
The ITB Journal The ITB Journal

Volume 4 Issue 1 Article 5

2003

Hardware/Software Codesign Hardware/Software Codesign

Richard Gallery

Follow this and additional works at: https://arrow.tudublin.ie/itbj

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Gallery, Richard (2003) "Hardware/Software Codesign," The ITB Journal: Vol. 4: Iss. 1, Article 5.
doi:10.21427/D7NB29
Available at: https://arrow.tudublin.ie/itbj/vol4/iss1/5

This Article is brought to you for free and open access by the Ceased publication at ARROW@TU Dublin. It has
been accepted for inclusion in The ITB Journal by an authorized editor of ARROW@TU Dublin. For more
information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/itbj
https://arrow.tudublin.ie/itbj/vol4
https://arrow.tudublin.ie/itbj/vol4/iss1
https://arrow.tudublin.ie/itbj/vol4/iss1/5
https://arrow.tudublin.ie/itbj?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol4%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol4%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.tudublin.ie/itbj/vol4/iss1/5?utm_source=arrow.tudublin.ie%2Fitbj%2Fvol4%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

ITB Journal

Issue Number 7, May 2003 Page 50

Hardware/Software Codesign

 Richard Gallery & Deepesh M. Shakya

School of Informatics and Engineering, ITB

{Richard.Gallery,Deepesh.Shakya@itb.ie}

Introduction

The current state of the art technology in integrated circuits allows the incorporation of

multiple processor cores and memory arrays, in addition to application specific hardware, on a

single substrate. As silicon technology has become more advanced, allowing the

implementation of more complex designs, systems have begun to incorporate considerable

amounts of embedded software [3]. Thus it becomes increasingly necessary for the system

designers to have knowledge on both hardware and software to make efficient design trade-

offs. This is where hardware/software codesign comes into existence.

Hardware/software codesign is the concurrent design of both hardware and software of the

system by taking into consideration the cost, energy, performance, speed and other parameters

of the system. During the design, trade-offs are made between the implementation of

functionality in hardware and/or software depending upon both cost considerations and

technical feasibility.

Since the concept of hardware/software codesign surfaced in 1990s [1], different

methodologies have been proposed for hardware/software codesign. This article gives an

overview of hardware/software codesign. In section 2, a generic hardware/software codesign

methodology is described, section 3 describes the taxonomy of hardware/software codesign

where different aspects of hardware/software codesign is discussed along with some works

performed in these arena to date, section 4 gives an introduction of different codesign

methodologies widely accepted in the literature.

Generic Hardware/Software Codesign Methodology

In this section a generic methodology for hardware/software codesign (

Figure 1) is discussed. The initial step in hardware/software codesign is the high level

specification of the system behaviour to include the functionality, performance, cost, power

and other constraints of the expected design. The specification step includes modelling of the

system in order to capture the entire characteristics of the system.

ITB Journal

Issue Number 7, May 2003 Page 51

After the system specification is ready, it is divided into a number of blocks to allow a costing,

through the application of cost metrics2 for each of these blocks. This is performed in the Cost

Estimation step where the estimation is done for both hardware and software implementation.

This is actually the step for analysis and estimation. The system is analysed from different

aspects of its cost metrics. This step provides valuable information for the hardware/software

partitioning.

The next stage is to partition the system functionality between hardware and software. The

partitioning phase takes information collected from the Cost Estimation phase to allow

decisions to be taken as to which block is to be mapped on hardware and which block to be

mapped on software. The quality of such mapping depends on how much the design

constraints have been

Figure 1 Generic Hardware/Software Codesign Methodology [2]

2 Cost metrics can be calculated for both hardware and software. Hardware cost metrics can be, for e.g.,
execution time, chip area, power consumption or testability. Software cost metrics can be, for e.g.,
execution time, program and data memory.

System Specification

Cost Estimation (Analysis and Estimation)

HW/SW Partitioning

Co-Synthesis

Co-Simulation

Design
Satisfactory

Specification Refinement

HW Synthesis SW Compilation

HW Specifications SW Specifications

HW parts SW parts Interface parts

No

Yes
Stop

ITB Journal

Issue Number 7, May 2003 Page 52

achieved and how much the design cost is minimized [3]. If the design constraints3 are not met

then the expected performance of the system cannot be met and if the design cost is not

minimized, the design cannot compete in the market.

The system is then designed within the context of the heterogeneous target architecture4. This

requires the specification of the interfaces (communication and synchronization) between

hardware represented by ASICs and software represented by the processors.

Once hardware/software blocks and the interfaces between them have been decided, the next

step is the co-synthesis. In co-synthesis, specification refinement is done, where the

implementation independent system specification is transferred into hardware and software

specifications (and the specifications for the interfaces).

Once the separate specification and the necessary refinement5 in the hardware design are

carried out, hardware is synthesised that gives a set of ASICs and software is compiled for

the target processor.

Once the synthesis step is over, the next step in the design flow validates the system design

simulating both the ASIC and the processor together. This is called the co-simulation. The co-

simulation checks whether the design goal has been achieved or not. If the design is

acceptable, the codesign flow stops. If the design is not acceptable the design is traced back to

the hardware/software partitioning step and the design cycle is repeated until the satisfactory

design output is obtained [2].

Taxonomy of Hardware/Software Codesign

Hardware/Software has the following important aspects [3] which must be considered for an

effective system design.

• Modelling

• Analysis and Estimation

• System Level Partitioning, Synthesis and Interfacing

• Implementation Generation

• Co-Simulation and Emulation

3 There can be different design constraints for e.g. time, area, power, memory etc. Timing constraints
specifies timeline for the execution of the system task.
4 System architecture consisting of both hardware (ASICs) and software (general processor).

ITB Journal

Issue Number 7, May 2003 Page 53

Modelling

Modelling can be regarded as the science of capturing the system characteristics [3]. Models

should capture all the information which is necessary for the designers.

Edwards et al.[4] explores the various computational models in the embedded system design,

in which they stress that the formal model should include:

• Formal specification (relation between input and output and internal states),

• Set of properties6 (a set of relation between input and output and internal states. This

is explicitly mentioned to verify it against the functional specification. The properties

are for assertion of the behavior rather than description of the behavior.)

• Performance indices (e.g. cost, reliability, speed, size etc.)

• Design constraints (on performance indices).

The functional specification fully characterizes the system while satisfying the set of

properties.

The design process starts by modelling the system at a high level of abstraction. The designer

checks whether a set of properties have been verified, performance indices are satisfactory

and the design constraints are met.

Edwards et al.[4] goes on to recognize four different types of Models of Computation7:

• Discrete Event,

• Communication Finite State Machines (FSM)

• Synchronous/Reactive

• Dataflow Process Networks Models.

A discrete event (DE) model is characterized by events which are time-stamped (i.e. the time

at which event occurs is timestamped). A DE simulator requires a global event queue which

keeps track of the time-stamped events and orders them to be executed according to their

time-stamps. The DE approach is used to simulate the digital hardware [5].

5 An act of adding design details or converting from abstract representation to Register Transfer Level
(RTL) ready to be fed into the hardware synthesis tool.
6 It can be property of determinate behavior i.e. the output of the system depends entirely on its input
and not on some internal hidden factors.
7 A system can be thought of as composing of simpler subsystems , or pieces. The method or the rules
for composing and capturing these pieces to create a system functionality is called models of
computation.

ITB Journal

Issue Number 7, May 2003 Page 54

FSMs are good for modelling sequential behaviour but are not suitable for modelling

concurrent behaviour of a group of machines, as it may reach the point state explosion8. This

is because the number of states will be the product of the number of states in each machine.

The synchronous/reactive model consists of events which are synchronous i.e. all signal have

events at clock tick. The simulators that use the synchronous models are called cycle -based or

cycle-driver simulators.

In the dataflow model, there is a directed graph where the nodes represent computations and

ordered sequences of events which is represented by arcs [6].

The above discussed modelling techniques may be deployed through the use of appropriate

modelling or specification languages. For example designers using SDL9 (a state oriented

language) [7] can describe multiple concurrent processes10 which communicate with signals.

StateCharts [8] has the ability to decompose a sequential model into hierarchical structure thus

facilitating the representation of FSMs in Statecharts. This hierarchical decomposition can

solve the problem of state explosion 11[3]. The Esterel [9] language is a synchronous language

that supports concurrent behaviour and thus makes it suitable for modelling in FSMs [9].

SpecCharts [73] exploits the advantage of hierarchical and concurrent state diagrams and the

hardware description language VHDL [61].

Specification languages

Specification language describes the overall goal of the desired functionality of a system. A

good specification language is able to address different aspects of a system which includes

following [2] [52] [54]:

• Concurrency

• State-transitions

• Hierarchy

8 The number of state grows exponential that makes the design complex enough to be handled.
9 Specification and Description Language
10 Process is a program codes consisting of sequence of statements.
11 States contained within a state are called sub-states of this surrounding state. The surrounding state
is higher in the hierarchy. If there are two machines with 4 states each then if these machines are
combined to form a single machine then the total number of states of the combined machine will be the
permutation of the number of states of each machine. If in any case, all the states (both machines
combined) can be arranged in an hierarchical manner for e.g. all four states of one machine can be
considered as substates of one of the state of another machine then these substates will have nothing
to do with other states of the machine hence the total number of possible number of states is reduced.

ITB Journal

Issue Number 7, May 2003 Page 55

• Programming constructs

• Behavioral completion

• Communication

• Synchronization

• Exception Handling

• Non-determinism

• Timing

Concurrency: Parts of an embedded system work in parallel. Parts may be a process and

threads of the process. A specification language should be able to capture the concurrency12

behavior of the system.

State-transitions: Systems are often conceptualized as having various modes or states, of

behavior. In a system with multiple states, the transition between states occurs in undefined or

unstructured manner. The specification language must be able to model such arbitrary

transitions.

Hierarchy: A system can be conceptualized as a set of smaller subsystems if modelled as

hierarchical models. Such conceptualization helps system designer to simplify the development

of a conceptual view of a system, since parts of the system can be treated as a separate unit

paving way for scoping objects, such as declaration types, variables and subprogram names.

Lack of hierarchy will make all such objects global and it becomes increasingly difficult for a

designer, as the system will become more complex. There are two types of hierarchy:

structural hierarchy and behavioral hierarchy. Structural hierarchy enables designer to

design a system with interconnected components. Each component is themselves a

composition of sub-components. Behavioral hierarchy decomposes a system behavior into

distinct sub behaviors for e.g. procedures or functions.

Programming Constructs: Specification language should have programming constructs, for

e.g. constructs like functions, procedures, loops, branches (if, case) and assignments simplifies

the sequential description of the system behavior.

Behavioral Completion: A specification language should be able to model the behavioral

completion to indicate that the behavior has completed the execution of all computations. An

advantage of behavioral completion is that it allows designer to conceptualize the behavior as

an independent module. The designer may start next behavior in sequence once the preceding

behavior has finished without worrying if any unfinished work remained in that behavior.

ITB Journal

Issue Number 7, May 2003 Page 56

Communication/Synchronization: A system has several processes working concurrently.

These processes need to communicate with each other. A specification language should have

an ability to model the communication between concurrent behaviors or processes and at the

same time should ensure the synchronization of two behaviors or processes. Such

communication can be conceptualized as a shared memory13 or message passing14 paradigms.

In shared memory, the sending process writes to a medium which is also accessible to the

receiving process. Such a medium could be global variables or ports. In message-passing

communication model, the communication is accomplished with an abstract medium called

channels with send/receive primitives.

Exception handling: A specification language should be able to model the exception handling

mechanism, for e.g. when an exception occurs in the form of interrupts or resets, the current

state of the system should be terminated and the transition to the new state is required. Such

reactive behavior is quite common in the embedded system.

Non-determinism: Non-determinism is helpful when the designer doesn’t want to take

decision during the specification, for e.g. if two events occurs simultaneously then the designer

can leave the decision of which event to be executed first at the time of implementation. This

is only possible if the specification language has an ability to model the non-determinism.

Timing: Specification language should have an ability to model the timing aspects of the

embedded system which are the functional timing and the timing constraints. Functional

timing represents a time required to execute a behavior. Timing constraints indicate a range

of time within which a behavior has to be executed.

The specification languages have been categorized into the following categories as presented

in [2].

1. Formal Description Technique (for e.g. LOTOS [56], SDL [55], Estelle [57])

2. Real Time System Languages (for e.g. Esterel [58], Statecharts [59], High-Level

Time Petri Nets [60])

12 The act of two processes running concurrently.
13 Memory in a parallel computer, usually RAM, which can be accessed by more than one processor,
usually via a shared bus or network. It usually takes longer for a processor to access shared memory
than to access its own private memory because of contention for the processor-to-memory connections
and because of other overheads associated with ensuring synchronised access.
14 A message passing system has primitives (for e.g. send () and receive ()) for sending and receiving
messages. These primitives can be either synchronous or asynchronous. In synchronous message
passing, sending and receiving of message is not complete unless receiving end acknowledges the
receipt of the message. In asynchronous message passing, the message sending process in complete
once the message is sent irrespective of whether the message has been received by the receiving end or
not.

ITB Journal

Issue Number 7, May 2003 Page 57

3. Hardware Description Languages (for e.g. SpecCharts [73] [54], VHDL [61][61],

Verilog [62], HardwareC [44], Handel-C[70])

4. Programming Languages (for e.g. SpecC [63] [64] [65] ,Cx [19])

5. Parallel Programming Languages (for e.g. CSP [66], Occam [67])

6. Data Flow Languages (for e.g. Silage [68] [2])

7. System Design Language (for e.g. SystemC [69])

Analysis and Estimation

It becomes necessary for designers to take crucial decisions during the codesign process and

in order to take these decisions a designer requires:

• Application domain knowledge (ideally the designer understands the application

domain in which the technology will be deployed)

• Knowledge of the technology options that are available

• The ability to analyse proposed design solutions (and as a result access to, training and

knowledge of the capabilities and limitations of design tools)

The analysis and estimation of the design become more crucial when the design constraints

require fast timing and high power consumption [3]. Correct procedures in the design process

can avoid non-competitive and costly designs.

There are different analysis types that need to be made in the design [3], including, amongst

others:

• Process path analysis

• Architecture modelling and analysis

• Power analysis

• Multiprocessor analysis rate analysis

• memory system analysis

A process path is a sequence of process statements that is executed for given input data [3].

Process-path analysis corresponds to determining a set of possible process paths. By

examining the possible process paths, it is possible to find out the worst case execution time

(WCET) by first tracing the process paths during worse case and then calculating the WCET.

Li et al. extensively discusses the process path analysis in [10].

ITB Journal

Issue Number 7, May 2003 Page 58

Power analysis consists in determining the power cost of the system. Tiwari et al. in [11]

describes a power analysis technique to generate the power cost model for the embedded

software. Fornaciari et al. in [12] introduces power metrics included in a hardware/software

codesign environment to guide the system level partitioning. Yanbing Li et al. in [13] explores

a framework for optimizing the system parameters to minimize energy dissipation of the

overall system i.e. both hardware and software. The paper also explores the trade-off

between system performance and the energy dissipation.

Rate analysis includes the analysis of execution rate of the processes. The rate constraints,

imposed by the designer in order to assure proper working of the system to its environment, is

one form of the timing constraints [14]. Mathur et al. in [14] proposes an interactive rate

analysis framework to make sure all the rate constraints are satisfied in the design of the

system.

Memory system analysis is also an important factor in the embedded system design.

Specially, in the areas of image and video processing systems, 50-80% of area cost of the

ASICs for real-time multidimensional signal processing is due to the data storage and transfer

of array signals [15]. So it becomes increasingly necessary to estimate the memory usage and

optimize them well before any decision on hardware software partitioning is made.

Multiprocessor analysis deals with the estimation and analysis of parallel process execution.

Process scheduling decides the order of process execution.

System-Level Partitioning, Synthesis, and Interfacing

Partitioning

Hardware/software partitioning takes place after the necessary information on cost metrics is

generated from the analysis and estimation of the design. Based upon this information, the

system is divided into hardware and software according to whichever gives the best overall

performance result.

Various algorithms have been developed for the hardware/software partitioning. Gupta and

DeMicheli [16] [17] created an algorithm to automate a search of the design space for the

hardware/software partitioning. The algorithm starts by implementing all functionalities in

hardware and the operations to be moved into software are selected based on the cost

criterion of communication overheads. Movement into software is only done if there is any

ITB Journal

Issue Number 7, May 2003 Page 59

improvement in the cost of the current system partition. The algorithm iterates the process of

movement until no cost-improving move could be found. The main defect in this algorithm is

that the algorithm frequently created very costly hardware that consumes many resources,

since the initial partition starts with the hardware solution [18]. Authors in [17] depict the use

of their algorithm for describing the implementation of a network coprocessor communication

via an ethernet15 link. This co-processor is used to take load off the CPU to handle the

communication activities.

Ernst and Henkel [19] start with the initial partition in software and gradually transfer the

software part into hardware. Ernst and Henkel used a hill-climbing16 partitioning heuristic, an

example of which is the simulated annealing [53]. This algorithm uses a cost function to

minimize the amount of hardware used with the performance constraints remaining intact.

Simulated annealing in [19] starts with an infeasible solution with a high cost penalty for run

time exceeding timing constraints. Then the algorithm searches for an improved timing and a

steep decrease in the cost. Ernst and Henkel in [19] uses their algorithm for the

hardware/software partitioning of the digital control of a turbocharged diesel engine and a filter

algorithm for a digital image in which they got a speed up of 1.4 and 1.3 respectively in

reference to the implementation in software alone.

Synthesis and Interface

Once the partitioning specification is ready, the next step is the synthesis of hardware,

software and their respective interfaces. In other words, the co-synthesis step follows next

after the hardware software partitioning. Co-synthesis is defined as the synthesis of hardware,

software and the interface between hardware and software. Once the synthesis is complete

then the design is subjected to co-simulation.

The final synthesized system architecture generally comprises of: a programmable processor,

one or more hardware modules all of which are connected through a system bus, and the

appropriate software modules and interfaces. Hardware modules consist of a datapath, a

controller and I/O interface between hardware and the processor. The processor runs the

15 Ethernet is a physical and data link layer technology for LAN networking.
16 Hill-climbing algorithms are neighborhood search algorithms that subsequently select the neighbor
with the highest quality and continue from there. The search terminates when no neighbor exists that
represents an improvement over the current solution. Hill-climbing algorithms belong to the class of
greedy algorithms i.e. the algorithm never goes back to a solution with lower quality. In other words,
the climber never goes downhill to finally reach a higher peak [55].

ITB Journal

Issue Number 7, May 2003 Page 60

software component of the architecture and also includes the device drivers to establish

communication between software and hardware (the hardware/software interfaces).

In [20], an environment is described for the specification and the synthesis of a heterogeneous

system using Cosmos17. Design starts with an SDL18 [47] specification and produces a

heterogeneous architecture comprising hardware in VHDL and software in C. Codesign steps

in Cosmos includes: partitioning, communication synthesis and architecture generation.

Communication synthesis consists in transferring the process that communicates with high-

level primitives19 through channels into signals. Architecture generation here is actually an

implementation generation step discussed in the next section. Architecture generation includes

two major tasks i.e. virtual prototyping and architecture mapping. Virtual prototyping consists

of hardware (in VHDL), software (in C) and communication (in VHDL or C) which can be

simulated. Architecture mapping consists of synthesizing VHDL descriptions into the ASICs,

conversion of software parts into assembly code resulting in the final architecture that consists

of software, hardware and the communication components.

The software design and the software synthesis are also an important aspect of the

hardware/software codesign since a significant part of the system (i.e. the system that

consists of both hardware and software) are implemented in software. Software synthesis

focuses on the support of embedded systems without the use of operating systems20 [21].

Implementation Generation

Implementation generation for hardware refers to generating hardware for a set of functions.

Hardware typically consists of [24]:

• Control-unit/datapath

• Storage unit (for e.g. registers, register files and memories)

• Multiplexer

17Cosmos is a co-design methodology and tools aimed at the design and synthesis of complex mixed
hardware-software systems.
18 Specification Description Language.
19 Primitives are the basic operations. High level primitives for the communication between two
processes can be taken as the communication that occurs by calling functions.
20 The main drawback of using the support of operating system is that most kernels tend to use a fixed
priority preemptive scheduling mechanism, where the timing constraint is realized from the process
priorities. In some cases the timing constraint is realized by scheduling the process with information of
process period, release time and deadline. But in embedded system, the timing constraints should be
realized more on the occurrence of the events. Since, the operating system scheduling mechanism
doesn’t have idea on the time stamp; it doesn’t know when the events are generated. [21]

ITB Journal

Issue Number 7, May 2003 Page 61

• State-register

• Control-logic

While generating hardware, the size of hardware should be as small as possible while

maintaining the system constraints intact. An implementation, which is silicon area efficient, is

thus a sign of quality design. Implementation generation for software refers to producing an

assembly code for software. An efficient software implementation can only be realized if the

compilers can take full advantage of the architectural features of the processor. Some

approaches for exploiting architectural features are described below.

Sudarsanam et al. in [23] presents a retargetable 21 methodology in an effort to generate high

quality code for a wide range of DSPs22. The paper describes a solution for the problems

arising in those compiler technologies which are unable to generate dense, high-performance

code for DSPs as they do not provide adequate support for the specialized features of DSPs.

Also, the paper describes the solution for the problem where it is necessary to build a compiler

from scratch, due to the unavailability of a suitable compiler (a time consuming process). The

solution presented is a methodology for developing retargetable DSP compilation.

Vahid et al. in [24] describes an algorithm for estimating the hardware size. The paper

describes an algorithm for the hardware estimator, which is based on incrementally updating

the design model to acquire accuracy and iterative improvement algorithms to explore the

different design possibilities. Hence, the algorithm maintains both speed and accuracy in

estimating hardware size. The algorithm takes advantage of the fact that between two

iterations of partitioning design there is only an incremental change. For this incremental

change, a data structure (representing an incrementally modifiable design model) and an

algorithm that can quickly provide the basic design parameters needed by the hardware-size

estimator are developed. Therefore, whenever there is any incremental change in the design

model, the corresponding hardware size is estimated.

21 Retargetable means the reuse without little or no modification for e.g. retargetable compiler is able to
generate code (maintaining the same quality) for the new processor after minor modifications without
need of creating entirely new compiler from the scratch.
22 Digital Signal Processor

ITB Journal

Issue Number 7, May 2003 Page 62

Co-Simulation and Emulation

Co-simulation

Co-simulation of hardware and software refers to the simultaneous verification of hardware

and software functions correctly [25]. The conventional co-simulation approach waits until the

real hardware has been delivered and then performs verification by using in-circuit

emulators23. Due to the increased complexity of the designs and the importance of verifying

the system design as much as possible before committing to the (expensive) transfer of the

hardware aspects of the system to silicon, it has become necessary to perform co-simulation

before the real hardware is produced. This saves time-to-market as well as the cost required

in debugging and re-building the hardware. Rowson in [25] gives an overview of the

techniques available for hardware/software co-simulation.

Ghosh et al. in [32] describes a hardware-software co-simulator that can be used in the

design, debugging and verification of embedded systems. This tool consists of simulators for

different parts of the system (for e.g. Clock Simulator, Parallel Port Simulator, UART

simulator, CPU Simulator, Timer Simulator, Memory Simulator etc.) and a backplane24 which

is responsible for integrating all the simula tors. The back plane is represented by Simulation

Manager which manages communication between the co-simulators (e.g. CPU simulator,

Memory Simulator etc.) and the virtual instruments. Virtual instruments are used to provide

stimulus and to observe response. The paper describes a tool that provides an environment for

joint debugging of software and hardware and is also capable of evaluating system

performance, selection of algorithms and implementations. The tool also addresses the

possibility of exploring hardware-software tradeoffs.

In [32], the performance of the tool for the applications (which was taken as an example) like

engine control unit has been evaluated. The co-simulation of the engine control unit showed a

slowdown by a factor of 400 which is quite suitable for debugging.

Valderrama et al. in [33] describes a unified co-synthesis and co-simulation methodology i.e.

both the steps are performed using the same descriptions (in C and VHDL). The

23 In-circuit emulators are used to replace the processor or microcontroller of the target hardware. It is a
valuable software developers tool in embedded design. The developer loads the program into the
emulator and can then run, step and trace into it.
24 Simulation backplane controls all simulators coupled to it. If a simulator needs to communicate with
partner-simulators, it does this through the simulation back plane.

ITB Journal

Issue Number 7, May 2003 Page 63

communication between hardware and software is through a communication unit, which is an

entity able to execute a communication scheme invoked through a procedure call mechanism

[74]. The VHDL entity25 is used to connect a hardware module with that of software. The

use of procedure call mechanism hides the implementation details related to the

communication unit. The access to the interface of the communication is done through the

procedures. By employing this method, the two communicating modules become quite

independent of each other and changes in one module need not change in other module unless

the communication unit interface is being accessed using the same procedure before and after

the change. The level of abstraction obtained by using procedures help in using the same

module descriptions with different architectures (i.e. the architectures which varies depending

upon the communication protocols used).

Emulation

Co-simulation uses an abstract model to form a virtual prototype (of hardware) while co-

emulation provides a real prototype by implementing functions in hardware (for e.g. FPGA26).

Luis et al. in [34] describes the co-emulation process observed in the co-design methodology-

LOTOS [56]. Once all the construction of the interface between hardware and software is

completed, the execution of software (in C) and the simulation of hardware (in VHDL

simulator) is performed on SUN workstation. The things that software requires to write or

read into or from the FPGA (i.e. the hardware) is written into the files (through C functions)

and the hardware simulator reads the files via an extra VHDL component in the interface,

which is a wrapper27 for a set of C functions that perform reading and writing operation on the

files. This is to perform a test for errors before emulating hardware with the FPGA. The next

step performed is the co-emulation where the hardware part is replaced by the FPGA.

Cedric et al. in [71] describes the co-simulation between SystemC and an emulator called

ZeBu. The paper depicts how SystemC can be co-simulated with ZeBu at different level of

abstraction i.e. at signal-level and at transaction level28. ZeBu is a hardware verification

product built on a PCI card with Xilinx Virtex-II FPGA [72] devices. ZeBu consists of a

technology called Reconfigurable Test Bench (RTB) that interfaces a design under test

25 A modular representation of deign in VHDL is called an entity.
26 Field Programmable Gate Array
27 Wrapper is a piece of code which is combined with another code to determine how the latter code is
executed. Wrapper actually acts as an interface between its caller and the wrapped code.
28 The communication that takes place with function call.

ITB Journal

Issue Number 7, May 2003 Page 64

(DUT). DUT is emulated by one or more Virtex-II FPGA devices. The main function of the

RTB is to stimulate and monitor each individual I/O data pin of the DUT emulated by the

FPGA. ZeBu also consists of C/C++ API which works in concert with the RTB providing

direct interaction with the test benches modelled at higher level of abstraction via SystemC. In

the paper, a test case is presented in which the co-simulation for a graphics design is

conducted for three different cases: SystemC model and HDL29 (Verilog), SystemC model

and ZeBu at the signal level and SystemC model and ZeBu at the transaction level. SystemC

models consist of test bench that interacts with the emulated hardware. The result shows that

the co-simulation execution time for SystemC/HDL is 3 days (for that particular test case

considered), SystemC/ZeBu at signal level is 330 seconds and SystemC/Zebu at the

transaction level is 5 seconds. This co-simulation process with emulated hardware is one of

the latest technologies in the literature. The main benefit of this technique is its ability to co-

simulate at transaction level that gives significant speed-ups.

Co-design Systems

In section 0, a generic hardware/software codesign methodology was presented. In this

section different codesign approaches will be introduced. An interested reader on particular

codesign system may refer to the references given against a methodology name introduced

here.

Ptolemy [35] is codesign methodology that allows heterogeneous specification30 to develop a

unified environment for creating heterogeneous systems. Castle [36] [37] is a codesign

platform which puts more emphasis on processor synthesis i.e. starting from an application it

ends up with synthesis of suitable processor design on which the application considered can be

executed efficiently. Cosyma31 [38] is a codesign methodology which starts the system

solution all in software and during the partitioning step gradually ports software portion into

hardware to achieve practically feasible design. Lycos32 [39][40] is a codesign tool based on

a target architecture with the single processor and a single ASIC. Lycos stresses design space

exploration33 with automatic hardware/software partitioning. Tosca34 [22][41] is a codesign

29 Hardware Description Language to simulate the hardware.
30 System specification with more than one specification language.
31 Co-synthesis for Embedded Architectures
32 Lyngby Cosynthesis
33 Choosing one suitable design out of many.
34 Tools for System Codesign Automation

ITB Journal

Issue Number 7, May 2003 Page 65

methodology that is mainly targeted for control flow dominated35 reactive real-time systems

[2]. The target architecture in Tosca consists of off-the-shelf processors and a set of co-

processors on a single chip. The design description is specified using C, VHDL or Occam

[67]. Vulcan [42][43] is a hardware/software codesign tool focusing on the co-synthesis. The

input specification to this codesign tool is the hardware description language, HardwareC [44].

The partitioning in Vulcan starts with a complete solution in hardware i.e. describing the entire

solution in HardwareC [44]. Chinook [45] is a co-synthesis tool for embedded real time

systems. Chinook focuses on the synthesis of hardware and software interface and

communication. Cosmos [46] is a codesign environment in which the system description is

specified in SDL36 [47] and ends up by producing a heterogeneous architecture with the

hardware descriptions in VHDL and the software descriptions in C. CoWare [48][2] is a

codesign environment of a system supporting co-specification (heterogeneous specification),

co-simulation and co-synthesis (heterogeneous implementation). Polis [49] is a framework for

hardware/software codesign targeted for the reactive embedded systems37. The system is

specified in the specification language called Esterel [50]. SpecSyn [51] is a codesign

environment which supports a specify-explore-refine design paradigm i.e. the design starts

with the specification of the system functionality and then the rapid exploration of numerous

system level design options is performed. Once the feasible most option is selected then

refinement is carried out for the chosen option

Conclusion

Hardware/software codesign is relatively a new topic but since its inception, its literature has

grown to a wide range of arena and many researches have been conducted in this field. There

is no standard co-design methodology which can be regarded as the most useful for every

system design. All the methodologies that are available in the literature till date has its own

advantages and disadvantages. In some cases, it only suits specific applications. Competitive

product with low cost and less time to market is the manifestation of an efficient design

methodology. However, methodology alone is not sufficient; it needs equally strong

specification language, suitable model of computation, efficient compiler, efficient synthesis

tool and the efficient co-simulation environment.

35 System which is determined at run time by the input data and by the control structured (e.g. "if"
statements) used in the program.
36 Specification and Description Language
37 Reactive systems typically respond to incoming stimuli from the environment by changing its internal
state and producing output results [2].

ITB Journal

Issue Number 7, May 2003 Page 66

References

[1]. Wayne Wolf, A Decade of Hardware/Software Codesign, Article from Computer, pp. 38-43, April
2003.

[2]. Ralf Niemann, Hardware/Software Co-design for Data Flow Dominated Embedded Systems,
Kluwer Academic Publishers, 1998.

[3]. Jorgen Staunstrup and Wayne Wolf, Hardware/Software Co-Design: Principles and Practice,
Kluwer Academic Publishers, 1997.

[4]. S. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-Vincentelli, Design of Embedded Systems:
Formal Models, Validation, and Synthesis, Proc. IEEE, vol. 85, pp. 366-390, Mar. 1997.

[5]. V. Lazarov and R. Iliev, Discrete Event Simulation of Parallel Machines, 2nd AIZU International
Symposium on Parallel Algorithms / Architecture Synthesis, pp. 300, March 1997.

[6]. Edward A. Lee and Thomas M. Parks, Dataflow Process Networks, Proceedings of the IEEE, vol.
83, no. 5, pp. 773-801, May, 1995.

[7]. M. Daveau, G. Marchioro and A. Jerraya, VHDL generationfrom SDL specification, In: CHDL. pp.
182-201, 1997.

[8]. Harel, D., Statecharts: A Visual Formalisms for Complex Systems, Communications of the ACM
Vol.31 No.5, 1988.

[9]. G. Berry and G. Gonthier, The Esterel synchronous programming language: Design,semantics,
implementation, Science Of Computer Programming, 19(2):87–152, 1992.

[10]. Yau-Tsun Steven Li and Sharad Malik, Performance analysis of embedded software using implicit
path enumeration, Proceedings of the 32nd ACM/IEEE conference on Design automation
conference, USA, 1995.

[11]. Vivek Tiwari, Sharad Malik and Andrew Wolfe, Power analysis of embedded software: a first step
towards software power minimization, IEEE Transactions on VLSI Systems, December 1994.

[12]. William Fornaciari , Paolo Gubian , Donatella Sciuto and Cristina Silvano, Power estimation of
embedded systems: a hardware/software codesign approach, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, v.6 n.2, p.266-275, June 1998.

[13]. Yanbing Li , Jörg Henkel, A framework for estimation and minimizing energy dissipation of
embedded HW/SW systems, Proceedings of the 35th annual conference on Design automation
conference, p.188-193, California, United States, June 15-19, 1998.

[14]. A. Dasdan, A. Mathur, and R. K. Gupta. RATAN: A tool for rate analysis and rate constraint
debugging for embedded systems. In Proceedings ED&TC '97, 1997.

[15]. Koen Danckaert, Francky Catthoor and Hugo de Man, System level memory optimization for
hardware-software co-design, 5th International Workshop on Hardware/Software Co-Design
(Codes/CASHE '97) Braunschweig, GERMANY, March 24 - 26, 1997.

[16]. R. Gupta and G. De Micheli, Hardware-software cosynthesis for digital systems, IEEE Design and
Test of Computers, vol. 10, no.3, pp.29-41, Sept. 1993.

[17]. R.K. Gupta and G.D. Micheli, System-level Synthesis using Re-programmable Components,
1EEE/ACM Proc. of EDAC'92, 1EEE Comp. Soc. Press, pp. 2 -7, 1992.

[18]. Adam Kaplan, Majid Sarrafzadeh and Ryan Kastne, A Survey of Hardware/Software System
Partitioning, (Details not available)

[19]. Rolf Ernst, Jorg Henkel and Thomas Benner, Hardware-Software Cosynthesis for
Microcontrollers, Design and Test of Computers, pp. 64-75 ,Vol. 10, No. 4, October/December
1993.

[20]. Tarek Ben Ismail, Ahmed Amine Jerraya, Synthesis Steps and Design Models for Codesign
,Computer, Vol. 28, No. 2, pp44-52, February 1995.

[21]. Filip Thoen, Marco Cornero, Gert Goossens and Hugo De Man, Real Time Multi-Tasking in
Software Synthesis for Information Processing Systems, Eighth International Symposium on
System-Level Synthesis, Los Alamitos, 1995.

[22]. A. Balboni, W. Fornaciari, and D. Sciuto, Co-synthesis and cosimulation of control dominated
embedded systems, in International Journal Design Automation for Embedded Systems, vol. 1, no.
3, July 1996.

[23]. Ashok Sudarsanam, Sharad Malik and Masahiro Fujita, A retargetable Compilation Methodology
for embedded Digital Signal Processors using a Machine-Dependent Code Optimization
Library, Design Automation for Embedded Systems, Kluwer Academic Publishers, pp. 187-206,
1999.

ITB Journal

Issue Number 7, May 2003 Page 67

[24]. Frank Vahid and Daniel D. Gajski, Incremental hardware estimation during hardware/software
functional partitioning, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.3
No.3, pp.459-464, Sept. 1995.

[25]. J. Rowson, Hardware/software co-simulation, In Proc. of the Design Automation Conference, pp.
439--440, 1994.

[26]. Heiko Hubert, A Survey of HW/SW Cosimulation Techniques and Tools, Thesis work, Royal
Institute of Technology, Sweden, 1998.

[27]. Triscend, Bus Functional Model, Application Note,(AN_32),v1.4, July 2001.
[28]. Virtutech White Papers, Introduction to Simics: Full System Simulator Without Equal.
[29]. Texas Instruments, TMS320C28x DSP CPU and Instruction Set-Reference Guide , Literature

Number: SPRU430B, August 2001 – Revised May 2002.
[30]. Vojin Živojnovic and Heinrich Meyr, Compiled HW/SW co-simulation, Proceedings of the 33rd

annual conference on Design automation conference, pp.690-695, USA, June 03-07, 1996.
[31]. Chris Schlager, Joachim Fitzner and Vojin Zivojnovic, Using Supersim Compiled Processor

Models For Hardware, Software And System Design, (Details not available)
[32]. A. Ghosh, M. Bershteyn, R.Casley, C. Chien,A. Jain, M. LIpsie, D. Tarrodaychik, and O.

Yamamoto, A Hardware-Software Co-simulator for Embedded System Design and Debugging, In
proceedings of ASP-DAC’95.

[33]. C. A. Valderrama, A. Changuel, P. V. Raghavan, M. Abid, T. B. Ismai and A. A. Jerraya, Unified
Model for Co-simulation and Co-synthesis of mixed hardware/software systems, Proc. EDAC'95,
Paris, France, February- March 1995.

[34]. Luis Sanchez Fernandez,Gernot Koch, Natividad Martinez Mardrid Maria Luisa Lopez Vallejo,
Carlos Delgado Kloos and Wolfgang Rosenstiel, Hardware-Software Prototyping from LOTOS ,
Design Automation for Embedded Systems, Kluwer Academic Publishers, 1998.

[35]. Edward A. Lee, Overview of the Ptolemy Project, Technical Memorandum UCB/ERL M01/11
March 6, 2001.

[36]. P.G. Plöger and J. Wilberg, A Design Example using CASTLE Tools, Workshop on Design
Methodologies for Microelectronics, Institute of Computer Systems Slovak Academy of Sciences,
Bratislava, Slovakia, pp. 160-167, Sep., 1995.

[37]. J. Wilberg, A. Kuth, R. Camposano, W. Rosenstiel and H. T. Vierhaus, Design Space Exploration
in CASTLE, Workshop on High-Level Synthesis Algorithms, Tolls and Design (HILES), Stanford
University, Nov. 1995, in: GMD-Studie Nr. 276, Dec. 1995.

[38]. Achim Osterling, Thomas Benner, Rolf Ernst, Dirk Herrmann, Thomas Scholz and Wei Ye, The
Cosyma System, a chapter from Hardware/Software Codesign: Principles and Practice, pp 263-282,
Kluwer Academic Publishers, 1997.

[39]. J. Madsen, J. Grode, P. V. Knudsen, M. E. Petersen and A. Haxthausen, LYCOS: the Lyngby Co-
Synthesis System. Design Automation of Embedded Systems, Vol. 2, No. 2, March 1997.

[40]. Achim Osterling, Thomas Benner, Rolf Ernst, Dirk Herrmann, Thomas Scholz and Wei Ye, The
Lycos System, a chapter from Hardware/Software Codesign: Principles and Practice, pp 283-305,
Kluwer Academic Publishers,1997.

[41]. W. Fornaciari, D. Sciuto and A. Balboni, Partitioning and Exploration Strategies in the TOSCA
Co-Design Flow,4th International Workshop on Hardware/Software Co-Design
(Codes/CASHE'96),Pittsburgh, Pennsylvania , 1996.

[42]. R. K. Gupta and G. De Micheli, A Co-Synthesis Approach to Embedded System Design
Automation. Design Automation for Embedded Systems, January 1996.

[43]. Rajesh Kumar Gupta,Co-Synthesis Of Hardware And Software For Digital Embedded Systems,
Phd. Thesis, Dept. of Electrical Engineering, Stanford University, 1993.

[44]. HardwareC-A language for Hardware Design, (Details not available)
[45]. Pai H. Chou, Ross B. Ortega and Gaetano Borriello, The chinook Hardware/Software Co-

Synthesis System, Proceedings of the eighth international symposium on System synthesis,France,
1995.

[46]. Tarek Ben Ismail and Ahmed Amine Jerraya, Synthesis Steps and Design Models for Codesign,
Computer, Vol. 28, No. 2,pp. 44-52, February 1995.

[47]. Telelogic, Specification and Description Language (SDL), (Details not available)
[48]. Verkest, K. Van Rompaey, Ivo Bolsens and Hugo De Man, CoWare-A Design Environment for

Heterogeneous Hardware/Software Systems, Design Automations for Embedded Systems, 1(4),
357-386, 1996.

ITB Journal

Issue Number 7, May 2003 Page 68

[49]. L. Lavagno, M. Chiodo, P. Giusto, H. Hsieh, S.Yee, A. Jurecska, and A. Sangiovanni-Vincentelli , A
Case Study in Computer-Aided Co-Design of Embedded Controllers, In Proceedings of the
International Workshop on Hardware-Software Co-design, pp. 220-224. 1994.

[50]. Gerard Berry, The Esterel V5 Language Primer, Version 5.21 release 2.0 , April 6, 1999.
[51]. D. D. Gajski, F. Vahid, S. Narayan, and J. Gong,SpecSyn: An Environment Supporting the Specify-

Explore-Refine Paradigm for Hardware/Software System Design, IEEE Transactions on VLSI
Systems 6, no 1, pp. 84-100 1998.

[52]. D.D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design of Embedded Systems.
Englewood Cliffs , NJ: Prentice Hall, 1994.

[53]. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing. Science, 1983.
[54]. D.D. Gajski et al., Specification Languages, presentation slides, September 2000.
[55]. Andreas Mitschele-Thiele, Systems Engineering with SDL, Wiley, 2001.
[56]. B. Bolognesi and E. Brinksma, Introduction to the ISO Specification Language LOTOS , Computer

Networks and ISDN Systems 14, pp. 684-707, 1987.
[57]. Stanislaw Budkowski, Estelle: ISO-Formal Description Technique, National Institute of

Telecommunications, France, 1989.
[58]. G. Berry, Hardware implementation of pure Esterel, In Proceedings of the ACM Workshop on

Formal Methods in VLSI Design, January 1991.
[59]. David Harel, Statecharts: A visual formalism for complex systems, Science of Computer

Programming, 8:231-274, 1987.
[60]. Robert Esser, An object oriented Petri net language for embedded system design, In: Proceedings

of the 8th International Workshop on Software Technology and Engineering Practice
incorporating Computer Aided Software Engineering, London, 1997.

[61]. D. Smit, VHDL & Verilog Compared & Contrasted, Proc. 33rd Design Automation Conference,
1996.

[62]. Peter J. Ashenden, Verliog and Other Standards, IEEE Design & Test of Computers, pp. 84-85,
January 2002.

[63]. Rainer Dömer, The SpecC Language, A Tutorial Presentation, Centre for Embedded Computer
Systems, University of California, Irvine. (Date not available)

[64]. Andreas Gerstlauer, The SpecC Methodology, A Tutorial Presentation, Centre for Embedded
Computer Systems, University of California, Irvine. (Date not available)

[65]. Rainer Dömer, System-Level Modeling and Design with the SpecC Language, PhD Thesis,
University of Dortmund, 2000.

[66]. C.A.R Hoare, Communicating Sequential Processes, Prentice Hall International, First Publication
1985, March 2003.

[67]. Daniel C. Hyde, Introduction to the Programming Language Occam, Department of Computer
Science, Bucknell University, Lewsiburg, Updated March 20, 1995.

[68]. P. Hilfinger, A High-Level Language and Silicon Compiler for Digital Signal Processing, In
proceedings of the Custom Integrated Circuits Conference, -NA, 1985.

[69]. Stan Y. Liao, Towards a New Standard for System-Level Design, CODES’00, 2000.
[70]. Celoxica Limited, Handel-C Reference Manual, 2001.
[71]. Cedric Alquier, Stephane Guerinneau, Lauro Rizzatti and Luc Burgun, Co-Simulation Between

SystemC and a New Generation Emulator, DesignCon 2003.
[72]. Xilinx Website, www.xilinx.com
[73]. Sanjiv Narayan, Frank Vahid, Daniel D. Gajski, System Specification with the SpecCharts

Language,Design & Test of computers, pp 6-13 (Vol. 9, No. 4), October/December 1992.
[74]. A. Birrell and B. Nelson, Implementing Remote Procedure Calls, ACM Transactions on Computer

Systems, 1984.

	Hardware/Software Codesign
	Recommended Citation

	ITB Journal-May-2003

