilitate transcription by remodelling the 

chromatin and recruiting RNA polymerase II and the general transcriptional machinery. 

Binding of antagonist to the nuclear receptor facilitates the recruitment of co-repressors; 

which leads to recruitment of histone deacetylases, condensation of chromatin and 

dampening of transcriptional activity.   

 

Figure 1.3 The mechanism of action of intracellular receptors  

 

Ligand passes through the cell membrane and binds steroid receptors in the cytoplasm 
or nucleus. Binding of ligand induces a conformational change in the receptor structure 
permitting dimerisation and binding to specific nuclear receptor responsive elements 
(NRRE) in the DNA structure. The recruitment of general transcription activators 
(GTA) to the complex allows for the induction of gene transcription and production of a 
protein. Adapted with permission from [10]. 
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1.2.3 Oestrogen Signalling 

Oestrogen is probably the most widely studied of all hormones, the term 

„oestrogen‟ refers to a group of chemically similar hormones, estrone (E1), estradiol 

(E2), and estriol (E3) (Figure 1.4). These hormones are uniquely responsible for the 

growth and development of the female sexual characteristics.  Estradiol and estrone are 

produced primarily in the ovaries in pre-menopausal women, while estriol is produced 

by the placenta during pregnancy. Oestrogen acts on cells in a wide variety of tissues 

including breast, uterus, brain, bone, liver, and heart to modulate cell activity. For 

example, oestrogen controls growth of the uterine lining during the first part of the 

menstrual cycle, and cause changes in breast during adolescence and pregnancy and 

regulates various other metabolic processes such as bone growth and cholesterol levels.  

1.2.4 Oestrogens 

Figure 1.4: The structures of the three oestrogens 

 
 

The three oestrogens, estrone (E1), estradiol (E2), and estriol (E3), are the most 

abundant and well-studied endogenous agonists for ER (Figure 1.4). The biosynthesis of 

oestrogen in the ovary is initiated in the early follicular stage of the reproductive cycle 

in response to follicle stimulating hormone (FSH), a pituitary hormone whose receptor 

is expressed in ovarian granulosa cells.  Upon receipt of the signal, cholesterol is 

mobilized from the outer mitochondrial membrane (OMM) to the inner mitochondrial 

membrane (IMM) by steroid acute regulatory protein (STAR).  At the IMM, cholesterol 

is converted to pregnenolone by the action of the cholesterol side chain cleavage 
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enzyme cytochrome P450 (CYP) 11A1 (CYP11A1).  From there, pregnenolone is 

metabolized by numerous CYPs, hydroxysteroid dehydrogenases (HSDs), and 

hydroxysteroid reductases to produce oestrogens, as well as other steroid hormones 

(Figure 1.5).  

 

Figure 1.5: Steroidogenesis 

 
A diagram of the reactions in the steroidogenic pathway that contribute to the synthesis 
of endogenous oestrogens, highlighting the enzymes that catalyze these reactions. 
 

Oestrogens can be metabolized through several mechanisms, including oxidation 

by CYPs, sulfation by sulfotransferases, glucuronidation by uridine diphosphate-

glucuronosyltransferases (UGT), and O-methylation by catchol O-methyltransferases 

(COMT) (Figure 1.6) [11].  The primary site of E2 metabolism is the liver, where 

CYP1A2, CYP3A4, and CYP1B1 mediate 2 – and 4-hydroxylation of E2.  Outside the 

liver (in the breast, uterus, placenta, brain, and pituitary) CYP1A1, and to some extent 

CYP3A4, converts E2 to the 2-hydroxylated form.  COMT rapidly methylates 2-

hydroxy-E2 to avoid free radical formation and is thus considered to be anti-
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tumourigenic.  In the breast and uterus, CYP1B1 actively produces high levels of 4-

hydroxy-E2. Unfortunately, 4-hydroxy-E2 is rapidly converted between semiquinone 

and quinone forms, which generate free radicals that cause DNA damage, and thus 

CYP1B1 metabolism of E2 is considered genotoxic.  There is evidence to suggest that 

E2 can control the expression of its metabolic enzymes, although the data is not clear 

[11].  Oestrogens function through ER to control particular biological processes, as 

discussed below. 

 

Figure 1.6 Oestradiol Metabolism 

 
The creation and metabolism of E2 is catalyzed by many members of the CYP family.  
E2 metabolites fall into two main categories, those that are genotoxic and those that 
may inhibit tumourigenesis [11]. 
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1.2.5 The Oestrogen Receptor 

ER is a member of the nuclear receptor (NR) super-family of ligand-activated 

transcription factors.  There are two genetic subtypes of ER, ER and ER, which 

exhibit overlapping but distinct activities and expression patterns [12-15].  They share 

the same modular structure: an N-terminal A/B domain, the C domain containing the 

zinc-finger DNA binding domain (DBD), a hinge region (D domain), the E domain 

which houses the ligand binding domain (LBD), and the C-terminal F domain (Figure 

1.7).  Given their high degree of homology in the LBD and DBD, it is not surprising 

that ER and ER regulate mostly identical DNA response elements and bind many of 

the same endogenous and exogenous ligands [14, 16].  Tissue distribution patterns and 

knockout mouse models of ER indicate that ER and ER are not redundant, and 

instead suggest unique tissue-specific functions for each receptor subtype [12, 17].  

ER is more ubiquitously expressed throughout the body, whereas the pattern of ER is 

restricted to the testis, ovary and thymus [12].  Together, ER and ER control many 

important biological processes, including ovulation, mammary gland development, 

proper bone mineral density, cardiovascular function, aspects of mating behaviour, and 

the immune system [17]. 
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Figure 1.7 Schematic of ER structure 

 
Schematic illustration of ER modular structure, highlighting the amino acid similarity 
between ER and ER. Adapted with permission from [18]. 

 

Residing in either the cytoplasm or nucleus, signalling through ER is initiated by 

either ligand binding or by ligand-independent processes such as phosphorylation.  The 

transcriptional activity of ER is mediated by the activation functions (AFs), of which 

there are two in ER (AF-1 and AF-2) but only one in ER (AF-2).  AF-2 is located 

within the LBD and is primarily responsible for ligand-dependent activation of 

transcription, whereas AF-1 is thought to transduce ligand-independent transcriptional 

activation.  When both are present, as in ER, AF-1 and AF-2 can function 

synergistically or independently, depending on cell and promoter context, thus adding a 

layer of complexity [19].  The distinct biologies of ER versus ER may stem from the 

divergent A/B and F domains, particularly since no obvious AF -1 domain is found in 

ER. 

1.2.5.1 Activation of transcription 

To activate transcription, the general transcriptional machinery must be recruited 

to DNA.  Although it was once considered that ER directly interacted with this 

machinery, it is now apparent that the protein-protein interaction surfaces on ER recruit 

coregulatory proteins, such as coactivators and corepressors, which bridge this 
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interaction (Figure 1.8). Coregulatory proteins interact primarily with ER at the AF-2 

domain, where a hydrophobic pocket is formed predominantly by helix 12 (H12) 

(Figure 1.9) 

Figure 1.8 Diagram of ER agonist and antagonist activity 

 

The binding of agonist to the ER induces a conformational change in the receptor 
structure which facilitates dimerisation and recruitment of coactivators to the receptor 
complex. This allows for the activation of transcription of E2 regulated genes. The 
binding of agonist to the ER facilitates dimerisation and recruitment of corepressors 
which does not lead to gene transcription. Corepressor (CoR), coactivator (CoA). 
Adapted with permission from [20]. 

 

Figure 1.9 Structure of the nuclear receptor/coactivator complex 

 
The interaction of ER AF-1 and AF-2 with coactivator (CoA). Adapted with permission 
from [20]. 
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This pocket binds the hydrophobic sequence LxxLL found in coactivators. [21] 

Coactivators can promote transcription through several mechanisms: the acetylation of 

histones by steroid receptor coactivators (SRC) -1, -2, and -3, thyroid hormone receptor 

activating protein of 220kDa (TRAP220), and CREB-binding protein (CBP/p300); the 

methylation of histones by protein arginine methyltransferase 1 (PRMT1); RNA 

processing by RNA helicases such as p68; and the coupling of ER to degradation 

machinery through the ubiquitin ligases E6-associated protein and ribosome production 

factor 1. [22-23] The other class of coregulatory proteins, the corepressors, contain a 

similar domain, the CoRNR box motif, that binds to the hydrophobic pocket in ER [24].  

In general, corepressor proteins either recruit or exhibit intrinsic histone deacetylase 

activity, thereby actively repressing transcription (Figure 1.10).  

 
Figure 1.10 ER-associated cofactors 

 
Diagram showing coactivators (+), corepressors (-) and other associated proteins. 
Oestrogen receptor shape influences cofactor binding preferences [10]. Adapted with 
permission from [25]. 
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After binding to ligand, ER undergoes a conformational change that is critical in 

dictating the downstream biological response.  Previously, it was thought that there 

were only two conformations that ER could adopt; an active and an inactive one.  

However, the discovery that different ligands confer unique responses made this model 

unlikely.  Instead, it appears that each ligand induces a unique conformational change 

that allows for differential presentation of protein-protein interaction surfaces that are 

used to couple ER to other signalling pathways, therefore determining the cellular 

response to a particular ligand [26]. 

After binding to oestrogen and undergoing a conformational change, ER 

dimerises and binds to DNA within the regulatory regions of target genes [27].  Direct 

ER binding to DNA occurs at oestrogen response elements (EREs), whereas ER can 

also interact indirectly with DNA through binding to Fos and Jun at AP-1 (activator 

protein 1) elements [28] or to specificity protein 1 (Sp1) family members at GC-rich 

DNA regions [29].  The specific ERE sequences influence the affinity of ER binding by 

inducing a unique conformation in the ER structure which may contribute to the 

promoter specific activities of the ER on different ERE-containing genes [30].  The 

canonical ERE was determined to have the consensus sequence 5‟-

GGTCAnnnTGACC-3’ [31-32]. The symmetry of the sequence facilitates the binding of 

ER as a homodimer [33]. However, only a handful of the most highly oestrogen-

responsive genes actually contain perfect consensus EREs. Many genes have been 

found to contain sequences that appear to be EREs, but most of these vary from the 

consensus by one or more nucleotides. Studies of ER binding showed that one or more 

changes from the consensus sequence resulted in lower ER-ERE affinity and that 

sequences immediately flanking the ERE impact ER-ERE binding [34]. One study has 

performed a genome-wide analysis of oestrogen receptor binding sites, identifying a set 
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of 3665 unique ER binding sites. This study has shown that the percentage of 

upregulated genes in breast tumours with an ER binding site within 100kb is 56 - 59%. 

Also almost one-third of early-oestrogen upregulated genes have ER binding sites 

within 50kb of the transcription start site [35], while there at least 236 genes with a 

consensus ERE within -10 to +5 kb of the 5‟ end [36].  

Besides binding ERE sequences on the gene promoter, ERα or ERβ can activate 

transcription through different types of DNA enhancer elements such as AP-1 sites. 

This requires ligand-bound ER and the AP-1 transcription factors Fos and Jun. ERα or 

ERβ both have different transactivation behaviour at Ap-1 sites.  

After initiating transcription, ER undergoes ligand-mediated degradation 

through the 26S proteosome.  The activity of particular coactivators, such as AIB1 

(amplified in breast cancer 1), has been shown to be necessary for ER degradation 

under certain contexts [37], therefore bringing forth the hypothesis that DNA-bound 

ER recruits the proteins that target it for destruction.  The complete identity of these 

proteins, and whether they interact with ER in the same way as coactivators, has yet to 

be fully elucidated.  Further, ER does not undergo ligand-dependent degradation, 

despite efficient transcription, suggesting perhaps that another surface outside the 

coactivator binding groove may be responsible for recruitment of the degradation 

machinery. 

Besides its well-studied role in modulating transcription of target genes, ER may 

also regulate other biological processes in both the nuclear and cytoplasmic 

compartments through both ligand-dependent and –independent mechanisms. These 

include association with the phosphotidylinositol-3-kinase (PI3K), insulin-like growth 

factor 1 (IGF-1), and extracellular signal-regulated kinase/mitogen-activated protein 

kinase (ERK/MAPK) pathways. IGF-1, like E2 is a potent mitogen which is involved in 
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a large array of processes that control proliferation and differentiation in mammalian 

cells. One study has shown that E2 activates IGF-1 receptor and ERK1/2 via ERα 

leading to activation of the IGF-1 signalling cascade [38-40]. Activation of IGF-1 

receptor leads to the selective recruitment of downstream signaling molecules and 

results in activation of the Ras/Raf/MAPK signaling cascade. Phosphorylation of ERα 

at serine 118 is required for full action of AF-1, as ER activation by growth factors 

involves the MAPK pathway; this is another potential interaction site of the two 

pathways [41]. This cross-talk between IGF-1 receptor and ER signalling pathways 

results in synergistic growth stimulation. 

It has also been established that oestrogens induce rapid increases in cAMP as 

well as activation of phospholipase C [42]. The time course of these acute events 

supports the hypothesis that they do not involve the „classical‟ gene activation action of 

oestrogens. Through interaction with these pathways, ER activity can be regulated by 

direct phosphorylation or by phosphorylation of its coactivator and corepressor proteins. 

The exact role of these phosphorylation events, and other potential post-

translational modifications, on the signalling competency of ER and its coactivators 

remains to be fully elucidated. These pathways may play a pivotal role in oestrogen-

independent breast cancer cell growth and tamoxifen-resistance.  
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1.3 Breast Cancer 

1.3.1 General information 

In 2007 there were 2463 new cases of breast cancer in Ireland, the number of 

new cases has been rising steadily each year (+2.4%). However mortality rates have 

dropped by about 2% per annum (1994-2004), likely due to increased early detection, 

better therapeutics, and successful prevention strategies. Breast cancer is the most 

common cause of cancer death in women, at over 660 deaths per year (National Cancer 

Registry). 

Breast cancer is a malignancy of the epithelial cells comprising the mammary 

gland.  Many risk factors have been identified for breast cancer, including lifetime 

exposure to endogenous hormones, obesity, increased age, family history, and alcohol 

consumption.  The primary treatments for breast cancer are surgery, radiation therapy, 

and systemic chemical therapy, which include chemotherapeutics and 

endocrine/hormone therapy.  

1.3.2 The role of oestrogen and ER in breast cancer 

Oestrogens and ER have been implicated in many cancers, but none so clearly as 

breast cancer.  In 1896 it was first suggested that ovariectomy induced regression of 

metastatic breast cancer [43], and by 1900 it became clear that this surgery had a one-

third response rate in metastatic breast cancer [44].  The discovery of oestrogen in 

ovarian follicular fluid set the stage for the development of compounds that either 

mimic or inhibit classic oestrogenic responses [45].  Breast cancer cells may be either 

positive or negative for the ER; most ER positive breast cancer cells require the ER for 

growth and survival. ER positive breast cancers exhibit stronger clinical responses to 

hormonal treatment and have a more differentiated morphologic appearance [46-47].  
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In mammary epithelial cells, E2 signalling through ER promotes cellular 

proliferation, which when unchecked can lead to pathologic disease. Even after 

menopause, when systemic E2 production is largely decreased, adipose tissues continue 

to make E2 and many breast tumours acquire the ability to locally produce E2 through 

expression of the aromatase enzyme (CYP19) [48-49].  In addition to promoting cell 

proliferation, E2/ER engages the ERK/MAPK and PI3K signalling pathways to 

increase cell proliferation and survival. As discussed earlier, some metabolites of E2 are 

DNA damaging agents that may increase DNA mutagenesis, leading to increased 

probability of cell transformation [49-50]. 

1.3.3 Breast Cancer pharmacology 

Given the implication of E2/ER signalling in the aetiology of breast cancer, 

pharmaceutical efforts have uncovered many natural and synthetic modulators of ER 

activity and E2 synthesis with a wide range of activities.  The Selective ER Modulators 

(SERMs) are characterized by three important qualities: they bind competitively to ER, 

they induce a unique conformational change in ER that facilitates differential cofactor 

interactions, and they exhibit promoter- and tissue-specific activity (Figure 1.10). 

SERMs allow the ER to adopt a structure which is intermediate between that observed 

following the binding of agonist or antagonist, which may or may not lead to gene 

transcription.  
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Figure 1.11 ER activation complex showing the selective nature of Tamoxifen in 
different cells. 

 

 

 

 
The activities of AF-1 and AF-2 are manifested in a cell-specific manner. (A) In some 
cells the interaction of both ER-AF domains with a cellular cofactor is required for 
transcriptional activity. In these cell contexts, estradiol (E2), but not tamoxifen, 
functions as an agonist. (B) In other cell contexts, ER-AF-1 alone is required for ER 
transcriptional activity. Therefore Tam is an AF-1 agonist. Reprinted with permission 
from [51]. 

A 

B 
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Tamoxifen (TAM) and raloxifene (RAL) are SERMs that have clinical utility in 

breast cancer (Figure 1.12), and the tissue-specific activity profiles of these compounds 

as compared to E2 are shown in Table 1.1. In the context of the breast, both TAM and 

RAL are considered ER antagonists based on their ability to block coactivator 

recruitment to ER and thus transcriptional activation, yet they have different biological 

consequences as assessed by their individual abilities to decrease the risk for either 

invasive or non-invasive breast cancer. Whereas TAM decreases the risk for both 

invasive and non-invasive breast cancer, RAL only decreases the risk for invasive breast 

cancer, suggesting perhaps that differences exist in their mechanism of action in the 

breast [52]. Raloxifene has been shown to decrease the risk of invasive breast cancer by 

76% during 3 years of treatment. This was attributable to a 90% reduction in the risk of 

ER-positive breast cancer, while there was no apparent decrease in the risk of ER-

negative breast cancer [53]. A distinction between TAM and RAL is highlighted in the 

uterus, wherein TAM is an ER agonist and thereby increases the risk for 

endometrial/uterine cancer and endometriosis, but RAL is an ER antagonist [54]. 

Therefore SERMs display tissue-selective pharmacology, acting as an agonist in some 

tissues and antagonists in other tissues. Also E2, TAM, or ICI (ICI 182,780) bound ERα 

will all activate transcription through AP-1 whereas only TAM or ICI bound ERβ 

activates transcription through Ap-1 [55]. This reveals a potential control mechanism 

for transcriptional regulation of E2-responsive genes and also adds a layer of 

complexity to the differential pharmacology of TAM 
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Figure 1.12 Structures of Tamoxifen and Raloxifene 

 
Reprinted with permission from [51]. 

 

Table 1.1: The relative agonist activities of SERMs 

  
The relative activities of E2, Tamoxifen and Raloxifene in various cell types. [52-53] 
 

 

The active form of Tamoxifen, 4-Hydroxytamoxifen (4OHT), has been shown to 

be exhibit 30 to 100-fold higher potent anti-oestrogenic activity than that of Tamoxifen 

[56]. For this reason Tamoxifen is often referred to as a pro-drug that requires 

conversion to its hydroxylated metabolite to exert its activity. The secondary metabolite 

of 4OHT, Endoxifen (4-hydroxy-N-desmethyl-tamoxifen), is as potent as 4OHT with 

respect to ER binding and inhibition of E2 induced cell proliferation. Endoxifen is 

formed by the cytochrome P450 2D6 (CYP2D6) and has been shown to be present in a 

6 fold higher concentration than 4OHT in patients receiving Tamoxifen. Therefore this 

may suggest that Endoxifen could be a more important contributor to Tamoxifen 

activity than 4OHT [57]. 
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Bazedoxifene is a SERM which is currently under development by Wyeth 

Pharmaceuticals for the prevention and treatment of osteoporosis. Bazedoxifene is 

shown to transactivate the ER, and positively affect the skeletal and lipid profile without 

stimulating the uterine endometrium, causing breast cancer proliferation, or negatively 

impacting the central nervous system [58]. Lasofoxifene is a nonsteroidal SERM which 

is currently under development by Pfizer for the prevention and treatment of 

osteoporosis and vaginal atrophy. Lasofoxifene binds ERα and ERβ selectively (100 

fold selectivity against all other NRs) and with high affinity [59]. 

Another class of ER ligands that has been developed clinically is the selective 

ER down-regulators (SERDs), which include ICI and GW5638.  SERDs, similar to 

SERMs, bind competitively to ER, but have the additional activity of inducing rapid re-

compartmentalisation and degradation of ER protein. This activity contributes to the 

efficacy of SERDs such as ICI as a second-line therapy for patients who have failed at 

least one endocrine therapy, such as in Tamoxifen-resistant breast cancer. GW5638 has 

been shown to function as oestrogen in skeletal and cardiovascular systems while 

opposing the actions of oestrogen in the breast and uterus. Importantly, it also inhibits 

the growth of tumours that are resistant to (or stimulated by) Tamoxifen.  

Besides inhibiting ER signalling at the level of ligand binding, another way to 

impact ER signalling is to reduce the concentration of its agonist, E2.  As mentioned 

above, E2 synthesis from testosterone requires the aromatase enzyme, which also 

catalyzes the conversion of androstenedione to E1.  Thus, aromatase inhibitors (AIs), 

such as anastrozole, exemestane, and letrozole, have been developed [60].  However, 

only 40 – 50 % of patients respond to AIs, suggesting de novo or acquired resistance 

mechanisms of circumventing this particular block in E2 synthesis.  One hypothesis is 

that breast tissue expresses high levels of steroid-sulfatase expression, which converts 
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E1-3-sulfate into the un-sulfaconjugated form, whereby subsequent action of 17-HSD 

creates E2 [61].  Other rationales maintain that perhaps not all ER-positive breast 

cancers rely on E2 and may instead rely on other endogenous oestrogenic compounds 

[62], or that distinct molecules and signalling pathways, such as the epidermal growth 

factor receptor (EGFR)/MAPK pathway [63], compensate in the face of an AI to 

continue to induce cell proliferation and survival.   

The addition of targeted therapies to traditional chemotherapeutic regimens has 

provided significant benefit with relatively mild side effects. For example, treatment of 

early-stage ERα positive breast cancer with Tamoxifen, results in a 30% reduction in 

annual mortality. Use of an aromatase inhibitor, such as Letrazole, shows comparable 

benefit with an improved side effect profile; the most serious common side effect, 

cardiovascular events, occurs in less than 1% of patients. The success of anti-oestrogen 

therapies in the treatment of breast cancer highlights the importance of E2 and ER in 

the development and progression of this disease, but both de novo and acquired 

resistance suggest that there is still much to learn.  A more thorough understanding of 

the signalling pathways and how they interact and intersect will allow for the 

development of superior targeted therapies as well as better biomarkers that predict risks 

and likelihood of response to a given therapeutic. 

1.3.4 Breast cancer cell lines as in vitro models 

The study of breast cancer cell lines powerfully informs both our molecular 

understanding of this disease and the development of novel therapeutic agents. Current 

research aims to closely analyse tumour heterogeneity and tumour-stromal interactions 

in in vitro models of cancer. The majority of the breast cancer cell lines were derived 

from metastatic tumours as the highly malignant nature of these cells facilitates their 

long-term proliferation. Three cell lines that were developed in the 1970‟s (MCF-7, T-
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47D and MDA-MB-231) were used in the vast majority of published breast cancer 

studies. However there are some disadvantages in using cell lines as these are prone to 

genotypic and phenotypic drift during their continual culture. One study highlighted 

many discrepancies in MCF-7 cells obtained from different laboratories, demonstrating 

variations in cell growth rate, hormone receptor content, karyotype and clonogenicity 

[64]. Another pitfall of using these breast cancer cell lines is that most of these cells are 

derived from tumour metastasis rather than the primary legion. Thus research based on 

such cell lines will be biased towards more rapidly progressive types of breast cancer 

and to late stage disease rather than lower grade and earlier stage breast cancer. An 

alternative to using cell lines is to prepare primary cultures derived directly from a 

breast tumour which has the advantage of being able to compare the characteristics of 

the culture with those of the original tumour. However primary cultures have slow 

population doubling times and a finite lifespan also these cells may behave differently 

in culture compared to their response when they are part of a tissue/organ. Because of 

the ease of use of cell lines they remain the model of choice for breast cancer research, 

however it is important to understand their limitations and take these into consideration 

when designing experiments and interpreting results. 

The general attributes of breast cancer cell lines (such as ER positive or 

negative) necessarily informs the choice of a particular cell line in the experiment as 

well as the interpretation of experimental results [65]. MCF-7 cells are used in the 

majority of the experiments in this study as these cells express ERα but do not express 

ERβ. 
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1.4 Tissue Transglutaminase 

1.4.1 Physiological Functions 

 Tissue or type 2 transglutaminase (TG2,1 EC 2.3.2.13) is a ubiquitously 

expressed multifunctional enzyme belonging to the transglutaminase family which is 

coded by the TGM2 gene [66]. Tissue Transglutaminase protein (referred to as TG2) is 

a 687 amino acid protein and 77329 Da in size. Its primary function is catalyzing the 

Ca2+ -dependent acyl transfer reactions between carboxamide groups of glutamine 

residues and amino groups in lysine residues in peptides, forming cross-links in 

proteins. Transglutaminases are expressed in a variety of tissues and differ in their 

pattern of expression, substrate specificity and their physiological regulation. Some 

members of the transglutaminases such as Factor XIIIa, which is involved in blood 

clotting, are secreted from the cell and are involved in cross-linking of plasma proteins. 

Other transglutaminases, such as keratinocyte transglutaminases, are intracellular 

enzymes which play a major role in cross-linking proteins in the differentiation and 

cornification of skin cells [67]. Tissue transglutaminase (TG2) is an intracellular 

transglutaminase which may be secreted from the cell where it is involved in processing 

the matrix that occurs during osteogenesis, wound healing and other remodelling 

processes [68]. However the enzyme‟s method of secretion is not fully understood. Like 

Factor XIII and several other extracellular proteins, tissue transglutaminase does not 

contain a leader peptide or obvious secretory signal and it remains to be determined how 

the enzyme becomes deposited in the extracellular compartment. One study has shown 

that increased expression and activation of TG2 leads to increased externalisation of the 

protein, whereas inactive TG2 was not externalised. This study also showed that 

exposure of the active site is key in determining enzyme secretion [69].  
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Evidence also exists to show that TG2 has a role in apoptosis, where both high 

levels of the protein synthesis and enzymatic activity are observed. Activation of TG2 

crosslinking activity during both physiological and pathological apoptosis leads to 

assembly of an intracellular protein scaffold contributing to the stabilization of dying 

cells, before their clearance by phagocytosis. TG2 therefore stabilizes the integrity of 

the apoptotic cells, preventing the release of harmful intracellular components into the 

extracellular space. In non-apoptotic cells the binding of GTP prevents the activation of 

TG2, allowing the cell to survive in the presence of high TG2 protein levels [70]. 

During apoptosis the drop in intracellular GTP and an increase in Ca2+ lead to the 

activation of TG2. Cell surface-bound Tissue Transglutaminase is also thought to be 

involved in cell adhesion and cell migration processes by a mechanism independent of 

its cross linking activity [71]. 

1.4.2 Oestrogen Receptor control of TGM2 expression  

It has been previously shown that E2 activates the TGM2 gene in cells which 

contain either ERα or ERβ. This ER-induced activation is inhibited by ICI 182780 [72]. 

It is thought that the ER activates TGM2 through an ERE located in its promoter. The 

proximal TGM2 promoter contains an 8/10 match with the canonical ERE 

(GCGGTCAAGG CTACCTG) (Figure 1.13). 

As discussed earlier the ER may also mediate gene transcription from an AP1 

enhancer element that requires ligand and the AP1 transcription factors Fos and Jun for 

transcriptional activation. The TGM2 promoter contains a 6 out of 7 match to the 

canonical AP-1 site (TGAGCA) (Figure 1.13). 
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Figure 1.13 TGM2 5’ flanking region with putative ERE and AP-1 sites 

 
 
Diagram of TGM2 5‟ flanking region showing putative ER binding sites, CpG 
methylation site, translation start site and transcription start site. 

 

The proximal promoter of this gene includes two CpG-rich regions, well 

recognised sites of DNA methylation. These sites are concentrated in two clusters of 

CpG dinucleotides; one is located in the core promoter (nucleotides -205 to +75) 

(Figure 1.13) and the other is located approximately 1.3kb upstream. One study has 

shown that methylation of the proximal CpG region results in a marked decrease in 

transcriptional activity while demethylation increases transcription [73]. This study 

describes a mechanism for the negative regulatory control of TGM2 by DNA 

methylation. Release from the inhibition of this regulatory mechanism may play an 

important role in controlling the level of transglutaminase expression in a tissue-specific 

manner. 

1.4.3 Role of TG2 as a tumour suppressor 

The growth and development of new tissue in physiological and pathological 

conditions relies on the generation of new blood supply. The control of inappropriate 

angiogenesis in diseases such as cancer has been a keen area of research, leading to the 

development of novel anti-angiogenic agents. While some of the functions of TG2 

protein are similar to those required for angiogenesis, the role of TG2 in this process is 

poorly understood. It has been shown that TG2 is down-regulated in epithelial cells 

undergoing capillary angiogenesis; also TGM2 gene knock-out mice show no vascular 

abnormalities [74]. These findings fit in with the proposed role of TG2 in extracellular 

CpG Island 
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matrix stabilisation, since angiogenesis requires local destabilisation of the matrix. One 

study has shown that application of exogenous TG2 blocks angiogenesis in a dose-

dependent manner without causing cell death. The same study also shows that 

intratumour injections of TG2 inhibited tumour growth and increased survival in mice 

bearing carcinoma tumours. Also tumours grafted into TGM2 knockout mice (TGM2
-/-) 

showed a significant increase in tumour growth compared to TGM2
+/+ mice [75]. 

1.4.4 TG2 in chemotherapy resistant breast cancer 

Chemotherapeutic drugs such as Doxorubicin are used in the treatment of breast 

cancer. This drug is known to intercalate DNA thus preventing transcription; it also 

inhibits the topoisomerase type II enzyme stopping the process of replication. 

Resistance to chemotherapy is a major obstacle to successful treatment of breast cancer. 

Although chemotherapy drugs are outside the focus of this study, the implications of 

TG2 protein in drug resistance is relevant.  A direct link has been established between 

the development of drug resistance and metastatic phenotypes in breast cancer and 

increased expression of TG2. One study demonstrated that TG2 protein expression is 

up-regulated in drug-resistant and metastatic breast cancer cells, and it could serve as a 

prognostic marker for the development of these phenotypes [76]. 

As discussed earlier, many reports have supported the involvement of TG2 in 

apoptosis; its overexpression primed cells for apoptosis whereas its inhibition by 

antisense RNA rendered the cells resistant to induction of apoptosis [77]. Contrary to 

this, recent evidence indicates that increased expression of TG2 may prolong cell 

survival by preventing apoptosis [78]. It has been proposed that pro-apoptotic and anti-

apoptotic effects of TG2 strongly depend on its location within the cell. One study has 

shown that cytosolic TG2 is pro-apoptotic while nuclear TG2 diminishes apoptosis [79]. 
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It has been shown that TG2 protein levels in drug-resistant tumour cells is about 

10 times higher than that in drug-sensitive tumour cells [80]. However it is thought that 

these cells are to be able to survive in the presence of high TG2 due to deficient 

intracellular calcium levels [81].  

1.4.5 Structure of TGM2 gene 

The TGM2 gene is composed of 13 exons covering a size of 35kb on the long 

arm of chromosome 20 (20q12) which is expressed as a 3.6kb mRNA in human 

endothelial cells (Figure 1.14) [82]. 

Figure 1.14 Layout of exons in TGM2 

 

Diagram of TGM2 exons drawn to scale.  
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2 Aims 
The aim of this study was to investigate the differential promoter-specific 

pharmacology of Tamoxifen (TAM) in the context of breast cancer cells using TGM2 as 

a model. We analysed the effects of SERMs which are structurally and functionally 

related to TAM. We also aimed to compare the inhibitory activities of TAM on a group 

of ER regulated genes in various breast cancer cell types. To this end we cloned the 

sequence upstream of the TGM2 gene promoter containing the putative nuclear receptor 

response elements and insert it into a luciferase plasmid for use in transient transfection 

assays. 

Specifically we aimed to: 

 Study effects of Tamoxifen and Endoxifen on TGM2 mRNA expression 

 Analyse the requirements of ER or other cellular factors in TGM2 activation 

 Search the TGM2 5‟ flanking region for possible ER binding sites 

 Clone a sequence from this 5‟ region into a luciferase vector 

 Determine the degree of transcriptional regulation of the isolated TGM2 

promoter region by ER and E2/TAM 
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3 Materials and Methods 

3.1 Materials 

3.1.1  Materials used for cell culture 

 Cell culture dishes (100 x 20mm): BD Falcon (Franklin Lakes, NJ ) (cat. 353003) 

 Cell culture plates (12 well): Corning Incorporated (Corning, NY) (cat. T-2989-6) 

 Dulbecco‟s Modified Eagle Medium (DMEM): Invitrogen (Carlsbad, CA), Nutrient 

Mixture F-12 Ham 1X (DMEM/F12 1:1) (cat. 11330) Lot number: 488586, 

supplemented with 8% charcoal stripped fetal calf serum, 0.1 mmol/L nonessential 

amino acids and 1 mmol/L NaPyr. 

 DMEM (Phenol red free): Invitrogen Gibco, Nutrient Mixture F-12 Ham 1X 

(DMEM/F12 1:1) (cat. 21041) Lot number: 495171, supplemented with 8% 

charcoal stripped fetal calf serum, 0.1 mmol/L nonessential amino acids and 1 

mmol/L NaPyr.  

 RPMI 1640 (Invitrogen Gibco): supplemented with 8% fetal bovine serum (FBS) 

(Hyclone Laboratories), 1 mM sodium pyruvate, and 0.1 mM non-essential amino 

acids (Invitrogen) (cat.10-040-CV) Lot number: 10040424 

 RPMI 1640, Phenol red free (Invitrogen Gibco): supplemented with 8% fetal bovine 

serum (FBS) (Hyclone Laboratories), 1 mM sodium pyruvate, and 0.1 mM non-

essential amino acids (Invitrogen) (cat. 11835) Lot number: 492502 

 Minimum Essential Media (MEM): Invitrogen Gibco supplemented with 8% fetal 

bovine serum (FBS) (Hyclone Laboratories), 1 mM sodium pyruvate, and 0.1 mM 

non-essential amino acids (Invitrogen)  (cat.11095) Lot number: 539196 

 MEM (phenol red free): Invitrogen Gibco supplemented with 8% fetal bovine serum 

(FBS) (Hyclone Laboratories), 1 mM sodium pyruvate, and 0.1 mM non-essential 

amino acids (Invitrogen) 
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 Oestradiol (E2): obtained from Sigma Aldrich (St. Louis, MO) 

 Trypsin: Sigma– (0.25% Trypsin – EDTA solution) Lot number: 8J0422 

 100% Ethanol: Pharmaco-AAPER (Brookfield, CT)  

 Dimethyl-sulphoxide (DMSO): Sigma Lot number: 25K2409 

 Tamoxifen (TAM), 4-hydroxytamoxifen (4OHT) obtained from Sigma Aldrich 

 ICI 182,780 (ICI) obtained from Tocris Bioscience (Ellisville, MI) 

 Endoxifen obtained from Ross Weatherman, Purdue University 

 Bazedoxifene, Lasofoxifene and Raloxifene obtained from Wyeth (Madison, NJ) as 

a donation to research. 

 α-Napthoflavine, β-Napthoflavine obtained from Sigma Aldrich 

 All Trans Retinoic Acid (ATRA) obtained from Sigma Aldrich (cat. R2625) 

 Interleukin – 6 (Il-6) obtained from Sigma Aldrich (cat. I3268) 

 50ml tubes: Greiner Bio-One (Monroe, NC) (cat. 227261) Lot number: 08420195 

 TE buffer: (10mM Tris & 1mM EDTA) 

 PBS: Cellgro (Manassas, VA) Dulbeccos Phosphate Buffered Saline (cat. 21-031-

CV) Lot number: 21031303 

 Cells: MCF-7, MDA 231, BT483, HeLa and Skbr-3 obtained from American Type 

Culture Collection (ATCC, Manassas, VA) 
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 Cell lines used in this study, all of which are epithelial tumour cells, are shown 

below: 

Table 3.1 Human cell line used in current study 
Cell line ATCC No Attributes 

MCF-7 HTB-22 ER positive, breast 

MDA-MB-231 HTB-26 ER negative, breast 

BT483 HTB-121 ER positive, breast 

Skbr-3 HTB-30 ER negative, breast 

HeLa CCL-2 ER negative, cervical 

 
 pRST7-ERα expression plasmid (Accession no. X03635) 

3.1.2 Materials used for RNA isolation 

 2-Mercaptoethanol: Sigma Lot number: M3148 

 DEPC water: Omnipur Lot number: 1108B425 

 RNA isolation kit: Bio-Rad (Hercules, CA) Aurum Total RNA Minikit (cat. 732-

6820) Lot number: 7326820 

3.1.3 Materials used for Reverse Transcriptase (RT) PCR 

 Isolated RNA 

 Spectrophotometer: Beckman (Fullerton, CA) DU640  

 PCR Tubes and Strip Caps (8 Strip): Phenix (Candler, NC) (cat. MPX-445) Lot 

number: 080930-800 

 cDNA Synthesis Kit: Bio-Rad iScript (cat.170-8890) Lot number: 92079967 

 Bio-Rad iCycler 
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3.1.4 Materials used for Quantitative PCR 

 cDNA samples 

 qPCR plates: (96 well) Bio-Rad  

 Bio-Rad Microseal „B‟ Film (cat. MSB1001) 

 Sybr Green supermix: Qiagen (Valencia, CA)  

 Bio-Rad iCycler optical system with associated software 

Table 3.2 qPCR primers used for qualitative analysis of mRNA  
 Forward (5’-3’) Reverse (5’-3’) 

36B4 GGACATGTTGCTGGCCAATAA GGGCCCGAGACCACTGTT 

TGM2 TCACCTTCAGTGTCGTGACC TCCTCTTCCGAGTCCAGGTA 

RET GGATTAAAGCTGGCTATGGCA TGGCTTGTGGGCAAACTTGTG 

pS2 TCCCCTGGTGCTCTATCCTAATAC GCAGTCAATCTGTGTTGTGAGCC 

WISP2 CCTACACACACAGCCTATATC CCTTCTCTTCATCCTACCC 

CYP1A1 TGCAGAAGATGGTCAAGGAG AGCTCCAAAGAGGTCCAAGA 

36B4 qPCR primers span exons 4 & 5, TGM2 primers span exons 2, 3 & 4, RET 
primers span exons 9 & 10, pS2 primers span exons 2 and 3, CYP1A1 primers span 
exons 2 & 3. 

 

3.1.5 Materials used for PCR of genomic DNA 

 DNA isolation: Qiagen DNeasy kit (cat. 69564) Lot number: 42151724 

 MCF-7 cells 

 Isolated DNA 

 Cloned Pfu Turbo: Stratagene (La Jolla, CA) (cat. 600153) Lot number: 

0006037068 

 Pfu buffer (10X): Stratagene (cat. 600153.82) Lot number: 0650189 

 PCR grade water 
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 GC-rich PCR: Clontech (Mountain View, CA) Advantage GC kit (cat. 639114) Lot 

number: 8051025 

 dNTPs (50X) 

 Agarose: Omnipur lot. 0265B068 

 TAE buffer 

 Electrophoresis chamber 

 Ethidium Bromide solution: Bio-Rad– (10mg/ml) (cat. 161-0433) 

 DNA ladder (1kb): Bio-Rad (cat. 170-8204) ) Lot number: L1708204 

 DNA ladder (100bp) GIBCO BRL (cat. 15628-019) Lot number: 1082294 

 Primers obtained from Sigma Aldrich (designed with a 5‟ XhoI binding site) as 

shown in Table 3.3 
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Table 3.3 Sequences of primers targeting regions of TGM2 gene 

Forward-1645 5‟-ATCGCTCGAG GAGCAGTTTCTGCAACAATC-3‟ 

Forward -900 5‟-ATCGCTCGAG GTCTGTTTTTGCAGGTGTGT-3‟ 

Forward -561 5‟-ATCGCTCGAG GCCAGCCGTGTTTGGTG-3‟ 

Reverse +50 5‟-ATCGCTCGAG CCACTGGCGGCGAGAC-3‟ 

Reverse -305 5‟-ATCGCTCGAG CCCTCATAGAAACACACAACG-3‟ 

Reverse -540 5‟-ATCGCTCGAG CCACAGTTACACCAAACACG-3‟ 

  

F-690 5‟-ATCGCTCGAG TCTGGACACCTGCTCATCTG-3‟ 

R-480 5‟-ATCGCTCGAG GCAGACACACCAAGACAGGG-3‟ 

F-1200 5‟-ATCGCTCGAG GGCTGCTATGGTCATTTCC-3‟ 

R-exon9 5‟-ATCGCTCGAG GTCCCTGGCAGAGGTAGAAA-3‟ 

F+exon9 5‟-ATCGCTCGAG GGGTATGTGCCCTCAGAGTCTT-3‟ 

R+700 5‟-ATCGCTCGAG GGGCTAAGGCTGTGTTTTACT-3‟ 

F-UBS 5‟-ATCGCTCGAG GGCTTTGAGATTGGACTGC-3‟ 

R-UBS 5‟-ATCGCTCGAG GGCCTGGACTTAGTTCATTACA-3‟ 

  

F_UBS-560 5‟-AACCCTCGAG GTGGTAGGAACAAAGCCATTG-3‟ 

R_UBS+550 5‟-AACCCTCGAG CACCAGCTCCATTCTGAACA-3‟ 

F_ERE-1120 5‟-GGAACTCGAG CTGTGAGGGAGGGATTCTTT-3‟ 

R_ERE+440 5‟-GGAACTCGAG CGGACAGGGACACACAACTA-3‟ 

All primers have an XhoI binding site motif (CTCGAG) (in red) with a 4 bp spacer (in 
blue) tagged to the 5‟ end. Primers are named by the distance in bp to their relevant 
putative ER binding region; either within the 5‟binding region, 3kb upstream or within 
exon 9. (F, Forward; R, Reverse; UBS, upstream binding sequence) 
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3.1.6 Materials used for cloning of DNA fragments 

 PCR purification kit: GeneScript (Piscataway, NJ) (cat. L00198) Lot number: 

PP00107  

 DNA extraction kit: GeneScript gel (cat. L00199) Lot number: GE00107 

 XhoI restriction enzyme: New England Biolabs (Ipswich, MA) (cat. R0146S) Lot 

number: 54 

 HindIII restriction enzyme: New England Biolabs (cat. R014S) Lot number: 66 

 BglII restriction enzyme: New England Biolabs (cat. R0144S) Lot number: 40 

 KpnI restriction enzyme: New England Biolabs (cat. R0142S) Lot number: 51 

 SacI restriction enzyme: New England Biolabs (cat. R0156S) Lot number: 49 

 RE buffer #1: New England Biolabs (cat. B7001S) Lot number: 1007 

 RE buffer #2: New England Biolabs (cat. B7002S) Lot number: 03064 

 RE buffer #3: New England Biolabs (cat. B7003S) Lot number: 1107A 

 RE buffer #4: New England Biolabs (cat. B7004S) Lot number: 0030805 

 pGL4.26 vector (luc2/minP/Hygro): Promega (Madison, WI) (cat. E8441) 

 Shrimp Alkaline Phosphatase (SAP) 

 SAP buffer 

 T4 DNA ligase: New England Biolabs (cat. M0202L) Lot number: 1910801 

 T4 DNA ligase buffer: New England Biolabs (cat. B0203S) Lot number: 0303 

 SOC media: Invitrogen (cat. 460821) Lot number: 470041 

 LB broth 

 DH5α cells 

 XL2-Blue Ultracompetent cells: Stratagene (cat.200150) Lot number: 0006039741 

 Miniprep kit: GeneScript (cat. L00193) lot. MM00107 
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  Plasmid Maxiprep kit: Qiagen Qiafilter (10) (cat. 12262) Lot number: 

ANL1012/BRL023/L02/133 

3.1.7 Materials used for transfections 

 Opti-MEM Reduced Serum Media (cat.11058) Lot number: 544027 

 Lipofectin Transfection Reagent: Invitrogen  (cat. 18324-020)  

 Luciferase substrate: Lucferin 

 β-gal substrate: chlorophenol red β-D-galactopyranoside (CPRG) Oz Biosciences 

(cat: GC10002) 

 Dithiothreitol (DTT) obtained from Sigma Aldrich (D9779) 

 Microplate Analyser: Fusion™ Universal (PerkinElmer) 

 96 well plates: Corning (cat.3596)  

 96 well luminometer plates: Optiplate  

 Expression vectors: 

o pCMV-βGal 

o pRST7ERα  

o pRST7ERβ 

 Reporter constructs: 

o 3xERE-TATA-luc 

o TGM2-luc 

 Software programs 

o Microsoft Excel 

o CLC Main Workbench 5 

o Geospiza Finch TV 1.4 
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3.2 Methods 

3.2.1 Mammalian Cell Culture  

All cell lines were obtained from American Type Culture Collection (Manassa, 

VA) and cultured in media from Invitrogen (Carlsbad, CA). HeLa cells were maintained 

in MEM, MCF7 cells in DMEM/F12 and SKBR3 and BT483 cells in RPMI 1640, each 

supplemented with 8% charcoal-stripped foetal bovine serum (FBS) (Hyclone 

Laboratories, Logan, UT), 1mM sodium pyruvate, and 0.1mM non-essential amino 

acids (Invitrogen).  All cell lines were propagated in a 37˚C incubator with 5% CO2. 

3.2.2 Hormone/inhibitor treatment assays 

One ml of 2x105 cells/ml in phenol red free media was plated in each well in 12 

well plates. All ligand stocks were dissolved in ethanol or DMSO before use in cell 

culture. After 2-day incubation cells were treated with a 10x concentration of hormone 

or inhibitor diluted in spent media. 100µl of the 10x concentration of the appropriate 

hormone/inhibitor treatment were added to each well and incubated for 8 hours (unless 

otherwise stated). E2 was used in 10ng/ml concentration while all pharmacological 

agents were used in concentrations ranging from 10nM to 1µM. After incubation cells 

were washed in PBS and lysed with RNA lysis solution (Bio-Rad). 

3.2.3 RNA isolation, cDNA preparation and quantitative PCR 

Total RNA was isolated from cells using Bio-Rad Aurum Total RNA Mini Kit 

according to the manufacturer‟s instructions, which included a DNase step. One µg of 

RNA was reverse transcribed into cDNA using the Bio-Rad iScript cDNA synthesis kit 

according to the manufacturer‟s instructions. In all cases, a cDNA reaction lacking 

reverse transcriptase was performed to monitor possible genomic DNA contamination. 

The Bio-Rad iCycler Real-time PCR System was used to amplify and quantitate the 

levels of target gene cDNA. Quantitative PCR (qPCR) reactions were performed using 
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8µl of diluted cDNA (1:15), 10uM specific primers and Qiagen SYBR green supermix 

in a total volume of 13ul. The following cycling protocol was used for all reactions: 1 

cycle at 95°C for 5 min, followed by 40 cycles consisting of 95°C for 15 sec, 60°C for 

30 sec and 72°C for 30 sec. A final cycle at 72°C for 7 min followed. A melt curve 

analysis from 70-90°C (0.5°C/10 sec increments) was performed for all reactions to 

detect primer dimers or other transcripts. A single PCR product was detected in all 

cases. Each cDNA reflecting each biological sample were run in triplicate and 

expressed as an average +/- SEM. 

3.2.4 Plasmids 

3.2.4.1 Expression plasmids 

The pRST7-ERα plasmid is a CMV - driven expression plasmid containing 

amino acids 1-595 of the full length human ER [19]. The pRST7-ERβ plasmid is a 

CMV driven expression plasmid containing amino acids 1-477 of the full length human 

ERβ [83]. pCMV-β-Gal (obtained from Clontech, Palo Alto, CA) is a mammalian 

vector expressing a β-galactosidase gene driven by the human cytomegalovirus 

immediate early gene promoter.  

3.2.4.2 Reporter constructs 

The pTGM2-luc plasmid (Figure 3.2) was constructed as follows:  an empty 

pGL4.26 plasmid (Figure 3.1) (obtained from Promega) was digested with XhoI and 

ligated to a 1.7kb fragment (previously digested with XhoI) spanning the TGM2 

regulatory element isolated from gDNA. The sequences of the oligonucleotides were: 

forward 5‟-GGAACTCGAGCTGTGAGGGAGGGATTCTTT-3‟ and reverse 5-

GGAACTCGAGCGGACAGGGACACACAACTA-3‟. The following PCR protocol 

was used: 1 cycle at 95°C for 2 min, followed by 32 cycles consisting of 95°C for 30 

sec, 62°C for 40 sec and 72°C for 2 min. A final cycle at 72°C for 5 min followed. The 
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ligated plasmid was transformed into XL2-Blue ultracompetent cells and grown at 37°C 

overnight on Ampicillin plates. Colonies were re-cultured in 10mls of LB broth + 200µl 

Ampicillin (1mg/ml) at 37°C overnight. Plasmid isolation was performed on 1ml of 

transformed XL2 cells according to the manufacturer‟s instructions. Isolated plasmids 

were XhoI digested to identify clones with the insert. The correct orientation was 

confirmed by analysis of the restriction fragment length using HindIII and BglII. A 

large plasmid isolation was used to isolate 1ml of purified pTGM2-pGL4.26 plasmid. 

3xERE-TATA-luc is a luciferase reporter vector containing three tandem repeats 

of the consensus ERE upstream of the human TATA promoter sequence inserted into 

the multiple cloning site of pGL3-basic vector. 
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Figure 3.1 pGL4.26 vector, obtained from Promega 

 

Map of pGL4.26 plasmid obtained from Promega, showing β-lactamase gene 
(Ampicillin resistance), luciferase reporter gene (luc2), multiple cloning region 
containing XhoI restriction site, minimal promoter (TATA box) and mammalian 
selectable marker (hygromycin). 

 

Figure 3.2 TGM2-luc plasmid 

 

Map of cloned TGM2-luc plasmid with Ampicillin resistance gene (β-lactamase), 
luciferase reporter gene (luc2) and the TGM2 insert (5‟ flanking region) 

 

  

TGM2 insert 
XhoI 

β-lactamase (Amp R) 

XhoI 
Minimal Promoter 
Luc2 reporter gene 
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3.2.5 Mammalian Cell Culture and Transfections 

 All cells were plated in phenol red free media in 24-well plates 24h prior to 

transfection. Cells were transfected in OptiMEM I Reduced Serum Medium 

(Invitrogen) with 3μg of total plasmid per triplicate sample in 24-well, using 

Lipofectin® according to manufacturer‟s protocol (Invitrogen). 100ng of the pCMV-

ßGal normalization vector was used with 0, 10 or 20ng of ERα expression vector and 

luciferase reporter constructs making up the remaining. DNA-Lipofectin mix was added 

and incubated for 4 h. All ligand stocks were dissolved in ethanol or DMSO before use 

in cell culture, and cells were treated with ligands added to phenol-red-free media. A 

saturating concentration of ligand was added to the cells 20-24 hr prior to assays: 10nM 

E2, 1µM 4OHT, 1µM ICI, 100ng/µl IL-6 or 1µM ATRA (All Trans Retinoic Acid). 

Cells were lysed 24-28hrs after transfection and assayed for luciferase and -

galactosidase activities using a Fusion™ Universal Microplate Analyzer (PerkinElmer).  

Results are expressed as normalized luciferase activity (NLA, normalized with gal for 

transfection efficiency)  SD per triplicate sample of cells. Statistic analysis was 

performed on these results using the t-test to compare the difference between two 

groups of data. 
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4 Results 

4.1 Background 

4.1.1 Oestrogen Receptor Signaling in the Breast 

Oestrogens function as mitogens in most ER-positive breast cancers. Upon 

ligand binding, ER undergoes a conformational change that results in dimerisation, 

DNA binding, recruitment of transcriptional coregulators, and modulation of target gene 

expression. The implication of oestrogens and ER in breast cancer has led to the 

pharmaceutical development of SERMs and anti-oestrogens.  SERMs exhibit tissue- 

and promoter-specific agonist and antagonist behaviour. The unique and compound-

specific conformational change in ER induced by SERM binding allows different 

protein-protein interaction surfaces to be exposed, leading to differential recruitment of 

co-regulatory proteins and thus diverse biological outcomes. The ER regulates a large 

set of genes in the breast cancer cell. Genes activated by the ER are generally involved 

in proliferation and cell survival while genes inhibited by ER are generally involved in 

halting the cell cycle. Therefore SERMs prevent the growth of breast cancer cells by 

inhibiting ER-regulated genes.  

It is not fully known however how a patient on TAM develops a de novo or an 

acquired resistance to the drug. Therefore understanding the biology of ER/TAM 

control of gene expression is critical to understanding how resistance to TAM may 

develop. As described in the introduction, TG2 expression has been shown to be up-

regulated in drug-resistant and metastatic breast cancer cells and is thought to contribute 

to TAM resistance [84]. 
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4.2 ER control of TGM2 expression 

It has been previously shown that E2 activates the TGM2 gene. As discussed 

earlier TGM2 is involved in many processes within the cell. As TGM2 is an ER-

regulated gene, we would expect this gene to be inhibited by TAM.  

In this study, we focused on defining the molecular mechanisms underlying 

TAM inhibition of TGM2 in the context of breast cancer cells. 
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4.2.1 Time-course of ligand treatments on TGM2 expression 

Our first objective was to evaluate the activation of TGM2 by E2 in MCF-7 cells 

over a 6 hr time-course. The concentrations of each ligand required were examined in 

the next experiment; however for this experiment we used physiologically relevant 

ligand concentrations. [85] Also cells were treated with 4OHT and β-Napthoflavone 

(BNF) over a six hour time-course as these were used in later experiments. BNF is an 

Aryl Hydrocarbon receptor agonist and is used is this study to investigate the effects of 

TAM on AhR-controlled genes. This experiment aims to identify the length of 

incubation required for optimum gene activation and mRNA production. pS2 (trefoil 

factor 1), an ER-regulated gene highly expressed in breast cancer cells, was used here as 

a positive control. Figure 4.1 shows the plate setup for this experiment.   

 

Figure 4.1 Plate setup for MCF-7 cell culture 
 

 

 

 

 

1ml of 2x10^5 MCF-7 cells/ml were plated in 15 wells of two 12 well plates. Cells were 
diluted in phenol red free DMEM//F12 media (+8% CFS with NEAA and Na Pyruvate) 
Cells were incubated for 48hrs to achieve confluency. Dilutions of ligands were made 
up in spent media and added to the appropriate wells to make to make a final volume of 
1ml/well.  

 

After the incubation period, RNA was isolated from each cell culture well and 

quantified. Table 7.1 UV quantification of isolated RNA (Raw data) shows the UV 

quantification values for each of the RNA samples. The volume of isolated RNA 

1hr 2hr 4hr 6hr 6hr 

Control 

E2 + 
4OHT 

E2 + 
BNF 

10nM E2  

100nM 4OHT  

100nM BNF  
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required to give 1µg/well in the iScript Reverse Transcriptase reaction was calculated 

by dividing 1µg by the concentration of RNA (µg/ml).    

Each well in the Reverse Transcriptase (RT) reaction contained 1µl Reverse 

Transcriptase enzyme (iScript), 1µg of RNA and made up to a final volume of 16µl 

with RNase-free water (Table 7.2). A no-RT (NRT) control also was set up as a 

negative control which contained RNA but no RT enzyme. The RT samples were run on 

a single PCR cycle according to manufacturer‟s instructions.  

  The cDNA produced in the RT reaction was subjected to real-time PCR 

(qPCR) for quantification. In addition to the 15 samples and NRT, a set of standards 

were set up. This was done by pooling 1µl from each cDNA sample (15µl) and diluting 

the cDNA in a set of serial dilutions to give 1x, 0.2x, 0.1x and 0.02x concentrations. 

Each sample was run in triplicate for each of the primers analysed. An example of the 

qPCR results are presented in Figure 4.2, which shows the data for 36B4 and TGM2 

analysis. 36B4 is a house-keeping gene which is transcribed at a constant rate, 

regardless of cell treatments. It is analysed as an internal standard for the purpose of 

normalising qPCR data.  
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Figure 4.2 PCR quantification curve for 36B4 and TGM2 primers 

PCR cycle number (X-axis) and fluorescence (Y-axis). The graph shows the increasing 
uptake of Sybr green (fluorescent dye) as it binds amplified dsDNA in each well. Sybr 
green fluoresces intensely while intercalated in the minor groove of double stranded 
DNA. The cycle at which the amount of fluorescence exceeds a threshold value (orange 
line) is known as the CT (Threshold cycle). The CT relates to the concentration of cDNA 
present at the start of the run. The first set of curves to cross the threshold line 
represents analysis of 36B4, followed by curves for TGM2 analysis. The earlier the 
curve crosses the threshold, the higher the amount of cDNA present at the start of the 
run. 
  
 

The first set of data on the graph to cross the threshold value is 36B4, followed by 

TGM2. This means that 36B4 is in higher concentration than TGM2. The CT values for 

each sample are exported to a spreadsheet for analysis. For each primer used in the 

qPCR experiments a melt curve (Figure 4.3) and a standard curve (Figure 4.4) is 

performed. Upon completion of the PCR reaction a melt curve was performed to test for 

the presence of primer dimers or contaminating primers. The presence of a single peak 

on the melt curve for each primer confirms the presence of a single PCR product. The 

results of this analysis are presented in Figure 4.3. 

  

36B4 

TGM2 
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Figure 4.3 Melt curve for 36B4 and TGM2 primers 

 
The melt curve shows the temperature dependent dissociation between two DNA 
strands, in this case the amplified product. The dissociation of the DNA during heating 
is measureable by the large reduction in fluorescence that results. The graph shows the 
change in fluorescence (y-axis) vs. temperature (x-axis) for 36B4 and TGM2 amplified 
products. The melt curve is useful for determining the specificity of the primers used as 
primers may induce primer-dimer formation or amplify other non-specific products. The 
presence of a single peak for each primer indicates that no primer dimer or other non-
specific products have been produced. 

 

The results of the melt curve indicate that the PCR reaction has no 

contamination and that single product was formed. A standard curve is also performed 

for each qPCR reaction in this study which is used to examine PCR efficiency. The 

standard curve is presented in Figure 4.4. The graph shows there is a direct correlation 

(r = 0.998) between the relative log concentrations of the samples/standards and the 

threshold cycle. The unknown sample (in red) is the NRT which has practically no 

detectable cDNA. 
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Figure 4.4 qPCR Standard curve for 36B4 

 
 
The relative starting concentrations of cDNA (x-axis) are graphed against the threshold 
cycle (y-axis) for each of the standards. The graph shows the standards (in blue) 
analysed in this experiment. The NRT samples were run as a negative control (in red). 
The slope of the curve is directly related to the efficiency of the PCR reaction. At a PCR 
efficiency of 100% the template DNA doubles after each cycle during exponential 
amplification.  
 

The relative gene expression for each sample was calculated according to the 2^-

ΔΔCT method using Microsoft Excel [86]. This method normalises the CT from each 

sample to its untreated control, which is then normalised again to its respective 36B4 CT 

value to give a ΔΔCT value. 36B4 is used in this study to normalise all other genes as its 

expression remains unchanged regardless of cell treatments. The fold change in gene 

induction is given by the formula 2^-ΔΔCT. 

The results for the assay described in Figure 4.1 are presented in Figure 4.5. In 

this experiment the cells were treated with no ligand (control), E2, 4OHT, BNF, or 

combinations of the ligands prior to RNA isolation, RT-PCR and qPCR for 36B4, 

TGM2 and pS2. 
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Figure 4.5 Time-course of gene expression in MCF-7 cells  

 

 

MCF-7 cells (2x10^5 /well) were treated with vehicle (control), 10nM E2, 100nM 
4OHT, 100nM BNF for 1, 2, 4 or 6hr intervals. Cells were harvested and cDNA 
prepared from isolated RNA was subjected to qPCR analysis. qPCR was performed to 
analyze TGM2, pS2 and 36B4 gene expression. Data are normalized to the 36B4 gene 
and expressed as mean fold change over vehicle ± SEM for triplicate amplification 
reactions. All qPCR data in this study was calculated using the 2-ΔΔCT method to 
produce a normalised fold change [86]. Asterisks: unpaired two-tailed T-test, * p value 
> 0.05 (no significant difference), ** p value < 0.01. 

 

The qPCR results show that incubating the cells with ligand for 6 hrs after 

ligand treatment is sufficient for TGM2 (A) and pS2 (B) mRNA up-regulation. BNF or 

4OHT do not activate transcription of these genes. Treatment of E2 in combination with 

4OHT inhibits E2 induced pS2 mRNA expression but not TGM2. Statistical analysis 

using the Students t-test shows no significant difference (p<0.01) between TGM2 
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mRNA expression in either E2-treated or E2/4OHT co-treated cells. This finding 

suggests that 4OHT is unable to inhibit E2-induced TGM2 mRNA expression. The next 

objective was to identify the concentration of ligands that are required for optimum 

gene transactivation.  

4.2.2 To determine optimum ligand concentrations for TGM2 mRNA 
expression 

Determining the required concentration of ligands for activation of gene 

transcription is also required for future pharmacological experiments. RET (RET proto-

oncogene) is used here as a positive control (ER-regulated gene). All qPCR experiments 

were performed as outlined in experiment 4.2.1. 

Figure 4.6 Dose-response curve of TGM2 induction.   

  

 

MCF-7 cells were treated with increasing concentrations of E2( 0.1 - 100nM), 
4OHT (10 - 1000nM). Cells were harvested and cDNA prepared from isolated 
RNA was subjected to qPCR analysis.  Data are normalized to 36B4 and 
expressed as mean fold change over vehicle ± SEM for triplicate amplification 
reactions. 
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The qPCR results for TGM2 show a high standard error which may suggest a 

problem with the PCR protocol or polymerase enzyme stability. The DNA polymerase 

enzyme may have been allowed to reach room temperature prior to the start of the 

qPCR run, resulting in imprecise data. The results do show however that between 1-

100nM E2 is sufficient for activation of RET and TGM2. A concentration of 10nM E2 

and 1µM 4OHT and an incubation time of 6 hours was chosen for future experiments.  

4.2.3 TAM fails to inhibit ER-activation of TGM2 

Results presented in Figure 4.5 indicate that 4OHT fails to inhibit E2-induced 

up-regulation of TGM2; this experiment was repeated using 4OHT and a SERD, ICI as 

a pharmacological control. RET is used as a control E2-regulated gene. ICI works 

through a different mechanism than TAM, by inducing rapid degradation of ER.  

 

Figure 4.7 E2-induced activation of TGM2 is not inhibited by TAM 
 

  

MCF-7 cells were treated with vehicle (control), 10nM E2 with either 1µM 4OHT or 
1µM ICI for 6hr. Cells were harvested and cDNA prepared from isolated RNA was 
subjected to qPCR analysis. Data are normalized to 36B4 and expressed as mean fold 
change over vehicle ± SEM for triplicate amplification reactions from one 
representative experiment. Asterisks: unpaired two-tailed Student‟s T-test, * p value > 
0.05 (no significant difference), ** p value < 0.01. 
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The results show that both RET and TGM2 are both induced by E2. However 

4OHT treatment in combination with E2 resulted in a significant decrease in RET 

expression, while no significant decrease in TGM2 expression was observed. Statistical 

analysis using the Student‟s t-test shows that there is a significant difference (p <0.01) 

in RET gene expression between E2 and E2/4OHT treated cells whereas there is no 

difference (p >0.05) in TGM2 expression between E2 and E2/4OHT treated cells. This 

suggests that TAM is unable to inhibit E2-mediated activation of TGM2. ICI however is 

able to fully inhibit E2-induced activation of both TGM2 and RET.  

SERDs work by inducing rapid re-compartmentalisation and degradation of ERα 

protein while SERMs block ligand induced activation of the ER. This indicates that 

TAM is binding the ER and preventing transcription of RET but not TGM2. ICI is able 

to inhibit TGM2 transcription since it leads to degradation of the ER. This left us with 

the task of investigating why TGM2 is not inhibited by TAM when other ER-regulated 

genes are, and what is the possible biological significance of this.  
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4.2.4 Is ER required for TGM2 up-regulation? 

In the following set of experiments we examined the role of some of the cellular 

factors required for the up-regulation of TGM2. We have already shown that E2 is 

required for activation of this gene (Figure 4.5). This experiment investigates the role of 

ERα in TGM2 activation. 

Transfection of an ERα plasmid into MDA-231 cells is used to identify the role 

of ERα in TGM2 induction. MDA-231 (ER negative) breast cancer cells were 

transfected with the ERα expression vector. Cells are treated with E2 and with 4OHT in 

combination with E2. qPCR was performed using primers for WISP2 (WNT1 inducible 

signaling pathway protein 2), an ER responsive gene, 36B4, and TGM2. βgal is used as 

a negative control as it does not have a canonical ER binding site and is not activated by 

oestrogen signalling. 
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Figure 4.8 ERα transfection of MDA-231 cells  
 

 

 

MDA-231 cells treated with either ERα expression vector or βGal (negative control) 
and treated with 10nM E2 in combination with either control (V) or 1µM 4OHT. Cells 
were harvested and cDNA prepared from isolated RNA was subjected to qPCR 
analysis.  Data are normalized to the 36B4 gene and expressed as mean fold change over 
vehicle ± SEM for triplicate amplification reactions. Asterisks: unpaired two-tailed T-
test, * p value < 0.01. 
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WISP2 qPCR data show good E2-induced activation of transfected ERα 

confirming that ER activates WISP2 and ER transfection was successful. Statistical 

analysis using the Student‟s t-test shows there is a significant difference (p <0.01) 

between TGM2 induction in cells treated with E2 which have the ERα over cells treated 

with βgal. The results however do show poor activation of TGM2 which may be due to 

inadequate RT/qPCR efficiency or insufficient ERα transfection. These results further 

confirm that TGM2 is an E2-regulated gene. The addition of 4OHT to cells treated with 

E2 and transfected with the ERα plasmid induces an inhibition of WISP2 while having 

no effect on TGM2 mRNA expression. These results also confirm data from previous 

experiments where TAM is unable to inhibit E2-induced up-regulation of TGM2. 

To understand why this gene is not inhibited by TAM we must examine the 

involvement of other cofactors which may be preventing this inhibition. The following 

experiment examines the possible role of the Aryl Hydrocarbon Receptor (AhR) in 

preventing TAM inhibition of TGM2. We hypothesized that activated AhR prevents ER 

inhibition of the TGM2 gene by a process which is distinct from other ER regulated 

genes. The following experiment investigates the role of TAM on the AhR and the 

effects of activated AhR on transcription of the TGM2 gene. The aim of this is to 

investigate if TAM activation of AhR is responsible for the continued up-regulation of 

TGM2 in the presence of E2 and TAM through the process of AhR-ER cross-talk.  
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4.2.5 Tamoxifen activates the Aryl Hydrocarbon receptor (AhR) 

It has been previously shown that TAM can activate CYP1A1, an AhR (Aryl-

Hydrocarbon Receptor) regulated gene independently of the ER [87]. MCF-7 cells are 

treated with E2, 4OHT and BNF over a 6 hour time-course. BNF (β-Napthoflavone), an 

AhR agonist, is used here as a positive control. 

 

Figure 4.9 Dose-response curve of TGM2 induction.   

 

MCF-7 cells (2x10^5 /well) were treated with vehicle (control), 10 nM E2, 100nM 
4OHT, 100nM βNF for 1,2,4 or 6hr intervals. Cells were harvested and cDNA prepared 
from isolated RNA was subjected to qPCR analysis.  Data are normalized to the 36B4 
gene and expressed as mean fold change over vehicle ± SEM for triplicate amplification 
reactions. 

 

Results presented in Figure 4.9 show that 4OHT and βNF (positive control) will 

activate the CYP1A1 gene (at an optimum incubation of 4 hr) confirming that 4OHT 

does activate AhR as an off-target effect. This is where a drug binds to and activates a 

receptor which is not its intended target.   
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In previous experiments we have shown that ER is required for TGM2 gene 

expression. However because TAM activates AhR, we must also investigate if AhR is 

capable of maintaining TGM2 gene expression in the presence of TAM. To do this we 

treated MCF-7 cells with ligands which activate the AhR and measured subsequent 

TGM2 mRNA expression.  

Figure 4.10 shows the effects of the AhR-activating ligands, TAM and BNF on 

TGM2 mRNA expression. These results show that treatment of MCF-7 cells with AhR 

ligands alone is not sufficient maintain to mRNA expression of TGM2. The data from 

this experiment show that activated AhR alone is unable to activate this gene. 

 

Figure 4.10 Effects of AhR ligands on TGM2 activation.  

 

MCF-7 cells (2x10^5 /well) were treated with vehicle (control), 10 nM E2, 100nM 
4OHT, 100nM βNF for a 6hr incubation. Cells were harvested and cDNA prepared 
from isolated RNA was subjected to qPCR analysis.  Data are normalized to the 36B4 
gene and expressed as mean fold change over vehicle ± SEM for triplicate amplification 
reactions. 
 

 

  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

control 10nM E2 100nM 40HT 100nM BNF E2 + 4OHT E2 + BNF

N
o

rm
a

li
se

d
 F

o
ld

 C
h

a
n

g
e TGM2



59 
 

4.2.6 Array of SERMs on TGM2 activation 

Although we have shown that TAM cannot inhibit E2 induced TGM2 mRNA 

expression, we sought to determine whether structurally related breast cancer drugs 

show similar results. In this experiment we analysed the effects of an array of SERMs 

and SERDs on E2-mediated activation of TGM2.  

Figure 4.11 Effect of SERMs on TGM2 activation 
 

 

 

MCF-7 cells were treated with vehicle (control) or 10 nM E2 and either 1µM ICI, 
4OHT, Tamoxifen, Endoxifen, Raloxifene, Lasofoxifene or Bazedoxifene and incubated 
for 8hr. Cells were harvested and cDNA prepared from isolated RNA was subjected to 
qPCR analysis. Data are normalized to 36B4 and expressed as mean fold change over 
vehicle ± SEM for triplicate amplification reactions. 
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These data are the first indication that Endoxifen (Endox) is also unable to 

inhibit TGM2. As stated earlier Endoxifen, a secondary metabolite of 4OHT is as potent 

as 4OHT with respect to ER binding and inhibition of E2 induced cell proliferation. 

However in this experiment we did not achieve full inhibition of the control gene RET; 

this may be due the poor solubility of some of these drugs in media. Also Tamoxifen is 

known to undergo spontaneous rearrangement from its trans to cis forms resulting in a 

weak anti-oestrogen. A dramatic solvent effect has been observed on the rate of the 

process of molecular rearrangement [88]. This may explain the lowered efficacy of 

Tamoxifen in these set of results. To help overcome these solubility issues we used 

serial dilutions when diluting ligands, while all ligands were kept on ice.  
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4.3 Cloning TGM2 response elements 

At this point we have displayed the differential pharmacology of TAM on ER 

activation of TGM2 in the context of breast cancer cells. The cell culture assays have 

shown us that TAM is unable to inhibit E2/ER-induced activation of TGM2 while other 

agents such as ICI fully inhibit this activation. The next step in this study is to 

investigate the genetic requirements for E2 activation of TGM2. This involves cloning a 

short segment of the promoter region into a Luciferase plasmid for use in cell 

transfection assays. By designing primers to different response elements on the TGM2 

promoter we can clone these regions and investigate the precise sequence requirements 

of the ER/E2/TAM activation complex.  

The first step is to perform a bioinformatics study on the TGM2 DNA sequence. 

The entire genomic sequence for chromosome 20 was downloaded 

(www.bioinfo.ut.ee/HMgenome/CEU) and the exons/introns located along with the 

putative ERE. 

Figure 4.12 Layout of exons on TGM2 
 

 

Exons within the TGM2 gene are labelled 1 to 13, drawn to scale. 
 

The putative ERE and AP-1 sites were found by performing a nucleotide 

sequence search using Bio-informatics software (CLC Main Workbench 5.0) 
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Figure 4.13 Putative ER binding regions in the TGM2 promoter 

 
 

A further literature search highlighted two other possible ER binding regions on 

the TGM2 gene based on a genome-wide study of ER binding sites (Figure 4.14). [35] 

These regions which were identified by chip-on-chip analysis located the binding sites 

to within 600bps. One is located 3kb upstream of the transcription start site (Figure 

4.16), while the other is located within exon 9 (Figure 4.17). There are also three SP-1 

sites located just upstream of the gene promoter which may also indirectly drive ER-

mediated transcription. 

Figure 4.14 Location of ER binding sites 
 

 

 

Data concerning the locations of these ER binding sites was downloaded from the 
supplemental data supplied with the published data on the Harvard University website 
(http://research.dfci.harvard.edu/brownlab/datasets/index.php?) [35] 

 

The next step was to design a series of primers to cover the TGM2 regulatory 

region and the two putative ER binding sites shown above. All primers were produced 

with an Xho1 cutting site on the 5‟ end for ligating the PCR products into the Luciferase 

vector. The list of primers is outlined in the Materials and Methods section (Table 3.3). 

These were named by their relative position to the transcription start site (Figure 4.15). 
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Different combinations of these forward and reverse primers can be used to amplify the 

required sequences.  

Figure 4.15 Location of primers on TGM2 5’ flanking region 
 

 

Primers were designed to a length of 20bps with a GC content of 45-55% and an 
annealing temperature of 55-60°C. All primers have an Xho1 binding site attached. 

 

Figure 4.16 Location of primers on upstream putative ER binding site 
 

 
 
 
Figure 4.17 Location of primers on Exon 9/ER binding site 

 

 

Primers were designed spanning the putative ER binding region and exon 9. An extra 
set of primers located on either side of the exon gave the option of isolating the region 
upstream or downstream of the exon. Primers are named relative to their position to the 
putative ER binding site. 
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4.4 PCR of genomic DNA 

Having designed the primers, PCR reactions were set up in order to amplify the 

particular DNA elements. Genomic DNA was isolated from MCF-7 cells. PCR was first 

performed with the primers targeting the full length (1.7kb) TGM2 regulatory region as 

in Figure 4.15. The PCR protocols used are described in the Materials and Methods. 

PCR amplification of the full length TGM2 regulatory region was first performed using 

the primers “Forward-1645” and “Reverse +50” in a temperate gradient PCR cycle 

(Figure 4.15). Repeating this protocol with the addition of varying amounts of DMSO 

(Dimethyl Sulfoxide) (1-7%) and the use of either Pfu Turbo enzyme or GC Advantage 

2 polymerase did not result in any visible bands (Figure 4.18). In the process of 

optimising PCR conditions, PCR was repeated for all combinations of forward and 

reverse primers surrounding the putative ERE (Figure 4.15) and run on agarose gel, 

however no visible specific bands were produced. 

 

Figure 4.18 PCR amplification of full length TGM2 regulatory region 
 

  
Agarose gel of PCR amplified gDNA using the temperature gradient 48-60°C. ML, 1kb 
DNA molecular weight ladder. 
 

  

ML 48° 60° ML Temp. 
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After redesigning primers for this region (“ERE-1120” and “ERE+440”) (Figure 

4.15), this protocol was repeated with the new set of primers with increasing 

concentrations of DMSO (0, 3 and 5%) and at temperature gradients of 56-66°C.  

 

Figure 4.19 PCR amplification of full length TGM2 regulatory region 
 

 

 

  
 

0% DMSO (A) shows unspecific bands, PCR preformed at gradient temperature (56-
66°C). Addition of 3% or 5% DMSO (B) and (C) gives a specific band at 1.7Kbps. This 
sequence is be referred to as pTGM2 (TGM2 promoter) in the following experiments.  

 

The specific bands were cut from the gel and the DNA isolated. This sequence 

contains the 5‟ TGM2 regulatory region containing the putative ERE and AP-1 sites as 

shown in Figure 4.13. With the isolated DNA as a template (pTGM2), we used a 

separate set of primers (“Forward 561” to “Reverse 305”) which target a short sequence 

within the template sequence in a PCR reaction (Figure 4.15). This was done to confirm 

that the correct sequence was amplified from genomic DNA.  
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Figure 4.20 PCR amplification of a 250bp sequence using pTGM2 as a template 
 

 

The amplified sequence from primers “ERE-1120” and “ERE+440” (pTGM2) was used 
as a DNA template in this reaction. Primers used were “Forward 561” to “Reverse 305”. 
The presence of PCR products (shown in triplicate) proves that the correct 1.7kb 
sequence was amplified (Figure 4.19)  
  

PCR was performed using the primers “Forward-690 and Reverse-480” and the 

pTGM2 sequence as a template (Figure 4.15). The target sequence contains the putative 

ERE, located about 650bps upstream of the transcription start site (Figure 4.13). PCR 

was performed at a temperature gradient of 52-60°C.  

Figure 4.21 PCR amplification of putative ERE at position -650bp 
 

 

PCR products were run on 1% Agarose gel with a 100bp molecular ladder. Product size 
is 220bps including the XhoI binding sites attached to either end. This sequence 
contains the putative ERE as described earlier.  

 

  

250bp 

1 2 3 ML 

220bp 

1 2 3 4   5

  

52° 60° ML Temp. 



67 
 

In order to amplify the downstream putative ER binding site (Figure 4.17), PCR 

was performed on gDNA using primers targeting a 1.9kb sequence on exon 9 using the 

primers “Forward-1200” and “Reverse+700”. A temperature gradient from 46-58°C 

was set up on the PCR thermocycler in order to find the optimum primer annealing 

temperature (Figure 4.22).   

Figure 4.22 PCR amplification of 1.9kb of TGM2 exon 9  
 

 

PCR reaction was performed at a temperature gradient of 46-58°C. Products were run 
on 0.75% Agarose gel (+Ethidium Bromide) with 1kb molecular ladder. 

The PCR products from the most specific bands (at 46-50°C) were isolated and 

Xho1 digested for ligating into the Luciferase vector in later experiments. To isolate the 

upstream putative ER binding site (Figure 4.16), PCR was performed using the primers 

“Forward UBS” and “Reverse UBS” at a gradient of 48-56°C.  

Figure 4.23 PCR amplification of upstream putative ER binding site 
 

 

PCR of the upstream putative ER binding region using the primers “Forward UBS” and 
“Reverse UBS” did not result in any specific DNA product.  
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Primers to this region (Figure 4.16) were redesigned (F-560 and R+550) and the 

PCR was repeated using different combinations of forward and reverse primers (Figure 

4.24). PCR reactions B and C produced a visible DNA product. Since the expected size 

of the product is 1.7kb, the DNA sequence in reaction B is more than likely not the 

correct target sequence.  

Figure 4.24 PCR amplification of upstream putative ER binding region 

 

 

Four sets of PCR reactions (A-D) were set up using the primers: (A) Forward UBS-560 
and Reverse UBS+550 (B) Forward-UBS and Reverse UBS+550 (C) Forward UBS-560 
and Reverse-UBS (D) Forward-UBS and Reverse-UBS. The PCR reaction was run at a 
constant temperature of 52°C and PCR products were run on 1% agarose gel. The same 
reaction was set up with 1% DMSO, this achieved the same results as shown above.  
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As the primers in reaction (C) gave a specific DNA product of the expected size 

(1.7kb), these were used in subsequent experiments. A PCR reaction was set up using 

the primers “Forward UBS-560” and “Reverse-UBS” and run at a gradient of 50-60°C 

using gDNA as a template. 

Figure 4.25 UV visualization of agarose gel 
 

 

The PCR products were run on a 1% agarose gel with a 1kb molecular ladder. The DNA 
from the specific bands was cut from the gel and isolated using a DNA gel isolation kit.  
 
The isolated DNA which is referred to as UBS (upstream binding sequence) was Xho1 

digested for use in future ligation experiments.  
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4.5 Ligations 

The pGL4-26 vector (Promega) was used in all ligation experiments, this 

contains a minimal promoter, an Ampicillin resistance gene (β-lactamase) and a luc2 

(Luciferase) reporter gene. (Figure 4.26) 

Figure 4.26 Promega pGL4.26 plasmid with minimal promoter 
 

 

Sizes and locations of the specific plasmid components were obtained from the pGL4 
luciferase manual. The map was constructed using Bio-informatics software.  

 

The pGL4.26 plasmid and the full length (1.7kb) TGM2 regulatory sequence 

insert (Figure 4.19) were digested overnight with Xho1 restriction enzyme. pGL4.26 

was treated with Shrimp Alkaline Phosphatase (SAP) to remove 5‟ phosphates, 

preventing re-ligation of the plasmid. Both DNA strands were run on a 1% agarose gel 

to determine volumes required for ligation reaction. (Figure 4.27). 

  

  



71 
 

Figure 4.27 Xho1 digested pTGM2 and pGL4.26 
 

  

Digested pTGM2 and pGL4.26 were run on a 1% agarose gel with a 1kb molecular 
ladder. The intensity of the bands indicate their relative concentrations, which is used to 
determine the volumes required for the ligation reaction 

  

Multiple ligation reactions were set up with T4 DNA ligase (1.5µl), 10x ligase 

buffer (1.5µl), the insert (6µl) and varying volumes of plasmid (0.5µl to 2.0µl) to a final 

volume of 15µl. Also a vector-only ligation was set up as a negative control. The 

ligation mixtures were incubated at room temp for 1-2hrs prior to transforming in XL2 

ultra-competent cells (Stratagene) according to manufacturer‟s instructions. 

Transformed cells were plated on Ampicillin plates and incubated at 37°C overnight. 

All colonies (3) were re-cultured in 10mls of LB broth with added Ampicillin, while the 

vector-only control did not grow any colonies. Plasmid isolation was performed on the 

4 cultured broths to isolate the ligated plasmid. Each plasmid isolate was quantified, 

Xho1 digested, and run on 0.75% agarose gel.   
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Figure 4.28 UV visualisation of three isolated plasmids 
 

 

1µg of each isolated plasmid was run on 0.75% agarose gel. Sample number 3 has both 
the vector (5.8kb) and the insert (1.7kb) while both 1 and 2 have the plasmid only. 

 

The plasmid from sample number 3 was shown to contain the insert (referred to 

as pTGM2-luc in future experiments). The next step is to determine whether or not the 

insert is in the correct orientation. Two restriction enzyme digests were set up using 

HindIII and BglII as each of these enzymes cut both the insert and the vector in one 

position only. By analysing the size of the fragments, the orientation of the insert can be 

determined. Plasmid isolation using a Maxiprep kit was performed to isolate a large 

volume of the plasmid (pTGM2-luc). The isolated plasmid was quantified for use in 

transfection studies.   

Figure 4.29 Locations of HindIII and BglII cutting sites on TGM2-luc 
 

 

The diagram shows the pTGM2 insert, the multiple cloning site and the luciferase gene. 
As the distance between the two HindIII sites is 1.4kb and the total plasmid size is 
7.4kb, a HindIII digest will produce fragment sizes of 1.4 kb and 6 kb.  Also a BglII 
digest will produce fragment sizes of 7.2 kb and 200 bp. These exact fragment sizes are 
only formed when the pTGM2 sequence is inserted in the correct orientation.  
 

 ML  1 2 3 ML 

1.7 kb 
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 HindIII -1400 bp-  HindIII  
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73 
 

Figure 4.30 HindIII and BglII restriction digest of isolated pTGM2-luc 
 

 

The isolated plasmid (pTGM2-luc) was digested with HindIII (Lane 1) and BglII (Lane 
2) in a single digest reaction. The fragments sizes from the HindIII digest were 6kb and 
1.4kb while the fragment sizes from the BglII digest were 7.2kb and 200bp. Therefore 
we can conclude the insert is in the correct orientation.   

 

The pTGM2-luc plasmid was then sequenced to confirm that the correct 

sequence from the TGM2 promoter region is incorporated into the plasmid (Figure 

4.31).  
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Figure 4.31 Chromatogram of sequenced pTGM2-luc plasmid 

 

This figure shows part of the chromatogram of sequenced pTGM2-luc viewed using 
Geospiza Finch TV 1.4. Highlighted in blue is the primer sequence used to amplify the 
TGM2 insert, indicating the start of the inserted sequence. Not shown is the putative 
ERE which is downstream of the sequenced region.  

 

The sequence data was aligned with the TGM2 sequence using the Bio-

informatics software CLC Main Workbench 5.0. Figure 4.32 shows a perfect alignment 

between the sequenced insert and the actual TGM2 target sequence.  
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Figure 4.32 Alignment between sequenced insert and expected sequence 

 

Figure shows comparison between sequenced insert (pTGM2-luc) and genomic 
sequence. Alignments were analysed using Bio-informatics software.  
 

 

We decided to focus on the cloned TGM2-luc plasmid and proceed with 

transfection studies using this plasmid to ascertain the transcriptional regulation of 

TGM2 by ER in presence and absence of E2/TAM.   
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4.6 Transfections 

At this point 1.7kb of the TGM2 promoter region has been cloned into a 

Luciferase plasmid. In order to study the regulation of TGM2 by ER with E2 or TAM, 

the pTGM2-luc plasmid (Figure 4.33) was transfected into HeLa cells.  

Figure 4.33 pGL4.26 luciferase vector with 1.7kb TGM2 insert 
 

 

Diagram of the constructed luciferase plasmid containing the luciferase gene, minimal 
promoter and TGM2 promoter insert, indicating sequenced region. 
 

Both ER positive and ER negative cancer cells were used in the transfection 

studies. In order to investigate the requirements of ER in the activation of TGM2, a 

transfection assay was set up using ER negative HeLa cells. In this assay a CMV-driven 

ERα plasmid was co-transfected with either pTGM2-luc, ERE-luciferase (3xERE-

TATA-luc) reporter (positive control) or the empty vector (pGL4.26) as a negative 

control. All cells in the transfection experiments are co-transfected with 100ng CMV-β-

gal (Figure 4.34). The β-galactosidase substrate Chlorophenol red-β-D-

galactopyranoside (CPRG) was added to the cell lysates and incubated at 37°C. The 

absorbance of each well was measured at 570nm, which was used to normalise the 

TGM2 insert 

β-lactamase (Amp R) 

Minimal Promoter 

Luc2 reporter gene 

Sequenced region 
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luciferase activity for transfection efficiency. The results of this transfection are 

presented in Figure 4.35. 

Figure 4.34 pCMV-β-gal plasmid used to normalise transfections 

 

Diagram of the β-gal plasmid with a β-lactamase gene and a β-galactosidase gene driven 
by a CMV promoter.  
 
Figure 4.35 Effects of E2 and ER on TGM2 activation 

 

HeLa cells were transfected with 2880ng plasmid (ERE-TATA, pGL4.26 or TGM2-
luc), 0 or 20ng ERα, along with 100ng CMV-βgal. Total DNA was 3μg/triplicate. After 
24hrs cells were treated with vehicle (V) or 10nM Estradiol (E2) with 1µM 4OHT or 
1µM ICI and then harvested and assayed for luciferase and β-gal activity. The effect of 
ERα on the activation of TGM2 was evaluated. Results are expressed as normalized 
luciferase activity (normalized with β-galactosidase for transfection efficiency) +/- 
standard deviation per triplicate sample of cells. Note: pGL4.26 transfection was not 
carried out for the E2/4OHT or E2/ICI treated cells. 
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From the graph we can see there is no significant activation of the TGM2 

plasmid (p=0.32). However there is significant activation of the positive control ERE-

TATA-luc by E2 (p<0.01) and repression of ERE-TATA-luc by 4OHT (p<0.01). This 

experiment was repeated a further 3 times in HeLa cells without any significant 

activation of pTGM2-luc. 

This experiment was repeated in both HeLa cells and Skbr-3 cells using the 

ligand ATRA (All-Trans Retinoic Acid), a known activator of TGM2 [89]. The results 

of this experiment are presented in Figure 4.36, which shows significant activation of 

the control plasmid ERE-TATA-luc by E2. However ATRA did not produce any 

significant activation of the TGM2 plasmid. One possible explanation for this is that as 

the location of the retinoid response element on TGM2 has not been fully established it 

may be further upstream than the sequence included in this plasmid.    
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Figure 4.36 Treatment of transfected cells with ATRA 

 

Skbr-3 cells were transfected with 2880ng plasmid (ERE-TATA, pGL4.26 or TGM2-
luc), 0 or 10ng ERα, along with 100ng CMV-βgal. Total DNA was 3μg/triplicate. After 
24hrs cells were treated with vehicle (V) or Oestradiol (E2) or ATRA and then 
harvested and assayed for luciferase and β-gal activity. The effect of ERα on the 
activation of TGM2 was evaluated. Results are expressed as normalized luciferase 
activity (normalized with β-galactosidase for transfection efficiency) +/- standard 
deviation per triplicate sample of cells and expressed as mean fold change over vehicle-
treated cells.  
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Oestrogen Receptor positive cells (MCF-7) were used in the following 

transfection experiment. ER positive cells were used here as previous experiments failed 

to show TGM2-luc activity. To out rule poor ER transfection efficiency as a cause of 

this, cells containing the ER are used. MCF-7 cells were transfected with the TGM2-

luc, ERE-TATA-luc and pGL4.26 plasmids. Following transfection cells were treated 

with the ER ligands, E2, TAM, and ICI (Figure 4.37). The aim of this experiment is to 

analyse the effects of ER ligands and the oestrogen receptor on the transcriptional 

activity of cloned TGM2-luc plasmid. 

Figure 4.37 Transfection of TGM2-luc in MCF-7 cells 

 

MCF-7 cells were transfected with 2900ng plasmid (ERE-TATA, pGL4.26 or TGM2-
luc) and 100ng CMV-βgal. Total DNA was 3μg/triplicate. After 24hrs cells were treated 
with vehicle (V), 10nM Oestradiol (E2), or 1uM All-Trans Retinoic Acid (ATRA) with 
1uM 4OHT or 1uM ICI, and then harvested and assayed for luciferase and β-gal 
activity. The effect of E2 or ATRA on the activation of TGM2 was evaluated. Results 
are expressed as normalized luciferase activity (normalized with β-galactosidase for 
transfection efficiency) +/- standard deviation per triplicate sample of cells. 

 

Although there is good activation of the ERE-TATA-luc with E2, there is no 

significant activation of the TGM2-luc plasmid (p>0.05). Also ERE-TATA-luc 

induction is inhibited by 4OHT, as shown here by a decrease in luciferase activity 

(p<0.01). This experiment was repeated giving the same results as shown here. The 
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putative ERE within the pTGM2-luc plasmid being tested may not be functional. This 

may explain the lack of luciferase activity in pTGM2-luc transfected cells.  

5 Discussion 
Tamoxifen (TAM) has been used clinically for more than 30 years to treat breast 

cancer, and for more than 10 years to reduce the risk of breast cancer in women at high 

risk of developing this disease. The activities of TAM and its metabolites 4-

Hydroxytamoxifen (4OHT) and Endoxifen, in breast cancer have primarily been 

attributed to their ability to inhibit ER signaling. Although clearly an ER antagonist in 

the breast, TAM has agonist activity in other ER target tissues and as such preserves 

bone mineral density but increases the risk for endometriosis and endometrial cancer, 

blood clots, and stroke.  However, it is not entirely clear how TAM, RAL, and other 

SERMs exhibit tissue-specific or promoter-specific activities through a single signaling 

pathway. This study aims to investigate the differential promoter-specific pharmacology 

of TAM in the context of breast cancer cells using the TGM2 gene as a model. 

The results of this study reveal the differential control of the TGM2 gene by the 

oestrogen receptor and TAM in the context of breast cancer cells. Figure 4.7 shows that 

ER/E2 induces expression of RET and TGM2 but co-treatment with TAM will inhibit 

RET but not TGM2. These results are interesting as we would expect all ER-regulated 

genes to be inhibited by TAM in breast cancer cells. Therefore TGM2 may be the first 

in a class of ER-regulated gene differentially regulated by TAM. 
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A further investigation into these findings leads us to examine the requirement 

of ER in the activation and inhibition of TGM2. An ER plasmid was transfected into ER 

negative cells breast cancer cells (MDA-231), using a β-gal plasmid as a control. ER-

transfected cells showed a significantly higher induction of TGM2 when treated with E2 

(p<0.01) over cells transfected with the β-gal plasmid (Figure 4.8). However although 

there was good activation of the WISP2 ER-regulated gene (control), there was only a 

slight but significant increase in TGM2 induction. One possible cause of this may be 

poor transfection efficiency, where an insufficient amount of ER required for TGM2 

activation was present in the cell.  

To explain the failure of TAM to inhibit ER-induced activation of TGM2 we 

investigated the hypothesis that activated AhR is preventing inhibition of this gene by a 

process of ER-AhR cross-talk. Figure 4.9 confirms that TAM is a potent activator of 

AhR, as shown by the large fold increase in CYP1A1 (AhR-responsive gene) induction. 

Figure 4.10 shows the effects of the AhR agonists, TAM and BNF on TGM2 mRNA 

expression. These results clearly show that activated AhR alone is not sufficient to 

maintain expression of TGM2. Although AhR is activated by TAM, it does not lead to 

transcription of TGM2 therefore we can out rule the involvement of AhR in TGM2 gene 

induction. 

Analysis of other related SERMs revealed that Endoxifen and 4OHT also show 

similar patterns to Tamoxifen in inhibiting ER mRNA induction of TGM2 while the 

SERM Raloxifene was very effective in inhibiting this induction. The fact that Endox 

and 4OHT both have similar patterns to TAM is not surprising given that they are 

structurally related to TAM.  

Although RAL functions in the same way as TAM, they have different patterns 

of activation and inhibition in different cells. RAL acts as an agonist in bone and an 
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antagonist in the uterus while TAM acts as an agonist in the bone and uterus (Table 

1.1). Our findings show that RAL and TAM have different inhibition patterns of the 

TGM2 gene in breast cancer cells. The prevailing question in this study is why two 

similar but distinct SERMs cause different activation patterns with the same gene in the 

same cells. While we know that upon E2 treatment, ER and other cofactors are recruited 

to gene regulatory regions to modulate gene expression, but depending on the promoter 

context and cellular background, TAM and E2 can regulate gene expression in a manner 

similar to or different from RAL/E2. It has been shown using phage-display/ELISA 

technology that the structures of the TAM-ER and RAL-ER complexes are not identical 

and show important differences that may contribute to differences in their patterns of 

gene regulation [26]. This would explain why RAL but not TAM can act as an 

antagonist in the uterus. It does not fully explain however why TAM has different 

patterns on the TGM2 gene in breast cancer cells while inhibiting all other ER-regulated 

genes. SERMs act in a promoter and cell-context specific manner. We hypothesise that 

TGM2 must have an oestrogen receptor responsive element in its regulatory region 

which is slightly different to that in other ER-regulated genes. Therefore binding of 

RAL/ER to TGM2 promoter would allow for the binding of co-repressors which inhibits 

gene transcription whereas binding of TAM-ER to the gene does not recruit co-

repressors, instead allowing for the recruitment of a co-activator complex leading to 

transcription.  

We set out to investigate the effects of TAM and its related compounds on the 

TGM2 gene expression in breast cancer cells. Our data highlights the differential 

pharmacology of TAM in the regulation of TGM2. However now the prevailing 

question is what makes TGM2 different from other ER-regulated genes. In order to 

accomplish a better understanding of TAM/ER action in breast cancer, TGM2 may be 
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used as a model gene which does not conform to the expected characteristics of an ER-

regulated gene. To investigate TGM2 further, we analysed the genomic sequence of its 

regulatory region.  

To understand the basis for the differential regulation of this gene we analysed 

2kbs of the sequence upstream of the TGM2 promoter. Two possible ER regulatory 

regions were located, one putative ERE (8 out of 10 match) and one AP-1 site (6 out of 

7 match) (Figure 1.13). These binding sites are a slight deviation from the canonical 

binding site. This slight difference in sequence may be a contributing factor to the 

differential pharmacology seen in these results. If the ER is indeed binding to these 

sequences we would not expect a typical binding site. ERα is known to activate AP-1 

controlled genes when bound by either E2 or TAM in the cytoplasm [90]. However our 

results show E2 is required for TGM2 up-regulation. This finding may out rule ER - 

AP-1 as a mode of TGM2 activation.  

Transfections were performed in MCF-7, HeLa and Skbr-3 cell types using the 

cloned TGM2-luc plasmid. Each experiment was designed to investigate specific 

requirements of TGM2 activation and inhibition. Our constructed plasmid did not show 

any significant luciferase activity in any of the experiments. As we have confirmed that 

the plasmid has the correct insert and orientation (Figure 4.31), these results may 

indicate that the ER is not actually binding to the sequence within the cloned 1.7kb 

TGM2 5‟ flanking region. However it is possible that the required coactivators or 

transcription factors are not present in sufficient quantity to induce transcription or 

perhaps other NRREs are required. As discussed earlier, two other proposed ER binding 

sites are present in the vicinity to the TGM2 gene, which was previously identified using 

chip-on-chip data shown in Figure 4.14 [35]. It is entirely possible that the ER is driving 

transcription of this gene through one of these putative binding sites as the ER can act at 
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a large distance from the promoter [91]. Further study is required to investigate the role 

of these putative ER binding sites in TGM2 regulation.  

Although other studies have examined TGM2 involvement in apoptosis, cell 

development and tumour migration and development, this is the first study on the 

hormonal regulation of TGM2 in the context of SERMs in breast cancer. Our findings 

indicate important differences in the regulation of TGM2 by E2 and SERMs that might 

impact on the activity of TGM2 in breast cancer cell migration and metastasis. 

In conclusion our data show the differential pharmacology of TGM2 in relation 

to TAM and Endoxifen. Cell culture experiments have demonstrated the role of ERα in 

TGM2 activation. We have identified two putative ER binding sites with the 5‟ flanking 

region, an ERE and an AP-1 site and cloned this region into a luciferase vector.  Finally 

our results suggest that the ER may not be binding to this region and instead my activate 

transcription from a more distal binding site. 

The continued mRNA expression of TGM2 in the presence of ER/TAM may 

have clinical significance due to its role in tumour suppression and prevention of 

metastasis, as discussed earlier. Further research is required to determine the role of 

TGM2 in tumour cells. 
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7 Appendix 
 

Table 7.1 UV quantification of isolated RNA (Raw data) 

Sample 

ID 
Net Abs 

260.0nm 
Net Abs 

280.0nm 260.0/280.0 
Dil 

Factor 
Conc. 

µg/ml 

1 0.1668 0.0744 2.2419 25.000 166.8 

2 0.1396 0.0613 2.2773 25.000 139.6 

3 0.1905 0.0847 2.2491 25.000 190.5 

4 0.1285 0.0557 2.3070 25.000 128.5 

5 0.1220 0.0553 2.2061 25.000 122.0 

6 0.1248 0.0548 2.2774 25.000 124.8 

7 0.1359 0.0594 2.2879 25.000 135.9 

8 0.1434 0.0625 2.2944 25.000 143.4 

9 0.1316 0.0579 2.2729 25.000 131.6 

10 0.1547 0.0672 2.3021 25.000 154.7 

11 0.1425 0.0627 2.2727 25.000 142.5 

12 0.1328 0.0601 2.2097 25.000 132.8 

13 0.1718 0.0753 2.2815 25.000 171.8 

14 0.1620 0.0732 2.2131 25.000 162.0 

15 0.1639 0.0728 2.2514 25.000 163.9 

RNA samples were diluted 1/25 in TE buffer prior to quantification. All RNA samples 
in these studies have a 260:280nm ratio of between 2.0 – 2.5 

 

Table 7.2 Volumes required for iScript RT-PCR reaction 

sample treatment Time µg/ml RNA µl/1µg 
RNA 

µl H20 

1 control - 166 6 9 
2 10nM E2 1hr 139 7.2 7.8 
3  2hr 190 5.3 9.7 
4  4hr 128 7.8 7.2 
5  6hr 112 8.9 6.1 
6 100nM 40HT 1hr 124 8.1 6.9 
7  2hr 135 7.4 7.6 
8  4hr 143 7 8 
9  6hr 131 7.6 7.4 
10 100nM BNF 1hr 154 6.5 8.5 
11  2hr 142 7 8 
12  4hr 132 7.6 7.4 
13  6hr 171 5.8 9.2 
14 E2 + 4OHT 6hr 162 6.2 8.8 
15 E2 + BNF 6hr 163 6.1 8.9 
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