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Introduction 

The current state of the art technology in integrated circuits allows the incorporation of 

multiple processor cores and memory arrays, in addition to application specific hardware, on a 

single substrate. As silicon technology has become more advanced, allowing the 

implementation of more complex designs, systems have begun to incorporate considerable 

amounts of embedded software [3]. Thus it becomes increasingly necessary for the system 

designers to have knowledge on both hardware and software to make efficient design trade-

offs. This is where hardware/software codesign comes into existence. 

 
Hardware/software codesign is the concurrent design of both hardware and software of the 

system by taking into consideration the cost, energy, performance, speed and other parameters 

of the system.  During the design, trade-offs are made between the implementation of 

functionality in hardware and/or software depending upon both cost considerations and 

technical feasibility.  

 

Since the concept of hardware/software codesign surfaced in 1990s [1], different 

methodologies have been proposed for hardware/software codesign. This article gives an 

overview of hardware/software codesign. In section 2, a generic hardware/software codesign 

methodology is described, section 3 describes the taxonomy of hardware/software codesign 

where different aspects of hardware/software codesign is discussed along with some works 

performed in these arena to date, section 4 gives an introduction of different codesign 

methodologies widely accepted in the literature.  

Generic Hardware/Software Codesign Methodology 

In this section a generic methodology for hardware/software codesign ( 

Figure 1) is discussed. The initial step in hardware/software codesign is the high level 

specification of the system behaviour to include the functionality, performance, cost, power 

and other constraints of the expected design. The specification step includes modelling of the 

system in order to capture the entire characteristics of the system.  
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After the system specification is ready, it is divided into a number of blocks to allow a costing, 

through the application of cost metrics2 for each of these blocks. This is performed in the Cost 

Estimation step where the estimation is done for both hardware and software implementation. 

This is actually the step for analysis and estimation. The system is analysed from different 

aspects of its cost metrics. This step provides valuable information for the hardware/software 

partitioning.  

 
The next stage is to partition the system functionality between hardware and software. The 

partitioning phase takes information collected from the Cost Estimation phase to allow 

decisions to be taken as to which block is to be mapped on hardware and which block to be 

mapped on software. The quality of such mapping depends on how much the design 

constraints have been  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Generic Hardware/Software Codesign Methodology [2] 

 

                                                 
2 Cost metrics can be calculated for both hardware and software. Hardware cost metrics can be, for e.g., 
execution time, chip area, power consumption or testability. Software cost metrics can be, for e.g., 
execution time, program and data memory. 
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achieved and how much the design cost is minimized [3]. If the design constraints3 are not met 

then the expected performance of the system cannot be met and if the design cost is not 

minimized, the design cannot compete in the market. 

 
The system is then designed within the context of the heterogeneous target architecture4. This 

requires the specification of the interfaces (communication and synchronization) between 

hardware represented by ASICs and software represented by the processors.  

 
Once hardware/software blocks and the interfaces between them have been decided, the next 

step is the co-synthesis. In co-synthesis, specification refinement is done, where the 

implementation independent system specification is transferred into hardware and software 

specifications (and the specifications for the interfaces).  

 
Once the separate specification and the necessary refinement5 in the hardware design are 

carried out, hardware is synthesised that gives a set of ASICs and software is compiled for 

the target processor.  

 
Once the synthesis step is over, the next step in the design flow validates the system design 

simulating both the ASIC and the processor together. This is called the co-simulation. The co-

simulation checks whether the design goal has been achieved or not. If the design is 

acceptable, the codesign flow stops. If the design is not acceptable the design is traced back to 

the hardware/software partitioning step and the design cycle is repeated until the satisfactory 

design output is obtained [2].  

Taxonomy of Hardware/Software Codesign 

Hardware/Software has the following important aspects [3] which must be considered for an 

effective system design.   

• Modelling 

• Analysis and Estimation 

• System Level Partitioning, Synthesis and Interfacing 

• Implementation Generation 

• Co-Simulation and Emulation 

                                                 
3 There can be different design constraints for e.g. time, area, power, memory etc. Timing constraints 
specifies timeline for the execution of the system task. 
4 System architecture consisting of both hardware (ASICs) and software (general processor). 
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Modelling 

Modelling can be regarded as the science of capturing the system characteristics [3]. Models 

should capture all the information which is necessary for the designers.  

 
Edwards et al.[4] explores the various computational models in the embedded system design, 

in which they stress that the formal model should include:  

• Formal specification (relation between input and output and internal states),  

• Set of properties6 (a set of relation between input and output and internal states. This 

is explicitly mentioned to verify it against the functional specification. The properties 

are for assertion of the behavior rather than description of the behavior.) 

• Performance indices (e.g. cost, reliability, speed, size etc.) 

• Design constraints (on performance indices). 

  
The functional specification fully characterizes the system while satisfying the set of 

properties.  

The design process starts by modelling the system at a high level of abstraction. The designer 

checks whether a set of properties have been verified, performance indices are satisfactory 

and the design constraints are met.  

 
Edwards et al.[4] goes on to recognize four different types of Models of Computation7:  

• Discrete Event,  

• Communication Finite State Machines (FSM)  

• Synchronous/Reactive  

• Dataflow Process Networks Models.  

 
A discrete event (DE) model is characterized by events which are time-stamped (i.e. the time 

at which event occurs is timestamped). A DE simulator requires a global event queue which 

keeps track of the time-stamped events and orders them to be executed according to their 

time-stamps. The DE approach is used to simulate the digital hardware [5].  

 

                                                                                                                                            
5 An act of adding design details or converting from abstract representation to Register Transfer Level 
(RTL) ready to be fed into the hardware synthesis tool. 
6 It can be property of determinate behavior i.e. the output of the system depends entirely on its input 
and not on some internal hidden factors. 
7 A system can be thought of as composing of simpler subsystems , or pieces. The method or the rules 
for composing and capturing these pieces to create a system functionality is called models of 
computation. 
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FSMs are good for modelling sequential behaviour but are not suitable for modelling 

concurrent behaviour of a group of machines, as it may reach the point state explosion8. This 

is because the number of states will be the product of the number of states in each machine.  

 
The synchronous/reactive model consists of events which are synchronous i.e. all signal have 

events at clock tick. The simulators that use the synchronous models are called cycle -based or 

cycle-driver simulators.  

 
In the dataflow model, there is a directed graph where the nodes represent computations and 

ordered sequences of events which is represented by arcs [6]. 

 
The above discussed modelling techniques may be deployed through the use of appropriate 

modelling or specification languages. For example designers using SDL9 (a state oriented 

language) [7] can describe multiple concurrent processes10 which communicate with signals. 

StateCharts [8] has the ability to decompose a sequential model into hierarchical structure thus 

facilitating the representation of FSMs in Statecharts. This hierarchical decomposition can 

solve the problem of state explosion 11[3]. The Esterel [9] language is a synchronous language 

that supports concurrent behaviour and thus makes it suitable for modelling in FSMs [9]. 

SpecCharts [73] exploits the advantage of hierarchical and concurrent state diagrams and the 

hardware description language VHDL [61].  

Specification languages 

Specification language describes the overall goal of the desired functionality of a system. A 

good specification language is able to address different aspects of a system which includes 

following [2] [52] [54]: 

• Concurrency 

• State-transitions 

• Hierarchy 

                                                 
8 The number of state grows exponential that makes the design complex enough to be handled. 
9 Specification and Description Language 
10 Process is a program codes consisting of sequence of statements. 
11 States contained within a state are called sub-states of this surrounding state. The surrounding state 
is higher in the hierarchy. If there are two machines with 4 states each then if these machines are 
combined to form a single machine then the total number of states of the combined machine will be the 
permutation of the number of states of each machine. If in any case, all the states (both machines 
combined) can be arranged in an hierarchical manner for e.g. all four states of one machine can be 
considered as substates of one of the state of another machine then these substates will have nothing 
to do with other states of the machine hence the total number of possible number of states is reduced. 
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• Programming constructs 

• Behavioral completion 

• Communication 

• Synchronization 

• Exception Handling 

• Non-determinism 

• Timing 

 
Concurrency: Parts of an embedded system work in parallel. Parts may be a process and 

threads of the process. A specification language should be able to capture the concurrency12 

behavior of the system. 

State-transitions: Systems are often conceptualized as having various modes or states, of 

behavior. In a system with multiple states, the transition between states occurs in undefined or 

unstructured manner. The specification language must be able to model such arbitrary 

transitions. 

Hierarchy: A system can be conceptualized as a set of smaller subsystems if modelled as 

hierarchical models. Such conceptualization helps system designer to simplify the development 

of a conceptual view of a system, since parts of the system can be treated as a separate unit 

paving way for scoping objects, such as declaration types, variables and subprogram names. 

Lack of hierarchy will make all such objects global and it becomes increasingly difficult for a 

designer, as the system will become more complex. There are two types of hierarchy: 

structural hierarchy and behavioral hierarchy. Structural hierarchy enables designer to 

design a system with interconnected components. Each component is themselves a 

composition of sub-components. Behavioral hierarchy decomposes a system behavior into 

distinct sub behaviors for e.g. procedures or functions. 

Programming Constructs: Specification language should have programming constructs, for 

e.g. constructs like functions, procedures, loops, branches (if, case) and assignments simplifies 

the sequential description of the system behavior. 

Behavioral Completion: A specification language should be able to model the behavioral 

completion to indicate that the behavior has completed the execution of all computations. An 

advantage of behavioral completion is that it allows designer to conceptualize the behavior as 

an independent module. The designer may start next behavior in sequence once the preceding 

behavior has finished without worrying if any unfinished work remained in that behavior. 
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Communication/Synchronization:  A system has several processes working concurrently. 

These processes need to communicate with each other. A specification language should have 

an ability to model the communication between concurrent behaviors or processes and at the 

same time should ensure the synchronization of two behaviors or processes. Such 

communication can be conceptualized as a shared memory13 or message passing14 paradigms. 

In shared memory, the sending process writes to a medium which is also accessible to the 

receiving process. Such a medium could be global variables or ports. In message-passing 

communication model, the communication is accomplished with an abstract medium called 

channels with send/receive primitives. 

Exception handling: A specification language should be able to model the exception handling 

mechanism, for e.g. when an exception occurs in the form of interrupts or resets, the current 

state of the system should be terminated and the transition to the new state is required. Such 

reactive behavior is quite common in the embedded system. 

Non-determinism: Non-determinism is helpful when the designer doesn’t want to take 

decision during the specification, for e.g. if two events occurs simultaneously then the designer 

can leave the decision of which event to be executed first at the time of implementation. This 

is only possible if the specification language has an ability to model the non-determinism. 

Timing: Specification language should have an ability to model the timing aspects of the 

embedded system which are the functional timing and the timing constraints. Functional 

timing represents a time required to execute a behavior. Timing constraints indicate a range 

of time within which a behavior has to be executed. 

 
The specification languages have been categorized into the following categories as presented 

in [2].  

1. Formal Description Technique ( for e.g. LOTOS [56],  SDL [55], Estelle [57]) 

2. Real Time System Languages ( for e.g. Esterel [58],  Statecharts [59], High-Level 

Time Petri Nets [60]) 

                                                                                                                                            
12 The act of two processes running concurrently. 
13 Memory in a parallel computer, usually RAM, which can be accessed by more than one processor, 
usually via a shared bus or network. It usually takes longer for a processor to access shared memory 
than to access its own private memory because of contention for the processor-to-memory connections 
and because of other overheads associated with ensuring synchronised access. 
14 A message passing system has primitives (for e.g. send ( ) and receive ( )) for sending and receiving 
messages. These primitives can be either synchronous or asynchronous. In synchronous message 
passing, sending and receiving of message is not complete unless receiving end acknowledges the 
receipt of the message. In asynchronous message passing, the message sending process in complete 
once the message is sent irrespective of whether the message has been received by the receiving end or 
not. 



ITB Journal 

Issue Number 7,  May 2003                                                                                                           Page 57 

 

3. Hardware Description Languages (for e.g. SpecCharts [73] [54], VHDL [61][61], 

Verilog [62], HardwareC [44], Handel-C[70]) 

4. Programming Languages ( for e.g. SpecC [63] [64] [65] ,Cx [19]) 

5. Parallel Programming Languages ( for e.g. CSP [66], Occam [67]) 

6. Data Flow Languages ( for e.g. Silage [68] [2]) 

7. System Design Language ( for e.g. SystemC [69]) 

Analysis and Estimation 

It becomes necessary for designers to take crucial decisions during the codesign process and 

in order to take these decisions a designer requires: 

• Application domain knowledge (ideally the designer understands the application 

domain in which the technology will be deployed) 

• Knowledge of the technology options that are available  

• The ability to analyse proposed design solutions (and as a result access to, training and 

knowledge of the capabilities and limitations of design tools) 

 
The analysis and estimation of the design become more crucial when the design constraints 

require fast timing and high power consumption [3]. Correct procedures in the design process 

can avoid non-competitive and costly designs. 

 
There are different analysis types that need to be made in the design [3], including, amongst 

others: 

• Process path analysis 

• Architecture modelling and analysis 

• Power analysis 

• Multiprocessor analysis rate analysis 

• memory system analysis  

 

A process path is a sequence of process statements that is executed for given input data [3]. 

Process-path analysis corresponds to determining a set of possible process paths. By 

examining the possible process paths, it is possible to find out the worst case execution time 

(WCET) by first tracing the process paths during worse case and then calculating the WCET. 

Li et al. extensively discusses the process path analysis in [10].  
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Power analysis consists in determining the power cost of the system. Tiwari et al. in [11] 

describes a power analysis technique to generate the power cost model for the embedded 

software. Fornaciari et al. in [12] introduces power metrics included in a hardware/software 

codesign environment to guide the system level partitioning. Yanbing Li et al. in [13] explores 

a framework for optimizing the system parameters to minimize energy dissipation of the 

overall system i.e. both hardware and software. The paper also explores the trade-off 

between system performance and the energy dissipation.  

 
Rate analysis includes the analysis of execution rate of the processes. The rate constraints, 

imposed by the designer in order to assure proper working of the system to its environment, is 

one form of the timing constraints [14]. Mathur et al. in [14] proposes an interactive rate 

analysis framework to make sure all the rate constraints are satisfied in the design of the 

system.  

 
Memory system analysis is also an important factor in the embedded system design. 

Specially, in the areas of image and video processing systems, 50-80% of area cost of the 

ASICs for real-time multidimensional signal processing is due to the data storage and transfer 

of array signals [15]. So it becomes increasingly necessary to estimate the memory usage and 

optimize them well before any decision on hardware software partitioning is made.  

 
Multiprocessor analysis deals with the estimation and analysis of parallel process execution. 

Process scheduling decides the order of process execution.   

System-Level Partitioning, Synthesis, and Interfacing 

Partitioning  

Hardware/software partitioning takes place after the necessary information on cost metrics is 

generated from the analysis and estimation of the design. Based upon this information, the 

system is divided into hardware and software according to whichever gives the best overall 

performance result.  

 
Various algorithms have been developed for the hardware/software partitioning. Gupta and 

DeMicheli [16] [17] created an algorithm to automate a search of the design space for the 

hardware/software partitioning. The algorithm starts by implementing all functionalities in 

hardware and the operations to be moved into software are selected based on the cost 

criterion of communication overheads. Movement into software is only done if there is any 
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improvement in the cost of the current system partition. The algorithm iterates the process of 

movement until no cost-improving move could be found. The main defect in this algorithm is 

that the algorithm frequently created very costly hardware that consumes many resources, 

since the initial partition starts with the hardware solution [18]. Authors in [17] depict the use 

of their algorithm for describing the implementation of a network coprocessor communication 

via an ethernet15 link. This co-processor is used to take load off the CPU to handle the 

communication activities. 

 
Ernst and Henkel [19] start with the initial partition in software and gradually transfer the 

software part into hardware. Ernst and Henkel used a hill-climbing16 partitioning heuristic, an 

example of which is the simulated annealing [53]. This algorithm uses a cost function to 

minimize the amount of hardware used with the performance constraints remaining intact. 

Simulated annealing in [19] starts with an infeasible solution with a high cost penalty for run 

time exceeding timing constraints. Then the algorithm searches for an improved timing and a 

steep decrease in the cost. Ernst and Henkel in [19] uses their algorithm for the 

hardware/software partitioning of the digital control of a turbocharged diesel engine and a filter 

algorithm for a digital image in which they got a speed up of 1.4 and 1.3 respectively in 

reference to the implementation in software alone. 

Synthesis and Interface 

Once the partitioning specification is ready, the next step is the synthesis of hardware, 

software and their respective interfaces. In other words, the co-synthesis step follows next 

after the hardware software partitioning. Co-synthesis is defined as the synthesis of hardware, 

software and the interface between hardware and software. Once the synthesis is complete 

then the design is subjected to co-simulation. 

 
The final synthesized system architecture generally comprises of: a programmable processor, 

one or more hardware modules all of which are connected through a system bus, and the 

appropriate software modules and interfaces. Hardware modules consist of a datapath, a 

controller and I/O interface between hardware and the processor. The processor runs the 

                                                 
15 Ethernet is a physical and data link layer technology for LAN networking. 
16 Hill-climbing algorithms are neighborhood search algorithms that subsequently select the neighbor 
with the highest quality and continue from there. The search terminates when no neighbor exists that 
represents an improvement over the current solution. Hill-climbing algorithms belong to the class of 
greedy algorithms i.e. the algorithm never goes back to a solution with lower quality.  In other words, 
the climber never goes downhill to finally reach a higher peak [55]. 
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software component of the architecture and also includes the device drivers to establish 

communication between software and hardware (the hardware/software interfaces). 

 
In [20], an environment is described for the specification and the synthesis of a heterogeneous 

system using Cosmos17. Design starts with an SDL18 [47] specification and produces a 

heterogeneous architecture comprising hardware in VHDL and software in C. Codesign steps 

in Cosmos includes: partitioning, communication synthesis and architecture generation.   

Communication synthesis consists in transferring the process that communicates with high-

level primitives19 through channels into signals. Architecture generation here is actually an 

implementation generation step discussed in the next section. Architecture generation includes 

two major tasks i.e. virtual prototyping and architecture mapping. Virtual prototyping consists 

of hardware (in VHDL), software (in C) and communication (in VHDL or C) which can be 

simulated. Architecture mapping consists of synthesizing VHDL descriptions into the ASICs, 

conversion of software parts into assembly code resulting in the final architecture that consists 

of software, hardware and the communication components. 

 
The software design and the software synthesis are also an important aspect of the 

hardware/software codesign since a significant part of the system (i.e. the system that 

consists of both hardware and software) are implemented in software. Software synthesis 

focuses on the support of embedded systems without the use of operating systems20 [21].  

Implementation Generation 

Implementation generation for hardware refers to generating hardware for a set of functions. 

Hardware typically consists of [24]:  

• Control-unit/datapath  

• Storage unit (for e.g. registers, register files and memories)  

• Multiplexer 

                                                 
17Cosmos is a co-design methodology and tools aimed at the design and synthesis of complex mixed 
hardware-software systems. 
18 Specification Description Language. 
19 Primitives are the basic operations. High level primitives for the communication between two 
processes can be taken as the communication that occurs by calling functions.  
20 The main drawback of using the support of operating system is that most kernels tend to use a fixed 
priority preemptive scheduling mechanism, where the timing constraint is realized from the process 
priorities. In some cases the timing constraint is realized by scheduling the process with information of 
process period, release time and deadline. But in embedded system, the timing constraints should be 
realized more on the occurrence of the events. Since, the operating system scheduling mechanism 
doesn’t have idea on the time stamp; it doesn’t know when the events are generated. [21] 
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• State-register 

• Control-logic  

 
While generating hardware, the size of hardware should be as small as possible while 

maintaining the system constraints intact. An implementation, which is silicon area efficient, is 

thus a sign of quality design. Implementation generation for software refers to producing an 

assembly code for software. An efficient software implementation can only be realized if the 

compilers can take full advantage of the architectural features of the processor.  Some 

approaches for exploiting architectural features are described below. 

 
Sudarsanam et al. in [23] presents a retargetable 21 methodology in an effort to generate high 

quality code for a wide range of DSPs22. The paper describes a solution for the problems 

arising in those compiler technologies which are unable to generate dense, high-performance 

code for DSPs as they do not provide adequate support for the specialized features of DSPs. 

Also, the paper describes the solution for the problem where it is necessary to build a compiler 

from scratch, due to the unavailability of a suitable compiler (a time consuming process). The 

solution presented is a methodology for developing retargetable DSP compilation.  

 
Vahid et al. in [24] describes an algorithm for estimating the hardware size. The paper 

describes an algorithm for the hardware estimator, which is based on incrementally updating 

the design model to acquire accuracy and iterative improvement algorithms to explore the 

different design possibilities. Hence, the algorithm maintains both speed and accuracy in 

estimating hardware size. The algorithm takes advantage of the fact that between two 

iterations of partitioning design there is only an incremental change. For this incremental 

change, a data structure (representing an incrementally modifiable design model) and an 

algorithm that can quickly provide the basic design parameters needed by the hardware-size 

estimator are developed. Therefore, whenever there is any incremental change in the design 

model, the corresponding hardware size is estimated.  

                                                 
21 Retargetable means the reuse without little or no modification for e.g. retargetable compiler is able to 
generate code (maintaining the same quality) for the new processor after minor modifications without 
need of creating entirely new compiler from the scratch. 
22 Digital Signal Processor 
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Co-Simulation and Emulation  

Co-simulation 

Co-simulation of hardware and software refers to the simultaneous verification of hardware 

and software functions correctly [25]. The conventional co-simulation approach waits until the 

real hardware has been delivered and then performs verification by using in-circuit 

emulators23. Due to the increased complexity of the designs and the importance of verifying 

the system design as much as possible before committing to the (expensive) transfer of the 

hardware aspects of the system to silicon, it has become necessary to perform co-simulation 

before the real hardware is produced. This saves time-to-market as well as the cost required 

in debugging and re-building the hardware. Rowson in [25] gives an overview of the 

techniques available for hardware/software co-simulation. 

 
Ghosh et al. in [32] describes a hardware-software co-simulator that can be used in the 

design, debugging and verification of embedded systems. This tool consists of simulators for 

different parts of the system (for e.g. Clock Simulator, Parallel Port Simulator, UART 

simulator, CPU Simulator, Timer Simulator, Memory Simulator etc.) and a backplane24 which 

is responsible for integrating all the simula tors. The back plane is represented by Simulation 

Manager which manages communication between the co-simulators (e.g. CPU simulator, 

Memory Simulator etc.) and the virtual instruments. Virtual instruments are used to provide 

stimulus and to observe response. The paper describes a tool that provides an environment for 

joint debugging of software and hardware and is also capable of evaluating system 

performance, selection of algorithms and implementations. The tool also addresses the 

possibility of exploring hardware-software tradeoffs. 

 
In [32], the performance of the tool for the applications (which was taken as an example) like 

engine control unit has been evaluated. The co-simulation of the engine control unit showed a 

slowdown by a factor of 400 which is quite suitable for debugging. 

 
Valderrama et al. in [33] describes a unified co-synthesis and co-simulation methodology i.e. 

both the steps are performed using the same descriptions (in C and VHDL). The 

                                                 
23 In-circuit emulators are used to replace the processor or microcontroller of the target hardware. It is a 
valuable software developers tool in embedded design. The developer loads the program into the 
emulator and can then run, step and trace into it. 
24 Simulation backplane controls all simulators coupled to it. If a simulator needs to communicate with 
partner-simulators, it does this through the simulation back plane. 
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communication between hardware and software is through a communication unit, which is an 

entity able to execute a communication scheme invoked through a procedure call mechanism 

[74]. The VHDL entity25 is used to connect a hardware module with that of software. The 

use of procedure call mechanism hides the implementation details related to the 

communication unit. The access to the interface of the communication is done through the 

procedures. By employing this method, the two communicating modules become quite 

independent of each other and changes in one module need not change in other module unless 

the communication unit interface is being accessed using the same procedure before and after 

the change. The level of abstraction obtained by using procedures help in using the same 

module descriptions with different architectures (i.e. the architectures which varies depending 

upon the communication protocols used).  

Emulation 

Co-simulation uses an abstract model to form a virtual prototype (of hardware) while co-

emulation provides a real prototype by implementing functions in hardware (for e.g. FPGA26).  

 
Luis et al. in [34] describes the co-emulation process observed in the co-design methodology-

LOTOS [56]. Once all the construction of the interface between hardware and software is 

completed, the execution of software (in C) and the simulation of hardware (in VHDL 

simulator) is performed on SUN workstation. The things that software requires to write or 

read into or from the FPGA (i.e. the hardware) is written into the files (through C functions) 

and the hardware simulator reads the files via an extra VHDL component in the interface, 

which is a wrapper27 for a set of C functions that perform reading and writing operation on the 

files. This is to perform a test for errors before emulating hardware with the FPGA. The next 

step performed is the co-emulation where the hardware part is replaced by the FPGA.  

 
Cedric et al. in [71] describes the co-simulation between SystemC and an emulator called 

ZeBu. The paper depicts how SystemC can be co-simulated with ZeBu at different level of 

abstraction i.e. at signal-level and at transaction level28. ZeBu is a hardware verification 

product built on a PCI card with Xilinx Virtex-II FPGA [72] devices. ZeBu consists of a 

technology called Reconfigurable Test Bench (RTB) that interfaces a design under test 

                                                 
25 A modular representation of deign in VHDL is called an entity. 
26 Field Programmable Gate Array 
27 Wrapper is a piece of code which is combined with another code to determine how the latter code is 
executed. Wrapper actually acts as an interface between its caller and the wrapped code. 
28 The communication that takes place with function call. 
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(DUT). DUT is emulated by one or more Virtex-II FPGA devices. The main function of the 

RTB is to stimulate and monitor each individual I/O data pin of the DUT emulated by the 

FPGA. ZeBu also consists of C/C++ API which works in concert with the RTB providing 

direct interaction with the test benches modelled at higher level of abstraction via SystemC.  In 

the paper, a test case is presented in which the co-simulation for a graphics design is 

conducted for three different cases: SystemC model and HDL29 (Verilog), SystemC model 

and ZeBu at the signal level and SystemC model and ZeBu at the transaction level. SystemC 

models consist of test bench that interacts with the emulated hardware. The result shows that 

the co-simulation execution time for SystemC/HDL is 3 days (for that particular test case 

considered), SystemC/ZeBu at signal level is 330 seconds and SystemC/Zebu at the 

transaction level is 5 seconds. This co-simulation process with emulated hardware is one of 

the latest technologies in the literature. The main benefit of this technique is its ability to co-

simulate at transaction level that gives significant speed-ups. 

Co-design Systems 

In section 0, a generic hardware/software codesign methodology was presented. In this 

section different codesign approaches will be introduced. An interested reader on particular 

codesign system may refer to the references given against a methodology name introduced 

here.  

 
Ptolemy [35] is codesign methodology that allows heterogeneous specification30 to develop a 

unified environment for creating heterogeneous systems. Castle [36] [37]  is a codesign 

platform which puts more emphasis on processor synthesis i.e. starting from an application it 

ends up with synthesis of suitable processor design on which the application considered can be 

executed efficiently. Cosyma31 [38] is a codesign methodology which starts the system 

solution all in software and during the partitioning step gradually ports software portion into 

hardware to achieve practically feasible design.  Lycos32 [39][40] is a codesign tool based on 

a target architecture with the single processor and a single ASIC. Lycos stresses design space 

exploration33 with automatic hardware/software partitioning. Tosca34 [22][41] is a codesign 

                                                 
29 Hardware Description Language to simulate the hardware. 
30 System specification with more than one specification language. 
31 Co-synthesis for Embedded Architectures 
32 Lyngby Cosynthesis  
33 Choosing one suitable design out of many. 
34 Tools for System Codesign Automation 
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methodology that is mainly targeted for control flow dominated35 reactive real-time systems 

[2]. The target architecture in Tosca consists of off-the-shelf processors and a set of co-

processors on a single chip. The design description is specified using C, VHDL or Occam 

[67]. Vulcan [42][43] is a hardware/software codesign tool focusing on the co-synthesis. The 

input specification to this codesign tool is the hardware description language, HardwareC [44]. 

The partitioning in Vulcan starts with a complete solution in hardware i.e. describing the entire 

solution in HardwareC [44]. Chinook [45] is a co-synthesis tool for embedded real time 

systems. Chinook focuses on the synthesis of hardware and software interface and 

communication. Cosmos [46] is a codesign environment in which the system description is 

specified in SDL36 [47] and ends up by producing a heterogeneous architecture with the 

hardware descriptions in VHDL and the software descriptions in C. CoWare [48][2] is a 

codesign environment of a system supporting co-specification (heterogeneous specification), 

co-simulation and co-synthesis (heterogeneous implementation). Polis [49] is a framework for 

hardware/software codesign targeted for the reactive embedded systems37. The system is 

specified in the specification language called Esterel [50]. SpecSyn [51] is a codesign 

environment which supports a specify-explore-refine design paradigm i.e. the design starts 

with the specification of the system functionality and then the rapid exploration of numerous 

system level design options is performed. Once the feasible most option is selected then 

refinement is carried out for the chosen option 

Conclusion 

Hardware/software codesign is relatively a new topic but since its inception, its literature has 

grown to a wide range of arena and many researches have been conducted in this field. There 

is no standard co-design methodology which can be regarded as the most useful for every 

system design. All the methodologies that are available in the literature till date has its own 

advantages and disadvantages. In some cases, it only suits specific applications. Competitive 

product with low cost and less time to market is the manifestation of an efficient design 

methodology. However, methodology alone is not sufficient; it needs equally strong 

specification language, suitable model of computation, efficient compiler, efficient synthesis 

tool and the efficient co-simulation environment. 

                                                 
35 System which is determined at run time by the input data and by the control structured (e.g. "if" 
statements) used in the program. 
36 Specification and Description Language 
37 Reactive systems typically respond to incoming stimuli from the environment by changing its internal 
state and producing output results [2]. 
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